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AN INVESTIGATION OF ANALYSIS TECHNIQUES OF
LANDSAT MSS DATA DESIGNED TO AID THE SOIL SURVEY

ABSTRACT

In the 1930's initial use of aerial photography did much to improve
the accuracy and speed of the soil survey effort. Since the 1940's labora-
tory and field research has provided significant information concerning
the interrelationships of soil spectral reflectance characteristics and
soil properties. Technological advances during this period contributed to
the ability to use computer-implemented analysis of spectral data obtained
from multispectral scanners.

With the launch of the Landsat earth resource satellites, investiga-
tions have determined analysis of scanner data to delineate organic matter
differences, textures and drainage characteristics. A spectral classifica-
tion of Jasper County, Indiana, was accomplished by computer-aided analysis
of Landsat data which provided a basis for this research.

Four Landsat data point selection schemes were investigated to deter-
mine the best classification representation of the soils within the county.
Of the four classifications, those considering parent material boundaries
proved to be the most representative. Within these classifications drainage
characteristics, soil erosion, and textures could easily be identified by
spectral definitions.

A county spectral map depicting soil classes was the first of its kind,
and may prove to be valuable in reducing man hours involved in conducting a
county soil survey program. The classification will be printed in field
sheet size printouts and accompany the aerial photograph in the soil mapping
investigation. Delineation of soil drainage within parent material areas
indicated the soil series present within a given area and provided informa-
tion about areas not easily accessible or covered with dense crop vegetation.
The use of these analysis techniques may contribute to decreasing the time
and expense of a county soil survey.




INTRODUCTION

For decades soil surveys have been conducted by field investigation
of soils with the aid, in recent years, of aerial photographs. Although
aerial photography improved the accuracy of the survey, there was difficulty
in measuring that accuracy because of subjectivity. A more objective and
quantifiable approach to soil studies would benefit the county soil survey.

The first priority of the soil survey is delineation of soil boundaries
into as uniform or pure groupings as possible; but as the size of average
map units decreases, the cost of surveying increases (9). The surveyor is
then left with the need to maximize soil map unit homogeneity and minimize
the area physically covered. The problem is especially true in Indiana
where an order two survey is conducted with map units of .7 to 4.5 ha de-
lineated. Within these map units are inclusions that on first mapping are
overlooked or because of time and expense are generally ignored. It has
been reported that an economically feasible level of mapping leaves 30% to
40% soil inclusions within map units that is much higher than the 15% nor-
mally accepted (33).

If Landsat or some type of remotely sensed data could augment the
existing use of aerial photography and field investigations, a more accu-
rate, quantifiable and less expensive survey may result. Preliminary to
this study, Landsat data analysis has yielded fruitful results in quanti-
fication, extension and location of soil map units as well as identifica-
tion of such soil parameters as drainage characteristics, organic matter
differences, textural differences and differing cultural practices (22,23,
42,43). Image interpretation of Landsat data has also aided in compilation
of soil association maps and parent material boundaries (51). More recent
studies involving Landsat digital data in association with ancillary data
in the form of topographic boundaries have shown increased interpretive
capabilities (49).

This study was initiated to investigate analysis techniques used for
developing spectral soil information for a county soil survey. A hypothe-
sized step process that employs Landsat imagery and digital analysis was
purported to augment the conventional soil survey method. A methodology
is proposed to blend conventional investigations and remotely sensed data
analysis to obtain a more efficient method of conducting a soil survey.

Sampling techniques of Landsat data points were investigated to deter-
mine the satisfactory means of selecting points to be used in establishing
distributions from which statistical probabilities would be calculated and
spectral responses representative of in situ soils be classified. Parent
material boundaries were identified to determine if the addition of ancil-
lary data would provide a more accurate spectral classification. Finally,
research within Jasper County was initiated for definition of the extent
to which soil taxa could be interpreted through spectral evaluation.

It is the intent of this work not only to support and build on pre-
vious successful research but also to develop a methodology that could be
readily used in a soil surveying process.




LITERATURE REVIEW

One of the earliest attempts at remote sensing was advocated by Arago,
Director of the Paris Observatory, who encouraged the use of photography
for topographic identification in 1840. Remotely sensed data are acquired
from the earth's surface by measuring instruments not in contact with that
surface; therefore, Arago was recommending remote sensing in the form of
chemically processed photographic images. Practical application of Arago's
idea was not feasible until a navigable platform was available, which came
several years later in the form of the airplane. Aerial photography became
not only a feasible but more accurate method of broad scale surveying (34).

Remotely sensed data, in the form of black and white aerial photography,
were first employed as a base map for the soil survey in Jennings County,
Indiana in 1929 (11). The poor accuracy and time involved in the use of
plane tables to draw base and soil maps prompted surveyors to turn quickly
to the aerial photograph for base maps. By 1938 most U.S. surveys were
conducted with the black and white photograph as a base map (39). This
advancement led to the present day capability of mapping approximately 20
million hectares annually at a cost of one billion dollars (16).

Military investigations of the 1930's produced color, color infrared,
and false color photographic products for characterizing landscape scenes.
It seemed that false color, using colors different than the actual scene,
tended to enhance differences in scene objects (30). Civilian research in
these areas did not begin until after World War II when investigators began
adding to this military research by comparing information between black and
white photos and other photographic products. From this work it was reported
that soil boundaries could be more accurately differentiated on color than
. from black and white photography (14). Comparison of color, color infrared
and black and white photography in distinguishing such parameters as soil
series, land types, drainage and organic matter showed no statistically
significant differences although color and color infrared were slightly
more contrasting than black and white (29). Overall research at this time
indicated that there was potential in using various products (12). Even
though much research had been conducted with regard to photographic tech-
niques, the aerial black and white panchromatic photograph remained the
major soil mapping aid largely due to prohibitive costs of other products.

Success at discerning scene objects with aerial photography prompted
analysts to investigate more sophisticated remote sensing techniques in-
volving digitized photography, optical-mechanical scanners, and multi-
images. Both multiband and multi-emulsion photography were used in initial
attempts to further the applications of remote sensing. Quantization of the
tonal variations of the three emulsion layers in color photography was accom-
plished by measurement of film densities in the three layers. Multiband
images in which various filters were used in repeatedly photographing the
same scene were also used to obtain unique wavelengths of data. These
methods were analyzed by taking measurements with a scanning microdensi-
tometer that measured adjacent lines in a sequence over the entire photo-
graph. Multiband photographs were scanned as unique spectral bands that
could later be analyzed as an entire set of spectral imagery (3,20).




Microdensitometer scans revealed crop spectral response to be a combi-
nation of vegetative cover and soil background reflectance. In general,
soils were characterized by a high spectral response in the thermal infrared,
a rather low response in the reflective infrared, and a varied response in
the visible portions of the spectrum. As knowledge about the various infor-
mation available across the spectrum unfolded, it was decided that scene
1dent1fzcation was much easier where combinations of spectral wavelengths
were taken.

Digitization of photography collected every two weeks at 18,000 meters
(resoTution ~ 1 meter) was used in a southern corn blight survey (5). When
compared to conventional photo interpretive methods, greater accuracy was
obtained from the digitized photography but not significantly so. Tonal
variations caused by vignetting and inaccuracies in density analysis caused
researchers to investigate remote sensing in forms other than chemical pho-
tography. Thirteen spectral band multispectral scanner data proved to be
the best of the three methods although all bands were not needed to provide
an accurate classification. The best three spectral channels generally gave
better results than any two channels and in most cases four channels.

Computer technological capabilities developed in the 1960's enabled
analysts to overlay optical-mechanical multi-aperture images. These 12 or
13 channel scanners were former military instruments that collected data
through two apertures. Overlaying these data provided a more accurate inter-
pretation of earth surface features than was previously afforded. By 1965
the 12-channel scanner was improved by devising a single aperture scanner
capable of collecting data from .32 - 13.5 um with internal calibration.
Reflectance measurements were recorded in analog form on magnetic tape. Al-
though the capabilities devised for overlaying multiple aperture images were
no longer necessary, these same methods could also be used to overlay and
analyze multidate and multi-image data.

In the late 1960's numerical statistical analysis was facilitated by
computer techniques to apply 12-channel scanner data to soil investigations.
Alfisols and Mollisols were found to be spectrally separable and highly
correlated to field data despite shadowing and decreased reflectances of
surface soils resulting from cultural practices (43). Organic matter was
shown to have high correlation to spectral refiectance (20). No single
array of spectral channels was found to do the most accurate identification
of organic matter, but selection and number of channels did affect accuracy.

Other soil parameters such as texture, color, moisture relationships
and soil type were distinguishable using numerical analysis of aircraft
scanner data (7,26). Gross variations in soil features could be quickly
accomplished, but extension of statistical data from one area to another
did not produce accurate results (23). Some of the difficulty was due to
soil variability in the subsurface or underlying horizon of the soil. Since
soil series are identified by surface and subsurface properties, it was
thought that mapping soil series was not feasible.

While investigations of multispectral scanner data acquired from air-
craft platforms were being conducted, the interrelationships between the
spectral responses of soils and their physical and chemical properties were




being studied utilizing laboratory instrumentation. Results indicated such
parameters as moisture, grain size, clays, and soil types could be identi-
fied with dependable accuracy (35,48). Soil particle types were identified
by the relationship to their size; it was found that the larger the particle
size the lower the reflectance or the less reflected light (6).

