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CORRELATION OF SPECTRAL CLASSES DERIVED FROM LANDSAT MSS DATA
TO SOIL SERIES AND SOIL CONDITIONS FOR JASPER COUNTY, INDIANA

Abstract

The process of soil survey has been an on-going program in the United
States since the early 1930's with aerial photography greatly increasing
the speed and accuracy of the survey. Recent innovations in remote sensing
techniques have offered the soil scientist a tool to aid in surveying the
soils of this country and the world.

The launch of the Landsat satellites has prompted numerous investiga-
tions into the applicability of the satellite spectral data to soil survey
and mapping. Recent work utilizing computer-aided analysis of Landsat MSS
data resulted in a spectral soils map of Jasper County, Indiana. This map
displayed fifty-two spectral classes which represented the soils found
within six distinct parent material areas.

A correlation of the spectral classes with the soils and soil condi-
tions was achieved by inventorying soils on twenty-eight 160-acre randomly
chosen sites. The soils data and spectral data were manually overlaid and
a dot grid count was made to determine the relative percentages of soils
within each spectral class. From these percentages a descriptive legend
was developed identifying the dominant soils represented by the spectral
class as well as soils that represent significant inclusions.

In addition to developing a legend for each spectral class, various
factors involved in the analysis and interpretation of remotely sensed data
for soil survey were identified. These factors included: soil-vegetation
complexes, crusting of the surface soil, subhorizon exposure, soil surface
moisture, organic matter content, texture, and free sand on the surface.
0f these, soil-vegetation complexes presented the most widespread problem
in interpreting the spectral data. The other factors all altered the spec-
tral response of the soil to some degree, but their influence appeared
rather localized.

The results of the spectral classification with the associated corre-
lation will be used along with the aerial photography for the soil mapping
investigation. These additional data will conceivably aid in auger place-
ment and soil boundary delineations, hence reducing the time and expense
of the soil survey.
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INTRODUCTION

Soil surveys have become an increasingly used data input to agricul-
tural, land use and resource planning decisions (4). As population and
growth pressures increase, so does the need for timely and accurate soils
data.

Soil surveying began in the 1900's by using plane tables to draw both
a base map and a soil map (56). In the late 1920's aerial photography was
instituted to aid in soils mapping (13). These photos were used by the
soil surveyor for ground location and as an additional source of information
by using the technique of photointerpretation. They were also used as a base
map for drawing soil boundaries. They are still so used today.

Drawing such boundaries on the photography is, however, a subjective
procedure. Boundary placement depends on field investigations, the quality
of the photograph and the experience of the soil surveyor. If there was
some technique that could reduce the subjectivity of boundary placement,
the accuracy of the soil survey could be greatly enhanced. If this same
technique could aid in the placement of soil auger borings, the number of
borings as well as the area traversed by the surveyor would be minimized.
The borings could be placed in areas that were relatively homogeneous hence
representative of the dominant soil conditions in the area. Transitional
zones and confusing areas would be recognized, therefore, aiding in making =
decisions on the soil unit to be placed on the map. Soil inclusions and
complexes would be readily mapped. This would be of great benefit to the
user of soil survey information since it is reported that presently the
economically feasible level of mapping leaves 30 to 40% soil inclusions
within map units. This is significantly higher than the normally accepted
15% level (50). Other studies support this by reporting that many delinea-
tions do not adequately represent conditions as stated in the map unit
description (2, 38).

Previous investigations have demonstrated the utility of Landsat imagery
in the preparation of soil association maps at the county and state level
(33,45,53,58,68,69). Other studies have shown promise in identifying such
soil parameters as natural, internal drainage characteristics, organic matter
differences, textural differences, and differing cultural practices (31,58,59).

Few studies have investigated the use of Landsat data for delineating
soils at a more detailed level. Kirschner, et al. (29) concluded that, for
a study site in Indiana, digital analysis of Landsat data provided an addi-
tional source of information for the soil surveyor and promises to be an aid
in the placement of soil borings and for delineating inclusions. Kaminsky
(26) investigated various techniques for producing a detailed soils map by
digital analysis of Landsat data. Such digital analysis of the multispectral
Landsat data results in unique spectral classes. These classes can be sepa-
rated into soil and not-soil classes by various techniques (26). Prior to
correlation, these spectral classes have very little soil information asso- —
ciated with them hence rendering them virtually useless for interpretation
and planning purposes. It was the purpose of this study, therefore, to




investigate methods by which these spectral soils classes can be correlated to
the actual soils occurring in the area. The spectral soils map and the result-
ing correlation is not meant to replace the traditional process of soil survey.
It will, hopefully, be used as an aid by the field soil surveyor to increase
the accuracy and decrease the subjectivity of the soil survey.

