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ABSTRACT

A nmultispectral image is a representation of the reflec-
tance of a scene in several regions of the electromagnetic
spectrum. Presented here is an algorithm that partitions a
digitized multispectral image into parts that correspond to
objects in the scene. The algorithm is applicable to images
in which the objects of interest are regions that contrast
with their surroundings and exhibit some form of internal
regularity.

A theoretical model of an image made up of arbitrarly
shaped objects is presented and a criterion function is
defined that is minimized by good partitions. A partitioning
algorithm is developed that divides an image into success-
ively smaller rectangles and produces a partition that
tends to minimize the criterion function.

The algorithm is applied to images produced by multi-
spectral scanners mounted in an aircraft and in the ERTS-1
satellite. It is shown that classifying agricultural areas
in the partitioned image gives results of comparable

accuracy and smaller required storage than an ‘algorithm
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that classifies image points individually. The partitioning
algorithm is also used to extract urban areas from an ERTS

image, to approximately isolate the lung in a chest radio-

graph, and to partition a digitized photograph of a girl.




CHAPTER 1

INTRODUCTION

In a multispectral image, a target is represented by a
finite number of image points.* For each image point there
are measurements (gray levels) representing the reflectance
of the target in one or several regions (channels) of the
electromagnetic spectrum. The gray levels are quantized,
often to either 64 or 256 levels. Multispectral images can
be produced by multispectral scanners [l], flying-spot
scanners [2], and by digitizing continuous images such as
photographs [3] and radiographs [4]. Figure 1 shows a 3-
channel multispectral image produced by an airborne multi-
spectral scanner flying over an agricultural target. Each
channel of this image has been quantized to 16 levels for
line printer display.

Targets are represented by multispectral images so
digital computers can be used to process target information.
For example, medical single-channel images have been
processed by computer for automatic chromasome identification

[5] and diagnosis of chest X-rays [4]. In remote sensing

*
In this report we consider only digital images; that is

images stored as arrays of numbers. This restricts our
use of the term "multispectral image" which is sometimes
used in the literature to include continuous images that
are stored, for example, as photographs.
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Figure 1. A Multispectral Image
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applications, computer algorithms have been developed for
several types of multispectral image processing, including
classification [6], coding [7], registration [8], change

detection [9], and display [10].

1.1 Multispectral Image Partitioning.

In Figure 1 one can see regions, which we will call
objects, that correspond to target entities such as agri-
cultural fields, forests, bodies of water, and roads. Ob-
jects are characterized by internal regularity and contrast
with surroundings, and they often contain many image points.

The goal of image partitioning is to divide an image into

parts that approximate objects. RIMPAR, the Recursive IMage
PARtitioning algorithm presented in this report, approxi-
mates each object by one or more rectangular blocks of image
points. Figure 2 shows an image partitioned by RIMPAR.

Image partitioning can be thought of as transforming
the original image, which is a point-by-point (PP) descrip-
tion of a target, to an arrangement-of-objects (AO) descrip-
tion. An AO description is often better than a PP descrip-
tion as an input to processing algorithms, for two basic
reasons.

First, more information about a target entity is avail-
able from a collection of points associated with the entity,
than from an individual point associated with an entity.
This fact has been exploited by "sample" classification

algorithms [1l1] that make one classification decision for
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2. An Image Partitioned by RIMPAR

Figure
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each group of image points. For several data sets, sample

classification has given performance superior to classifiers
w that make one decision per point [12,6]. The potential ad-
vantages of sample classification are especially great when
| class probability densities differ in shape but.exhibit a
high degree of overlap [12, pp. 198-199]. Classifying ob-
jects instead of points also allows the measurement and use
of spatial characteristics such as size, shape, and texture.
These have been found to be useful in classification [13,14].
The second basic advantage of an AO description is that
an AO description is often more compact than a PP descrip-
tion. This savings in storage space or transmission speed
occurs if objects contain enough points so that specifying
the locations and essential properties of the objects takes
fewer bits than specifying the collection of individual point
properties. Classification results can similarly be stored
more economically using an AO description. For example, if
4 bytes specify an object location and 1 byte specifies a
class label, then the classification results of a 100,000
point image with 10,000 objects would require 100,000 bytes

in PP format, but only 50,000 bytes in AO format.

1.2. Related Work in Image Partitioning

An image partitioning algorithm must search for objects.
Intuitively, objects have two basic characteristics (we are
not considering line drawings):

1) They exhibit an internal regularity.



2) They contrast with their surroundings.

Objects do not exhibit these characteristics in a determin-
istic or absolute sense because of irregularities due to
noise. Detecting these characteristics in a noisy image is
a central problem in image partitioning. Another difficulty
is that object regularity may exist not only as relatively
constant gray level, but also as relatively constant texture
or spatial pattern. For example, forests appear as textured
objects in aircraft imagery [14]; and in satellite images,
urban areas of constant land use can be textured [15].

Two basic approaches to image partitioning have appeared
in the literature: the boundary-finding approach, which at-
tempts to exploit object contrast, and the region-finding
approach, which uses object regularity.

The boundary-finding approach has two steps. First
points along the boundaries of objects are found, then the
complete boundaries are derived from the boundary points.
Among the techniques used to detect boundary points are local
gradient [16], template matching [17], two-dimensional
function fitting [18], clustering [19], and gradients esti-
mated from variable-sized neighborhoods [20]. Only the last
of these does not assume that objects have nearly constant
gray levels. None of these techniques finds boundary points
with zero error, so to form complete object boundaries,

heuristics using a priori information must be used to fill

in missing boundary points and eliminate superfluous boundary
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points. Unfortunately effective heuristics seem to be avail-
able only when object shape is restricted. For example in
[16] and [21], boundary finding is successful mainly because

all boundaries are known a priori to be straight line

segments.

Previously investigated region-finding methods have
followed two steps. First the image is divided into ele-
mentary regions, then regions are merged according to a set
of merging rules. In [22] elementary regions are regions
of constant gray level, and the merging rules are heuristics
based on what the final objects should look like. This
method is difficult to use if objects do not have constant
gray levels. Another region-finding method, which we will
call the LBLOCK algorithm, appears in [23] and [24]. Here
elementary regions are defined by a regular rectangular grid
superimposed upon the image. The merging rule is to merge
statistically similar, adjacent regions. This method works
well only if elementary regions can be made both small
enough to allow good boundary approximation and large enough
to preserve the spatial characteristics of the objects of

which they are a part.

1.3. A Comparison of Clustering and Image Partitioning

Clustering [6,25] and image partitioning are both
methods of grouping data. In fact, minimizing intragroup
scatter,which is the basis for the partition criterion used

in Chapter 2, is essentially equivalent to a criterion that



has been used in clustering [25]. However, spatial con-
siderations make clustering and image partitioning different.
Because an object can be textured, the points within an ob
ject might not form a compact cluster in the measurement
space. Also, because there can be several instances of a
particular target entity in a single image, nonadjacent ob-
jects might be nearly identical in measurement space. An-
other difference is that in image partitioning, the existance
of a partition that completely separates objects is guaran-
teed. However in clustering, if we seek underlying classes
with overlapping density functions, the classes can never be

completely separated.

1.4. Summary of Work Presented Here

In Chapter 2 we present a model for an idealized, con-
tinuous image made up of objects. A G-regular partition is
defined as a partition in which every block (piece of the
partitioned image) is either an object or part of a single
object. Next we define a criterion function VG(P) for a
partition P of an ideal image. It is shown that VG(P) is a
minimum if and only if P is a G-regular partition. Next we
present an algorithm that partitions an ideal image into
succesgively smaller rectangles. At each step in the algor-
ithm, a block is subdivided unless

(1) the size of the block (smallest side) is less than

twice a parameter MINSIZE; or

(2) all the points within the block are from a single

object.
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An error AVG(Pf) is defined for the final partition Pe of
the algorithm. We show that for any image I and any €>0,
there are values of MINSIZE for which AVG(Pf)<€.

In Chapter 3 we discuss the application of the results
of Chapter 2 to real images with a finite number of points.
Estimation with finite sample size, choosing MIﬁSIZE, and
programming considerations are among the topics considered.

In Chapter 4 the algorithms used to classify partition
blocks are discussed.

In Chapter 5 we present the results of experiments de-
signed to test how the parameters of the partitioning algor-
ithm affect the final partition. We also show the results
of applying the partitioning algorithm to the classification
of agricultural areas in aircraft and satellite remotely-
sensed images. The algorithm is also used to extract cities
from a satellite-sensed image, to isolate the lung from a

chest radiograph, and to partition an image of a human face.
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CHAPTER 2

A PARTITIONING ALGORITHM

In this chapter we first present a model for an image
containing objects. In this model each object is charac-
terized by the expected value of the reflectance of points

within the object. For a given object we assume that the

expected point reflectance value is constant for all subsets

‘ of the object. We also assume that two adjacent objects dif-

| fer in at least their expected point reflectance values. The
concepts of internal regularity and external contrast, men-

i tioned in Chapter 1 as characteristics of objects, are thus

represented by parameters of distributions underlying the re-

flectance values of the objects. In Chapter 3 we discuss the
problem of estimating expected point reflectance values.

