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Abstract

A new covariance matrix estimator useful for designing classifiers with limited training data is developed.  In

experiments, this estimator achieved higher classification accuracy than the sample covariance matrix and

common covariance matrix estimates.  In about half of the experiments, it achieved higher accuracy than

regularized discriminant analysis, but required much less computation.

I.  Introduction

When classifying data with the Gaussian maximum likelihood classifier, the mean

vector and covariance matrix of each class usually are not known and must be

estimated from training samples.  For p-dimensional data, the sample covariance

matrix estimate is singular, and therefore unusable, if fewer than p+1 training samples

from each class are available, and it is a poor estimate of the true covariance matrix

unless many more than p+1 samples are available.  In some applications, such as

remote sensing, there are often a large number of features available, but the number

of training samples is limited due to the difficulty and expense in labeling them.  Since

inaccurate estimates of the covariance matrix lead to lowered classification accuracy,

having too few training samples can be a major impediment in using the Gaussian

maximum likelihood classifier to classify high dimensional data.  When the number of

training samples is limited, estimating the mean vector for each class, but using a

common covariance matrix estimate for all the classes, can sometimes lead to higher

accuracy because it reduces the number of parameters to be estimated.
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The proposed covariance matrix estimator examines mixtures of the sample

covariance matrix, common covariance matrix, diagonal sample covariance matrix,

and diagonal common covariance matrix.  Whereas the maximum likelihood estimator

maximizes the joint likelihood of all the training samples, the proposed covariance

matrix estimator selects the mixture that maximizes the likelihood of training samples

not included in the covariance matrix estimation.

The estimator is defined in this paper, and an efficient implementation that

incorporates an approximation is derived.  The results of several experiments are

presented that compare the estimator, with and without the approximation, to the

sample covariance matrix estimate, common covariance matrix, Euclidean distance,

and regularized discriminant analysis (RDA).  With the approximation, the proposed

estimator usually led to higher classification accuracy than the sample estimate,

common covariance matrix, and Euclidean distance.  In about half of the experiments,

it led to higher accuracy than RDA, but required much less computation.  Without the

approximation, the proposed estimator led to even higher accuracy in some cases, but

required significantly more computation.

II.  Gaussian Maximum Likelihood Classification

The decision rule in a Gaussian maximum likelihood classifier is to label the (p by 1)

vector x as class j if the likelihood of class j is the greatest among the classes:

[ ]Choose if f x m jj
i

i iω arg max ( | , )Σ = (1)

where ( )
( )

( ) ( )f x m x m x mi i p i
T

i i| , expΣ
Σ

Σ=
−

− −





−1

2

1
2

1

π
, mi  is the mean vector of

class i, and Σ i  is the covariance matrix.  Usually the true values of the mean and

covariance matrix are not known and must be estimated from training samples.  The

mean is typically estimated by the sample mean m
N

xi
i

i j
j

N i

=
=
∑1

1
, , where x i j,  is sample j

from class i, and Ni is the number of training samples from class i.  The covariance

matrix is typically estimated by the sample covariance matrix
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The sample mean and the maximum likelihood covariance matrix estimate have the

property that they maximize the joint likelihood of the training samples, which are

assumed to be statistically independent (see, for example, [1]):

( ) ( )m f x m,i i
m

i j
j

Ni

, arg max |
,

,Σ Σ
Σ

=
=

∏
1

.

The classification rule that results from substituting the maximum likelihood estimates

for the mean and covariance matrix into Equation (1) as if they were the true mean and

covariance matrix, achieves optimal classification accuracy only asymptotically as the

number of training samples increases toward infinity.  This classification scheme is not

optimal when the training sample is small [2].

When the training set is small, the sample covariance matrix estimate is usually highly

elliptical and can vary drastically from the true covariance matrix.  In fact when the

number of training samples is less than p+1, the sample covariance matrix is always

singular regardless of the true value of the covariance matrix.

For limited training data, the common covariance matrix estimate ( S
L i

i

L

=
=

∑1

1

Σ ) can

lead to higher accuracy than the sample estimate even when the true covariance

matrices are quite different [3].  It is useful, then, to determine whether the sample

covariance matrix estimate or the common covariance matrix estimate would be

appropriate in a given situation, and this is accomplished by the proposed estimator.