To achieve this soils correlation, a previously produced map delineating
the spectral characteristics of the soils for the six parent material areas of
Jasper County, Indiana was used. A methodology was developed that promises to
be the basis of a rapid way of correlating soils to spectral data over a rela-
tively wide geographic area. This technique will determine the basic soils cor-
relation which will provide the soil scientist and resource planner with a basis
for making soil related decisions. In addition, some of the problems in using
Landsat data for soil survey were investigated. Finally, the method that was
developed may lead to a more intensive investigation into methods for estimating
the accuracy of maps produced from remotely sensed data for soils and other
purposes.

LITERATURE REVIEW

Soil can be defined as a collection of natural bodies on the earth's sur-
face, in places modified or even made by man of earthly materials containing
living matter and supporting or capable of supporting plants out-of-doors (57).
Soils have a unique combination of both internal and external characteristics
that have definable ranges (56). Soils, therefore, are individuals that are
related as a continuum, with each individual occupying a three dimensional piece
of landscape. After these soil individuals are identified and their relation-
ship to the environment and each other defined, the actual boundary can usually
be drawn by careful observation of the landscape (56).

The soil survey has been an ongoing program in the United States since the
early 1900's. At the beginning, soil surveys were made using a plane table to
draw both a base map and a soils map (51). With the advent of aerial photography
taken expressly for soil survey (13), the accuracy of such boundary placement and
landscape observations have been greatly improved. Since the late 1940's aerial
photography has been used by the field soil scientist to extrapolate detailed
field observations to large areas and has greatly increased the economics of
effort required to obtain soil information (20). Because of the use of aerial
photos ground mapping of soils has progressed to the point that more than twenty
million hectares are mapped annually at a cost of approximately one billion
dollars (19).

Many types of aerial photography have been investigated as to their use in
soil mapping. Black and white photography offers the advantage of a stereoscopic
view of the terrain but has the disadvantage of having a limited range of photo-
graphic tones (8). Color and color infrared photography has been investigated
for such soil properties as color, internal drainage, and moisture as well as
soil boundary delineations (21,32,42,46,47). It has been determined that color
and color infrared photos are better than black and white because tonal problems
are less severe (18). Soil boundaries are more accurately delineated on color
than black and white aerial photos. Even though improvement has been noted for
some soil characteristics, a comparison of color, color infrared, and black and




white for distinguishing such parameters as soil series, land types, drainage,
and organic matter showed no significant differences between these products (18).

Multi-emulsion and multiband photography have also been investigated for
their applicability to remote sensing surveys. In multi-emulsion photography
densities in the three emulsion layers are measured in order to quantitize the
tonal variations. From these variations interpretations are made. Differing
filter and film combinations result in multiband photography which display
information in discrete wavelength bands. Microdensitometer measurements of
such photography reveal that soils have a relatively high spectral response in
the thermal infrared, a varied response in the visible portion of the spectrum,
and a low response in the reflective infrared. :

Digitization of photography has also been investigated. When compared to
conventional photointerpretive techniques, however, there was no significant
improvement due to the digitization of the photography (5).

In recent years non-photographic remote sensing devices have been investi-
gated to determine their utility to the process of soil survey. Results using
radar, an active system, indicate that the most important variables are moisture
(which affects the dielectric constant) and surface roughness. Conclusions are
that actual pedological information cannot come solely from radar imagery but
from collateral information such as field surveys and knowledge of the soil
scientist. The greatest promise for radar systems appears to be in the arid or
semi-arid environments because of the relative lack of interfering vegetation
or the perennially cloudy tropic and arctic zones because radar can penetrate
such clouds.

The increasing need for soil surveys has led to the investigation of other
non-photographic remote sensing systems such as the optical-mechanical scanners.
These scanners range from aircraft borne scanners of twelve, thirteen, or even
twenty-four channels to the four channel scanners on board the Landsat family
of satellites. The advantages of the multispectral semsors are that the infor-
mation gathered is sampled in discrete bands and recorded on computer compatible
magnetic tapes. This allows for quantitative information extraction unlike
typical photointerpretation.

The multispectral data collected by the Landsat satellites provide spectral
information in four wavelength bands: 0.5-0.6, 0.6-0.7, 0.7-0.8 and 0.8~1.1
micrometers, with each data point representing 0.45 hectares. These data are
collected in a sun-synchronous polar orbit and allow repetitive coverage of
the globe. Such satellite data, therefore, allow relatively rapid assessment
of large areas and detection and enhancement of relatively subtle spectral
variations among features using statistical analysis techniques (35).

There have been two avenues of research in multispectral remote sensing
as it applies to soils. First is the investigation of the inherent spectral
properties of soil such as the effect of clay and organic matter on reflectance.
The second is investigating the use of multispectral data for soil inventory
using both image interpretation and digital processing of the data. It is the
intent of these two avenues of research to reach a common ground so that the
knowledge of how the properties of soil affect spectral response can be applied
to soil mapping using multispectral scanners.




In an overall study of the spectral properties of soils Condit (16)
attempted to classify the spectral reflectance curves of one hundred and
sixty soils sampled from various places within the United States. Condit
measured the spectral reflectance of the soils from 0.32 to 0.80 micrometers
using a Cary Recording Spectrophotometer Model 14 and from 0.8 to 1.0 micro-
meters using a Beckman DU Spectrophotometer. He was able to classify the
resulting spectral curves into three general shapes according to the 1938
classification systems: 1) chernozems, 2) pedalfer-type silts and 3) red
quartz and calcite sands.