These parameters were investigated across the spectrum with instruments
such as spectrophotometers that sensed ultraviolet (.25-.39 um), visible
(.39-.76 um), and infrared (.76-5.0 um). Of these wavelengths the infrared
proved optimal in recognizing minerals of carbonates, sulfates, and sili-
cates (21). Specifically related soil parameters were measured using a
spectroradiometer which was reported to have found high correlations to
spectral response with moisture, silt, clay, iron and organic matter (8).
Moisture and clay content contributed to overall soil reflectance while
silt correlated with reflectance in the .8-2.5 um range (6,26).

The ability to specify these properties led to speculation about the
optimal range that should beused in soil investigation. The .8-14 uym range
was suggested because it contained the fundamental Si-0 vibration. The red
portion (.6-.7 um) was also advocated because it contained the range which
was reported to show a peak in the soil spectra (26). Much discussion arose
at this time about recommendations for the type and range of sensors that
should be carried on future earth resource satellites.

Varying molecular and macromolecular composition provides the ability
to differentiate minerals and soils spectrally. Under controlled environ-
mental conditions 1like those present in laboratory analysis, unique spectral
responses of varying objects enabled analysts to identify soils, rock types
or minerals.

Discrepancies in spectral responses of laboratory and environmental
measurements occurred due to differences in atmospheric conditions. Within
the electromagnetic spectrum energy moving at a constant velocity is mea-
sured. Spectra are classified according to wavelength of radiance and fre-
quency of wavelength (12). When radiance travels through a heterogeneous
medium, interference and scattering of that straight path of radiance occur.

Atmospheric interference with spectral response is twofold in that
solar energy traveling through the atmosphere encounters ozone and oxygen
absorption. Emitted radiance must travel back through the same disruptions
it encountered upon entering the earth's atmosphere. In reality it becomes
virtually impossible to obtain a constant or unchanging spectral response
from an object in the environment. Presence of water adds further confusion
by interrupting radiation throughout the entire spectrum. Specifically,
water absorbs light in the infrared, scatters in the visible and scatters
in the ultraviolet. Reflectance from an object in the natural environment
is not only affected by the interfering atmosphere but also by distance from
the target and sun intensity. In addition 0 and CO2 reduce incoming radia-
tion. Not only outside forces but also variations within the object affect
the spectral response (17). By statistically evaluating spectral data com-
parison of unique spectral responses could aid in accounting for atmospheric
and scanner variability.




The onset of the space programs provided a synoptic view of earth
surface features that was not available with aircraft data. Multiband and
multi-emulsion imagery were first taken from the Apollo spacecraft as it
passed over Imperial Valley, California. Digitized and computer-analyzed,
the photography discriminated soil textures such as separations of clays
and loams (2).

The launching of Landsat-1 (ERTS) satellite in July 1972 provided the
first orbiter specifically designed to monitor earth resources. An array
of six detectors per spectral band (24 detectors per 4 channels) simulta-
neously sensed radiation from .5 to 1.1 um over a 185 km swath. Detector
output was encoded to six bits per second. The continuous data gathering
was processed in frames of data representative of 33,000 km“. Representa-
tive of .45 hectares, each pixel was a rectangular resolution element. Each
Landsat frame contained approximately 7.5 million of these pixel elements
per spectral wavelength band or 30 million unique responses across the entire
frame. Before telemetering to receiving stations in Brazil, Canada, Italy
and the USA, data are digitized on board the satellite. This information
is then made available through EROS Data Center, Sioux Falls, South Dakota.
Two formats can be acquired from the Center, i.e., imagery (color composite
or black and white single band) and computer compatible tapes from which
photographic products and/or computer analysis can be accomplished. MSS
data can then be analyzed numerically or analyzed by conventional photo-
graphic interpretations.

Advantages of Landsat over previous data gathering techniques are as
follows:

1) The scanner, in a near polar orbit, provides sun synchronous
data collected at mid-morning to eliminate shadowing effects;

2) Since the Landsat satellite orbits the earth every 18 days
and completes an earth orbit every 103 minutes, it is feasible
to inventory earth features repeatedly;

3) A synoptic view of the earth's surface is provided.

Delineating soil associations, land use changes, slope and drainage
patterns was possible through the synoptic view of Landsat (51). Simulated
spacecraft imagery analyzed before the launch suggested that accurate defi-
nition of soil associations would be possible in grassland areas or areas
with slight tree cover (36). Preliminary investigations such as these
hypothesized MSS data could be used to map soil at the family level of the
taxonomic classification. Detailed soil surveys appeared to be unattain-
able from space altitudes because of inadequate resolution and primitive
interpretive techniques (47).

Information gleaned from the scanner revealed much more information
than was hypothesized. Sensing portions of spectra other than visible pro-
vided an analysis tool that was previously not available on large scale
mapping. Identification of water, soil and vegetation was possible by
comparing responses across four spectral bands. Vegetation, for example,
displays a lTow response in channel 2 (.6-.7 um) due to absorption of 1ight




by chlorophyl and is highly responsive in channel 3 (.7-.8 um) because of
the reflective properties of mesophyl located in plant tissue. Whereas
vegetation varies across the spectrum, soil responds rather evenly across
the four data acquisition channels and water is distinguished by high
response in the visible channels (.5-.6 um, .6-.7 um) and lTow responses

in near infrared (.7-.8 um, .8-1.1 um). These general curves can be used
for class identification in scene analysis. The quality and intensity of
response change with soil, topography, season and chemistry and physiology
of green vegetation. Soil parameters and vegetative response can be iden-
tified within a given scan by comparing response, but correlation to dif-
ferent scenes is not possible because of scanner calibration, atmospheric
conditions, and changes in environment.

Using only visual image interpretation of simulated infrared and indi-
vidual black and white band imagery, soil association maps of single counties
and entire states have been created (24,41). For example, a South Dakota
soil association map was produced in approximately five weeks at a cost of
$.02/ha (51).

Broad scale inventories in international research have provided infor-
mation for specific country problems. For example, research in India has
found that salt affected soils along the Ganges River Plain can success-
fully be separated from nonaffected soils (37). A land use inventory pro-
duced favorable results in the Bangkok area (40). Resource mapping was also
accomplished in Poland using data analysis techniques (10). Landsat data
have met the needs of many developing countries which have little informa-
tion or technical means of conducting a broad scale mapping of their country.

Work at the Laboratory for Applications of Remote Sensing specifically
related to soils of the United States was stimulated by the discovery of a
narrow strip of prairie soils running east and west for approximately 64 km
in a predominantly Alfisol (timber) area across north central Indiana. This
strip of Mollic soils is believed to have formed in heavy textured, poorly
drained glacial debris which filled a preglacial tributary of the Teays
River system. Spectral analysis of the Mollisols within the strip and sur-
rounding areas showed the soils to have a unique reflectance when compared
to the predominantly timber soils (31).

An in-depth study of spectral responses in Clinton County, Indiana,
found drainage characteristics to be readily identified through Landsat anal-
ysis. Identifying drainage characteristics made it possible to associate
previously investigated soil map units with spectral data which could then
be quantified (due to constant resolution element size). Inclusions and
location of various soils within a map unit could also be noted which could
aid in map unit evaluation and verification of the need for soil complexes
to be established (22). Prior to this time conventional soil maps were
generally used for checking the accuracy of Landsat classifications. This
research revealed the reason for previous discrepancies was due to the quan-
titative nature of the satellite resolution element and the subjective nature
of conventional mapping techniques.

Considering the previous work with MSS data it was apparent that satel-
lite data alone could not provide an adequate tool for land surveying. Since
Landsat MSS data portray only surficial reflectance properties, widely vary-
ing soils with respect to horizonation and parent material may exhibit the




same spectral properties. Ancillary data in the form of physiographic
boundaries provided added information which contributed to an enhanced eval-
uation of the county and allowed for correlation of general soil series and
spectral soil classes (48).

Previous investigations in spectral properties of soils have provided
a basis from which to do further research. Many soil parameters have been
identified through previous research techniques, but more advanced capa-
bilities in the past few years have provided techniques that may add in
further characterization of these parameters.

METHODS AND MATERIALS

County soil surveys, in general, follow a stepwise plan for surveying
that begins at the decision to map within a county which leads to the final
published soil survey. A hypothesized methodology is proposed that would
augment the soil survey by introducing remotely sensed data that would aid
in increasing performance and shortening duration of a survey. Figure 1
lists the conventional approach while Figure 2 is representative of a meth-
odology that is hypothesized to augment the traditional soil survey.

Selection of Data for Investigation

County

Jasper County, located in the nortwest corner of Indiana was chosen to
investigate a methodology for using Landsat multispectral scanner data in
relation to soil survey procedures. The county is to initiate a soil survey
in the near future which made it a viable candidate for research, and close
proximity to Purdue made Jasper County readily accessible for repeated field
observations relating to compilation of an ancillary data base and evaluative
and correlative examinations.

Remotely Sensed Data

The remotely sensed data were of two forms, i.e., aerial photography
and Landsat data. May 1976 aerial coverage of Jasper County, Indiana was
taken at an altitude of 2000 m creating an approximate map scale of 1:15840.
The Landsat digital data were obtained in the form of a computer compatible
tape from EROS Data Center, Sioux Falls, South Dakota. The Landsat data
were collected June 9, 1973 at 10:00 a.m. at an altitude of 1,087,300 meters.
These data were relatively free of vegetative canopy, snow cover, interfering
clouds and fog, and scanner distortions.