III.  Covariance Matrix Estimation

A. Definition of the Covariance Matrix Estimator
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Depending on the true class statistics, different covariance matrix estimators are

optimal.  For example, if the classes all have the same covariance matrix, the common

covariance matrix estimate will lead to higher classification accuracy than the sample

covariance matrix.  Even if the covariance matrix of each class differs greatly, the

common covariance matrix estimate can lead to higher classification if the number of

training samples is small.  Which estimate is best in a given situation depends in a

complex fashion on the true statistics of the classes, the number of features, and the

number of training samples.

In addition to the sample covariance matrix and common covariance matrix estimates,

the proposed estimator examines the diagonal sample covariance matrix, the diagonal

common covariance matrix, and some pair-wise mixtures of these estimates to

determine which would be most appropriate.  The proposed estimator has the

following form:

( ) ( ) ( )C diag S diag Si i i i i i i iα α α α α= + + +1 2 3 4Σ Σ (2)

where Σ i  is the sample covariance matrix, the common covariance matrix is defined

by the average sample covariance matrix S
L i

i

L

=
=

∑1

1

Σ , and L is the number of classes.

The elements of the mixing parameter [ ]α α α α αi i i i i
T= 1 2 3 4, , ,  are required to sum to

unity:  α ij
j=
∑ =

1

4

1.  Furthermore, in order to reduce the required computation, we only

consider mixtures between the diagonal sample covariance matrix and the sample
covariance matrix ( α αi i3 4 0, = ), between the sample covariance matrix and the

common covariance matrix ( α αi i1 4 0, = ), and between the common covariance matrix

and the diagonal common covariance matrix ( α αi i1 2 0, = ).  Next we examine how an

appropriate value of αi  can be estimated.

B.  Selecting an Appropriate Mixture

The value of the mixing parameter αi  is selected so that a best fit to the training

samples is achieved, in the sense that the average likelihood of omitted samples is

maximized.  The technique is to remove a sample, estimate the mean and covariance

matrix from the remaining samples, then compute the likelihood of the sample which

was left out, given the mean and covariance matrix estimates.  Each sample is

removed in turn, and the average log likelihood is computed over all the left out

Hoffbeck & Landgrebe -   5   -



Covariance Matrix Estimation and Classification

samples.  Mixtures for several different values of αi  are examined, and the value of αi

that maximizes the average log likelihood is selected.

The mean of class i, without sample k, is m
N

xi k
i

i j
j
j k

N i

/ ,=
− =

≠

∑1
1 1

, where the notation i/k

indicates the quantity is computed without using sample k from class i.  The sample

covariance matrix of class i, without sample k, is

( )( )Σ i k
i

i j i k
j
j k

N

i j i k

T

N
x m x m

i

/ , / , /=
−

− −
=
≠

∑1
2 1

(3)

 and the common covariance matrix, without sample k from class i, is

S
L Li k j

j
j i

L

i k/ /=














+
=
≠

∑1 1

1

Σ Σ .  The proposed covariance matrix estimate for class i, without

sample k, can then be computed as follows.

( ) ( ) ( )C diag S diag Si k i i i k i i k i i k i i k/ / / / /α α α α α= + + +1 2 3 4Σ Σ

Next the average log likelihood of the left-out samples, which we call the leave-one-

out likelihood (LOOL), is computed as follows.

 ( ) ( )( )[ ]LOOL
N

f x m Ci i
i

i k i k i k i
k

N i

α α=
=

∑1

1

ln | ,, / /

This computation is repeated for several values of αi , and the value with the highest

average log likelihood is selected. Once the appropriate value of αi  has been

estimated, the proposed covariance matrix estimate is computed using all the training

samples (Equation (2)) and can be substituted into the maximum likelihood classifier

(Equation (1)).  Since the LOOL index depends on training samples from only one

class, a separate value of the mixing parameter αi  is computed for each class.

