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ABSTRACT
Research in recent years into methods for hyperspectral

image data analysis has shown that there is a strong
relationship between the precision with which classes are
defined and the classification accuracy that results. There is
also a relationship between these two factors and the
complexity of the classifier algorithm used in the analysis. In
this paper we illustrate this relationship empirically using a
moderate dimensional, moderately difficult classification
task. This example is also used to explore the effect of two
recently introduced algorithms that are intended to mitigate
the effect of use of a limited number of training samples on
classifier performance. The results tend to confirm the theory
with regard to training sample size vs. classifier complexity.
They also show the two algorithms to be moderately useful in
improving classifier performance when training data is
limited.

INTRODUCTION
It is well known from both theory and practice that classes

of land surface cover are usually not adequately represented
by a single spectral curve. Materials of practical interest, such
as agricultural crops, forest plantations, natural vegetation,
soils, minerals, and objects of interest in urban areas, exist in
a number of states and are observed in a number of conditions
of illumination. It is thus necessary to characterize them not
with a single average or typical spectral response, but with a
family of responses. Indeed, the characteristics of this family
of responses, i.e. how the spectral responses vary about their
average value, may be just as diagnostic of the material as
that of their average value.

Quantitatively, this fact is apparent from the Bhattacharyya
distance, one of the primary quantitative measures of the
separation between two classes. Bhattacharyya distance in
parametric form is given by

B =
1
8

µ1 − µ2[ ]T Σ1 + Σ2
2

 
  

 
  
−1

µ1 − µ2[ ] +
1
2

Ln

1
2

Σ1+ Σ2[ ]
Σ1 Σ2

where µi is the mean vector of class i and Σi is the covariance
matrix of the class. It is seen that the first term on the right
quantifies that portion of the distance between the two classes
due primarily to the difference in mean or average values.
The last term on the right, quantifies the component of
separation due to the covariance, or how the class varies
about its mean. In any given case, either of these two terms
can dominate.

By extension of this concept, it might seem desirable to
quantify higher order statistics of the class than just these
two, referred to as first and second order statistics. Indeed, it
is well established that, in theory, a complete description of
an arbitrary distribution can be made by the use of statistics
of all orders, as in an infinite series. The reason it is
customary to use only the first two orders of statistics, the
mean vector and the covariance matrix, arises from the
practical problem of estimating these two statistics from the
data set to be analyzed. There will necessarily be only a finite
number of labeled samples available for each class by which
to estimate the statistics of the class. Frequently the number
available is not only finite but also small, since the labeling of
such samples is one of the most onerous and time-consuming
aspects of designing a classifier. Further, due to the highly
variable and dynamic nature of Earth surface cover, this
labeling must be redone for every data set to be analyzed.
Indeed, there often is not much information available about
the scene to use in labeling the design samples. Thus, since
higher order statistics require increasingly larger numbers of
samples to arrive at an adequately precise estimate, it would
ordinarily not be practical to use statistics beyond the second
order.

The problem of adequacy of the number of design samples
becomes even more important as the number of the spectral
bands becomes large, since clearly it requires more samples
to obtain reasonably precise estimates of high dimensional
statistics. Indeed, this results in the fact that, if design data are
very limited in the case of hyperspectral data, a simpler
classification algorithm which does not make use of second
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order statistics can on occasion provide more accurate results
than a more complete one.

This strong, often dominate dependence on the size of the
design set has led over the last few years to seeking
algorithms which mitigate this dependence as much as
possible. Thus in the following we describe a test on this
dependence, varying both the design set size and the classifier
complexity. It is also of interest to see how robust the
algorithms are in the face of various users.

A PERFORMANCE TEST
OF ALGORITHMS AND CLASSIFIERS

The data used for the test is a 12 band data set over an
agricultural area consisting of 949 scan lines and 220 samples
per line. There were 12 analysis teams, each instructed to
design a classifier for the following classes: corn, oats,
soybeans, wheat, and forage/hay. Though there was extensive
ground truth available for the area, the analysts, who were all
analyzing multispectral data for the first time, were limited to
using about 1000 total design samples, regardless of the
number of subclasses they chose to define.