Specifically, scanner distortion may cause striping if detectors and
associated electronics are not correctly calibrated or if any detectors are
malfunctioning. If one or more of the six detectors per band are malfunc-
tioning, striping occurs in increments of six lines. Single bad data lines
can be caused by satellite tilt or malfunction of equipment.
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1)

2)

3)

4)

5)

6)

7)

8)

Selection of data for investigation
A. County
B. Remotely sensed data

Data preparation

A. Base map

B. Geometric registration and rectification of remotely
sensed data

Imagery analysis

A. Histogramming remotely sensed data

B. Assignmment of colors to density slices and compilation
of map image

Stratification of county
A. Geological history
B. Stratification of parent material

Digital analysis of remotely sensed data
A. Data sampling and analysis techniques
B. Spectral classification

Evaluation
A. TField observation

B. Correlation to soil map units at randomly selected sites

Refinement of classification

Creation of map products

A. County map

B. Detailed soils map

C. Parent materials map

D. Vegetation map

E. Erosion map

F. Drainage map

G. General soils map

H. Non-agricultural interpretations
I. Variable scales

Figure 2. Proposed county analysis procedures.
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1

Data Analysis

Base Map

A base map consisting of a block of 85 black and white panchromatic
aerial photographs was used in the registration of the Jasper County Landsat
data. Known north-south roads were located on aerial photographs and used
to parallel a y coordinate axis. A three-parameter Tinear transformation
was used to block the photos to a common coordinate system which took the
form: '

x1 cosfsind X Ax

y''| | -sin6cosé y Ay

where x!,y! are transformed coordinates;
6 is the rotation angle between the coordinate system;
X,y are the coordinates to be transformed; and
Ax,Ay is a linear shift in transformed coordinate space.

Halftone acetate positives were created from the photographs. The re-
sulting transparencies were rectified and trimmed to field sheet size. Rec-
tifying corrected for tilt, vertical aspect, which improved scale variations
and crabbing (rotation). Crabbing and scale variation are caused by changes
in altitude, mechanical distortions (photographic films and lenses), and
rotation of the plane while in flight. The halftone acetate positives were
used for comparing field soil patterns with the spectral classification of
soils. :

Geometric Registration and Rectification

The blocked set of aerial photographs was used as a base in the geometric
registration and rectification of the Landsat data. Corresponding points
between the two images (Landsat and photo block) were Tocated by either dis-
playing the Landsat image on a CRT screen or by cluster analysis of the digi-
tal data (described later). Groups of approximately 100 data points were
clustered and specific points within the clustered areas were located on the
aerial photos. A twelve parameter equation transformed the coordinates
between the images by:

Ax,y + AX;y = Bx,y
where A is the reference image;
B is the overlaid image; and
A is the transformation function.

The biquadratic function, A, is of the form:
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AX = ag + a;x + azy + asx® + a,y? + agxy
Ay = by + byx + b,x + b,y + b,x> + b,y2 + b.xy

A least squares approach was used to solve the coefficients,

=1
o= ( pr) pTGx

T .-
B=(p'p)'plex
where

o and B are 6 x 1 coefficient vectors for Ax and Ay

p is the matrix pij of powers X; and y.

For each checkpoint pij x%y} where i is the number of the checkpoint
i=1; k =0,1,0,2,0,1; 1 = 0,0,1,0,2,1; for j=1,2,3,4,5,6, respectively.

0xs 8y = N x 1 column vector A and B coordinates

i

Compatible scales between the base map and the Landsat data were accom-
plished by expanding the Landsat data to a scale of 1:15840, the mapping
scale for Jasper County. When a scale is expanded, holes or blanks appear
in the data because there are not sufficient data values to show a one to
one correspondence with, for example, the aerial photographs. The data
values, in other words, are not of sufficient number to cover the entire
area represented. Extra data points must then be created to fill the data

gaps.

Expanding or rescaling of data can generally be achieved by one of
three methods. Simply duplicating data Tines to fit a new scale is inex-
pensive yet inadequate if numerical analysis will be attempted. The dupli-
cated pixels are weighted which result in overemphasizing some data point
distributions. Previous registration in Clinton County, Indiana, for example,
was done by simply duplicating 1ines and columns which resulted in large
unacceptable groupings of like data points.

A bilinear or nearest neighbor interpolation duplicates points nearest
a desired sample location (1). Although data values are not altered by
this approach, statistical distributions are again weighted by duplication
of points. These map products are blocky in appearance because of the dupli-
cated points. Map errors at scales of 1:24,000 were approximately plus or
minus 16 meters of tolerance.

For this registration a cubic convolution resampling algorithm was used
to rescale the Landsat image to 1:15340. Intermediate data values were
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calculated using a Lagragian third order equation that used a 4 x 4 matrix
or 16 spectral points. On the curve of this equation intermediate data
values were plotted and used in expanding the scale. This method had the
effect of smoothing the image which could contribute to a somewhat less
accurate classification but provide a higher quality map image for soil
mapping. Classes that are very close spectrally could lose their dis-
tinctness because of these calculated intermediate values.

Errors are evident in all the scale expanding methods so one must
choose the parameters that should not be sacrificed. However, the problem
of rescaling data has now been eliminated through the use of an electro-
static magnetic dot matrix plotter. This plotter provides a means of
adjusting pixel size elements on a variable matrix scale adjustment. A
girded matrix containing various black and white designators can be com-
piled to print various textural or grey scale patterns. Instead of cor-
recting data prior to classification, statistical analysis of original
Landsat data can now be done. The finished classification can then be
printed at any number of scale values.

Imagery Analysis

Creating a False Color Image

The false color composite image of three channels (.5-.6, .6-.7, and
.8-1.1 um) was categorized by spectral response into 32 prespecified levels
of data (Figure 3). The data were assigned levels by a histogramming algo-
rithm that creates a 100 bin histogram for data from each specified channel.
Each bin has an equal width based on the entire range and distribution of
data. An initial bin size and lower limit are first assumed. A bin number
is calculated as

data value - histogram lower limit
bin size

bin number =

A bin number falling in the range 1-100 is placed in the bin; otherwise the
bin is adjusted to fit the new data range while keeping the individual bin
size constant (32).

Compilation of Color Map Image
Three channels were combined to create a color composite map, generally
referred to as a false color image, at a scale of 1:180,000. This image was

generated to aid in stratification of the county spectra. Enlarging the
image to 1:120,000 enabled the user to delineate or interpret finer detail.

Stratification of the County

Geologic History

The_geo]ogy of Jasper County is quite complex. Underlying the county
are tertiary and quarternary bedrock valleys formed primarily by water




Figure 3.

False color image of Jasper County, Indiana.
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erosion. These valleys, initially filled by quarternary debris, were later
covered by the early Kansan and I11inoian glacial deposits. .

Evidence of much earlier geologic phenomena occurs to the west where
coral reef domes reach within one to two meters of the surface. The reefs
are thought to be a product of the Silurean or Devonian ages and are a good
source of limestone. Material that accumulated to the side of the domes,
most likely water deposited, is generally not of good quality which is why
the smaller domes have been largely left untouched by 1imestone excavation.

Glacial deposits that covered all of Jasper County from the Kansan and
I11inoian were obliterated by a coalesced ice sheet from the Lake Michigan
and Erie glaciers of the early Wisconsin age. A thin ice extending from
the Saginaw northeastern lobe covered the previous glacial activity and
appears to have truncated the Marseilles moraine in the eastern portions of
the county resulting in belts of kettles and intervening dunes covered by
submorainic rises. Characterized by the thin ice sheet the Saginaw lobe
covered low lying areas, but largely left higher elevations untouched.
Present surficial deposits in the lower areas are credited to this glacier.
The retreating glacier also left melt water laden with silts and clays which,
when the water eventually subsided, left:these lacustrine deposits.

Outwash sands were blown into parabolic and longitudinal dunes across
the northern part of the county. Located under these dunes are peat areas
that suggest vegetation once grew in ice block depressions left by the gla-
ciers before being covered by (aeolean) sands. Vegetation establishing itself
on the dunes gradually caused them to stabilize. After glacial activity sub-
sided, geologic changes within the county have been in the form of driftin
outwash sands and the accumulation of peat and marl in low lying areas (38?.

This complex geology was considered in the compilation of a parent
materials map of Jasper County. With the aid of Landsat data the area was
investigated and parent material boundaries were delineated.

Stratification of Parent Materials

Training statistics are created by sampling data points and calculating
a mean and covariance matrix for each unique spectral range. This set of
means and covariances was used to "train" a classifier by providing a data
base for calculating probabilities of remaining data points belonging to
certain distributions.

Prior work in Indiana revealed uniqueness of spectral classes to be
lost as training statistics were combined over a large area such as a county.
As spectral classes were combined, distributions became larger and closer
together. To avoid this problem, in Jasper County, a parent material map
was created so that training statistics could be generated and used in spe-
cific parent materials, thus eliminating the need to extend training sta-
tistics over broad areas. Parent material delineations also provided a
means of separating spectrally similar but genetically different soil classes
within Jasper County.
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The false color image, county and township road maps and knowledge of
the geological history of the area were used to create the parent materials
map of Jasper County. Initially, spectral stratification was noted on the
map image and investigated through field observations. A soil auger was
used to probe the horizon to determine underlying parent materials and
characterize the profile. The location of calcareous till was determined
by application of acid, and Munsell color charts were used to identify
color boundaries for Alfisols, Mollisols and drainage characteristics. Tex-
tural boundaries were made and refined as the investigation progressed.

