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ABSTRACT

Hyperspectral data potentially contain more information than multispectral data because of higher dimensionality.
Information extraction algorithm performance is strongly related to the quantitative precision with which the desired
classes are defined, a characteristic which increases rapidly with dimensionality. Due to the limited number of
training samples used in defining classes, the information extraction of hyperspectral data may not perform as well as
needed.  In this paper, schemes for statistics enhancement are investigated for alleviating this problem.  Previous
works including the EM algorithm and the Leave-One-Out covariance estimator are discussed. The HALF
covariance estimator is proposed for two-class problems by using the symmetry property of the normal distribution.
A spectral-spatial labeling scheme is proposed to increase the training sample sizes automatically.  We also seek to
combine previous works with the proposed methods so as to take full advantage of statistics enhancement.  Using
these techniques, improvement in classification accuracy has been observed.

Keywords:  Hyperspectral analysis, multispectral analysis, classification, the EM algorithm, parameter estimation,
small sample size problem.

1. INTRODUCTION

In the case of hyperspectral data, it has been found that adequate training for classifiers is of even greater importance
than in the case with conventional multispectral data.  Adequate training depends on accurate parameter estimation,
where a large number of training samples, compared to the dimensionality, is usually required.  When the number of
training samples is relatively small, maximum likelihood estimates of the parameters have a large amount of
variance, leading to a large classification error [1]. Furthermore, as second order statistics deserve attention no less
than first order statistics in hyperspectral analysis [2], there is an even greater demand for accurate parameter
estimation.  

In general, classification errors depend on the accuracy of statistics estimation, the classifier type, and the class
separability. One can seek to improve the classification performance from any of these aspects [3].  In this paper, the
factor of statistics estimation is singled out for consideration.  Previous works, including the EM algorithm [4][5]
and the Leave-One-Out covariance estimator [6], are reviewed briefly.  Two new methods are proposed.  A training
sample labeling method based on spectral and spatial information is proposed for automatically gathering a larger
number of training samples. A fast method based on the symmetry property of the normal distributions is proposed
specially for two-class problems. The combinations of these methods are also sought in order to achieve the best
performance of statistics enhancement.  Experimental results are given and discussed in Section 5.

2. PREVIOUS WORKS

2.1. The Expectation Maximization (EM) algorithm

Use of the EM algorithm, recently proposed as a means of supervised-unsupervised learning [5], incorporates
unlabeled samples into the process of parameter estimation. The goal of the EM algorithm is to find the optimal
choice of statistics that maximizes the log-likelihood function L  given by
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where ),x(p iiki Σµ  is the conditional density function of class i, i=1..L, and )x(f k  is the mixture density given

by

f (xk ) = Pi pi(x k µi ,Σ i)
i=1

L

∑
where z and x denote training and unlabeled samples, respectively.

Using unlabeled samples has an equivalent effect of increasing training sample size, though unlabeled samples may
not be as effective as training samples. In practice, the performance of the EM algorithm is not always reliable. The
EM algorithm may converge to a local maximum of the likelihood function, resulting in poor estimates of class
statistics. Precaution should be exercised as to whether or not the classes are normally distributed and spectrally
separable[5][3], the list of classes is exhaustive, and the initial statistics are reliable. In this paper, enhancing initial
statistics is considered for improving the performance.

2.2. The Leave-One-Out Covariance (LOOC) estimator

The Leave-One-Out Covariance estimator (LOOC) [6] is similar to the Regularized Discriminant Analysis (RDA)
[7]. By examining pair-wise linear combinations of diagonal covariance, covariance, within-class covariance, and
diagonal within-class covariance matrices, the LOOC method determines the best combination that maximizes the
following average log likelihood function of leave-one-out test samples:

Li(α) =
1
Ni

lnp(xk µi/k ,Ci /k (α)),
k =1

Ni

∑
where ))(C,|x(pln k/ik/ik αµ  is the log likelihood value of the sample xk of class i. The mean k/iµ and the mixed

covariance )(C k/i α  are computed without sample xk, where α is the mixing parameter of the covariance

combination. Such combining approach may or may not outperform the traditional ML estimates (or sample
estimates). However, in the case of small training sample sizes, this approach has shown the advantages that it
improves the classification performance and provides a nonsingular covariance matrix (if there are at least three
independent samples in a class and these samples do not have the same value on any band).

