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Abstract -- In Gaussian maximum likelihood classification,
the mean vector and covariance matrix are usually estimated
from training samples. When the training sample size is small
compared to dimensionality, the sample estimates, especialy
the covariance matrix becomes highly variable and
consequently, the classifier performs poorly. In particular, if
the number of training samples is less than dimensionality, the
sample covariance estimate becomes singular so the quadratic
classifier cannot be applied. Unfortunately, the problem of
limited training samples is prevalent in remote sensing
applications. While the recent progress in sensor technology
has increased the number of spectral features making possible
more classes to be identified, the training data remain
expensive and difficult to acquire. In this work, the problem
of small training set size on the classification performance is
addressed by introducing a covariance estimation method for
limited training samples. The proposed approach can be
viewed as an intermediate method between linear and
quadratic classifiers by selecting an appropriate mixture of
covariance matrices. The mixture of covariance matrices is
formulated under an empirical Bayesian setting which is
advantageous when the training sample size reflects the prior
of each class. The experimental results show that the
proposed method improves the classification performance
when training sample sizes are limited.

INTRODUCTION

In the conventional Gaussian maximum likelihood (ML)
classifier, the sample estimates are computed from training
samples and are used as the ML estimates of the mean vector
and covariance matrix. The quadratic classifier's performance
can be degraded when the number of dimensions is large
compared to the training set size due to the instability of
sample estimates. In particular, the sample covariance
estimate becomes highly variable and may even be singular.
One way to deal with the instability of covariance estimate is
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to employ the linear classifier which is obtained by replacing
each class covariance estimate with their average. Although a
linear classifier often performs better than a quadratic
classifier for small training set size, the choice between linear
and quadratic classifiers is rather restrictive.  Severa
methods[1][2][3] have been proposed where the sample
covariance estimate is replaced by partially pooled covariance
matrices of various forms. In this formulation, some degree
of regularization is applied to reduce the number of
parameters to be estimated, thus improving classification
performance with small training set size  Therefore,
regularization techniques can also be viewed as choosing an
intermediate classifier between the linear and quadratic
classifiers.  In general, regularization procedures can be
divided into two tasks: 1) the choice of covariance mixture
models, and 2) model selection. To perform regularization,
one must first decide upon a set of appropriate covariance
mixture models that represent a "plausible” set of covariance
estimates. Normally, a covariance mixture of the following
form is assumed:

S =(1-w)S+wsS ~ 0fw £1

The regularization or mixing parameter w; then controls the
biasing of individual class covariance sample estimate S to a
pooled covariance matrix S,. However, this partially pooled
covariance estimate may not provide enough regularization
even for alinear classifier. In the case when the total number
of training samples is comparable to or is less than the
dimension, even the linear classifier becomes ill- or poorly-
posed. Therefore, an aternative covariance mixture is

provided by biasing the sample covariance toward some non-
singular diagonal matrix L :

S =(1-w)S+wL O0Efw £l

For given value(s) of the mixing parameter(s), the amount
of bias will depend on how closely the estimates S; actualy
represent those true parameters S;. Therefore, the goa of
model selection is to select appropriate values for the mixing
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parameters which can be estimated from minimizing a loss
function based on the training samples. A popular
minimization criterion is based on cross-validated estimation
of classification error. This criterion has the benefit of being
directly related to classification accuracy even though it is
computationally intensive. However, the process of
estimating each class covariance matrix involves the
covariance estimates of all classes, which implies that the
same mixing parameter has to be used for all classes. The
same choice of mixing parameter might not be optimal for all
classes. Furthermore, the same classification error rate might
occur along a wide range of parameter values and hence the
optimal value of mixing parameter is non-unique. Therefore,
a tie-breaking technique is needed. Anocther maximization
criterion which has been applied is the sum of the average
leave-one-out likelihood values. This criterion requires less
computation than the leave-one-out classification error
procedure. It aso has the advantage that each class
covariance matrix can be estimated independently of the
others. Therefore, the mixing parameter can be different for
each class. Moreover, not al classes need to be subjected to
regularization, especially those with sufficient training
samples. However, a major drawback of this criterion is the
lack of direct relationship with classification accuracy. In this
work, we propose a new covariance estimator based on a
Bayesian formulation. The proposed estimator is essentially
an extension of previousworksin [1][2][3].

PROPOSED COVARIANCE ESTIMATOR

The first form of covariance mixtures is derived by
assuming that the total number of training samples is greater
than the dimensionality. In this case, the common covariance
matrix is non-singular.  The assumption of normally
distributed samples implies that the sample covariance
matrices § are mutually independent with

Waels f'
S gf ir i+

where f; =N, -1, N; isthe number of training samples for
class i and W denotes the central Wishart distribution with
fi degrees of freedom and parameter matrix S;. Then the
family of inverted Wishart distributions provides a convenient
family of prior distributions for the true covariance S;.
Assume that each S; has an inverted Wishart prior
distribution so that the S; are mutually independent with

S, ~WH(t- p-2)Y,t) t>p+1

where W™ isan inverted Wishart distribution with parameters
Y and t for p dimensions. Then the prior mean Y

represents the central location of the prior distribution of the
S;, and t controls the concentration of the S; around Y .

Under sguared error loss, the Bayes estimator of S, is given
by[2]

f, S+ t- p-1
f.+t-p-1 f+t-p-1

éi(Y,t)=

t- p-1
f,+t- p-1’
estimate S,, the S; can then be replaced by partially pooled
estimates of the form :

S =(1- w)S +ws,

By letting w; = and Y be a pooled covariance

Ofw £1
Thevalue of t canin turn be expressed in terms of w; :

w(f - p-1)+p+1
1-w

t= Of£w <1.