Since evaluation of the Gaussian density function requires the inverse of the

covariance matrix, an estimate of the covariance matrix is only useful in classification if

it is non-singular (i.e. invertible).  The sample covariance matrix estimate is singular if

there are fewer than p+1 samples available.  Since a diagonal matrix is non-singular if

its diagonal elements are all non-zero, the proposed estimate is non-singular as long

as the sample covariance matrix has non-zero diagonal elements, which is the usual

case if there is more than one sample.  The division in Equation (3), however, requires
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at least three samples in each class.  The proposed estimate, then, will usually be non-

singular with as few as three training samples per class, regardless of the dimension

of the data.

C.  Efficient Implementation of the Mixture Between the Sample Covariance Matrix and

the Common Covariance Matrix

If implemented directly, the computation of the proposed estimate would require
computing the inverse and determinant of the (p by p) matrix ( )C i k i/ α  for each training

sample, which would be quite computationally expensive.  Fortunately, a significant

reduction in the required computation can be achieved by writing the matrix in a form

that allows the determinant and inverse to be computed efficiently.  Consider the

mixture between the sample covariance matrix and the common covariance matrix
( α αi i1 4 0, = ).  The sample covariance matrix estimate of class i without sample k can

be written as follows [4]:

( )( ) ( )
Σ Σi k

i
i j i k

j
j k

N

i j i k

T i

i
i

i

i

T

N
x m x m

N
N

N

N
vv

i

/ , / , /=
−

− − =
−
−

−
−











=

≠

∑1
2

1
2 11

2

where v x mi k i= −, .  The common covariance matrix estimate without sample k from

class i can be written as follows.

( ) ( )( )S
L L

S
L N

N
L N N

vvi k j
j
j i

L

i k
i

i
i

i i

T
/ /  = + = +

−
−

− −=
≠

∑1 1 1
2 2 11

Σ Σ Σ

Then the proposed estimate becomes:
( )C S G k vvi k i i i k i i k

T
/ / /α α α= + = −2 3 1Σ

( )
( ) ( )G

N

N L N
Si i

i

i

i
i i=

−
−

+
−









 +

α α
α2 3

3

1

2 2
Σ

( )( ) ( )( )k
N

N N
N

L N N
i i

i i

i i

i i
1

2 3

2 1 2 1
=

− −
+

− −










α α

Then ( )C i k i/ α −1
 can be computed efficiently using the Sherman-Morrison-Woodbury

formula [5] as follows.

C i /k αi( )−1 = G−1 +
k1G

−1vvTG −1

1 − k1vTG−1v
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The quadratic term in the Gaussian density function can be written as follows:

d i /k = xi,k − mi /k( )T C i /k αi( )−1 xi,k − mi /k( )

=
N i

N i −1

 
 
  

 
 

2

vT G −1 +
k1G

−1vvTG−1

1 − k1vTG −1v

 

  
 

  v

=
N i

N i −1

 
 
  

 
 

2
d

1 − k1d

 

  
 

  

where d v G vT= −1 .  The determinant can be computed as shown below [4].

( ) ( )C G k vv G k di k i
T

/ α = − = −1 11

Finally, the log likelihood function can be computed efficiently as follows.

( )( )[ ] ( ) ( )[ ]ln | , ln ln    ,, / /f x m C
p

G k d
N

N
d
k di k i k i k i

i

i
i iα π α α= − − − −

−








−








 =

2
2

1
2

1
1
2 1 1

01

2

1
1 4

Instead of inverting a (p by p) matrix and finding its determinant for every training

sample in the class, it is only necessary to compute the inverse and the determinant of

matrix G once, and then only a relatively simple computation ( d v G vT= −1 ) is required

for each sample.

D.  Approximation for the Mixture Between the Diagonal Sample Covariance Matrix

and the Sample Covariance Matrix

Unfortunately, there does not seem to be a similar method to avoid inverting a large

matrix for each sample in the mixture between the diagonal sample covariance matrix
and the sample covariance matrix ( α αi i3 4 0, = ).  However, if one is willing to accept

the approximation that the diagonal covariance matrix changes little when a single
sample is removed ( ( ) ( )diag diagi i kΣ Σ≈ / ), a significant reduction in computation can be

realized.  Experiments presented below confirm the validity of this assumption when a

modest number of training samples are available.