The completed parent materials map was transferred to a Jasper County
map at a scale of 1:126,720. An electronic plane table digitizer was used
to record the mechanical movement across the boundaries of parent materials
on the Jasper County map. Signals from the mechanical movements were re-
Tayed through a computer hardware system that in turn punched cards with
coordinate points corresponding to the boundaries. Utilizing a special
software system the punched boundary coordinates were written on a separate
computer magnetic tape, and these superimposed boundaries were added as a
channel of information along with the Landsat precision registered data.

By assigning unique values to spectral data in a parent material and record-
ing that data in a channel, that information could be used to discriminate
statistical distributions created in each parent material. For classifica-
tion four channels of Landsat data rescaled to 1:15840 by a cubic convolu-
tion interpolation and precision registered to the 85 aerial photographs
were used. For illustrative purposes four channels capable of generating

a color composite map image were also available.

Digital Analysis of Remotely Sensed Data

Data Sampling and Analysis Techniques

Differentiating parent material boundaries made it possible to develop
unique statistical distributions of the data within each delineation. Unique
and subtle differences were hypothesized to be more distinct in parent mate-
rial delineations than distributions developed across a whole county. Based
on this hypothesis and the need to develop a better point sampling method,
four techniques were devised. These techniques were designed to test the
significance of parent material delineations within a statistical classi-
fication and to determine if differing sample point selections would change
classification accuracies. A summary of these techniques is listed in
Figure 4.

Two methods of sampling data points were used to determine which would
most represent responses within the specified classification area. Sub-
jective sampling of blocks of data was compared to systematically sampling
points at specific 1ine and column coordinates across the entire classi-
fication area. It was hypothesized that systematic sampling would more
adequately represent the spectral variability of a scene rather than sub-
Jjective sampling.

Another variability within the design was to 1imit the size of area
classified. The importance of parent material delineations was tested by




Classification

Classification

Classification

Classification

one

two

three

four

Data Point Selection

Clustering

Classification

Subjective sampling of
representative blocks of
data within each parent
material

Each block of data
clustered requesting
13 cluster classes

18 spectral distribu-
tions used to train

the Gaussian maximum
likelihood classifier

Systematic selection of
data points from across
the entire county (every
eleventh line and column)

Clustering the entire
county selecting data
points every eleventh
line and column. 18
cluster classes re-
quested

18 spectral distribu-
tions used to train

the Gaussian maximum
likelihood classifier

Subjective sampling used
in classification one

Same cluster group-
ing used but group-
ings within parent
materials kept as
unique

Layered tree design
used with Gaussian
maximum likelihood
classifier (60 classes)

Systematic selection of
data points of every
fifth line and column
within parent materials

Clustering within
each parent material
every fifth line and
column. 13 classes
requested per cluster

Layered tree design
used with Gaussian
maximum likelihood

classifier (60 classes)

Figure 4. Data point selections and subsequent classifications.
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classifying only within parent materials as opposed to classifying the entire
county without regard to delineated boundaries.

A method was devised to evaluate the final spectral classes as to coun-
tywide performance and accuracy within specific parent materials. Compila-
tion of soils at selected locations was hypothesized to be an adequate means
of testing performance. Due to time Timitations the number of test sites
was limited. Quarter sections within the county were selected as test sites
because they were easy to Tocate and randomly select. Quarter sections were
numbered across the southern part of the county within each of three major
parent material areas (outwash, lacustrine, ti11). Numbers were then ran-
domly selected within each parent material area and corresponding quarter
sections were noted on a Jasper County sections map. The 72-hectare quarter
sections were then located on aerial photographs which were reproduced at
3 cmto 1 km to allow for mapping detail not generally mapped.

General Analysis Procedures

A general procedure was followed for each of the four analysis tech-
niques. Initially, a clustering algorithm was used that established a
group of spectral classes consisting of means and covariance matrices which
through an interpretive process was used in statistically classifying the
county. Figure 5 shows the process involved in creating training statistics
for the area. A more detailed explanation of the algorithm related to the
LARSYS processors follows (32).

Clustering Algorithm. This algorithm is based on distance relation-
ships between each data point and the centers of groups of data points (4).
It groups a set of vectors drawn from a spectral data tape into a number of
classes that must be specified by the analyst. After the number of classes
is specified, locations for these cluster centers are assigned in feature
space as the cluster centers. The locations of initial centers are chosen
by computing the mean vector and variance for the entire set of measurement
vectors. Centers are uniformly spaced along the diagonal of a rectangular
paralielepiped whose dimensions are based on the mean and square root of
the variance of the data. Calculation of the Euclidean distance from each
vector to each center makes it possible to assign the vectors to the clusters.
The cluster centers are initially calculated by

iy = M+ sy [ 2GR -]

1J M-T ~
where Mi = mean;
Si = square root of the varijance;
i = measurements vectors; and
J = number of clusters requested.

By determination of Euclidean distances between vectors and cluster centers
points can be assigned to the centers. The clustering process proceeds in
a two step method. After samples are all assigned to centers, new centers
are formed by calculation of the mean of assigned points. The two step
iteration continues until there is no change of cluster centers from one




Clustering of

Selected Training

Areas
Association of Cluster Classes Refinement of
to Specific Cover Types Cluster Classes
a) Ratioing 4 - > a) Separability
b) Plotting mean response values b) Merge
c¢) Magnitude of responses c) Cluster groups

Final Training Class Selection

Classification

Figure 5. General analysis procedure implemented by LARSYS

functions.
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iteration to the next. Resulting from this program is a statistical group-
ing that contains mean and covariances for each channel of spectral data
for each spectral class.

Association of Cluster Classes to Specific_Cover Types.

Plotting Mean Response Values. Classes derived from clustering were
evaluated as to their spectral properties. Identification of broad cate-
gories of vegetation, soil and water could be made by observing the mean
relative responses across the four channels (Figure 6). Characteristic
curves of soil, water, and vegetation make them easily identifiable.

Ratioing. Differences between vegetation and soil can also be de-
tected by summing reflectances in the visible bands (.5-.6 um and .6-.7 ym)
and dividing by the sum of the two near infrared bands (.7-.8 um and .8-
1.1 um). A high response in channel three and low response in channel two
yield a ratio between channels of less than one that would indicate a vege-
tation response. Water is more responsive in the visible bands and there-
fore maintains ratio values over one. Response curves associated with
soils generally follow an even pattern which displays values of one or
more.

Magnitude of Response. When soils curves are identified, further
separations between the soils can also be made by consideration of their
relative magnitudes. The relative response across all four channels is
summed and these magnitudes are compared in order to identify such soils
as a high spectral response of a well drained soil or Tow responding poorly
drained soil. Drainage classes and their differing responses are shown
in Figure 6.

Refinement of Cluster Classes.

Merging Function. Clustering statistics developed from more than one
clustering can be combined into a set of calculated means and covariances.
A merging function takes all statistical classes requested and compiles
classes with new calculated means and covariance matrices. Combined
classes were measured for divergence and pairs of classes with low diver-
gence values were merged into one spectral group. The processor used to
merge classes together calculated a new mean of all points contained in
the original classes merged and a resulting covariance matrix.

Some classes were encountered that had a spectral response represen-
tative of both soil and vegetation (Figure 6). These classes were com-
bined with a vegetation if they were spectrally similar or left to repre-
sent a soil if the influence of vegetation was not too great.

Separability of Classes. Divergence of these cluster groupings was
calculated to obtain a measure of the similarity between the classes. The
measurement of similarity was defined as

D(1J) = lﬁtY‘(Ki-Kj)(KJ I'K.i-l) + litr(K-i-l'*'Kj_l)(Ui'Uj)(Ui'Uj)t
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where
Kin = class covariance matrices;
“iuj = class mean vectors;
tr = trace of matrix (sum of the elements in the diagonal); and

()t

Divergence indicated the similarity of pair groupings. A1l possible
combinations of classes provide information necessary for combining, re-
maining as distinct or eliminating classes (25).

transpose of the matrix.

The algorithm performs this divergence calculation that is then trans-
formed.
D(t) = transformed divergence

D, = 2[1-exp(-D/8)(i,j)] (45)

The transformed value has provided a better indication of spectral class
separability than simple divergence.

Final Training Class Selection. Information obtained from transformed
divergence measurements, ratioing, plotting, and notation of relative re-
flectance responses was used to define a statistical set of data points
representing the area to be classified. Creation of statistical distribu-
tions most representative of the overall response is of crucial importance
to correct classification. When spectral distributions are confused, the
classifier will fail to separate accurately the data. Well defined sepa-
able distributions must be established if an accurate classification is
the desired result. The classifier also assumes classes are normally dis-
tributed with mean and variance which further necessitates closely analyzing
the final training statistics.

Classification. A Gaussian maximum 1ikelihood classifier was used
in all four analysis procedures. The classification algorithm

gi(x) = log p(wi) '2409 (2m) '%]oglKi, '%(X‘Mi)TKi-l(X‘M)i

where

gi(x)

a discriminant function (where X is an unknown data vector);

=
]

mean vector;

K1 = covariance matrix;

= class;

p(wi) = a priori probability of class w
the number of channels

e
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i
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js used to classify X to class W if

gi(X) 2 gj(X) for all j # i

A priori probabilities may also be specified to be assigned to cer-
tain information classes. If a priori probabilities are not assigned,
the log p(wj) of a certain class is set equal to zero which is equivalent
to assigning equal probabilities to all classes.