3. NEW SCHEMES

3.1. HALF

This is a fast covariance estimator for two-class problems based on the property that a normal distribution is
symmetric with respect to the class mean. This symmetry property can be used to estimate the covariance matrix
when the samples in one half space are contaminated, missing, or mixed with other distributions. The covariance
matrix can be estimated by using the samples on the other half space with respect to the class mean. If two points, x
and y, satisfies µ=+ 2/)yx( , where µ  is the class mean, then the probability densities ),y(p),x(p Σµ=Σµ , and

TT )y)(y()x)(x( µ−µ−=µ−µ− . Consider a normal distribution ),(N Σµ  where µ  is known and Σ  is unknown.
Let v be the norm vector of a hyperplane passing the class mean. LetΩ be the sample set containing K samples in

one half space in the direction of v: { }0vT)X(X ?µ−=Ω , where X denotes a sample. The covariance matrix can

be estimated from Ω  by Ω� µµ=Σ i
T

ii X ,)-X)(-X()K/1(
~

. Σ~  is an unbiased estimate of the covariance

matrix. For a univariate normal distribution, ),0(N 2σ , K/2)~(VAR 42 σ=σ ,which is approximately two times

larger than that of the sample variance estimate. The algorithm for two-class problems is described as follows:

1. Compute sample mean vectors 21 ˆ ,ˆ µµ  for each class by using training samples.
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3. Estimate class covariance matrices using training samples and unlabeled samples in 1Ω  and 2Ω for class
1 and class 2, respectively:
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where

ikz = the training samples of class i , iN,..,1k = ;

kx = unlabeled samples;

iN = the number of training samples from class i ;

iK = the size of iΩ .

µ1 µ2

Ω1 Ω2

Fig. 1. For two classes, the covariance matrices can be estimated by using the samples in the shaded regions.

The HALF method is a fast estimation method that is designed especially for two-class problems. Based on the
symmetry property of normal distributions, unlabeled samples are selected to enhance the initial estimation of
covariance matrices. Due to the nature of the symmetry property, only two-class problems are considered. If the class
mean is unknown, the performance of this covariance estimator will depend highly on the accuracy of the class mean
estimation. Experimental results are given in section 5.1.

3.2. Spectral-Spatial Training Sample Labeling

When the number of training samples is too small to provide sufficient information for defining classes, auxiliary
information is helpful. A remotely sensed data set often consists of regions, each containing one class of ground
cover type, therefore, pixels of the same class are likely to be spatially contiguous. Besides, a data set often abounds
in unlabeled samples that may belong to classes of interest. Noting these two inherent characteristics, we have
developed the spectral-spatial training-sample labeling method. A previous work [7] related to training sample
labeling is based on the fact that many minerals have unique and diagnostic absorption characteristics in their
reflectance spectra. Training samples in mineral classification problems can be labeled if laboratory reflectance spectra
are available. The spectral-spatial labeling method proposed here utilizes spatial contiguity and the characteristics of
normal distributions in the feature space.

Algorithm:

1. Compute the sample mean ( iµ̂ ) and the sample covariance for each class by using the training samples.

2. If a sample covariance is singular, pick a covariance ( iΣ̂ ) among the following choices.

a. The diagonal of the sample covariance. (That is, assume that the bands are uncorrelated.)
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b. The covariance matrix of the entire data set.
c. The average of the sample covariance matrices over all classes.

3. In the feature space, label a sample to the nearest class if the sample falls inside a given probability region of
the nearest class. The nearest class j is determined by using the maximum likelihood criterion given by

 ˆln)ˆX(ˆ)ˆX( min argj ii
1

i
T

i
i

Σ+µ−Σµ−= − .

A sample X falls inside a probability region with a probability mass of α  if

α
− ≤µ−Σµ− d)ˆX(ˆ)ˆX( j

1
j

T
j ,

where αd  is determined by α=≤ α )dPr(d  for a given α , and d possesses a 2χ  distribution with n degrees

of freedom (n = dimensionality). αd  remains constant for all classes. Repeat this step for each sample.

4. In the spatial domain, adjust labels as follows.

(i) Consider each labeled sample. If the majority of the neighboring samples belong to another class k,

change the class ownership of this labeled sample to k if α
− ≤µ−Σµ− d)ˆX(ˆ)ˆX( k

1
k

T
k . If

α
− >µ−Σµ− d)ˆX(ˆ)ˆX( k

1
k

T
k , remove the label so that the labeled sample becomes unlabeled. If there is

no majority class, leave the labeled sample as it is. The neighborhood selected in this paper is a 3x3
window centered by the sample being considered.

(ii) Consider each unlabeled sample. If the majority of the neighboring labeled samples belong to class k,
assign the unlabeled sample to k if the local homogeneity test is passed. The test for local homogeneity
was within three times standard deviation distance from the class mean for each channel.

5. Update mean and covariance for each class using labeled samples. Repeat Step 3 through Step 5 several times
until a satisfactory result is obtained.