( ) ( )C diag G k vvi k i i i i i k
T

/ /α α α≈ + ≈ −1 2 2 2Σ Σ (4)

( ) ( )
( )

( )( )

G diag
N

N

k
N

N N

d v G v

i i
i i

i
i

i i

i i

T

2 1
2

2
2

2 2
1

1

2

2 1

= +
−

−

=
− −

= −

α
α

α

Σ Σ
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The log likelihood function can then be computed as follows.

( )( )[ ] ( ) ( )[ ]ln | , ln ln    ,, / /f x m C
p

G k d
N

N
d
k di k i k i k i

i

i
i iα π α α≈ − − − −

−








−








 =

2
2

1
2

1
1
2 1 1

02 2 2

2

2

2 2
3 4

E.  Approximation for the Mixture Between the Common Covariance Matrix and the

Diagonal Common Covariance Matrix

The computation of the mixture between the common covariance matrix and the
diagonal common covariance matrix ( α αi i1 2 0, = ) can be simplified similarly by

assuming the diagonal common covariance matrix changes little when a single
sample is removed ( ( ) ( )diag S diag Si k≈ / ).  Experiments presented below confirm the

validity of this assumption for moderate sample sizes.

( )C S diag S G k vvi k i i i k i
T

/ / ( )α α α≈ + ≈ −3 4 3 3 (5)

( )

( )( )

G S
L N

diag S

k
N

L N N

d v G v

i
i

i i

i i

i i

T

3 3 4

3
3

3 3
1

1
2

2 1

= +
−









 +

=
− −

= −

α α

α

Σ ( )

The log likelihood function can then be computed as follows.

( )( )[ ] ( ) ( )[ ]ln | , ln ln      ,, / /f x m C
p

G k d
N

N
d
k di k i k i k i

i

i
i iα π α α≈ − − − −

−








−








 =

2
2

1
2

1
1
2 1 1

03 3 3

2

3

3 3
1 2

For convenience, we will designate the estimator resulting from the approximations in

Equations (4) and (5) as the leave-one-out covariance matrix estimate (LOOC), and

the estimator without these approximations as the LOOC-Exact estimate.

F.  Comparison of LOOC and Regularized Discriminant Analysis

Regularized discriminant analysis (RDA) is another covariance matrix estimation

method useful for designing classifiers with limited training data.  It is a two-

dimensional optimization over mixtures of the sample covariance matrix, common

covariance matrix, and the identity matrix times a scalar.  RDA takes the following form

(assuming equal weighting of training samples) [3]:
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( ) ( )( ) ( ) ( ) ( )
( )

( )C
S
W

S
W p

trace
S S

W
Ii

RDA i
RDA

i

RDA

i

i
RDA RDA

i

λ γ γ λ
λ

γ λ
λ

γ λ λ
λ

, = − − + − +
− +







1 1 1

1

where ( )( )S x m x mi
RDA

i j i i j i

T

j

N i

= − −
=
∑ , ,

1

, S SRDA
i
RDA

i

L

=
=
∑

1

, and ( ) ( )W N Ni i i
i

L

λ λ λ= − +
=
∑1

1

.

The two mixing parameters λ and γ, which are restricted to the range 0 to 1, are

selected to maximize the leave-one-out classification accuracy.  Since this index

depends on the covariance matrix estimates of the other classes, the same values of

the mixing parameters are used for all classes.

LOOC and RDA are similar in that they both consider mixtures of covariance matrix

estimates, but they differ in the mixtures they consider and the index used to select the

best mixture.  Both LOOC and RDA employ the sample covariance matrix and common

covariance matrix estimates, but LOOC also considers diagonal forms of these

matrices, whereas RDA considers the identity matrix multiplied by a scalar.  In LOOC

the search is restricted to pair-wise mixtures, whereas RDA considers general

mixtures.  The index maximized in LOOC is the leave-one-out likelihood which allows

a separate mixing parameter to be computed for each class.  RDA, on the other hand,

maximizes the leave-out-out classification accuracy, and is restricted to using the

same value of the mixing parameters for all the classes.