If in the claséificatign algorithm y = (X-Mj) and Kjk is equal to a
component of the matrix Ki- , the expression then becomes

Tog p(wj) -%Jog 2m -%loglKiI =3[ Ky 1 Y1 +Y Ky Yot
. Y]K]3Y3+Y2K22Y2+Y2K23Y3+ ces Y3K3]Y]+Y3K32Y2+Y3K33Y3+ eee]
Since K21 = K]Z’ the expression becomes
log p(wi) -3409 2m -%1og|Ki| + [-5YKq Y4
- VpKoq ¥y iVpKopYy - YaKapYy - YaKgp¥p - BYgKgaYy -]

where w; = a spectral class (17,28).

The discriminant value is calculated for each class and then compared
to other discriminant calculations. The largest discriminant value is the
class into which the data vector is classified. The results of the clas-
sification were written on a magnetic data tape which could then be accessed
for displaying part or all of the area. The data tape can be read to produce
the classification in the form of an alphanumeric map image, a grey scale
image and/or tabular output.

The specific classification procedures deviated in the method of
selecting training points for statistical analysis and in their applica-
tion to the area. A description of the variations within each analysis
procedure follows.

Classification One

Training sites consisting of approximately 1% of the data were chosen
within each parent material with at least one training site located within
each parent material. By previous field inspection and notation of transi-
tions on the false color image training sites were selected that appeared
most representative of the area. Training areas were located by a coordi-
nate system of lines and columns which designated the appropriate data
points within the county.
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Eleven blocks were clustered within the outwash area; seven blocks
were clustered in the rolling moraine til1, seven in the outwash over till,
four in the lacustrine, two in the till (Alfisol) and one in the till
(Mo11isol). Approximately 7,000 total points were clustered in all the
areas. Ten to thirteen cluster classes were specified per block, depend-
ing on the apparent spectral variability within each area.

The resulting cluster classes were identified as vegetation, soil,
water or some combination of cover types based on the previously described
analysis procedures. Urban classes and related spectral responses were
largely ignored because they were of minimal area in the county and were
not of interest in soil characterization.

Spectral classes from all parent materials were merged together into
one set of means and covariances. Through a process of merging and diver-
gent measurements, a distinct set of spectral classes resulted. Ignoring
the parent material delineations the classifier categorized each data point
from the county into one spectral class developed from countywide sampling.

Classification Two

A systematic sampling of data points for compilation of training sta-
tistics characterized the second classification procedure. In systematic
sampling an indication of all ranges of responses is sampled if the areas
are significantly large or if the sampling increment is high enough.

A one percent sampling (eleventh Tine and column) approximated the
size of the first sampling and produced a set of eighteen means and their
associated covariances. Increments of six lines were avoided bacause of
the possibility of error due to scanner noise, as previously described.
Parent materials were not considered in the systematic sampling of data
points nor in the resulting classification. Parent materials were dis-
regarded to test if a significant increase in accuracy would occur when
the areas were delineated in classification.

Classification Three

Spectral samples clustered in classification one were again used in
classification three. Data points selected for training were combined only
within parent material areas. These numbers of points varied with size of
the area; therefore, a large area would be represented by a Targer number
of points. Similar spectral classes were combined if they represented the
same cover type. Soil responses from other parent material areas in some
cases were quite similar, but the property of the classifier made it pos-
sible to retain those classes as unique within the same classification
algorithm (45).

By the use of a decision tree design each data point was not tested
against all other data points in all other spectral classes but rather was
tested against only those classes formed from spectral information within
a particular parent material area. Sixty statistical classes were contained
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at the root node from which 6 stem nodes each representing a parent material
projected. These nodes were equidistant from the root node; therefore, they
constituted one layer within the decision tree design. Consisting of a set
of spectral classes each node was used to discriminate which classes would
be used within a designated parent material area. A Gaussian maximum 1ike-
1ihood rule was still used to classify points although the tree design was
used to discriminate the number of classes used in each unique area (45).

One channel or a combination of channels could be used in the Tayered
approach for either discriminating parent material or classifying data
points. Of the 60 sets of means and covariances six classes consisted
only of a fifth channel which was used as a designator of parent materials.
These six classes were previously mentioned as the first layer in the clas-
sification scheme. Remaining classes of Landsat data contained in the root
node were compared to each of the stem nodes. Each parent material desig-
nator specified a unique set of statistical classes to be used in classify-
ing only that parent material. The process by which the classifier pro-
ceeded is shown in Figure 7. Stem nodes and their respective classes were
prespecified in the classification program.

The ability of the classifier to use only 60 classes limited complete
freedom in spectral definition. Soils were of primary importance in the
investigation; thus it was decided to combine vegetation from all areas
and classify using only three vegetation classes grouped from across the
county. Again the classifier used approximately 1% of the data within the
county to train the classifier.

Classification Four

Consideration of parent materials was integrated into the last anal-
ysis and classification. Irregular boundaries of the six parent material
delineations made it extremely difficult to record all points manually
within each area; therefore, a FORTRAN program was devised to locate every
fifth 1ine and column coordinate point within each parent material area.
This sampling technique involved approximately a four percent sample of
the county. An increment of five was used to insure adequate sampling
and avoid six 1ine noise. These line and column coordinates were used to
cluster each entire parent material area. It was decided that thirteen
cluster classes would be the maximum number asked for. A smaller number
would not adequately represent the ground scene, and a larger number may
leave some spectral classes with too few points to be considered a good
statistical sampling. A separate set of means and covariances was gener-
ated for each parent material. Vegetation classes, soil, and scattered
vegetation classes were identified by the same process described in the
previous classifications. The four percent sampling was used in the lay-
ered design to produce a county spectral classification based on spectral
probabilities from six different sets of statistical distributions. The
design of the decision tree was identical to classification three except
different spectral classes were used to compile the tree.




60 Class Statistics
(Classification 3,4)
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Channel 5 Area I Outwash

Channel 1-4
Classification 3 Classification 4
1-9 s0il classes 1-8 so0il classes
3 vegetation classes 2 vegetation classes

Channel 5 Area 2 Rolling moraine till

Channel 1-4
Classification 3 Classification 4
1-10 soil classes 1-8 soil classes

3 vegetation classes 2 vegetation classes

ghannel 5 Area 3 Outwash over till

Channel 1-4
Classification 3 Classification 4
1-8 soil classes 1-8 soil classes

3 vegetation classes 2 vegetation classes

Channel 5 Area 4. Lacustrine

Channel 1-4
Classification 3 Classification 4
1-9 soil classes 1-8 soil classes

3 vegetation classes 2 vegetation classes

Channel 5 Area 5 Alfisols (Till)

Channel 1-4
Classification 3 Classification 4
1-8 soil classes 1-11 soil classes

3 vegetation classes 2 vegetation classes

Channel 5 Area 6 Mbllisols (Till)

Channel 1-4
Classification 3 Classification 4
1-10 soil classes 1-8 s0il classes

3 vegetation classes 2 vegetation classes

Tree design used in classification procedureé of Jasper
County spectral soil maps.
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Evaluation

Field Observation. Evaluation of classifications was accomplished by
comparison of completed classifications to the mapped quarter sections.
Three soil scientists comprised of one SCS soil scientist and two soil
science graduate students mapped the quarter sections with the specific
objective of mapping .45 ha delineations or larger. Normal mapping pro-
cedures were used to investigate the quarter sections. Each quarter sec-
tion was located and position noted on the photograph. By traversing the
land and taking sufficient borings to identify drainage patterns and tex-
tures, map units were delineated on the aerial photographs. Underlying cal-
careous till was identified by applying acid and observing if any reaction
were present. The color chart was used to determine Mollic or Ochric opi-
pedons. After investigation of surface and horizons, map units of .45 hec-
tares or more were noted on the field sheets. Each quarter section was
arbitrarily divided into three sections and mapped by one of the investi-
gators. After the quarter section was traversed, soil characteristics were
discussed and questionable areas were revisited. The final soil map was a
combination of observations from all individuals. The northern part of
the county was not chosen for evaluation because the distance was prohibi-
tive in the investigation. Mapping of these quarter sections was done prior
to computer analysis so bias in soil mapping could be avoided. The com-
pleted soil maps were used to evaluate the spectral classifications.

Correlation to Map Units at Randomly Selected Sites. An electrostatic
dot matrix plotter was used to produce individual plots of the mapped quarter
sections that would be used in the evaluative procedures. Copies of these
classifications were also reproduced on acetate to enable overlaying on
the photograph. A1l spectral classes were graphed as to their relative
spectral response across the four Landsat spectral bands, and copies were
provided for each analyst. Analysts were asked to compare each classifi-
cation to the soil maps and rate the classifications as to their correspon-
dence to the maps. The two most representative classifications would be
used in field checking and from this the most representative classification
would be chosen.

Statistical Validity. Statistical analysis of the varying soils was
done To determine the necessity of parent material delineations. A selec-
tive sample of soils responses in each parent material was chosen to be
compared to other soils spectra within other parent materials. A test of
homogeneity was performed that would indicate how homogeneous the groupings
were which would indicate the significance of considering this type of sepa-
ration. The hypothesis tested the equality of variance-covariance matrices
in the multivariate case where

H

|
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M
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H1 ‘HO is false.

The procedure is a generalization of Bartlett's test in the univariate
situation.
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The test lets S; denote the unbiased estimate of £j for the ith group
with Ny independent p-vector observations from a multivariate normal dis-
tribution with mean uj and variance-covariance matrix Zj

N = g N V. = N.-1
i=1 i 09 i
and
_o2p2+3p-1 , 91
© = TprTI(g-TT (I
where

number of groups
number of vectors

The F value calculated by

Homogeneity is rejected at the significance level o if F>Fa(v]v ) where
F® denotes the upper percentage point of the F distribution (46).