The intermediate result at each step is generated in order to keep track of the change. Special care has been taken in
step 4, where labels are to be adjusted. Note that steps 4(i) and 4(ii) share the same criterion for examining spatial
context, but they are separated into two steps. The reason for this design is to avoid carrying the error due to
mislabeled samples into the labeling of unlabeled samples. Furthermore, a homogeneity test is added at the step
4(ii) to impose a stricter condition on the labeling of unlabeled samples.

This labeling method can be used to automatically label likely training samples and augment the size of the training
sample set selected by a human analyst. The method utilizes the information in the feature space and in the spatial
space. However, based primarily on local spatial information, this method does not have a global optimization
criterion in support of the labeling scheme.

4. STATISTICS ENHANCEMENT

Because each method has its own weakness and benefit, it is desirable to consider their combinations so as to
supplement each other. The LOOC estimator can provide nonsingular covariance matrices as the initial setting for
the EM algorithm and the spectral-spatial labeling method. The EM algorithm can provide a global optimization
criterion in support of the labeling scheme. The LOOC estimator uses only the information about training samples
whereas the EM algorithm and the labeling method gather unlabeled samples as well as training samples. Thus, for
multiclass problems, four combinations are considered in this paper: 1. LOOC and Labeling; 2. LOOC and the EM
algorithm; 3. Labeling and the EM algorithm; 4. LOOC, Labeling, and the EM algorithm.

5. EXPERIMENTS

5.1. Two-class Problems

Tests were performed on a computer-generated 8-dimensional data set. Assume that two classes possess normal

distributions, N(0,I) and N([0.965 0.775 0.21 0.21 0.410 0.270 0.065 0.0025]T, 2Σ
), where 2Σ

 is a diagonal
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matrix whose diagonal elements are [8.41 12.06 0.12 0.22 1.49 1.77 0.35 2.73]). The Bayes error is about 0.8%.
Eight training samples per class were generated for each trial. Test and unlabeled samples were fixed throughout all
trials. There were 500 test samples for each class and 1000 unlabeled samples (500 from each class). 10 trials have
been conducted. The EM algorithm was set to a maximum of 20 iterations. The quadratic Maximum Likelihood
classifier was used, and the prior probabilities were assumed to be equal.

Note that the sample covariance matrices are singular matrices, which cannot be used for the EM algorithm or the
quadratic classifier. To obtain nonsingular covariance matrices, the Nearest Mean [1], the LOOC, and the HALF
methods were considered. The Nearest Mean and the HALF incorporate unlabeled samples. Since a reliable
convergence of the EM algorithm depends on a good starting point, an initial statistics setting seems necessary for
the EM algorithm in this case. The classification results are shown in Table 1. The LOOC outperforms others. If
these nonsingular covariance matrices were used as the initial settings of the EM algorithm, all achieved the same
classification accuracy of 91.23%.

Nearest Mean

LOOC

HALF

EM QML

Fig. 2. Various procedures in the case of singular sample covariance matrices

Table 1. Classification accuracy of different covariance estimators
Classification accuracy without

using the EM Algorithm
Classification accuracy if

followed by the EM Algorithm
Nearest Mean 60.75 % 91.23 %

LOOC 85.77 % 91.23 %
HALF 67.09 % 91.23 %

5.2. Multiclass Problems

For multiclass problems, experiments were conducted with an AVIRIS data set taken on July, 15, 1995 over the
Indian Pine Test Site 1C (Fig. 3). From the ground truth, six classes were known: Corn, Corn-N, Soybean-NS15
(15” apart), Soybean-Drilled (7” apart), Soybean (30” apart), and Wheat. Due to different planting dates and
practices, the degrees of the ground cover in corn or soybean fields varied even though fields were labeled to the
same class in the ground truth map. From the spectral standpoint, it seems necessary to re-define classes based on
the variety of ground cover levels. The classes of the ground truth were thus altered to be Corn-LowGroundCover,
Corn-HighGroundCover, Soybean-LowGroundCover, Soybean-MediumGroundCover, Soybean-HighGroundCover,
and Wheat. There were 36 training samples drawn from each class as shown in Fig. 3. The strategy for analysis is
described as follows.

Removal of noisy channels: First of all, 39 channels were found noisy by viewing the channel-by-channel images.
Most of them are water absorption channels. Retaining noisy channels may require an extra number of training
samples so as to maintain classification performance [8]. Therefore, it is important to discard these redundant
channels when there are only a limited number of training samples available.

Reduction of dimensionality: After discarding noisy channels, there were 185 channels left. The dimensionality of
185 was still rather large compared to the training sample size of 36, so the dimensionality was further reduced by
picking every sixth channel. The resulting 30 dimensions was close to the number of training samples. Alternative
ways to reduce dimensionality include the Projection Pursuit Dimension Reduction[9], and Uniform Feature
Design.

