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ABSTRACT
Motivated by the need for a fast and effective feature

extraction method for multiclass problems, a feature
extraction method is developed to satisfy two requirements:
(1) perform on a class-statistics basis (2)  use discriminant
information about covariance-difference as well as mean-
difference. Experiments show that the new feature extraction
method has fulfilled the requirements when the number of
training samples is large. Experiments with a small number
of training samples were also conducted for showing the
limitation of feature extraction.

INTRODUCTION
In analyzing hyperspectral data, the information about

discriminating among classes is quite often contained
primarily in a smaller number of features than the number of
measurements (in channels). In order to make classification
effective and efficient, it is desirable to extract these
informative features. Feature extraction can be considered as
a mapping from the original dimensional space to a lower
dimensional space, where class separability is approximately
preserved. Since it is difficult to perform nonlinear
transformations, the discussion in this study will be limited
to linear feature extraction. In parametric feature extraction,
there are two types of discriminatory information: mean-
difference and covariance-difference. For general purpose
use, a feature extraction method combining mean-difference
and covariance-difference is desired.

For multiclass problems, Discriminant Analysis Feature
Extraction (DAFE) [1][2] and Decision Boundary Feature
Extraction (DBFE) [3] are two reliable schemes currently
being used. DAFE is fast and easy to implement. However,
the application of DAFE is limited to the case in which
classes have significant mean-difference since DAFE is
based upon the information about mean-difference. The
number of effective features extracted by DAFE is subject to
the number of classes. Although DBFE does not have these
disadvantages, DBFE is very time-consuming. It is a
numerical algorithm performing on a sample-by-sample
basis. The time complexity of DBFE is a function of the
number of training samples. A good performance of DBFE
usually demands a large number of training samples. In
addition, an extension to the Foley-Sammon orthonormal
feature extraction method has been proposed [4][5].
However, this extension was not effective (see
Experiments).

Motivated by the need for a fast and effective feature
extraction method for multiclass problems, a feature
extraction method is developed that satisfies the following
two requirements. First, this method should perform on a
class-statistics basis so that it is faster than DBFE. Second,
this method should use discriminant information about
covariance-difference as well as mean-difference so that it
may generate more effective features than DAFE.

In order to utilize the discriminant information about
covariance-difference as well as mean-difference, a two-
stage strategy is used. This strategy has been proposed for
two-class problems [6]. The idea behind this strategy is as
follows. In the nullspace of the row DAFE features, classes
have common mean vectors. That is, DAFE is followed by a
common-mean problem. Bounds on the classification
accuracy for common-mean problems are derived for the
criterion used at the second stage.

It is shown that the upper and lower bounds are associated
with the ratio of the largest to the smallest class variances.
This leads to the conclusion that the most effective feature
can be selected by picking the feature along which the ratio
of the largest to the smallest variances is highest.

Experiments show that the new feature extraction method
has fulfilled the requirements. When the number of training
samples is large, the proposed method extracts more
effective features than DAFE and needs much less
computational time than DBFE while having a comparable
performance to DBFE.

BOUNDS ON THE CLASSIFICATION ACCURACY
The classification along each feature can be considered as

a univariate problem. In the common-mean multiclass case,
it is easier to formulate the classification accuracy than to
formulate the Bayes error; thus, a mathematical expression
was derived for the classification accuracy [7]. Since the
expression, involved with an integration, is not a closed
form, bounds are provided to gain insight into the
discriminant information.

Theorem 1: For L  univariate normal distributions with a
common mean and different variances, σ1

2 < σ2
2 <... < σL

2 ,
the probability of correct classification under the maximum
likelihood classifier can be bounded as follows.

(1/ L)1+2 Φ d1L / σ1( ) -2Φ d1L / σL( )[ ] ≤
P cr ≤ (1/ L)1 + (2πe)−1/2 ln(σL

2 / σ1
2 )[ ]
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where P cr  = classification accuracy; d ij  = the decision point

between class i  and class j  on the side of x>0,

d ij
2 = [σi

2σ j
2 / (σ j

2 − σi
2 )]ln(σ j

2 / σ i
2 ) ; Φ(x) is the

cumulative distribution function of the standard normal

distribution, Φ(x) = (2 π)−1/2 exp(−t 2 / 2)dt−∞
x

∫ .

Theorem 2: Assume that the covariance matrices of L
equally-probable classes share the same eigenvectors, then
the overall classification accuracy ( P c ) is bounded by

 Pc ≤ Ln−1   Pcr, k
k=1

n

∏
where P cr,k is the classification accuracy along the k-th

eigenvector.
This theorem suggests that the best m -dimensional

subspace be spanned by the m  features corresponding to the
m  highest accuracy rates if classes share the same
eigenvectors. It is shown in Theorem 1 that the larger the
ratio of variances, the higher the classification accuracy
along the feature. Therefore, it can be concluded that the best
m  features can be selected from the eigenvectors
corresponding to the m  largest variance ratios.. When L =2,
this conclusion is the same as [1].