RESULTS AND DISCUSSION

The four classifications were completed and evaluated by comparison
to previously determined randomly selected sites within Jasper County.
The following is a summary of the results of the methodology used in the
Jasper County classification procedures.

Results of Registration

Difficulties in fitting the rectified halftone positives to the regis-
tered Landsat data prompted a registration of Jasper County using the rec-
tified halftone positives as a base rather than the black and white pan-
chromatic unrectified photographs. The rectified halftone positives, when
used for registration, will not provide a better correlation between the
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two images, i.e., Landsat and halftones. However, with the use of half-
tones in conjunction with the Landsat classification, both must be regis-
tered to the same standard. As with the unrectified photographs, error
was predicted to be no more than thirteen meters displacement.

Using rectified photographs should have eliminated some error due to
crabbing and scale differences in blocking the photographs. However,
because the halftones were trimmed to less than 20% overlap, difficulty
is being encountered in the blocking procedure. When registration to the
halftone positives is completed, the data points will be reclassified
using the most accurate of the four statistical distributions.

Creation of the Parent Materials Map

The 32 level histogrammed false color image proved to be more detailed
than necessary for preparation of a parent materials map. Although the fine
slicing of the spectral distribution provided more information, because of
difficulty in visually interpreting the color levels (minute differences
were not easily discernible) fewer defined levels would be more reasonable.

Spectral differences delineated on the false color image were field
checked resulting in the identification of six parent material areas
(Figure 8). To the north a primarily outwash section was identified that
was characterized by windblown outwash sand ridges covered by scrub oak.
The northern border of the county formed by the Kankakee River was sur-
prisingly free of alluvial materials. The heavier sandy soils of this
region are not as easily transported outside the regular bounds of the
river as are the finer textured materials existing along the Iroquois River
to the south. These small areas of alluvium were not of sufficient size to
_consider them as a designated parent material. Inclusions of organic soils
also appeared in the northern and southern outwash areas. In this research
the Histic areas were not sufficiently large to consider them as a separate
parent material. Since they were spectrally different from other soils,
they need not be considered as a separate delineation. So they were left
as inclusions within other parent materials.

Glacial till, representative of the mid-north section of Jasper County,
progressed across the county becoming covered by subsequent outwash deposits
in the east. Rolling moraines characterized the mid section of the glacial
ti1l while to the southwest prairie influences were noted that transitioned
to Alfisols in the southeast. The complexity of development was revealed
by the wide variety of soils in evidence through the areas.

Between the two till areas were lacustrine deposits characterized by
coarse to fine Toamy textures with inclusions of finer materials Tocated
in broad low lying landscapes. Much 1like the Histic soils Tacustrine
inclusions were also scattered throughout the county. '

Field Mapping of Quarter Sections. The map units were recorded on
aerial photographs at 3 cm to T km which were evaluated by four soils ana-
lysts. Mapping of the quarter sections required approximately two weeks
of field work to complete.
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Random selection resulted in the outwash quarter sections occurring
in the same section while two other quarter sections occurred side by side
in the other parent materials (Figure 9). The occurrence was advantageous
in that mapping the entire section was easier by eliminating the need to
travel to four different locations, but the abundance of wooded lots and
pastures narrowed the area that could be used for spectral evaluation of
soils. One disadvantage of MSS data is the inability to obtain soil re-
sponses through trees, or dense vegetation such as maturing crops and
pastures. _

: The completed soil maps of the quarter sections (Figures 10-16) dis-
play a wide variety of soils. The outwash section, although primarily
covered by vegetation, ranged from excessively well drained Plainfield
sand to various Histic soils such as Houghton and Adrian. The lacustrine
map units ranged from well drained to poorly drained soils characterized
by fine sandy loam soils to silty clay textures. Till areas also ran from
well to poorly drained profiles with primarily silt lToam textures. In
western till portions of the county bedrock occurred within 1 meter of the
surface, evidence of coral reefs that were earlier discussed.

Results of Classification

Four separate classifications of Jasper County were created. Of the
four, two were chosen as the most representative of county soils. The
following gives an indication of each classification performance.

Classification One

A1l block clusters resulted in at least two vegetative responses that
when tested by a divergence measurement proved to be spectrally separable.
These vegetative responses generally were representative of wooded areas
or crops and pastures. A wide variety of soil responses were identified,
but many of these classes were eventually merged when minimal distances
were found for their divergence values. Water responses were not consid-
ered of major importance. Because there were no extensive bodies of water
except for scattered borrow pits along Interstate 65, their response grouped
with that of poorly drained soils such as the muck areas in the north and
southeast. Urban areas were not of sufficient size to consider them in a
unique spectral stratification and were not of interest in characterization
of soils. Urban areas were classified as vegetation because of the abun-
dance of trees and grassed areas within cities and towns.

An overabundance of representative vegetation responses, which were
not of importance, were eliminated by tolerating a lower divergence value
between pairs of vegetation classes than for pairs of soils classes. That
is, vegetative response classes were grouped together that were not as
spectrally similar as soils classes. In this process vegetation distribu-
tions became large with wide variances which resulted in detriment to over-
all classification accuracy. Overall the distributions became too large
and variant when classes were combined from across the county. If vegeta-
tion were left as discrete classes, correlation of soil, vegetation and
combination soil-vegetation responses could be investigated.
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A-C - A-C profile

Co - Corwin, well drained
Wo - Wolcott, poorly drained
0 - Bedrock 1 meter

Figure 10.

Till parent material
T27F R7W SW1/4 Sec 20

0d - Odell, somewhat poorly drained
Pc - Parr, well drained

Till parent material
T27N R7W NW1/4 Sec 21
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Figure 12.

Till parent material
T27N R7W E% Sec28

Cn- Conover somewhat poorly drained
Mo- Montmorenci moderately well drained

Wo- Wolcott poorly drained

143



Al - Alvin, moderately well drained
Ch - Chelsea, excessively drained
Rr - Rensselaer, poorly drained

St - Starks, somewhat poorly drained

Figure 13. Lacustrine parent material
T28N R7W SE1/4 Sec 23

Al - Alvin, well drained
Dr - Darroch, somewhat poorly drained
Ma - Mahalasville, poorly drained

Ro - Roby, somewhat poorly drained
Kr - Rensselaer, poorly drained

Figure 14. Lacustrine parent material
T28N R7W NE1/2 Sec 28
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Dk - Dickinson, excessively drained
Dr - Darroch, somewhat poorly drained
Rr - Rensselaer, poorly drained

Figure 15. Llacustrine parent material
T28N R7W SE1/4 Sec 32
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Pn

Adrian, very poorly drained
Brady, somewhat poorly drained
Gilford, poorly drained
Houghton, very poorly drained

Maumee, poorly drained

Morocco, somewhat poorly drained
Plainfield, excessively drained

Figure 16. Outwash parent material
T23N R5W Sec 28
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Over 65 statistical distributions were combined from all parent mate-
rials which resulted in 18 spectrally distinct classes. Of these 18 classes
six displayed vegetation responses, nine were soils and the remaining three
had characteristics of both soil and vegetation. Since these three classes
had characteristics of soil, it was thought that information from these
classes would contribute to identification of soils; therefore, they were
considered part of the soil response group. No consideration of parent
material delineations was taken either in the merging of cluster classes
or in classification of the county.

Of the four analysis techniques the first spectral classification was
the least representative of the mapped quarter sections. The most accu-
rately classified of the twelve areas occurred in the till (Mollisol)
parent material. Spectral soil classes were more correlated to specific
map units in the till area than in the other representative areas.

Some averaging occurred by combining cluster groups together. Dis-
tinctiveness of better drained areas was lost as well as more poorly drained
soil responses. For example, the Odell, somewhat poorly drained, was repre-
sented by the same statistical group as Corwin, a well drained soil. Corwin
and Odell have silt loam surface textures and differed in color by 10YR2/2
for Corwin compared to 10YR2/1 for Odell. Parr, another well drained silt
Toam with 10YR2/2 surface color, was also confused with the Odell. Due to
closeness in color and drainage profiles, these soils would have been quite
close spectrally; however, soil distinctness was lost when distributions
from across the county were combined.

A poorly drained Wolcott soil with a silt loam surface texture and
10YR2/1 surface color did not correlate to any specific spectral class.
A1 map units had evidence of scattered vegetation data points which were
not in as great abundance as in other classifications. Figures 17-18 show
spectral responses of soils and soil-vegetation complexes along with iden-
tified vegetation classes.

Figure 19 shows the resulting county classification from the first
analysis. The overall county map is very representative of general cover
types within the county. Only on fine detail maps is the classification
less than adequate for defining soil series. Soils differences that indi-
cate dramatic changes such as the organic soils are easily recognized, but
the more subtle differences are confused. Borrow pits along Interstate 65
are recognizable but, as stated before, were classified as a poorly drained
or Histic soil.

Classification Two

A systematic clustering of prespecified lines and columns character-
ized the second classification scheme. By systematically sampling the
entire county, data which could be overlooked by block clustering would
be sampled. Unique areas of smaller than 225 ha could be bypassed since
those areas are not mapped (due to the expense in establishing a soil
series and the small area in relation to the county) as a soil series
within a county. Those areas overlooked in a systematic sampling would
not be of importance in characterization of county soils.
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County classification
from first amalysis

Figure 19.
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Identification of cluster classes resulted in eight definite soil
responses, six vegetation classes and five soils with some vegetative in-
fluence. In subjective sampling, vegetated areas such as the Jasper Pulaski
State Fish and Wildlife Area, wetland areas and scrub oak areas on sand
ridges were generally avoided, but systematic sampling chose points through-
out the county which accounted for the increased number of soil-vegetation
responses. A good definition of scrub oak, wooded areas and trees and
plants along creeks and rivers was the result of the second classification
because these were not avoided and could be classified with actual repre-
sentative data points from the area.