The pooled covariance estimate is then defined by the
generalized least squared estimator of Y, designated as
Sy(t), for L classesand agiven't:

6L f
B§f+t-p 1S

EQ- f.
8_1f +t'p 1

S,(t) =

When the total number of training samples is close to or
less than the number of features, even the pooled covariance
matrix becomes unstable. In this case, biasing the sample and
common covariance estimates towards some form of diagonal
matrix can avoid the problem of singularity. We bias the
sample and common covariance estimates towards their own
diagonal elements which are advantageous when the class
covariance matrix is ellipsoidal. The proposed covariance
estimator then has the following form:

) :(1 a )diadS) +a;S 0fa, <1
Si(a))=i(2-a;)s +(a; - 9S,() 1£a,<2.
}(3 a,)S+(a; - 2)diag(s) 2£a,£3

14 S

where S= T aS. The maximization of leave-one-out
i=1

average log likelihood is used as the criterion to select the

appropriate  mixture model. Therefore, to select an

appropriate mixture, the value of a; is fixed and the leave-

one-out average likelihood is computed and compared for

each a;. The direct implementation of the leave-one-out
likelihood function for each class with N; training samples
would require the computation of N, matrix inverses and
determinants at each value of a;. Fortunately, a more

efficient implementation can be derived using the rank-one
down-date of the covariance matrix.
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EXPERIMENTAL RESULTS

For the experiment, we use a 145X145 pixel AVIRIS
image. The water absorption bands have been discarded,
leaving a total of 200 channels. This data contains 17 classes
of varying sizes. The purpose of this experiment is to
demonstrate the effect of covariance estimation on classes
with varying covariance structures and different training
sample size. The training samples are selected to be 1% of the
number of labeled samples for each class. The labeled
samples, excluding the training samples are then used as test
samples. The classes, and the numbers of labeled samples are
listed in Table 1. This data was obtained in June 1992 so
most of the row crops in the agricultural portion of the test site
had not reached their maximum ground cover. Therefore, the
classification of these crops becomes challenging since the
spectral information comes from a mixture of the crops, the
soil variations and previous crop residues. These crops are
listed as the first seven classes and their mean classification
accuracy is computed separately. The classification
procedures for testing the data are shown in Table 2. Since
the Euclidean distance classifier does not utilize the
covariance information, its performance would indicate
whether the second order dstatistics are useful for the
classification of high dimensional data with limited training
samples. The use of the common covariance estimate for all
classes is equivalent to a linear classifier. The leave-one-out
covariance estimator[2] (LOOC) is implemented to compare
with the proposed Bayesian leave-one-out covariance
estimator (bLOOC). The mixing parameter a; is set at O,

0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 275 and 3. In
addition to using the covariance estimator to help increase the
stability of covariance estimate, the use of feature extraction
can aso help reduce the number of features to cope with small
training set sizes. We perform Discriminant Analysis Feature
Extraction[4] (DAFE) which only utilizes mean information
and is therefore less sensitive to small training sample size.
The sample covariance estimate is not tested in this
experiment since the numbers of training samples for some
classes are extremely small. Two types of classifiers, namely,
the quadratic classifier (QC) and the spatial-spectral classifier
ECHO[5] (Extraction and Classification of Homogeneous
Objects) are then applied and compared. While the quadratic
classifier assign individual pixels to one of the classes, the
ECHO classifier first divides the image into groups of
contiguous pixels and classifies each group to one of the
classes. The results of classification are shown in Table. The
highest accuracy is highlighted in bold letters.

DISCUSSION AND CONCLUSION

The performance of the Euclidean distance classifier is
significantly lower than the other classifiers. This shows that
the second order statistics are useful for classifying high
dimensional data even though the training samples are limited.
Although the class covariance matrices differ substantialy,
the use of common covariance matrix and hence the linear

classifier improves the performance substantially compared to
the Euclidean distance classifier. The table shows that the
best performance is achieved by using bLOOC, DAFE and the
ECHO classifier. The classification accuracy increases
substantially for the row crops 1-7. Compared with the
second best result obtaned from the classifier
LOOC+DAFE+ECHO, the accuracy increases from 82.72%
to 89.06%. The mean accuracy for al classes improves from
80.35% to 82.90% as well. It should be mentioned that when
all classes have equal number of training samples, bLOOC
has the same form as LOOC. Therefore, the proposed
Bayesian estimator is beneficial when the sample sizes are
unequal and the training set size reflects the true priors.
Further details of this method can be found in [6].
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Table1 Classdescription of the AVIRIS data set

Class Name No. of Labeled Samples
1. Corn-no till 1423
2. Corn-min till 834
3. Corn 234
4. Soybeans-no till 797
5. Soybeans-no till2 171
6. Soybeans-min till 2468
7. Soybeans-clean till 614
8. Alfafa 54
9. Grass/Pasture 497
10. Grass/Trees 747
11. Grass/pasture-mowed 26
12. Hay-windrowed 489
13. Oats 20
14. Wheat 212
15. Woods 1294
16. Bldg-Grass-Tree-Drives 380
17. Stone-steel towers 95
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Table 2 Classification accuracy for the AVIRIS data

Procedures Class 1-17 (%) || Class 1-7 (%)
Euclidean Distance 48.23 31.79
Common Cov+DAFE+QC 74.81 70.18
Common Cov+DAFE+ECHO 76.78 74.94
LOOC+DAFE+QC 75.29 70.71
LOOC+DAFE+ECHO 80.35 82.72
bL OOC+DAFE+QC 75.53 72.61
bL OOC+DAFE+ECHO 82.91 89.06
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