LOOC requires much less computation than RDA.  For each point on the optimization

grid, LOOC requires only one density function be evaluated for each training sample,

whereas RDA requires the density function of every class be evaluated.  Thus, if there

are L classes, RDA requires the evaluation of L times as many density functions.  Also,

since LOOC requires what is effectively only a one-dimensional optimization and RDA

involves a two-dimensional optimization, many more optimization points must be

visited with RDA, especially if the optimization is to be done over a fine grid.  Finally,

RDA requires the computation of the eigenvalues and eigenvectors for a (p by p)
matrix for each value of λ, which is not required by LOOC.  The LOOC-Exact method,

however, requires more computation than RDA.

LOOC is scale invariant, but RDA is not.  Thus, scaling features individually by a non-

zero constant, which is commonly done before quantizing sensor output to digital

values, has no effect on the classification accuracy with the LOOC method, but may

affect the accuracy of the RDA method.  Unlike LOOC, however, RDA is rotationally
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invariant.  Subjecting the data to a orthonormal rotation may affect LOOC, but not RDA.

Neither LOOC nor RDA is affected by shifting the data by a constant offset.

IV.  Experimental Results

Experiments were conducted with both computer generated data and remote sensing

data to compare the classification accuracy from LOOC, and LOOC-Exact to that

obtained from the sample covariance matrix, common covariance matrix, RDA, and

Euclidean distance (equivalent to assuming the covariance matrices are equal to the

identity matrix).

A.  Computer Generated Data

In the experiments with computer generated data, 15 independent random training

samples were drawn from three different normal distributions, the mean and

covariance matrix were estimated, and the classification accuracy was measured by

classifying 100 independent test samples from each class.  Three experiments with

various distributions adapted from [3] and four different dimensions were performed.

Each experiment was repeated 25 times, and the mean and standard deviation of the

classification accuracy were recorded.  The results of additional experiments were

reported in [6].

In the experiments, the values of the mixing parameters were sampled over a very

coarse grid.  In LOOC and LOOC-Exact, αi  took the thirteen points listed in Table 1,
and in RDA, the values of both λ and γ were (0.0, .25, .50, .75, 1.0), resulting in 25 data

points.

Table 1.  Values of αi

αi1 1.0 .75 .50 .25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
αi2 0.0 .25 .50 .75 1.0 .75 .50 .25 0.0 0.0 0.0 0.0 0.0
αi3 0.0 0.0 0.0 0.0 0.0 .25 .50 .75 1.0 .75 .50 .25 0.0
αi4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 .25 .50 .75 1.0
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In Experiment 1, the covariance matrices of all three classes were equal to the identity

matrix, but each class had a different mean vector.  The mean of the first class was at

the origin, the mean of the second class was 3.0 in the first variable and zero in the

other variables, and the mean of the third class was 3.0 in the second variable and

zero in the other variables.  Table 2 contains the mean accuracy of each classifier and

the standard deviation in parentheses. The notation N/A in the Sample Cov row

indicates that the sample covariance matrix was singular and could not be inverted in

order to classify the test samples.

Table 2.  Mean Classification Accuracy for Experiment 1
p=6 p=10 p=20 p=40

Common Cov 88.1 (2.0) 86.0 (2.5) 76.8 (4.8) 51.2 (5.6)
Sample Cov 79.7 (4.6) 64.4 (6.3) N/A N/A
Euclidean 89.8 (1.9) 88.8 (2.3) 86.6 (2.5) 84.1 (2.2)
RDA 89.6 (2.0) 87.8 (2.6) 85.9 (2.7) 82.5 (3.4)
LOOC 87.9 (2.5) 86.1 (2.0) 80.9 (4.4) 76.5 (5.8)
LOOC-Exact 89.1 (2.2) 88.2 (2.4) 85.9 (2.6) 83.1 (3.3)

In Experiment 2, all three classes had identical, highly elliptical covariance matrices,

and the primary difference in the mean vectors was in the variables with low variance.

The covariance matrix for all three classes was a diagonal matrix whose diagonal

elements were given by ( ) ( )[ ]σ i i p i p= − − + ≤ ≤9 1 1 1 1
2

/     .  The mean vector of the

first class was at the origin, the elements of the mean vector of the second class were
given by ( ) ( )[ ]µ σ2 25 2 1, . / / /i i p p i p= − − , and the mean of class three was defined by

( )µ µ3, 21i
i

i= − , .  See Table 3 for the results.