Evaluation of the soil maps revealed the second classification to be
more representative than the first but not of the quality displayed in the
third and fourth techniques. Again, difficulties were encountered with
scattered data points of vegetation appearing across the map units, but
not to the extent of classification one. 0dell, a somewhat poorly drained
soil, was again confused with the well drained soils, Parr and Corwin.

Investigated scattered data points indicated characteristics of both
soils and vegetation. In an attempt to improve the homogeneity of the map
units, statistical distributions were altered by eliminating the combination
soil-vegetation classes and reclassifying only those areas corresponding to
the mapped quarter sections. Figures 20 and 21 show the graph of data be-
fore and after alteration. In general, data points previously classified
as mixed soils and vegetation were classified as the surrounding soil re-
sponse. Only classes displaying a relatively pure soil or vegetation re-
sponse were used in reclassification.

The entire county was not reclassified because of the expense and be-
cause the reclassification was to be done on the rectified registration
that was not yet completed. Although favorable results were encouraging,
the quarter sections were not of sufficient size to infer the same results
would occur across the county. In some areas elimination of classes could
be of detriment to accurate scene identification by forcing data into classes
not indicative of their true response nature. For example, training statis-
tics developed specifically for a well drained soil would accurately iden-
tify that soil. However, if lighter responding erosion classes had no
training statistics spectrally near, it could be classified with a light
colored well drained soil. This could have been avoided had there been a
unique spectral distribution designed to represent an eroded soil. Further
research into identification of spectral classes should be attempted so the
most influential parameters contributing to response properties can be
determined. Large classification areas the size of a county necessitate
careful selection of spectral responses that provide an optimal spectral
design of the tract.

The second analysis provided better correlation with mapped soils
which could be attributed to better defined, more evenly distributed spec-
tral classes that were selected by a systematic approach.
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Classification Three

By combining cluster classes only within parent materials six sets of
statistical distributions were created. Each set was used to classify
only within a particular parent material. The resulting set of statis-
tical distributions contained nine soils in outwash, six soils in the
rolling moraine till, seven within outwash over till, eight in the lacus-
trine area, eight in the till Mollisol and seven in the till Alfisol
(Figure 7). Initially, vegetation was combined and a standard set of
vegetation spectral distributions was used in each area. Modifications
to the tree design and classifier has enlarged the capacity which will
benefit future attempts at county characterization. The third analysis
provided still better correlations than the first although some quarter
sections displayed definite inaccuracies in soil representations.

The outwash over till parent material area produced rather unique spec-
tral responses (Figure 22) in that only two classes displayed a character-
istic soil response over the four channels while the remaining classes re-
sponded highly in channel three (indicative of vegetation) which leaves
question as to whether there was a lot of scattered vegetation in the area
at the time of the overpass or if these are unique soil responses that have
not been encountered before. Only three of the major parent materials had
been chosen to evaluate the classification so no prepared ancillary data
were available to help explain these phenomena.

In the till areas Odell and Corwin were difficult to discriminate;
both reflected as the lightest soil class. In some transitions to darker
poorly drained soils, such as in T27N R7W Sec 20 SW till, Odell responded
much lower spectrally than when it was associated with Parr or Corwin. It
appears that 0dell, a somewhat poorly drained soil, has a wide range of re-
flectance. Since its drainage characteristics resemble well drained and
poorly drained parameters, it may be less well drained in association with
poorly drained soils and better drained when associated with well drained
soils. Also, data point averaging could affect these responses.

The lacustrine shows good correlations with excessively drained soils,
but evidence of inclusions within the soils was not supported with ancillary
data. Areas of small inclusions could have been overlooked in the initial
mapping. So, areas in question should be revisited.

The outwash areas showed good definition between spectral classes and
soil series. Some variability was evidenced in separation of Brady, a
somewhat poorly drained silt loam with 10YR3/1 color, and Plainfield, a well
drained fine sand with 10YR4/3 color. Although Brady was separated for the
majority of the map units, some pixels representative of Plainfield were
integrated in the map units.

Gilford, a poorly drained sandy loam with 10YR2/1 color, was completely
separated from the Maumee, a poorly drained loamy fine sand with 10YR2/0
color. Other parameters than drainage characteristics must have contributed
to this spectral variability. Slight differences in texture and color could
also have contributed to the ability to separate these two poorly drained
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soils. Maumee, for the most part, appeared in depressional wet spots and
could have been categorized as a very poorly drained soil which may also
have contributed to separability.

Evaluation after classification suggested that again the greatest con-
tributor to misclassification was largely due to the influence of a combi-
nation of soil-vegetation responses.

Classification Four

The last classification proved to be the most accurate of the four
analysis techniques. By clustering within parent materials four percent
of the data was sampled compared to a one percent sampling in the previous
analysis techniques. A larger sampling provided better definition of spec-
tral response which resulted in a more accurate classification.

The county was statistically classified with 52 soil representations
and two vegetation classes. Ten spectral classes were used in the outwash,
twelve in the ti1l (rolling moraine), ten in the outwash over till, nine
spectral classes in the lacustrine area, thirteen identified in the till
(A1fisols) and ten classes within the till Mollisol area.

Although overall classification four appeared more representative,
misclassification was apparent in the outwash and lacustrine quarter sec-
tions. The lacustrine area, T28N R7W Sec32 SE%, was better represented by
classification three. Mixing of two spectral classes occurs in the Dickin-
son map units, an excessively drained fine sandy loam with 10YR2/2 surface
color. Vegetation is scattered more throughout these map units in the last
classification than in classification three. The outwash section, T23N R5W
Sec28, which consists of large map units of Gilford and Maumee, two poorly
drained soils, were not differentiated as in the previous classifications.
The same occurrence was noted within the Tacustrine area, where spectral
responses of low responding soils were checked. The poorly drained soils
were representative of the lowest reflective soil, but both graphs also
revealed the next lowest responding soil as higher reflecting in the third
channel. If vegetation was masking the response of soil, then perhaps bare
soils within the same response group are classified to the nearest group
responding as a bare soil with no vegetative influence (Figures 23, 24).

Initial success at identifying soils was based on the ability to dif-
ferentiate drainage profiles; thus it was surprising to note two poorly
drained soils within the same parent material. Spectral characterization
of soil parameters is needed to define the extent to which each parameter
contributes to overall spectral response.

Unique Characteristics of the Data

Scattered vegetation was evident across all classifications and con-
tributed to -interference with the homogeneity of all map units. These
scattered vegetation-soil complexes were at first considered to not be a
valid delineation. Further inspection of response values found that these
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data points were indeed a combination of vegetation and soil responses.
Crop information from June 1973 found ninety percent of the corn and sixty
percent of the soybeans were planted by early June. This gives explanation
to why so many scattered data points were found in evaluations. These data
should have been gathered before decisions were made regarding the date to
be used in analyzing the remotely sensed data. At this time it is not
known exactly how vegetation influences a soil response, that is, whether
it gives an overall high response or low response or only influences the
response in channel two and three. Information then cannot be extrapolated
from these combination pixels as to the type of soil the vegetation is
occurring on. If the combination points appear in a map unit, those points
cannot be assumed to be a part of that map unit because of the possibility
of inclusions occurring within the unit. The easiest way to eliminate this
problem is to choose a date that is known to be relatively free of inter-
fering ground cover. The next step would be to analyze responses to pre-
dict the soil from the combination response.

Aerial photographs were not rectified which contributed to error in
matching map images. The resulting rectified halftone transparencies were
used for reregistration which should produce a more accurate map represen-
tative of the county. Map quality photos should be essential for creation
of registration data and map quality output.

Evaluation of Quarter Sections

Evaluation of quarter sections was, in general, a subjective approach
with map units and spectral classifications being overlaid for comparison.
One analyst did use a numerical approach by counting data points within
each map unit and calculating the percent soil each spectral class repre-
sented. The purest map units or those spectral classes that represented
the largest portion of any single map unit were found in the last classi-
fication. Al1 analysts agreed that the last two classifications were the
most representative of the four classification techniques.

A more quantifiable evaluative technique is necessary to provide an
objective approach in selecting classifications. Bias was also integrated
in the analysis techniques by the same individuals mapping the quarter
sections and evaluating the classifications. By varying the individuals
that mapped the quarter sections and evaluated the quarter sections, a
more objective evaluation would result.

A statistical evaluation was attempted to test the validity of sepa-
rating the parent materials. Both analyses (all highest responding classes
and all lowest responding classes across parent materials) proved highly
significant at the .01 level; therefore, the hypothesis of the homogeneity
of distributions was rejected. These values may have been overly inflated
due to the large number of points used in compilation of the distributions.
Calculation of degrees of freedom is based on the total number of points
used in the set of distributions; therefore, the large number of points
contributed to the significant values. The problem was further complicated
because at least six classes were needed for testing so no classes could be
eliminated to reduce point size. A test more sensitive to relationships of
distributions and less sensitive to point quantities is needed.
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Delineations Made by the Classifier

Favorable correlations with the classification map were found when
field observations were made. As in the past, drainage patterns and organic
matter differences were found to be highly correlated to reflectance. Or-
ganic differences were evidenced by the separable Histic inclusions in the
north and southeast. Minor differences in texture also were evident espe-
cially in the outwash area. Again, it is not certain how much contribution
each of these soil parameters make to the overall soil reflectances.