This image model is valid for images in which objects
\ can be considered to have constant gray levels with zero-mean
’ noise added. System noise in sensors can be characterized as

zero-mean noise. Texture consisting of fixed proportions of

various gray levels in a random spatial distribution can also
be considered zero-mean "noise."

The images of this chapter will be considered to be con-

tinuous. This assumption allows us to derive some theoretical

results that give an indication of the algorithms performance

for digital images.
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2.1. Notation and Definitions

An image I is an infinite set of points in a plane that
is surrounded by a closed curve C of finite length, such
that any set J surrounded by C satisfies J2I. Note that in
our definition "image" refers to a set of points. The gray
levels associated with an image will be discussed separately
below. The essential properties of our "image" are that it
has an infinite number of points per unit area, and that it
is simply connected. A subimage of I is an image J such
that J5I. From this point on in this paper, we will assume
the all point sets under discussion are images.

A partition P of an image I is a finite set of images

{Il, Ior wens Il} such that
L
I = Ii
i=1
and for j#i,
I.n, =4,

where f§ is the empty set. Each IjEP will be called a block

of ‘P

The area of an image J will be denoted |J|.  Two sub-
images of I, Jl and Jz,aresaid to be adjacent if JlUJ2 is an
image, and Jan2 = f.

Horizontal and vertical will refer to a set of perpen-

dicular coordinate axes that are fixed with respect to I.

The size of an image JCI is the minimum of the horizontal

and vertical extent of J.
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A gray-level function g(+) is a function whose domain

is an image and whose range is a bounded interval on the
real line. We will use g(X) to stand for the gray level at

a point XeI. For a given X, g(X) will be considered a random

variable whose distribution depends on X. A gray-level
vector G(*) is a vector of gray-level functions:® G(X) =
(gl(x), gz(XL ...,gN(X)), where each gi(-) is a gray-level
function.

Consider an image J. Let E[*] be expected value. We

will use the following notation:

Mgi (J) = Elg; (X) |XeJ]

Mo (3) = _

We call MG(J) the mean vector of J. Also let

2 4 3 2
Sgi(J) E[(g; (X) Mgi(X)) | Xed] (2.1)
2 2 .
247 (3) = Elg; (X) | Xed]. (2.2)

An image J is G-regular if for any subimage K&J, MG(K)=
MG(J). A G-regular image is "homogeneous" with respect to G
|
! in the sense that the mean values of the gray-level functions
r
|

{gi(-), i=1, 2, ..., N} are constant throughout the image.
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A subimage J of I is G-distinct if J is G-regular, and

if for any subimage KCI that is adjacent to J, RKUJ is not
G-regular. In other words, a G-distinct subimage is
surrounded by subimages with different mean values of the N
gray-level functions of G.

A partition P is G-regular if every block of P is G-
regular; P is called G-optimal if every block in P is also

G-distinct. Note that a G-optimal partition is necessarily

G-regular, but a G-regular partition is not G-optimal if

some pair of adjacent blocks have the same mean vectors.

In Figure 3 examples of G-optimal, G-regular, and approxi-
mately G-regular partitions of a hypothetical image are
shown. In each example the G-optimal partition is shown with

dotted lines.

2.2. Properties of G-Regular Images

Theorem 2.1: If KcJ and J is G-regular, then K is G-regular.

Proof: Assume K is not G-regular. Then there is a BcK such
that

MG(B) # M. (K) (2.3)
But BcKcJ and J is G-regular, so

MG(B) = M, (K) = MG(J). (2.4)

G
Since Egn. 2.3 contradicts Egn. 2.4, K must be G-regular.

and J, are adjacent and G-regular, and

Theorgm 2.2 1f Jl 2

MG(Jl) = MG(JZ)' then J = JlUJ2 is G-regular.

Proof: Consider any subimage K&J. Then




G-Optimal Partition G-Recqular Partition

Approximately C-Reqular Partition

FPigure 3 Partition Types
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|3,NK| | ,0K |
M.(K) = ——— M_(J,) + M. (J,)
G oK g 2
K] H]

|Jan| 3 |J20K|

= M.(J.)
g
K| K|

MG(Jl)
Therefore J is G-regular.

2.3. The Mean Test for G-Regularity

Theorem 2.3: Consider an image J and any partition of J,

P = {Jl, J e JL}, L>2. If G* is a constant vector and

2’
MG(Ji)=G*, 1<i<L, then Prob(J is G-regular) = 1. The proof
of this theorem will show that to determine if an image J is

G-regular, we need only to test for the equality of the mean

vectors of L subimages of J, L > 2.

Proof: Let GJ be the event "MG(Ji) = G*, 1<i<L", and RJ be
the event "J is G-regular". RJ will stand for "J is not
G-regular". The theorem can now be restated as:

Prob (RT|GJ) = 1 (2.5)
Since Prob(RJ|GJ) + Prob(RJ|GJ) = 1, the theorem holds if
and only if

_ Prob(RJ, GJ)
Prob (GJ)

Prob (RJ |GJ) =0 - (2.6)

Prob (GJ) # 0 because we assume the existance of G-regular
images, so the theorem holds if and only if Prob(RJ,GJ) = 0.
Now we will derive a matrix equation expressing the joint

event (RJ,GJ), and show that the probability of satisfying

this equation is zero.




If J is not G-regular, then there must be a partition

P' of J, P'={Ol, Onr wney OM}, such that for i # j
MG(oi) # MG(Oj).

If we let
|3, 00, |
L} J

Cy

’ 13 |

i

then we can express the mean vectors of the blocks of P in

terms of the mean vectors of the blocks of P':

MG(Ji) = .Z L e MG(Oj)

Now if MG(Ji) = G*, 1<i<L, then MG(J)=G*, so if we let

|o. |
o O —_"_..J_..
a7 1
then
M
a.y M0, = G¥,
jgl 5 Mg (0y)

Consider the matrix E with elements eij defined by

e = iCH g~ [did F<i <L, T1<3<M.,
By ij J e -
Let G* = (g;*, 9,*, «..., gy*). For every element gy (+) of
G(+) we can write
e.. M_ (0,) = 0,4 (0.) = d. M_(0.) =g, * -g . * = 0
ju1 3 9 3 jep 330 j=1 <3 I I k k
if and only if GJ. Thus GJ can be expressed by
(M. (0,)] s
g, 00
M (0] 0
g, 102
[ E ] . - . 1<k<N {2.7)
M o) 0
g, O
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We now consider, for any k, solution vectors of the form
(Mgk(ol)' Mgk(02)’ b Mgk(OM)) that satisfy Egn. 2.7. The
set of solution vectors for Egn. 2.7 is called the "null
space" of the matrix E [26]. The dimension g of the null
space of E is the number of columns of E (=M) minus the

rank of E. We assume that the rank of E is greater than

zero, so that g is less than M.

For a given E, we assume that (M_ (0.), M
i ot Ik
Mg (OM)) is random vector, continuously distributed in a
k
bounded region of M-space. (This assumption holds only if RJ,

(02)1 o sy

for if J is G-regular, then all the vector elements are equal,
and the equation is satisfied). Since the solutions of Egn.
2.7 occupy a subspace of dimension g<M, the solution vectors
occur with zero probability. Thus Egn. 2.7 holds with zero

probability, and the theorem is proved.

2.4. Uniqueness of the G-optimal Partition

Theorem 2.4: The G-optimal partition P* of I is unique.

Proof: Assume there are two partitions P* = {Il, 12, S5 % ir

IM} and P' = {J w JL} that are both G-optimal and

li’ J2I
P* # P', Since P* # P', for some k there are adjacent blocks

Ji and Jj such that

. Iy

Since I

(JiﬂIk)U(JjﬂIk)

k is G-regular
M (L) = MG(JiﬂIk) = MG(Jj n,) . (2.8)

Ji and Jj are also G-regular so
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MG(JiﬁIk) MG(Ji)

M, (Jj ﬂIk) M. (Jj)

But if P' is G-optimal then MG(Ji) # MG(Jj). This contra-

dicts Egqn. 2.8, so there can be only one G-optimal partition.

2.5,  Partition Criterion

‘ We assume that the blocks in the G-optimal partition P*
of I correspond to the objects in I. Therefore a good parti-
tion of I is one that closely approximates P*. In this sub-

section we present a criterion function that is minimized

r by good partitions.

2.5.1 Criterion Definition

Consider the G-optimal partition of I,P* = {Ol, Obp wvns
OM}, an arbitrary partition P = {Il, Iyr eees IL}, and a
gray-level function g(*).