Table 3.  Mean Classification Accuracy for Experiment 2
p=6 p=10 p=20 p=40

Common Cov 93.3 (2.3) 89.0 (1.9) 78.0 (4.4) 49.3 (6.1)
Sample Cov 88.0 (2.8) 70.5 (6.5) N/A N/A
Euclidean 75.8 (4.3) 71.7 (4.7) 64.5 (4.5) 57.0 (3.8)
RDA 92.9 (2.9) 87.8 (4.4) 75.9 (4.9) 61.3 (5.7)
LOOC 93.5 (2.1) 89.4 (2.3) 83.4 (3.3) 75.9 (3.5)
LOOC-Exact 94.2 (2.1) 91.5 (1.7) 87.2 (2.2) 82.9 (2.6)

In Experiment 3, the mean vector of all three classes was at the origin, but the class

covariance matrices were quite different and highly elliptical.  The diagonal elements

of the covariance matrices for each class were defined by

( ) ( )[ ]σ1

2
9 1 1 1 1, /     i i p i p= − − + ≤ ≤ , ( ) ( )[ ]σ2

2
9 1 1, /i p i p= − − + , and

( )( ) ( )[ ]σ3,

2
9 1 2 1i i p p= − − −/ / .  The results of the experiment are listed in Table 4.
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Table 4.  Mean Classification Accuracy for Experiment 3
p=6 p=10 p=20 p=40

Common Cov 39.7 (4.1) 40.4 (4.1) 42.7 (3.3) 40.5 (4.5)
Sample Cov 85.4 (2.7) 83.3 (5.7) N/A N/A
Euclidean 38.8 (4.5) 40.6 (4.1) 43.8 (3.7) 45.0 (3.0)
RDA 83.6 (3.6) 86.1 (5.7) 90.6 (4.1) 93.0 (2.7)
LOOC 90.4 (1.7) 97.5 (0.9) 99.8 (0.3) 100.0 (0.1)
LOOC-Exact 90.4 (1.9) 97.5 (0.9) 99.8 (0.3) 100.0 (0.1)

B.  Discussion

In all but one experiment with computer generated data (Experiment 1, p=6), LOOC

led to higher accuracy than did the common covariance matrix estimate, and in all the

experiments LOOC led to higher accuracy than the sample covariance matrix.  In

Experiments 2 and 3, where the true covariance matrices were not equal to the identity

matrix, LOOC led to higher accuracy than the Euclidean distance.  In Experiments 2

and 3, LOOC led to higher accuracy than RDA.  The accuracy of LOOC was within

2.1% of the accuracy of LOOC-Exact except in the higher dimensions (p=10, and

p=20) of Experiments 1 and 2, where the accuracy of LOOC was within 7% of the

accuracy of LOOC-Exact.

The mixing values for LOOC-Exact were reasonable.  In the experiments having

identical covariance matrices (Experiments 1 and 2), the values of the mixing

parameter αi  were close to (0,0,0,1)T, which selects the diagonal common covariance

matrix estimate.  In Experiment 3, where each class had a different covariance matrix,

the values of αi  were close to (1,0,0,0)T, which selects the diagonal sample

covariance matrix estimate.

The mixing values for LOOC were not as accurate.  In all the experiments, the values

of αi  were close to (1,0,0,0)T, which selects the diagonal sample covariance matrix

estimate.  With only 15 training samples in each class, the approximation in Equation

(4) biased the estimator toward the diagonal sample covariance matrix estimate.

These values of αi , though, still resulted in reasonable estimates, and the

classification accuracy was within 7% of the LOOC-Exact method.
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C.  Experiments with Remote Sensing Data

The following experiments were performed on data taken in 1992 by the Airborne

Visible/Infrared Imaging Spectrometer (AVIRIS).  This instrument captures images of

the earth's surface in 220 spectral bands covering the range 0.4 - 2.5 µm.  In order to

conduct the experiments, several samples (pixels) of various ground cover classes

were identified in each scene.  Then a small percentage of the samples were selected

at random and used to estimate the mean and covariance matrix of each class.  The

remaining samples were classified to measure the classification accuracy.  Each

experiment was repeated 10 times, and the mean and standard deviation of the

accuracy were recorded.  Experiments were conducted with four different numbers of

features.  The features were selected evenly spaced across the spectrum, but did not

include those wavelengths that are absorbed by water in the atmosphere.