CRITERIA FOR FEATURE EXTRACTION
Criterion I: A linearly independent feature set
Given a feature φ , the ratio of the largest to the smallest

variance is ρφ = max
i,j,i≠ j

φTΣiφ
φTΣ jφ

, where Σ i  is the covariance

matrix of class i . The best feature can be obtained by
maximizing ρφ  over all possible φ . Thus, a criterion for a

linearly independent feature set is:

max
φ

max
i,j,i≠ j

φTΣiφ
φTΣ jφ

 = max
i,j,i ≠ j

max
φ

φTΣiφ
φTΣ jφ

.

The optimization of 
φTΣ iφ
φTΣ jφ

 for given i  and j  is equivalent

to the optimization of tr(Σ j
−1Σ i )., and λ max

(ij)  is the largest

eigenvalue of Σ j
−1Σ i . The corresponding eigenvector φmax

(ij)

of Σ j
−1Σ i  maximizes the criterion for discriminating class i

and class j .
Algorithm:
1. For each pair of class i  and class j  ( i ≠ j ), compute the

eigenvalues and eigenvectors of Σ j
−1Σ i .

2. Sort all eigenvalues in a decreasing order. The eigenvector
corresponding to the largest eigenvalue is the best
feature. Put it in the feature set.

3. Check the next largest eigenvalue. Retain the
corresponding eigenvector if it is linearly independent of
the existing feature set. Add the vector to the feature set.
Repeat this step until n features are obtained.

Two other criteria were also developed for test.

Criterion II: An orthogonal feature set:

max
i,j,i ≠ j

max
φ

φTΣ iφ
φTΣ jφ

subject to φh
Tφ= 0,  h = 1,...,k − 1

Criterion III: A linearly independent feature set 2

max
i,j,i ≠ j

 max
Φ

 
|Φ TΣ iΦ |

|Φ TΣ jΦ |

where Φ  is an n by p matrix consisting of p  best linearly
independent features regarding the pair of classes i  and j . p
is specified by users.

EXPERIMENTS
The real data used in the experiment was gathered by

Spectrometer System (FSS), a helicopter-mounted filed
spectrometer. This data set consisted of four classes that
were chosen from the data collected at Finney Co. KS. on
May 3 and March 8, 1977 (Table 1). To guarantee that the
ratio of training sample size to dimensionality was large
enough, a simple dimension reduction was conducted. The
number of dimensions was reduced from 60 to 20 by
combining every three consecutive bands. The following
cases were considered.

Test-1: Common-mean case with large training sizes
Test-2: Different-mean case with large training sizes
Test-3: Common-mean case with small training sizes
Test-4: Different-mean case with small training sizes

Training samples were randomly selected from the
corresponding real data set, and the rest of the samples were
all used as test samples.  A size of 300 was used for the large
training size case whereas 22 was used for the small training
size case.

Common-mean data sets were prepared by projecting the
20-dimensional data to the 17-dimensional subspace
orthogonal to the subspace spanned by the DAFE features,
with respect to the within-class scatter matrix Sw . At this
step, the class statistics were estimated (referred to as the
true statistics) using all samples; discriminant features were
extracted by DAFE; and data were transformed to the
nullspace of the row DAFE features. The resulting classes
had common mean vectors.

For different-mean cases, the feature extraction at the
second stage can be performed in either of the following two
subspaces. One is orthogonal to the DAFE subspace with
respect to the within-class scatter matrix Sw , and the other is
orthogonal to the DAFE subspace. The latter was used in the
experiments.

The criteria I, II, and III and other methods were tested,
including DBFE, DAFE, an extension to Foley-Sammon,
and DAFE-DAFEs. DAFE-DAFEs can be considered as
another extension to Foley-Sammon that selects L-1 features
rather than one feature at a time.

Experimental results are shown in Figures 1-4. Several
observations were made. First, when the number of training
samples was large, the proposed criteria extracted more
effective features than DAFE and needed much less
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computational time than DBFE while having a comparable
performance to DBFE. This implies that incorporating the
information about covariance-difference into feature
extraction helps improve the performance. Second, the
extension to Foley-Sammon gave poor results, indicating
that the orthogonality constraint is not necessarily helpful
and the way to extract features one by one is not appropriate.
Third, in the case of small training sample sizes, the
performance of feature extraction methods was contrary to
the order in the large training case. DBFE which used the
information about covariance-difference gave the poorest
performance among all methods. This is reasonable because
the estimates of covariances are no longer reliable when the
number of training samples is small. Inaccurate estimation of
class statistics undermines the performance of feature
extraction.

Table 1: The FSS1977 Data Set
Class Name No. of samples

1. Winter Wheat, May 3 657
2. Unknown Crops, May 3 678
3. Winter Wheat, March 8 691
4. Unknown Crops, March 8 619

CONCLUSIONS
Linear parametric feature extraction for multiclass

problems has been investigated. The objective is to develop
a fast and effective feature extraction method that utilizes
discriminant information about covariance-difference as well
as mean-difference and performs on a class-statistics basis.

The proposed two-stage feature extraction method has
achieved the goal in the experiments that have been done. It
should be noted that such feature extraction methods are not
suitable for the case of small training sample sizes.
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Figure 1: Common-mean case with large training sizes
(DBFE: Decision Boundary Feature Extraction)
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Figure 2: Different-mean case with large training sizes.
(DA-LI denotes DAFE followed by the linear independent
feature extraction based on Criterion I.)
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Figure 3: Common-mean case with small training sizes
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Figure 4: Different-mean case with small training sizes