We first define a criterion Vg(P) for the single gray-

level function g(+):

S (Ii) (2.9)

L
R iEy - Z

J Recall that the S;(Ii)'s are the variances of the blocks in

' the partition P. A block variance tends to be small if the
block contains a single object; but a block that overlaps an

J object boundary or contains several objects will have rela-
tively high variance. Since in Egn. 2.9 the block variances are

weighted by the block areas, Vg (P) will tend tobe small when most of



19

the largest blocks contain only a single object; in other
words, when P is approximately g-regular.
For a gray-level vector G(*) we define

N
V.(P) =) V. (P) (2.10)
fito odideo 43

We also define a partition error AVg(P) for gf(+),

N
AV (P) = V. (P) - V,(P*) = E A v, (P) (2.12)

2.5.2 Criterion Properties

Theorem 2.5: Consider the G-optimal partition of I, P* =

{Ol, 02, NE OM}, and an arbitrary partition of I, P =

{11, Iyr coes IL}. Then

? % ]OiﬂI., 5
N V_(P) = —=—J_ (M (0.) - M _(I,))°. (2.13)
b i=} ¥=1 " |1] g & g 3

Proof: From set theory,

Since Ijﬁlk =@, j # Kk,

(1,00,) N(L,N0;) = B, 5 # k.

Therefore
B
0.] = 1.N0.
o) = L I7y00, |
and
Moo, | ,
V_(P*) =} g 6™
= i=1 || 9 %
M L |o.nI,| 5
=) ] = sg (0;)




20

Now L ,I' 3
j=1 |I] S
SO
e © 5 M |o,n1.| 5
V (P) =V (P*) = [ (—Id= 8% (1,) - §J —2—J1 5% (0.))
s g j=1 |1 g i=1 |1} g e
L |I 2 M |o.nI.| 2
= ) VI BT N o B y PR A S L TR N
j=1 |z| 9 ek S T R

(2.14)

The probability density function f(g(X)IXEIj) is given by

M |o.nI,|
f(g(X)lXte) = ¥ _Tiwml—- £(g(X) |xe0,) . (2.15)
i=1  |1.
j

We can write (See Egns. 2.1 and 2.2)
2

2
) = I.) - .

Sg (IJ) Zg ( J) Mg (IJ)

5 M |o.nI. | 4

2° (By )= o) cemmeid 3% .(0.) (2.16)
g = & i

j

2 3 0 e .
Sg (Oi) = Zg (Oi) Mg (Oi) {2:17)

From Egns. 2.14, 2.16, and 2.17

L jx.1fm jo.ni,| \ 2
V_(P) - V_(P*) = | —d —=—L1_ z% (0,) - M% (1))
g g j=1 II! i=1 IIJI g 1 g J
TR [ 9 %R . '
-} —=1- (2% (0,) - M° (0,))
i=1 |Ij] ¥ i Bar &
L |1,] [ M |o,nI,]
Y el d S B 32 T SO e
L S T e T S P
(2.18)
From Egn. 2.15 we have
jo; nL, |
M (I.) = ] ——d-M_(0.) (2.19)
9 J = Gl B e g 1
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and so
M [OiﬂI.] 5 5 M |o. .| 5
] ——L- M (0,) - M (I.) = —x-J_ M° (0,)
i=1  |1.] g Privd i=1" |1.] L
j j
M-21OIRT. |
v WM%M_J_ M (Ol))2
i=l 1. | g
.
Mo |o,nI.| M |o,nt.|
= § ——d-u (0,) -2 (] ~—1_ M (0,))
i=1  J1.] ¢ i=1 |z, 9 %
j j
M |o.NnI.]| M |o.NI.|
() —Ed-m (o)) + (] —E-d-m (0)?
k=1" 1% 9 k=1 |1 g
j j
M |o,n1.|
()] ——4) (2.20)
j=1 l1.]
J
The last equation follows from
M |o.nrL.
i=1 1. |
j
Using Egn. 2.19 we simplify Egn. 2.20 to
M lo.n1. |
] = diinfpo,) f- M2 (1)
i=1 1 S S SRR, g
j
M IOiﬁI.I 2 |
= ) ——d4-{M (0,) - 2M_ (0,) M_ (I.)+M_ (I.)%)
T g "% g i g 7] g ]
j )
M |o.nI.]| =
= ) ———l- (M_(0.) - M (I.))°,
i=1 |1, ] Bos & 9
j
Now we can rewrite Egn. 2.18
Lo lnlow lony] .
V_ {P) =V (P*) = bl M (O0,) = M_ (I.))°
g r 9 o 0 g o LI g 2 J
M L ]oinI l 9
= —_— i (M_ (0.) = M_ (I.))".
i=1l j=1 II 9 = J
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Theorem 2.5 can be interpreted as follows: The parti-
tion error A Vg(P) depends only upon the regions where blccks
overlap more than one object. Note that if a block Ij
contains only one object Ok’ then Mg(Ij) - Mg(ok) = 0 and no
contribution is made to the error. Also, non-overlapping
object-block pairs do not contribute to the error because if
.| = 0. The partition

J
error is large when the area of object-block overlap is

0, and Ij do not overlap, then |OiﬁI

large, and also when the differences between the means of
overlapping blocks (Egn. 2.19) and the means of the objects

they overlap are large.

Theorem 2.6: A Vg(P) = 0 1f and only if P is g-regular.
Proof: First assume A Vg(P) = 0. From Egqn. 2.13 this

. ! > 2 P .

implies IOiﬂIjl(Mg(Oi) - My (I4))7 =0, 1<i<M, 1<i<L. There-

fore if (OiﬂIj) # @, we must have Mg(oi) = Mg(Ij).

Consider a block Ij of P, and any subimage KEIj. We
can write M
K= U O0.NK {22y
: i
i=1

For each i, OinK # @ implies OiﬂIj # # and Mg (0;) = Mg (Ij).

Since (OinK) e Oi’ M (OinK) & Mg (Oi) =M (Ij), 1<i<M,

g g
when OiﬂK # f. Therefore each term on the right side of

g
and Ij is g-regular. Since every block Ij of P is g-regular,

Egn. 2.21 has the same mean Mg (Ij), o) Mg (K) = M (Ij),

P is g-regular.
Now assume P is g-regular. Consider each IOiﬂIj] ’

2 : e : ;
(Mg(oi) - Mg (Ij)) y 1<1<M, 1<j<L. We will show if




23

} = M
|oin1j| # 0, then Mg (0;,) = M_ (I.).
If IOiﬁIjl # 0 then (OiﬁIj) # . We can write
' L
Oi\z }g oian 1<i<Mm (222)
j=1
For every nonempty term on the right side of Eqn. 2.22 we
have (0.NI.)D. so
i " j)'— i
Mg(oiﬁlj) = Mg(oi) 1<i<M, 1<j<L (2.23)
We can also write
M

\ I.= U I.Mo, 1<j<L
\ Jd=1 . TG

and since each Ij is g-regular, if (Ijﬂoi) # 4,
M (O.NI. =' M (05 1<i<M, e i ) )
g( 3 j) ) i g, <j< {
From Egns. 2.23 and 2.24 we have if (Oiﬂlj) # @g. then
Mg(oi) =M (I.) 1<i<M, 1<j<L.
Therefore A Vg (P) = 0.

Theorem 2.7: A V., (P) = 0 if and only if P is G-regular.

G
Proof: From Egn. 2.12 we see that AVG (P) = 'El Avg.(P) =0
if and only if AVg.(P) = 0, 1<j<N. (Note froi—Eqno %.9
that each Avg.(P) é 0). From Theorem 2.6, Avg‘(P) 22 (e g 45F
and only if P]is gj—regular, 1<j<N. ThereforejAvG (P) = 0

if and only if P is G-regular.

From Egn. 2.13 it is clear that Avg(P) > 0, and so
v (P) Z‘O. Therefore from the preceeding two theorems 1t
follows that VG(-) is minimized by the G-optimal partition P*,

and also by any G-regular partition. The algorithm presented

in the next section produces a partition Pf that tends to
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minimize Vs (Pf), so Pf is approximately G-regular. A
G-regular partition is sub-optimal, but is a simple mattcr
(in the ideal case) to transform a G-regular partition to
the G-optimal partition, by merging adjacent blocks that
have identical mean vectors. Therefore a partition that is
approximately G-regular can be made approximately G-optimal

by merging adjacent blocks having identical mean vectors.

2.6, Partitioning Algorithm for Ideal Images

Figure 4 is a flow chart of the basic RIMPAR algorithm.
The algorithm is recursive in the sense that every image J
(except when J=I) that is divided into two parts, is a sub-
image of a previously divided image.

RIMPAR continues to subdivide blocks until the block un-
der consideration is either too small or G-regular. The
question of G-regularity is decided in the algorithm by the
mean test of Theorem 2.3 . In deriving the algorithm conver-
gence properties (Theorem 2.9), we assume that there are no
errors in deciding G-regularity of a subimage J by testing
the equality of the mean vectors of an arbitrary partition of
J into two parts. In Chapter 3 we discuss modifications to
the basic algorithm for use when G-regularity cannot be decid-
ed with zero error. The main modification is that several
partitions of J are tried, and the mean vectors of one of the
trial partitions are compared statistically. These trial par-
titions are generated by (KD-l) horizontal and (KD—l) vertical,
equally-spaced lines. In both the basic and the practical al-
gorithm, we do not allow the formation of trial partitions
with blocks smaller than MINSIZE.
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Figure 4.
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RIMPAR generates a sequence of partitions PO' Pl’ el
Pf; where P0 is the original unpartitioned image and Pi+l
is obtained from Pi by dividing one of the blocks of Pi into
two parts. In Figure 5 we show some of the members of such
a sequence of partitions. The block boundaries are shown
as horizontal or vertical lines of apostrophes.