The Cuprite, Nevada site, which is notable for its geology, has several exposed

minerals. A total of 2744 samples (pixels) and 191 bands (0.40-1.34, 1.43-1.80, 1.96-

2.46µm) were used in the experiment.  The number of training samples in each class

was 145, 14, 46, 77, 137, 50, 58, and 18, which represented 20% of the total number

of available samples.  The results of the experiment are presented in Table 5.

Table 5.  Mean Classification Accuracy for Cuprite Site
p=10 p=50 p=100 p=191

Common Cov 92.4 (0.8) 95.5 (0.8) 96.1 (0.5) 96.0 (0.4)
Sample Cov 95.2 (0.8) N/A N/A N/A
Euclidean 40.8 (1.2) 42.3 (1.5) 41.7 (0.9) 42.0 (1.2)
RDA 94.8 (0.6) 97.7 (0.4) 97.5 (0.4) 96.2 (1.1)
LOOC 95.8 (0.7) 98.1 (0.3) 97.4 (0.4) 95.2 (0.3)
LOOC-Exact 95.8 (0.7) 98.1 (0.3) 97.4 (0.4) 95.2 (0.3)

For the agricultural Indian Pine site, ground observations were used to identify a total

of 2521 samples.  Of the total number of available samples, 20% were used as training

samples making the number of training samples in each class 104, 90, 74, 98, 77, and

60.  See Table 6 for the results of the experiment.
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Table 6.  Mean Classification Accuracy for Indian Pine Site
p=10 p=50 p=100 p=191

Common Cov 73.0 (0.6) 80.7 (0.7) 81.5 (0.8) 81.4 (1.0)
Sample Cov 80.5 (0.6) 68.7 (1.6) N/A N/A
Euclidean 65.5 (0.4) 66.5 (0.4) 66.6 (0.6) 66.9 (0.8)
RDA 80.5 (0.6) 83.8 (0.7) 82.7 (1.6) 82.6 (1.3)
LOOC 80.1 (0.6) 84.1 (0.8) 81.8 (1.2) 80.9 (0.8)
LOOC-Exact 80.1 (0.6) 84.1 (0.8) 81.8 (1.2) 80.9 (0.8)

D.  Discussion

In 6 out of 8 experiments with remote sensing data, LOOC led to higher classification

accuracy than the common covariance matrix estimate, and in all the experiments but

one (Indian Pine Site, p=10), LOOC produced higher accuracy than the sample

covariance matrix estimate.  In all cases, LOOC led to higher classification accuracy

than the Euclidean distance classifier.  In 3 of the 8 experiments, LOOC led to higher

classification accuracy than RDA.  In all the experiments with remote sensing data,

where there were more training samples than in the experiments with computer

generated data, LOOC and LOOC-Exact selected the same values for the mixing

parameters, and therefore returned precisely the same covariance matrix estimates.

This result indicates the approximations in Equations (4) and (5) were valid for these

cases.

The CPU time required to compute LOOC was much less than that for RDA (see

Tables 7 and 8 for CPU times for our implementation on a 50MHz SPARC server

1000).

Table 7. CPU Time (in Seconds) for 3 Classes, 45 Total Training Samples
p=6 p=10 p=20 p=40

LOOC 0.03 0.06 0.27 1.55
RDA 0.39 0.83 2.37 10.06

Table 8. CPU Time (in Seconds) for 8 Classes, 545 Total Training Samples
p=10 p=50 p=100 p=191

LOOC 0.6 15.3 82.0 502.5
RDA 22.1 222.9 838.9 5875.8
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V.  Conclusion

A new covariance matrix estimator was presented which led to higher classification

accuracy than the sample covariance matrix and the common covariance matrix

estimators when the number of training samples was limited compared to the number

of features.  An efficient implementation of the estimator was derived that incorporated

an approximation, and the approximation was found to be valid for modest sample

sizes.  In about half of the experiments, the new estimator led to higher classification

accuracy than RDA, but required much less computation.
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