An exhaustive set of classes: It is desirable to define an exhaustive set of classes for an accurate classification and a
reliable performance of the EM algorithm. An exhaustive list of classes can be obtained by defining new classes and
by removing outliers. To define new classes, clustering algorithms and the classification probability map had been
often considered. However, both of them did not work in this case due to a small number of training samples. To
remove outliers, the most commonly used technique was to set a threshold for the squared distance between sample
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X and the estimated mean vector iµ̂  based on the chi-square distribution.

α=η?µ−Σµ− α
− }   )ˆX(ˆ)ˆX( Pr{ i

1
i

T
i

where α  is a given probability (e.g. α =0.01). Note that the assumption that )ˆX(ˆ)ˆX( i
1

i
T

i µ−Σµ− −  is a chi-square

distribution is no longer appropriate if the number of training samples is small. Setting an adequate threshold
becomes difficult.

Due to the difficulty of finding an exhaustive set of classes by using the above techniques, the spectral-spatial
labeling scheme was used instead. In processing of the labeling, a blank area right above a soybean field suggested a
tentative class. A new class was thus defined and referred to as ‘Unknown Green’. Another blank area did not appear
homogeneous, so no action was taken. Thus far, the list of classes has been finalized and a total of seven classes
have been defined as seen in Table 2.

Schemes for Statistics Enhancement: Three schemes for statistics enhancement are considered: the spectral-spatial
labeling method, the Leave-One-Out Covariance estimator (LOOC), and the EM algorithm. The spectral-spatial
training-sample labeling method gathers likely training samples. The LOOC method gives the best linear
combination of the pooled covariance, the original covariance and their diagonal covariance matrices. And the EM
algorithm utilizes unlabeled samples. Because each has its own weakness and benefit, their combinations are
considered so as to supplement each other. For instance, the performance of the EM algorithm depends on the initial
statistics, so LOOC and the spectral-spatial labeling method may provide more reliable initial statistics for the EM
algorithm. Since the spectral-spatial labeling method is based primarily on local spatial information, the subsequent
use of the EM algorithm may provide a global optimization criterion in support of the labeling scheme. Therefore,
the EM algorithm and the labeling scheme supplement each other. Through this experiment, the EM algorithm
removed outliers based on the initial statistics before it started. The numbers of unlabeled samples used for the EM
algorithm were 18968, 18477, 17847, and 18419 in EM, LOOC-EM, LOOC-Labeling-EM, and Labeling-EM,
respectively.

Results: The experimental results are shown in Table 3 in order of classification performance. Fig. 4 shows the
resulting classification maps from individual schemes and combination of schemes, respectively. When no statistics
enhancement scheme was used, the classification performance was rather poor (66.6%). If any of the statistics
enhancement schemes was used, the classification performance improved to be higher than 80%. When the schemes
were combined, the classification performance improved further to be higher than 90%. The best performances were
given by the combination of the Labeling method and the EM algorithm (95.01%) and the combination of all
schemes (94.01%).

Table 2. Data Set: AVIRIS 1995 Indian Pine Test Site 1C
No. of classes 7
No. of channels (original) 220
No. of channels (reduced) 30
Image size (in pixels) 145 x 145
Total no. of samples 21025
Total no. of training samples 252
Total no. of test samples 7096
No. of iterations of EM 10

Class Name   Training
Samples

Test
 Samples   

1. Corn-LowGroundCover 36 1026
2. Corn-HighGroundCover 36 1191
3. Soybean-LowGroundCover 36 774
4. Soybean-MediumGroundCover 36 2723
5. Soybean-HighGroundCover 36 1298
6. Wheat 36 84
7. Unknown Green 36 0
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(a) AVIRIS 1995 Indian Pine Test Site 1C (b)Ground truth map (Original in color)

Fig. 3. The AVIRIS data set taken on July 15, 1995 at Indian Pine Site 1C.
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Fig. 4. Classification results of various procedures without and with statistics enhancement methods.

(Original in color)
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Table 3. Comparison of various analysis procedures
Rank Use of Statistics

Enhancement
Statistics Enhancement

Analysis Procedure
Accuracy (%)

8 (None) 66.60
7 Labeling 80.45
6 Individual method LOOC 84.30
5 EM 85.84
4 LOOC Labeling 86.33
3 Combination LOOC EM 91.19
2 LOOC Labeling EM 94.01
1 Labeling EM 95.01

CONCLUSIONS

Statistics enhancement was considered in this paper. A spatial-spectral training sample labeling method has been
developed in order to gather likely training samples and remove outliers. This new method was compared to another
two methods: the EM algorithm and Leave-One-Out Covariance estimator (LOOC). Also, possible combinations of
these three methods were investigated. It has been seen that a preprocessor of statistics enhancement is helpful for
hyperspectral classification when the number of training samples is small. And an adequate combination of the
methods can be used to take full advantage of each method, leading to further improvement.
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