The following theorem shows that each member Pi+l of
the sequence of partitions is an improvement over the
preceeding member Pi'

Theorem 2.8: V(P

G
Proof: Consider a partition of I,Pi={Il, Ior woas Ip o4 31,

o) S Vg(BL), 03i<£-1,

where J is the block that is partitioned into {J,, J.} to
5l 2
produce Pi+1 from Pi‘ Let g(+) be an arbitrary gray-level

function of G(+).

L-1 |1,| |T|
Vi )i SRS 4 B T
Weivi B R R et 2 8
e 1, | | EX
L-1 |I, 3 J
Vo) = I — i) + — s2(7)) + —2~ s2(3,)
= i=1 |z|. # 7 S Ho .
Therefore l l [ ' I |
J J J
2 ) 4 gbioen
V_(P,)=V (P, ,) = — B%(J)- S2(J.)-—=— 8°(J,)
R A P B B T T T
“—l 13, 12230 +]3,122(3,)- (|3, |M_(3,)+]3,|M (3 ))2/._1_.\
—|I| 1'%g 'Yl 2'%g ‘Y2 1'%g 1 21%g 2"/ ‘FJI’
2 2 2 2
—lJllzg(J1>+lJ11Mg(Jl)—lJ2|zg(J2)+lJ2lMg(J2>f
_ 2 2 \ 21
_];77;7-lJl(lJllMg(Jl)+|J2| ML (T))) (]JlIMg(Jl)+|J2IMg(J2)) f
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By using |J| = |J1| + |J2|, the above reduces to

13,113, ]
)z ———— (M_(J,)-M _(J,))°".
TR Rt e =

(2.25)

vg(Pi)-vg(Pi+1

Therefore for every g(-) of G(-), Vg(Pi)-Vg(Pi+l) > 0;
and therefore VG(Pi)—VG(Pi+1) > 0. VG(Pi)=VG(Pi+10 if and

only if MG(J = MG(Jz)' Therefore, since we assume that

l)
RIMPAR decides to partition J, MG(Jl)#MG(JZ) and VG(Pi)>

VG(Pi+1)'

When RIMPAR reaches the box labeled "STORE J" in Figure
4, J is accepted as one of the blocks of the final partition

Pf, J is accepted for Pf only if the size of J is less than2x

MINSIZE (no acceptable trial partition can then be made), or if

MG(J1)=MG(J2). The aigorithm is structured so that at any

point in the sequence of algorithm steps, all parts of I

that are not included in the already-accepted blocks of Pf

are either in J, or on the stack. Therefore no part of I

is excluded from testing by the algorithm, and every block
Ij in Pf satisfies either
J (1) the size of Ij is less than 2(MINSIZE); or
(2) Ij is G-regular.
The following theorem shows how these properties allow parti-

tion error to be controlled by MINSIZE.

Theorem 2.9: Consider any image I and any £>0. There exist

MINSIZE values such that RIMPAR produces a .final wartition Pf

satisfying AVG(Pf)<€.
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]_\] .
)=) AV_ (P_) so
g~ Cf
j=1 95

)<e/N, 1<j<N. For an arbitrary

Proof: From Egn. 2.12 we sea that AVG(P

the theorem holds if AVg (P

) i
J

g(*) in G(+) we have
M L |o,nr,|

‘ 2

AV (P)=§ V7 —=—d-(M (0.)-M_(I.))".
9 f 42121 g 9t 9

We assume that for 1<i<M and 1<j<L, since gray level values

are bounded,

2
(Mg(oi) Mg(Ij)) <D

where D is some constant (an upper bound). Therefore

24 pis Fo |
V_(P_)< o.nI.|.
9" £ g1 4=y §=1  * 3
M L
Now )} ) |OfﬂIj]is just the area of the blocks of P that
i=lj=l *

overlap boundaries of objects (objects are blocks in P ),
The object boundaries have a finite total arc length ST.

The smallest side of a block in Pf is MINSIZE (see the
algorithm constraints). Therefore the number of overlapping
blocks is less than or equal to (ST / MINSIZE), and since

the area of each block is less than 2(MINSIZE)2,

M L S ‘2(MINSIZE)2
1 lopr| < -E (2.26)
i=1 4=1 - MINSIZE
and
DST2
AV (Pf)<‘ (MINSIZE) .
el | T
There if we set
|T|
MINSIZE < € (2.27)
2DSTN

then Avg(Pf)<€/N and therefore AVG(Pf)<s.

Ny
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It is interesting to note that to insure that the right
hand side of Egn. 2.26 decreases with MINSIZE, the size of
overlapping blocks must decrease more slowly with MINSIZE
than the area of overlapping blocks. Therefore RIMPAR must

limit block size rather than block area.
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CHAPTER 3

IMPLEMENTING RIMPAR

In this chapter we discuss application considerations
that arise at four major points where the image model and
theoretical results of Chapter 2 depart from practical situ-
ations:

(1) 1In real images adjacent objects may not differ in
mean reflectance. In section 3.1 we discuss gener-
alized mean vectors that distinguish between objects
that differ only in second or higher moments of
their distributions, or in spatial pattern.

(2) The mean test of Theorem 2.3 assumes that both the
number of possible mean vectors and the number of
possible object boundaries are infinite. Due to
spectral and spatial guantization, both of these
assumptions are violated in practice. However the
chance of the mean test failing by finding a G-
regular partition of a non-G-regular subimage de-
creases as the number of trial partitions increases.
In section 3.2.3 we discuss how to choose the best
of a number of trial partitions.

(3) In practice,mean vectors can only be estimated
from the available finite number of gray level vec-
tors. In section 3.2.2 we discuss a statistical
test that is used to decide from these estimates if
two mean vectors are equal.

(4) In Theorem 2.9 we demonstrated the convergence of
RIMPAR in an ideal situation. In section 3.3 we
interpret this theorem and the role of MINSIZE for
real images.

Throughout this chapter we consider real images which
contain a finite number of points. To apply the results of
Chapter 2 to real images, we will refer to the "number of
points" of an image instead of image "area". Thus in this

chapter, {J| will denote the number of points in J.
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3.1. Sufficient Gray-Level Vectors

In order for RIMPAR to produce a partition that is
meaningful, the blocks of the G-optimal partition P* should
correspond to areas of the target we wish to consider as
single entities. A gray-level vector G for which P* satis-

fies this goal is called sufficient. In other words, G is

sufficient if for any adjacent areas Hl and H2 in I such

that Hl and H2 represent different target entities, MG(Hl)
# MG(HZ)'

The first logical candidate for gray-level functions is
the set Gl(-)=(gl(-), gz('), ey gN(-)) corresponding to
the reflectance in the N channels of the multispectral image.
In many applications Gl(') or even a subset of Gl(-) may be

sufficient. However, if for adjacent areas Hl and H2,

M_(H,)=M_ (H,), 1<i<N, then G, (+*) is not sufficient. This
95 i 97 2 —— 1

would be the case if Hl and H2 had identical means in all
channels, but different variances in some channels. To

handle such situations we propose sets of gray-level function

k(-), o8 F gi(-)) where g?(x) is an unbiased

G ()=(g5(), g
estimate of E [(gi(Y))k/YaN(X)] and N(X) is a small neighbor-
hood of X, consisting perhaps of X and the eight nearest
neighbors of X. If any Hl and thave<gray—level distri-
butions that differ in at least one of the first r moments

of at least one of the first N channels, then G(-)=(Gl(-),
GZ(-), T Gr(°)) is sufficient.

The gray-level vector can be further generalized to dis-

tinguish between adjacent target areas that differ in either
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pattern or dependence among neighboring points. The pro-
cedure in these cases is to define gray-level functions with

mean values that reflect these differences.

3.2. Testing G-Regularity

Since a real image has a finite number of iﬁage points,
we can only estimate the mean vector for any subimage J.
Therefore testing G-regularity cannot be done with zero
error, and it is desirable to find a test that tends to
minimize testing errors.

Recall that to determine if J is G-regular, we parti-
tion J into {Jl, J2} and ask "MG(J1)=MG(J2)?" In this sub-

section we discuss the implementation of this test.