Areas of moderate to severe erosion located in the till region were
found to correlate almost 100% with one spectral class. Two separate areas
were checked and both gave evidence to good correlation. The second area
showed large areas of erosion running east to west that when field checked
were not that extensive. This could be caused by east-west bias that occurs
in clustering. Clustering samples point left to right across a line; there-
fore, the probability of points lying next to one another being in the same
class is slightly higher than for points lying to the north or south. Brighter
points of erosion could also have influenced neighboring pixels which would
have averaged the area around the areas making it look larger than its actual
extension.

The eroded class, in both areas, was not the highest responsive class.
In general, the highest responding class tended to have the largest variance
because it is an all inclusive class of points above a certain response.
Erosion representation, since it is not the highest responding class, has
definite limiters on its response range which contributes to a better de-
fined distribution with smaller variance.

The sand ridges, in the northern part of the county, were defined by
the vegetative response of the scrub oak, that occurred on the ridges.
This provides the ability to map Plainfield sand, the predominant soil of
the sand ridges, by delineated scrub oak areas. Areas of native vegetation
or in this case scrub oak could be used to identify underlying soils if
certain soils supported unique vegetation types.

A vegetation map of the county was also available through the use of
the tree design processor which was used to delineate the Jasper-Pulaski
Fish and Wildlife Refuge, the location of rivers and creeks, drainageways,
and pastures and/or wheat fields. County roads and Interstate 65 were also
visible on the final classification. Boundaries of parent materials could
also be obtained and individual parent material classifications could be
printed because of the nature of the layered processor (Figures 25-30).

Map products of the soils classification can be all or any part of the
county at any scale. The products can be on acetate or computer printout
with grey scale values, alphanumeric or symbol sets. This map quality pro-
duct gives a synoptic view of Jasper County that has not been available
without Landsat except through mosaicing aerial photographs.
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An Augmented Procedure for the County Soil Survey

If this type of analysis has the potential to be used in soil survey-
ing, where does it fit into the county plan for a survey? The decision to
use remotely sensed data could be made at the same time the designation to
initiate the soil survey is made. Data preparation and imagery analysis
would then be instituted at the same time preliminary investigation was to
take place. If photography were used as a base map for registration, then
it must be taken in advance. If 7% minute topographic maps are to be used
for registration, photographs need not be available until the usual time.
Digital analysis, evaluation, refinement, and creation of map products can
also be done before soil mapping begins. Map products could then aid in
beginning the soil mapping by locating spectrally similar soils, identify-
ing inclusions, providing information to areas not readily accessible,
identifying drainage profiles, locating possible areas of erosion, and
identifying textural and organic differences. If a parent material or soil
association map were created, this could aid in developing soil interpreta-
tions and establishing soil series within the county. Finally, the remotely
sensed data could be used as a quality control for map units by identifying
the percent inclusions, their extent and location. Figure 31 shows a pos-
sible augmented soil survey procedure. :

Limitations and Difficulties

The greatest limitation was the interference of vegetation with soil
response. Consideration of planting dates should influence the date when
the remotely sensed data are chosen. Future remotely sensed data systems
may not have the same difficulty as the Landsat MSS data, but now this is
extremely important. .

. Registration is important if close correlation to resolution size
elements is to be made. Aerial photography should be of map quality if
good correlations are desired. The photographic imagery and remotely
sensed data should be collected at approximately the same time.

Compilation of statistical distributions is of extreme importance for
successful classification. In the systematic sampling of data points dis-
tributions were more uniform unlike the subjective sampling of data points,
although in the layered processor large distributions of vegetation weighted
classification of vegetation. Since the classifier has been altered to
accept more than 60 classes of data, the problem should be alleviated.

Large variances and platokurtic distributions should be avoided when smaller
leptokurtic distributions are part of the same set of statistical distribu-
tions. The reasoning for this follows that the probability of points being
classified in the larger variant distribution is greater than for the
smaller variant distribution.

Sti11 more research should be done to identify the parameters that
affect soil reflectance. It is not known which parameters contribute the
most to overall soil reflectance. Investigation should be made as to how
they affect the response, whether higher or lower response is made because
of their presence.
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SUMMARIES AND CONCLUSIONS

Preparation of a spectral map representative of soils within Jasper
County resulted in relatively inexpensive quality map products that could
be used in the future county soil survey. Development of a methodology
from acquisition of data to creation of usable map products will aid
future attempts at augmenting the traditional soil survey techniques.
Heretofore, costs in acquiring map products other than panchromatic black
and white photography have been prohibitive, but Landsat data analysis
expense was estimated to be a reasonable expense for county use if the
duration of a county survey could be shortened by increasing the daily
mapping capacity.

Remotely sensed data should be closely associated in time to any ancil-
lary data that would be used for registration purposes and/or for correlation
(field checking). Prior knowledge of the amount of ground cover type and
growth stage of corn, soybeans or other crops that contribute to inter-
ference with soil response would be of importance in selecting dates of data
acquisition. Difficulties encountered in class confusion in the Jasper
County spectral map were largely due to scattered vegetation masking soil
responses.

Image interpretation of the Landsat image and field checking of the
image boundaries resulted in the creation of a county parent materials map
that made an obvious improvement when used as ancillary data in the statis-
tical classification of the county.

A11 classifications provided a means of identifying map units that
could be quantified. Soil series could be identified with the aid of the
ancillary data (parent material boundaries) along with the ability to spe-
cify drainage characteristics. Organic matter differences were easily
identifiable throughout the county from the muck soils in the north and
the well drained sandy soils in the east with 1ittle organic matter con-
tent. Erosion was strikingly separable within the till area. (The other
areas have not been checked for an erosion class.)

Difficulties in delineating closely associated soils in some areas
were encountered. Somewhat poorly drained soils were confused with moder-
ately well and well drained soils which is not surprising when the closeness
of their drainage characteristics are considered. Some classes of somewhat
poorly drained soils are so minutely different from better drained soils
that discussion as to their delineation can be controversial even upon
field inspections. These difficulties must be considered when criticism
arises against MSS remotely sensed data being used because of inability to
make certain soil delineations.

Evaluation of these classifications indicated the classification in-
volving a systematic data point sampling technique for compilation of train-
ing statistics within unique parent material areas to be the most represen-
tative. Other classifications that used training samples across the entire
county resulted in statistical distributions that were too broad for a fine
delineation of spectral responses. Establishing a statistical representation
across such a large area as Jasper County created distributions that dimin-
ished subtle differences in responses.




63

The subjective nature of the evaluative techniques was not adequate
to evaluate classification performance quantitatively. A homogeneity test
was used to determine the necessity of parent material delineation but this
also proved inadequate. A more objective approach for determining classi-
fication performance and a test less sensitive to point quantities and more
sensitive to relationships of distributions are needed.

Random quarter section evaluation was a sufficient means of sampling
the county soils, but not all parent materials were sampled. Therefore,
questions about the outwash over till area on the last classification re-
mained unanswered. Future classification evaluation should include a
larger sampling over a more extensive area.

Initially it was thought that the soil parameter most affecting Landsat
spectral responses was drainage characteristics. Results in the outwash area
produced spectrally separable soils of the same drainage characteristics
indicating that either minor textural or organic matter differences might
also significantly affect soil spectral response. Although a successful
classification has been produced that will greatly aid Jasper County in
their soil survey, more research is needed to determine the soil parameters
that make spectral separations possible and to what extent each of the pa-
rameters contribute to overall soil response.

Final map products are available that delineate parent materials, vege-
tation across the entire county, specific sections or any area of the county
at any map scale. These map products can be printed on acetate or paper
with soil and vegetation classes represented by alphanumeric characters,
symbols or varying grey scale values.

Products from this study are to be available along with rectified
halftone transparent aerial photographs to be used in mapping the soils of
Jasper County. The two images printed at the same scale (1:15840) were
specifically designed to be a readily usable tool for field investigations.
These products will provide information in areas not readily accessible and
can provide the opportunity of extending the mapping time during the summer
months when covered crop canopies make it extremely difficult to map.

In conclusion, this research has investigated a number of capabilities
using remotely sensed data. Specifically, the research resulted in the
following:

1) Designing a methodology for using remotely sensed data from the initia-
tion of a county soil survey to evaluation of the map units;

2) Successfully creating a parent materials map through image interpre-
tation of Landsat data; )

3) Analyzing four statistical methods of classifying data points and
recommending the most representative of the four to be used in county
soil mapping;

4) Finding drainage characteristics, textural and organic matter differ-
ences, erosion, and scattered vegetation to be significant contributors
to soil responses;
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Map units that were easily characterized as to their homogeneity,
and drainage characteristics in relation to other soils; ?

Readily available single feature maps such as vegetation maps;

Definable parent material areas that contribute to a more represen-
tative statistical classification of a county soil map;

Finding that selection of data acquisition dates is extremely important;

Vegetation affecting soil responses across the Landsat channels; how-
ever, it was not known how much and to what extent the response was
affected;

Creating statistical distributions for classification of an area to be
of extreme importance if an accurate classification is desirable;

Landsat providing a synoptic view of Jasper County that has not been
available for other counties unless aerial photographs were mosaiced
together;

Map products designed to be readily used in the research of county soils.
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