The classification algorithms to be used are the
§ Minimum Distance classifier, which uses only the

individual class mean vectors, the
§ Fisher Linear Discriminant, which uses the individual

class mean vectors plus a covariance matrix common
to all classes, the

§ Quadratic Classifier, which uses individual class
mean vectors and individual class covariance matrices,
and

§ ECHO1,2, which, in addition to class mean and
covariance matrices, uses spatial information.

In addition to the classification algorithms, two algorithms
that tend to mitigate the limited design set size problem were
used. These were the LOOC covariance estimator3 and a
Statistic Enhancement4 scheme. The LOOC estimator
examines the sample covariance estimates, the common
covariance estimate, as well as their diagonal forms, and their
mixtures to determine which would be most effective.
Though a covariance matrix estimate would ordinarily be
singular if fewer than n+1 samples are used, where n is the
number of spectral bands, LOOC provides a usable
covariance estimate with as few as 3 samples, regardless of
the number of bands. The Statistics Enhancement scheme
uses a sampling of unlabeled samples in addition to the
labeled design samples to mitigate the limited design set
problem as well as improving the classifier's ability to
generalize over the entire data set.

The procedure used by each analyst team was to define an
appropriate set of classes including any subclasses they felt
necessary, but using a total of 1000 samples or less. This will
be called the Baseline Training set. Then define a new

training set by selecting a single pixel from each training field
used for the baseline set. Next enlarge that set to a 2x2, a 4x4,
and an 8x8 pixel area in each Baseline Training field.
Classify the data with each algorithm and determine the
accuracy based upon a specific test set of 70,588 pixels
(about one third of the total pixels in the flightline) provided
to each analyst. Next, re-compute the training statistics using
the LOOC algorithm for each training set and classify with
each algorithm again. Finally, apply the Statistics
Enhancement algorithm and again classify with each
algorithm. The results are presented in the table below. The
table gives the average and standard deviation of the test
sample performance over the 12 analysts.

Baseline Results. The baseline results for all three
methods of training show a steadily increasing accuracy with
increasing classifier complexity as one might expect with a
reasonably adequate sized training set. The baseline results
also show a steadily declining standard deviation with
classifier complexity, indicating a desirable degree of
robustness relative to analyst variability. It is seen that, for the
MD classifier, LOOC provides no change in accuracy over
the standard means for estimating class statistics, as should be
the case since the effect of LOOC is only on the class
covariance, which the MD classifier does not use.

Dropping down to the 1 pixel/field case, one sees that a
significant price is paid for attempting to use the small design
set. Note also that, for the standard training case, the price is
the greatest for the more complex classification algorithms.
Indeed, there is no loss in accuracy at all for the MD
classifier, indicating that the problem is with the precision of
the estimate of the class covariance matrices. The LOOC
procedure provides substantial improvement in this case, and
the use of the Statistics Enhancement procedure provides
some additional improvement.

As the size of the training set is enlarged, the results
generally tend to improve, as seen by moving down the table
from the 1 pixel/field case. There tends to also be
improvement moving to the right, meaning using more
complete (or complex) algorithms. The accuracy
improvement with training set size is small for the MD
classifier, indicating the estimation precision of the mean
vector is not much of a factor in this case. The improvement
is more significant for those algorithms utilizing second order
statistics.

Generally the best performance occurs in the case of
ECHO, which incorporates spatial information in addition to
first and second order statistics. The LOOC procedure also
continues to be of some value although the marginal value of
it decreases as the accuracy approaches its maximum.
However, it may be seen as adding a robustness to the process
in the following sense. In a practical circumstance, the analyst
usually has no way of knowing "how many training samples
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are enough," and indeed, the number that can be labeled may
well be determined by other factors. LOOC tends to mitigate
the cost of having too small a number, tending to keep
performance nearer to the maximum possible.

The Statistics Enhancement scheme tends to have the
same effect, though it is less apparent from this table.
Statistics Enhancement acts to improve the generalization
abilities of the classifier by adjusting both the mean vector
and the covariance matrix so that the composite of class
statistics better fit the entire data set rather than just the subset
of training data.