3.2.1 Partitioning the Gray-Level Vector

To determine MG(Jl)#MG(JZ) it is sufficient to deter-
mine Mgi(Jl)#Mgi(Jz) for some gi(-)eG('). Therefore it is
not necessary to use all gray-level functions to decide
MG(J1)¢MG(J2). If we partition G(*) into subvectors (Gl(-),
Gz(-), i Gp(-)), then we can test for G-regularity as
shown in Figure 6. This testing scheme has two advantages:

(1) All gray level functions need not be evaluated

for each J.
(2) Testing subvectors instead of individual gray-

level functions allows the use of correlation

between channels to improve estimates.
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J is not
NO N, G-regular
>

a=q+1 (€8

No

\4

J is G-regular

Figure 6. G-Regularity Test




3.2.2 A Test Statistic

We calculate an estimate MGi(Jk)'of MGi(Jk) by

A 1 Z

M, (J )= — G, (X) k=1,2 {3.1)
) iy |3, | xeq, *

Throughout this section |K| stands for the number of points

in any image K . Let

SzlJT-Z{ngl(Gi(X)—ﬁGi(J))(Gi(x)'ﬁci(Jl))T+XZJ2(Gi(X)-ﬁGi(J2))
(Gi(x)—ﬁGi(Jz))T}
and
T2=|JTl:J2|(ﬁGi(Jl)-&Gi(Jz))Ts-l.(ﬁGi(Jl)-ﬁGi(Jz)) i 4
2

The statistic T“ has been used [27] to test the equality of
the mean vectors of two multivariate Gaussian distributions
in the following way: the two mean vectors are considered

equal (at significance level a) if

2 (|g] -2)r

T < (3.3)

(IJI '-r-l)Fr' |J|—r-l (o)

where r is the number of gray-level functions in Gi(-), and
Fr,|J|—r"l (a) is the upper 1000% point of the F distribution
with r and |J|-r-1 degrees of freedom. In our application we
have no guarantee that the distributions f(Gi(X)/XeJl) and
f(Gi(X)/XEJz) are multivariate Gaussian, but the distributions
are probably close enough to Gaussian to allow the use of T2

with some success. Using Egn. 3.3 instead of comparing T2

to a fixed threshold has the following advantages:
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(1) Egqn. 3.3 takes into account the number of gray level
vectors used to estimate the mean vectors. Since
estimation with small sample size is unreliable, a
small 1J] increases the threshold to maintain a con-
stant probability of false rejection of the equality
hypothesis.

(2) The thresthd of Eqn. 3.3 also reflects the depen-
dence of T° on the number of channels r.

3.2.3 Efficiency of Partitions

If it is found that M (Jl);éMG (J2), then J is parti-

G
i i
tioned into J, and J,. Although any partition {Jl, J2} is

suitable for the mean test, some partitions of J have ad-
vantages to offer in later steps of RIMPAR. For example, if
J., happens to be G-regular, then Jl will not be partitioned

i
later. To evaluate various partitions of J (with respect to

Gi(-)) we define the partition efficiengy,nG (Jlf J2) by
i

la 113,

(J,)-M
lJl . l

&
y @ N T M, (3)-M (3,)).
1 1

G
2 !

G
(3.4)
The partition efficiency indicates the improvement of the
partition criterion due to partitioning J into {Jl’ JZ}"
This can be éhown by referring to Egn. 2.25 and noting that

1

. )= — 7N

G- (P (JlIJz) ’

G
1

Vv (P.)~-V
: i

when Pj+l is derived from Pj by replacing J by {Jl, Jz}.
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To achieve partitions with high efficiency, RIMPAR
tries several partitions of each J, and picks the partition
with the highest efficiency. The trial partitions are
generated by (KD-l) equally-spaced horizontal lines, and
(KD-l) equally-spaced vertical lines. Here KD is the same
as in Sec. 2.6. The test for G-regularity is applied only

to the most efficient partition of J.

3.2.4 Storage and Retrieval of Subimages

In the computer implementation of the G-regularity test,
much processing time is used to retrieve the gray levels of
J, and various subimages of J, for use in calculating the
nG.(Jl’JZ) and T2. The following steps are taken to minimize
retrieval time.

(1) The total image I is initially stored on tape. Be-

fore partitioning, I is transferred to a disc that
allows almost direct access to any line of gray-

levels.

(2) If at any point in RIMPAR we have |J| < MAXCOR,
then the gray-levels of J are transferred to core.
All subimages of J can then be retrieved from core
instead of disc. Arrays in the FORTRAN program
are dynamically allocated to maximize MAXCOR, the
amount of core available for image storage. Typi~-
cally 150k bytes are available for this purpose on

an IBM 360/67 with 256k total available core.
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(3) As J is retrieved [rom either core or disc, the
sums and sums of sguares of the gray-levels of
blocks of J formed by 2(KD—l) equally-spaced hori-
zontal and vertical lines are calculated. These
partial sums are stored in core and are used to
calculate the nG.(Jl’ J2)'s for the 2(KD—1) trial
partitions, and lT2 for the most efficient parti-
tion. The points of each J are thus read only

once.

3.3. Choice of MINSIZE

In Theorem 2.9 the convergence of RIMPAR was shown for
the case of continuous images in which G-regularity could be
decided with zero error. The role of MINSIZE in this theorem
was to prevent the expenditure of too much effort in approxi-
mating arbitrary object boundaries by horizontal and vertical
line segments. This theorem demonstrates the basic ability
of RIMPAR to successfully partition real images, but real
images present circumstances that differ from those in the
theorem statement.

Because real images are spatially quantized there is a
degenerate G-regular partition---the partition in which each
block is a single image point. Thus the size of the smallest
partition block has a natural lower limit in a digitized image.

- test allows for statistical uncertainty, we

Since the T
prevent the partitioning of not only noisy G-regular blocks,

but also blocks that are almost G-regular because of boundary
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w overlap. Therefore the T2 test controls to some extent the
‘ degree of boundary overlap.

Thus the role of MINSIZE is diminished when real images
are considered. However, there is a definite need for con-
3 straining partition block size in some images. This need oc-
} curs when object definition is ambiguous because the objects

of interest are composed of smaller objects. In these cases,

\ if MINSIZE is.set to the smallest block size that gives rea-
| sonable estimates of the object means, the breaking up of
ﬂ textured or compound objects into their component parts can

, be prevented.
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CHAPTER 4

CLASSIFICATION TECHNIQUES -

Several classification algorithms are used in experi-
ments described later in this report, so in this chapter we
discuss the details of these algorithms. When probability
density functions are involved, we assume they are Gaussian
for computational simplicity. Previous work in classifi-
cation has shown that this assumption gives good results for
many data sets [12].

Two main types of classifiers are discussed: super-

vised classifiers and unsupervised classifiers. Within each

of these types there are per-point classifiers and sample
classifiers. We refer to the unit of data that is classi-
fied with one decision as a data unit. In per-point classi-
fiers the data unit is a single image point X, and in sample

classifiers the data unit is a set Q of image points.

4.1. Supervised Classification

The basic procedure in supervised classification can be
stated as follows: We are given a set of data units, (called
a training set) each labeled as belonging to one of m classes
of interest Wyr Wor seey W Using the gray level vectors

associated with these data units, we design a classifier

that assigns a class label to any unknown data unit.
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4.1.1 Supervised Per-Point Classification

In per-point classification we classify a single image
point X on the basis of its gray level vector G(X). (We
use here the notation of section 2.1.) The classification
rule used is an approximation to the Bayes maximum likeli-
hood decision rule, assuming a 0-1 loss function and equal
class prior probabilities [6]. Tovimplement this rule we
assume the probability density functions

f(G(X)/Xewi), 1<i<m

are Gaussian with mean vectors Mi’ 1<i<m, and covariance
matrices Ki’ 1<i<m. Since the Mi's and Ki's are unknown, we
estimate them from the training set {Tij’ 1<i<m, 1ijiti}.
each Tij is the jth point known to belong to Che The esti-

mates for the Mi's and Ki's are

M, =——— G(T..)
ot j=1 1]
i
K.= (GAT . Ji=Me ) (6 (T ) =M )i
g 2 ) ij i ij 1
i
The classification rule is: decide a point X is from wj if
dj(X)idi(X)' 1izm, i#j;
where
dj(X)=—log[det(Kj)]-(G(X)-Mj)lKj_l(G(X)—Mj). (4.1)

(Throughout this report, det(A) will stand for the determi-

nant of a matrix A, and AT will stand for the transpose of

a matrix A4).
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4.1.2 Supervised Sample Classification

In sample classification we classify a set Q of image
points on the basis of the set of gray level vectors

{G(X)

XeQl. The data units are classified using a.statis—
tical distance measure, the approximate Bhattacharyya
distance [12] for Gaussian density functions. The training
set is {Rij' 1<i<m, lijiti}, where Rij is the jth set of
image points known to belong to w, . The training set is
characterized by mean vectors Mi’ 1<i<m, and covariance

matrices Ki’ 1<i<m, which are estimated by

MiP— ) ) G (X)
P. j=1 XeR, .
1 13
A . D
K= pes} (G(X)-M,) (G (X)-M, )
P.~1 3=1 XeR..
L 1.7
where
i
P.= Z (Number of points in R,.).
| ij

For the set of image points Q to be classified we estimate

A l
- ) G(X) (4.2)
g XeQ
1 ; -
K, pemenins (G{X)~M ) (G{X)-M,)
| Q g-1 xeo 0 Q

where g=number of points in Q. The decision rule is:
decide Q is from wj 18

Bj(Q)<Bi(Q) 1<i<m, i#j,
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where

RUEPRLRL 28881 AL 5 det (K)
B, (Q)=— (My~M;)" K™~ (M,-M,)+— In — e
8 2 [det(KQ)]z[det(Ki)]‘
(4.3)
A K +K
K =2 1
2

4.2. Unsupervised Classification

In unsupervised classification no training set is
provided. In our application, the unsupervised classifi-
cation problem is: given a set F of data units, partition
F into m classes such that the data units associated with
any given class are "similar" to each other, and relatively
"different" from the data units associated with other classes.
This type of unsupervised classification is also called
clustering.