And finally, the standard deviation of the various schemes
might be interpreted as quantifying just how much variation
in results can be expected due to the analyst him/herself. Low
values of standard deviation would suggest that a procedure is
relatively immune to variations in the technique used by the
analyst to quantitatively define the classes that are desired by
the user.

Classifier→
Training

Minimum
Distance

Fisher Lin.
Discrim

Quadratic
Max Likeli

ECHO

Baseline 100-200 pixels/class
Std. Ave 75.1% 86.9% 91.4% 92.8%
St. Dev. 9.1% 4.0% 1.9% 1.8%

LOOC Ave 75.1% 87.0% 92.0% 93.9%
St. Dev. 9.1% 4.0% 2.3% 2.3%

LOOC-Enh.Ave 74.4% 86.9% 91.5% 94.6%
St. Dev. 7.6% 2.9% 2.5% 2.3%

1 Pixel/field 1-4 pixels/class
Std. Ave 75.4% 69.8% 76.4% 78.9%
St. Dev. 7.7% 13.2% * *

LOOC Ave 75.6% 81.9% 79.9% 84.0%
St. Dev. 8.0% 6.1% 6.1% 8.5%

LOOC-Enh.Ave 69.3% 81.7% 83.6% 87.2%
St. Dev. 10.9% 4.5% 5.5% 6.1%

4 Pixel/field 4-16 pixels/class
Std. Ave 71.7% 83.6% 75.9% 76.0%
St. Dev. 18.0% 7.7% 6.6% 6.4%

LOOC Ave 71.6% 84.2% 84.0% 85.6%
St. Dev. 18.0% 7.8% 7.7% 7.3%

LOOC-Enh.Ave 73.5% 83.1% 86.3% 88.0%
St. Dev. 8.8% 9.0% 8.8% 10.1%

16 Pixel/field 16-64 pixels/class
Std. Ave 75.7% 87.2% 88.6% 89.7%
St. Dev. 8.6% 3.5% 4.2% 4.7%

LOOC Ave 75.7% 87.2% 91.7% 93.6%
St. Dev. 8.6% 3.8% 2.2% 2.4%

LOOC-Enh.Ave 73.3% 85.8% 91.0% 94.2%
St. Dev. 7.2% 4.2% 2.6% 2.1%

64 Pixel/field 64-256 pixels/class
Std. Ave 76.5% 88.3% 92.8% 94.6%
St. Dev. 7.7% 3.2% 1.1% 1.0%

LOOC Ave 76.5% 88.3% 93.1% 95.0%
St. Dev. 7.7% 3.2% 1.0% 0.9%

LOOC-Enh.Ave 72.7% 84.9% 90.2% 93.2%
St. Dev. 6.4% 4.7% 4.5% 5.3%

All of the calculations by the 12 analyst teams were done
using MultiSpec, a software system for Macintosh and
Windows desktop computers. MultiSpec is available to
anyone without cost at

 http://dynamo.ecn.purdue.edu/~biehl/MultiSpec/.

The data set used in these tests is available at that site as well,
as a part of an example labeled "Multispectral Data Analysis:
A Moderate Dimension Example." Documentation for this
example contains the ground truth information needed to
define training sets and test the results, so that it is possible
for anyone to repeat the classifications reported above. It is
noted that these data have not been calibrated or adjusted for
the atmosphere or any other observational variable, and none
is required. It is likely that no improvement in results would
accrue by doing so. The intention is to design and put forth
analysis procedures that are not complex and are inexpensive
to use.

The overall objective of this line of research is to advance
the data analysis technology for multispectral and
hyperspectral data to the point that the user can give primary
attention to the use of results that remote sensing can provide,
rather than necessarily focusing on the technique needed to
produce them. As the field matures and more complex data
becomes more available, it must not be necessary for one to
be thoroughly grounded in the fundamentals of signal
processing engineering to obtain the best results possible, any
more than it is necessary to understand all of the intricacies of
the internal combustion engine in order to drive a car.
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