A clustering algorithm that tends to minimize the
differences between members of the same class is shown in
Figure 7 [12]. This algorithm is used for both per-point

and sample classification.

4.2.1 Unsupervised Per~Point Classification

In per-point classification, the class centers are mean

vectors Mi’ l<i<m. The class centers are initialized to the
11

gray level vectors of m arbitrary image points in the set T

to be clustered. The class membership of a point X is

decided as follows: X is in mj if
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(MJ.MX)T(I\Zj—x)f_(Min-X)T(Miv--X) l<i<m, i#5.

If, in an iteration of the clustering algorithm, some points
in the set F are observed to change class membership from
the previous iteration, new values for &i’ liiim are calcu-
lated by arithmetically averaging the gray level vectors of
the points assigned to each class. The clustering algorithm
stops if an interation produces no changes in class member-
ship. This stopping criterion can be relaxed slightly to:

stop the algorithm if less than P% of the points change

membership.

4.2.2 Unsupervised Sample Classification

In unsupervised clustering, class centers are repre-
A ~
sented by mean vectors and covariance matrices, Mi and Ki’
"~ A
1<i<m. The Mi's and Ki's are initialized to the mean
vectors and covariance matrices of m arbitrary data units
in the set F to be clustered. The class membership of a

data unit Q is decided as follows: Q is in mj g, £
iBj(Q)‘ij (Q) 1<i<m, i#j

where EL(Q) is given by Egn. 4.3. To calculate Bi(Q) we

need MQ and KQ,

If in ansiteration of the clustering algorithm some data

and these are calculated as in Egn. 4.2.

units in the set F are observed to change class membership,

new values for Mi and Kj, l<i<m are calculated as follows:
A l ~
M,=— )} M
i
a; Qewi

Q
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i

Q
qi Qewi

where qi is the number of data units in Ws o and for each

~

data unit Q, MQ and KQ are calculated as in Egn. 4.2. The
clustering algorithm stops if an interation produces no
changes in class membership, or if less than P% of the data

units change membership.




50

CHAPTER 5

EXPERIMENTAL RESULTS

The results of this chapter are divided into several
sets. In the first set we study the effects of the RIMPAR
parameters SLEV, KD, MINSIZE, and the number of partition-
ing channels. In the second set we investigate some alter-

native methods for using multiple partitioning channels. In

the third set of experiments we use RIMPAR followed by

supervised sample classification to classify agricultural
areas in aircraft and satellite images. In the fourth
set we use RIMPAR followed by unsupervised classification
to isolate urban areas in a satellite image. In the last
set of experiments,RIMPAR followed by unsupervised sample
classification is studied as a method for isolating the
lung in a digitized chest radiograph, and head outline
and facial features in a digitized photograph of a girl.
These experiments were performed at the Laboratory
for Applications of Remote Sensing(LARS), Purdue Univer-
sity. The computer used was an IBM 360/67 time-shared
computer, The computer times reported for the experiments
are stated in seconds of virtual CPU time. In the reported
experiments, input to and output from the author's pro-

grams, and comparisons with conventional algorithms, were
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greatly facilitated by LARSYS [30], a software system dev-
eloped at LARS for the analysis of remotely sensed data.

In refering to the data sets used in our experiments
we will use LARS run numbers such as "72032803". Runs at
LARS are stored in digital form as lines amd columns. A
convenient way to refer to a subset of a run is LINES(first
line,last line,line increment), COLS (first column,last col-
umn, column increment). For example, one of the images we
discuss is LARS RUN(69002901), LINES(860,1660,2), COLS(1,
221,2). In each run there are measurements in various spectral
bands (channels), and these channels will be refered to by
number. In Table 6 . we list the wavelengths associated
with the channel numbers and other information about the
data sets we consider. In general, partitioning and class-
ification are carried out using separate channel sets, so
we will refer to the channel set used for partitioning as
PSET(Cl,CZ, Ty CN), and the channel set used for class-
ification as CSET(Cl,Cz, s & CM). For example if channels
7 and 8 are used to partion an image, and channels 5,7,9,
and 12 are used to classify the image, we will write
PSET(7,8), CSET(5,7,9,12).

Supervised classification is used in some of the
experiments. In these instances classification accuracy
can be measured by comparing the results of the class-
ification algorithm to areas of known classification. The

percentage of correctly classified points is calculated

two ways. Overall percent correct is 100X (number of
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correctly classified image points)/(total number of image
points of known classification). Another classifier perform-
ance measure is percent correct by class. To calculate this
percentage, the overall percent correct is calculated for
each class, then the individual class performances are arith-
metically averaged. When areas of known classification are
used to train the classifier, they are called training fields.
Other areas of known classification are called test fields.
We report training and test field accuracy separately and
use the notation TRAIN(overall percent correct / percent
correct by class), TEST(overall percent correct / percent
correct by class). For example TRAIN(99.3/80.0), TEST(96.4/
80.7). Training field accuracy shows how well the measure-
ments and the classifier structure are able to character-
ize and distinguish the classes of interest. Test field
accuracy indicates how well this characterization gener-
alizes to non-training data.Note that for a give classi-
fication experiment, overall percent correct and percent
correct by class can by quite different if each class is not
represented by nearly the same number of image points of
known classification.

5.1 PARAMETER EFFECTS

In these experiments we measure the effects various
parameter values have on partitioning. The test image used
in this section is LARS RUN(71053900), LINES(190,540,2),
COLS (10,322,2). Partition gquality in these experiments is

measured by the training field classification accuracy
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obtained when RIMPAR is followed by a supervised sample
classifier. The classification program also contains a super-
vised per-point classifier for use with single-point part-
ition blocks and with blocks with so few points that the
estimated covariance matrix is singular. In the latter case
classification is carried out by classifying the block mean
vector as if it were a single gray level vector. Classi-
fication accuracy indicates partion quality because a

poor partition contains blocks that overlap object bound-
aries. Since the classification is based upon statistics
calculated from the points in a block, these overlapping
blocks, which contain points from at least two objects,

will have many or all of their points misclassified. Class-
ification into 5 classes was performed. The classes of
interest were corn, soybeans, forage, forest, and water.
Twenty-£five training fields were used, with a total of

1387 image points. The range of points per training field is
2 to 190. The classification channel set used in this sec-
tion is CSET(5,7,9,12). Classification with a supervised per-
point classifier gave training field performance TRAIN(97.5/
98.0).The relatively high performance indicates that the
channel set is good and that the assumption of Gaussian
statistics used in the classifier is reasonable. For use in
some of the experiments of this section, subsets of the

12 available channels were evaluated using a feature selec-

tion algorithm [31]. The channel setsselected for their

ability to separate the 5 classes as represented by the
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training fields are (9), (7,8), (7,8,12), and (7,8,11,12).
Preliminary experiments indicated that PSET(7,8), KD=20,
MINSIZE=1, SLEV=.01l give good partition accuracy, so these
parameter values were a basis around which the parameter
values were changed.

511 SLEV

In this section the « of Egqn. 3.3 is called SLEV. SLEV
is the significance level in the T2 test-used to decide
if two mean vectors are equal. SLEV is related to the prob-
ability of false rejection of the equality hypothesis. There-
fore high SLEV values cause relatively many mean vector
pairs to be considered equal, and low SLEV values cause rel-
atively few mean vector pairs to be considered equal.

In Table 1 we show the results of using several SLEV
values.The partions produced for all SLEV values seem fair-
ly accurate, and SLEV=.01l gave the best results. For SLEV=
.005some of the small training fields for the class water
were not isolated from their surrounding and therefore were
erroneously classified. For SLEV=.l objects were apparent-
ly subdivided, leading to decreased accuracy in the esti-
mation of block statstics. Since SLEV=.01l gives good class-
ification results with relatively few blocks, this seems
to be a good choice for the parameter value.

5. 8.8 Kn

In partioning each subimage J, KD horizontal and KD vert-
cal partitions are tried. A relatively large Ky will therefore

allow some partition lines to better approximate object




Table 1. Effect of SLEV

Number of v (P)
SLEV Classification Partition Partitioning g

Accuracy Blocks Time (sec) (Channel 7)

.100 TRAIN(95.6/95.7) 2686 451 58.7

.050 TRAIN(99.2/96.6) 1918 425 74.6

.010 TRAIN(99.8/99.8) 1164 389 102,

.005 TRAIN(99.7/92.0) 976 376 106.
MINSIZE=1 K. =20 PSET(7,8) C€SET(5,7,9:12)

SS
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boundaries, but at a cost of increased partioning time. In
Table 2 the effect of changing KD is shown. These results
show that partitioning time is roughly proportional to KD'
The best accuracy occurs with KD=20, and there is some degra-
dation for KD=10 and KD=15. The inaccuracies here were due

to the small water areas. With KD=5 good accuracy is obtained,
but since this goes against the trend set by the other exper-
iments, this is probably due to the chance coincidence of a
trial partition line and objec£ boundary. To insure good
object boundary fit, KD=20 seems to be a good choire. In other
;mages a lower KD value may be used to decrease computation
time if boundary fit is not judged to be important enough

to warrant the extra computation time.

5.1.3 Number of Partitioning channels

In these experiments the channel sets found by the
feature selection algorithm were used in partiioning the
test image. The results are shown in Table 3. The best results
were obtained with the set (7,8). The fact performance went
down when a third channel was added probably reflects the dif-
ference in classification channel requirements , for which
the feature selection algorithm was designed, and part-
itioning channel requirements.

5.1.4 MINSIZE

Recall from the discussion of section 3.1 that the main
function of MINSIZE in practical image partitioning is to
prevent the splitting of textured objects. Since good results

were obtained with MINSIZE=1 in this section, this conjecture




Table 2.

Effect of K

D

Number of v _(P)

KD Classification Partition Partitioning g

Accuracy Blocks Time (Sec) {(Channel 7)
5 TRAIN (98.8/98.6) 1029 l64 120.
10 TRAIN(98.6/85.4) 1156 238 119,
15 TRAIN(99.4/84.0) 1¥99 318 93.2
20 TRAIN(99.8/99.8) 1164 389 102.
MINSIZE=1 SLEV=.01 PSET(7,8) CSET(5,9,7,12)

LS



Table 3. Effect of PSET

Number of

PSET Classification Partition Partitioning vg(P)
Accuracy Blocks Time (Sec) (Channel 7)
9 TRAIN(96.6/76.6) 1043 180 120.
7.8 TRAIN(99.8/99.8) 1164 389 l02Z.
7,8,12 TRAIN(97.9/83.1) 1354 657 88.5
7:8,13,12 TRAIN(98.2/98.7) 1444 956 79.8
MINSIZE=1 KD=20 SLEV=.01 CSET(H,7;9,32)

8S
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seems to be supported. Some experiments were run, however,

to check the effect of increasing MINSIZE. The results are
shown in Table 4. Accuracy is observed to increase slight-

ly with MINSIZE=2. This increase is due to the tendency of
RIMPAR to make a classification results image relatively
homogeneous. Since classification accuracy is measured assum-
ing homogeneous fields, the performance evaluation is some-
what biased. Apparently MINSIZE=2 does not prevent the locat
tion of the small water areas, but some of these areas are
not found with MINSIZE=3. We conclude here that MINSIZE=1l

is a good value to use, unless there are textured objects.

5.2 Methods of Using Multiple Partioning Channels

Since partitioning time goes up rapidly with the num-
ber of channels used, we present here two alternativesto
the multivariate T2 test. We used the same test image and
classification test procedure here as in the previous
section. The first alternative method uses a sequential G-
regularity test as shown in Figure 6, with g=1 and R=4.
In other words 4 channels were used, and a univariate T2
test was applied sequentially to the 4 channels. It was
found that with this technique SLEV=,0l1 produced too many
partitfon blocks, judging from the results of the previous
section. Apparently many subimages that should be considered
G-regular were different enough in at least one of the
channels to be dividedby the algorithm, To offset this tend-

ency, we used SLEV=,005 .



Table 4. Effect of MINSIZE

Number of

MINSIZE Classification Partition Partitioning Vg\P)
Accuracy Blocks Time (Sec) {Channel 7)
1 TRAIN(99.8/99.8) 1164 389 102,
2 TRAIN(100./100.) 789 319 169.
3 TRAIN(99.7/92.0) 604 266 21).
KD=20 SLEV=,01 PSET(7,8) CSET(5,7,9,12)

09
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The second method investigated is called classify-then-
partition. To use this technique the image was first class-
ified by a supervised per-point classifier. The classifica-
tion results were then used to generate a single-channel
image by associating gray levels with class labels. This
association was carried out such that the gray levels were
about equally spaced throughout the 0-255 gray level range
of the normal data. To measure the accuracy of the partition
produced by this method, the partition blocks generated
were used to retrieve block statistics from the original
image. The blocks were then classified using these statistics
and the training field accuracy was computed. SLEV=.l was
used in partitioning the classified image. SLEV=.0l1, which
was found to be a good value in the last section, was found
to give too many blocks in this case. A possible explanation
for this performance is that the single-channel ;mage produc-
ed from the classified image has an unusually high variance
because. of the way gray levels were assigned to claas lahels.

A comparison of the 3 multichannel partitioning methods
is shown in Table 5. The accuracy in all cases 1s yood,
indicating that the 4 channels of information was used about
equally well by all methods. The classify-then-partition
method is much faster then the other two. This method is
clearly the best approach when the purpose of partitioning
is to get reduced classification results storage. However,

since classification in this case is carried out per-point,

the advantages of sample classification are not available




Table 5. Comparison of Multichannel Methods

Number of

Method Classificatiocn Partition Partitioning
Accuracy Blocks Time (Sec)
Multivariate T° TRAIN (98.2/98.7) 1440 956
SLEV=.01 SN R s E ™ N
Sequential T TRAIN (96.8/97.5) 1808 729
SLEV=.005 e i
Classify-then-
Partition TRAIN(97.8/99.1) 1038 215
SLEV=.10
MINSIZE=1 RK_=20 PSER'(7,8,11,12) CSET(5,7,9 ,12)

<9
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with this method.To classify blocks using their gray levels
one of the other two techniques must be used. It appears
that the sequential method is a good choice in these cases.
A disadvantage to the sequential method is that corelation
between channels is not used. The advantage of this method
is relatively small processing time. As the number of
channels increases, the multivariate T2 test goes up about
gquadratically in computation time, but the sequehtial test
can be expected to increase only linearly in processing

time.

5.3 Classifying Agricultural Areas

In this section we describe experiments in which RIMPAR
followed by sample classification is used to classify agri-
cultural area in 3 aircraft images and two satellite images.
In Table 6 a description of the test images is given. The
classification results were evaluated by computihg train-
ing and test field accuracy. The characteristics of these
fields are given in Table 7. In Figure 8 we show a digital
display photograph of one of the satellite test images. The
image shown in Figure 2 is an example of an aircraft image.
In each image, partitioning was carried out using the
two channels chosen as best by the feature selection algoritm
discussed earlier.The RIMPAR parmeters used in all cases
were MINSIZE=1, KD=20, and SLEV=,0l1. Classification was per-
formed using the best set of 4 channels as chosen by the

feature selection algorithm for the aircraft data, and

PSET(2,3) and CSET(2,3) were used for the satellite data.




Table 6. Test Image Data

Run Number Test Image Data Source Channel Spectral Bands
1/0.40-0.44 7/0.66-0.72
LINES (860,1660,2) Aiperabe §§8°§g:g°§§ g;g'ggzg'gg
69002901 COLB () 221 ;2] Altitude 2400 feet 3 2 : X
Purdue Flt. Ln. 24 Date 6/25/69 4/0.55-0.58 10/1.00-1.40
¢ : 5/0.58-0.62 11/1.50-1.80
6/0.62-0.66 12/2.00-2.60
1/0.40-0.44 7/0.55-0.58
LINES (61,812,2) Aircraft g;g'ﬁézg‘gg 2;8'23:8‘22
66000600 consii,219,2) Altitude 2600 feet ; g g d
ME st d bopr ot i) bate %7288 4/0.48-0.50 10/0.66-0.72
urdue - In. ate 6/28/ 5/0.50-0.52 11/0.72-0.80
6/0.52-0.55 12/0.80-1.00
1/0.46-0.49 7/0.61-0.70
LINES (200,1036,2) Aircraft gfg'ggzg‘gi g;g‘gg:g‘ig
71053900 COLS (1,221,2) Altitude 5000 feet 4/0'52_0'57 10/1'50_1‘80
Corn -Blight Ekt. T, Date 8/13/71 3 ; g =
5/0.54-0.60 11/2.00-2.60
6/0.58-0.65 12/9.30-11.7
LINES(381,500,1) Satellite %;8‘28:8‘38
72032803A COLS (998,1307,1) Altitude 580 miles 3/0.7040'80
ERTS 101716093 Ill. Date 8/9/72 4/0'80_1‘10
LINES (680,770, 1) Satellite ;jg'ggjg'gg
72032803B COLS (1070,1380,1) Altitude 580 miles 3/0'70_0'80

ERTS 101716093 Ill. Date 8/9/72

79

4/0.80-1.10




Table 7. Training and Test Field Data

Points Per

Number of

Number of

Run Classes of Interest Field Train. Field Test Field
Range/Average Points Points
y Corn, Soybeans, Wheat, oL =
69002901 Forage.- Farest, Water (9-754) /221 2727 5237
Corn, Soybeans, Wheat, Oats, W
66000600 Clover, AlFalfa, Bave S6il (56-1363) /410 4459 13562
Corn, Soybeans, B
71053900 Forage, -Forpat; Sater (2-360) /64 2727 5237
Corn, Soybeans, Other 1
72032803A (Dthey: Vegetation) (2-112) /18 850 4842
720328038 CorR, Seybhans, Other (2-228) /18 1309 1409

(Other Vegetation)

S9



Channel 3

Figure 8. Satellite Test Image
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In Table 8 we compare the RIMPAR classification results
with results obtained with the per-point classifier using
the same classification channels. Overall, the accuracy of
the two classifiers is about equal. RIMPAR performs signif-
icantly better in Run 72032803B, Evidently in this image
the class characteristics are such that sample classification
is better than per-point classification. In Run 69002901
the per-point classifier performs more accurately than
RIMPAR. In this test image errors made by RIMPAR in find-
ing object boundaries were apparently great enough to off-
set any advantage gained by sample classification. In the
other test images, the two classifiers were about equal in
accuracy.

Per-point classification is clearly much faster than
RIMPAR in these experiments. However for particular images
RIMPAR might perform faster than indicated here. For example
if a dedgradation in boundary fit were acceptable,we could
set K, to a small value and decrease processing time. It

is also possible to decrease partitioning time by using

only one channel.

In results storage RIMPAR is significantly better than
the per-point approach. The storage numbers are given in
bytes (8 bits). In the calculation of these numbers we

assumed one byte is required to store a class label ( for

either an image point or a block), and 4 bytes are required
to store a block location ( one byte each for the 4 coord-

inates needed to specify the location of 2 block corners).




Table 8. Comparison of Per-Point and RIMPAR Classifiers

Classification Processing Results
Run . Accuracy Time Storage
RIMPAR/Per-Point RIMPAR/Per-Point RIMPAR/Per-Point

TRAIN(95.6/97.0) /TRAIN(98.2/98.9)

BIP0E0 L TEST (76.3/69.7) /TEST (78.5/78.9) M4y 108 ik
oovosro TINORS/INOS AT gy saanam
71053900 ngégggg:2§gg:ggfgg§$§é§?é§ég?ég) 1145/105 13950,/46509
poneon TRIEImNMMES S s s
72032803B T§§é§ggg:gfg?:g;;gg@%ﬁéi?é;ég?éf) 615/67 11635/27900

MINSIZE=1 K =20 SLEV=.01 PSET (Best 2) CSET (Best 4)

D

*
As determined by feature selection algorithm. For Runs 72032803A and B PSET(2,3) and
CSET(2,3) were used.

89
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5.4 Isolating Urban Areas

Next we performed some experiments in the unsuper-
vised classification of ERTS-1 imagery. The test image,
shown in Figure 9 , is LARS RUN(73032801), LINES(887,1751,
3), COLS(393,1357,3). There are 5 relatively large cities
in this image, and they appear as light colored objects in
channel 2. The 3 largest cities are, from top to bottom,
Janesville, Wisconsin; Beloit, Wisconsin; and Rockford, Ill-
inois. A smaller city, Belvedere, Illinois, appears to the
right of Rockford, and above Belvedere is Poplar Grove, Ill-
inois. The goal of these experiments was to isolate these
cities from the rest of the image. This isolation was
accomplished by clustering the image and displaying the
cluster classes as different gray levels. The cities were
considered to be effectively isolated if they were repre-
sented exclusively by a single cluster class. Two methods
using clustering were compared: clustering a PP image
description and clustering an AO description produced by

RIMPAR.

Figure 10 shows the result of clustering the PP descrip-
tion of the image into 5 cluster classes using channels 2
and 4. The clustering was carried out by the LARS program
$NSCLAS, which uses the unsupervised per-point classifier
described in Chapter 4. Due to software limitations only
22,770 out of the 93,058 image points were actually clustered.
This subset of the available points was spatially evenly

distributed throughout the image. The clustering algorithm
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Channel 2

Channel 4

Satellite Image

9.

Figure
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5 Cluster Classes

Class 5 Shown as White

Figure 10. Per-point Clustered Image
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converged to zero class membership changes in 26 iterations
and took 393 seconds of virtual CPU time. A subset of the
clustered points was then used to train a supervised per-
point classifier, and the entire image was then classified.
Visually the image shown at the top of Figure 10 seems
to be a good representation of the original imaée. However,
the human visual system does a lot of spatial integration in

viewing such a picture. As shown in the lower image of

Figure 10, the cluster class most nearly representing the

cities consists of (1) separated points within the cities,
and (2) many superfluous points outside the cities. Thus

the image description stored in the computer, represented

by Figure 10, does not specify the location of five major
objects that represent cities. The cities are not found as
single objects in the PP description because cities are not
characterized only by the reflectance of their individual
points, but also by their texture. Texture is not represented
in a PP description. Although it might be possible to gain
more spatial continuity within the cities by using fewer
cluster classes, it is not likely that this approach would
eliminate the superfluous points. As a final comment on this
method, note that the classified image of Figure 10 requires
about 93,058 bytes of storage, assuming one byte for each

class label.
In the next experiment the image of Figure 9 was part-

itioned by RIMPAR using KD=20, SLEV=,01, and PSET(2,4).
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Since the cities are‘textured objects, it was necessary

to use a large enough MINSIZE value so that the cities were
not erroneously partitioned. Since the size of Poplar Grove
in this image was about 10, and since blocks of size 10
seemed to characterize the texture of the cities well, we
used MINSIZE=10. The image was partitioned into 418 blocks
in 1030 seconds. The blocks were then clustered using
CSET(2,4) into 5 cluster classes by the unsupervised sample
classifier described in Chapter 4. The algoritnm converged
to zero class membership change after 34 iterations and

206 seconds. The results are shown in Figure 11, and it is

clear that the cities have been approximately isolated.

Although the city boundaries shown in Figure 11 are
quite approximate, the image description represented by the
figure can be very useful as an input to more detailed pro-
cessing steps. If we are interested only in urban areas,
the approximate location of cities can eliminate much of the
image from consideration, and direct the application of
algorithms that would be too time consuming to use on the
entire image. Such reductions in processing time is impor-
tant when vast qguantities of data are involved, as with the
ERTS~-1 satellite. This idea of a hierarchy of processing
steps cquld also be used within RIMPAR. For example,
probably only a subset of the available image points are

needed to produce Figure 11, and partitioning time could

be considerably reduced if fewer image points were used.




5 Cluster Classes

Class 4 Shown as White

Figure 11, Partitioned Satellite Image
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Clustering then displaying images has been previously
used to determine how well an image represents a target [15].
This approach to evaluating image data was the original
motivation for clustering the partition blocks produced by
RIMPAR. However, clustering also tends to create approxi-
mately G-optimal partitions from approximately G-regular

partitions, and thus can be considered an extension of the

basic partitioning algorithm. An alternative and less time

consuming approach would be to link adjacent blocks using

C the T2 test, but this approach does not use the idea of

- global similarity that is inherent in clustering.

( Recall that in clustering, there are no class identities
associated with the cluster class numbers. Therefore to
actually find cities, for example, not only must the city
objects be isolated, but these objects must also be recog-
nized as cities. The assumption made here and in later
experiments is that if image objects are isolated, shape,

size, and location information can be used to assign iden-

tities to the cluster class numbers.

5.5 Other Applications

We now investigate the use of RIMPAR to partition a
digitized chest x-ray and a digitized photograph of human
face. Each of these images has one channel, and they are
both representative of pattern recognition applications

that have received considerable interest.
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Research in the computer processing of chest radio-
graphs has been aimed at the automatic diagnosis of chest
diseases [4,32,33]. The algorithms that have been studied
have two steps: First the organ of interest, for example
heart or lung, is isolated in the image. Next texture or
size measurements are automatically carried out on the
isolated organ to determine the health of the organ. Since
RIMPAR isolates objects, we will restrict ourselves to the
problem of lung isolation in chest x-rays. In Figurel2
we show a digitized 132x256 point x-ray of the right lung
region.

Chien and Fu [32] mention some of the difficulties in-
volved in lung isolation:

1) Lung edges are characterized only by a gradual

gray level change.

2) Gray levels inside and outside the lung are often
identical.

3) It is difficult to distinguish between lung
boundaries and other boundaries, for example
boundaries along ribs.

The basic problem is that the lung is a globally defined
object; it is not well defined locally.

Several lung isolation techniques have been used. 1In
[4] a local thresholding algorithm is presented. In this
algorithm the entire x-ray is divid