Many of the basic components of soils such as color, moisture, clay and
organic matter have been found to affect the spectral properties of soils.
Various investigators have used different techniques to determine these rela-

tionships.

Karmanov and Roshov (27) investigated the relationships between the color
properties of soil and their physical makeup. They analyzed forty-two samples
of cinnamon-brown soils, calcareous clays, and saline gypsum-bearing clay loam.
They arrived at three conclusions: 1) close paired and multiple linear corre-
lations exist between the color characteristics and composition of cinnamon-
brown soils, 2) color of soils is directly and linearly related to the clay
and free iron content and inversely related to the content of humus and car-
bonates and 3) relative spectral absorption is directly and linearly related
to the amount of humus and clay present and inversely related to the carbonate
content. Color is, of course, a function of many soil properties.

Organic matter has been found to have a significant effect on the reflec-
tance of soils (1,12,37,40,44). 1In general, regardless of clay type present,
the organic matter appears to lower the magnitude of the spectral reflectance
in all wavelengths with no specific absorption bands. Page (44) found that,
in the spectral range of his investigation, it was not possible to discrimi-
nate between small change in organic matter content by reflectance measurements
when organic matter exceeded five percent.

Particle size and structure also has been found to affect reflectance.
The conclusions of several investigators (12,41,43) are that reflectance in-
creased with decreasing particle size. Reflectance also increased from those
soils displaying weaker structure.

Clay type has been found to affect reflectance (25,37,40,41). The type
of clay influences the shape and intensity of the spectral reflectance curve
in the 0.5 to 2.6 micrometer range (37). Hunt and Salisbury (25) studied
montmorillonite and kaolinite clays. They found the montmorillonite spectral
reflectance curve to have absorption bands at 1.4 and 1.9 micrometers due to
bound water. A weaker absorption band, possibly due to absorbed water, was
found at 1.16 micrometers. Absorption bands for kaolinite were noted at 1.4
and 2.2 micrometers, due to energy absorption by hydroxyl groups located on
the clay. Al-Abbas (1) found significant correlation between clay content
and spectral reflectance using stepwise multiple regression and polynomial
analysis. He was able to map five levels of clay content in a study area in
Tippecanoe County, Indiana.

Soil moisture has been found by numerous investigators to decrease the
amount of soil reflectance (7,12,14,37,48,61). The soil reflectance decreases




significantly with increasing soil moisture content due to darkening of soil
color and energy absorption.

Other physico-chemical properties have been found to be correlated with
soil reflectance. Montgomery (40), using multiple regression analysis, showed
that in addition to clay and organic matter, cation exchange capacity, silt,
and Fe203 were highly correlated with spectral reflectance. Mathews (37)
found that organic matter, silt and Fe203 influenced the intensity of energy
reflected by soils in the 0.5 to 2.6 micrometer range. Organic matter and
Fe)04 showed a particular influence in the 0.5 to 1.2 micrometer range.

All of the above research has been done in the laboratory using various
types of spectrophotometers with the intent of characterizing the reflectance
characteristics of soils, hence allowing better mapping of soils through remote
sensing techniques. Research in mapping techniques has ranged from image inter-
pretation to computer—aided analysis of multispectral digital data.

Image interpretation started with photographic products as described pre-
viously. Interpretation of non-photographic images, such as Landsat images,
has been a relatively recent innovation. Soil association maps of single
counties up to entire states have been produced with the aid of Landsat images
(34,57,68). Westin and Frazee (69) produced a soil association map of South
Dakota in approximately five weeks at a cost of $.02/hectare. Longlois, et al.
reported that a Landsat image was used as a base for a soil association map of
White County, Indiana. More recently, a parent material map delineating six
distinct parent materials was produced using a Landsat image as the main data
source (28).

Research into the application of computer-implemented pattern recognition
techniques for soil mapping has yielded promising results. Early work with
aircraft multispectral scanner data showed that such soil parameters as tex-
ture, color, moisture relationships, and soil types were distinguishable using
pattern recognition techniques (6,36).

Initial investigations were conducted with twelve channel scanner data
collected at aircraft altitudes. Mathews, et al. (36) found that limestone,
sandstone, and local colluvial soils could be separated with a high degree of
accuracy. Erosion classes were also separated to some degree. Kristof (30)
found that he could map six different categories of soil surface conditions
with reasonable accuracy and felt that these mapped soil categories would be
a great aid to professional personnel in soil mapping. His conclusions were
that observations of actual surface moisture, erosion, organic matter content,
and surface roughness factors would have greatly aided the interpretation of
the data. Cipra, et al. (15) found that spectral data collected along a twelve
mile aircraft flightline could be divided into three spectrally separable
classes. These three classes corresponded to some extent to management groups.
Cipra concluded, however, that a one-to-one correspondence between soil survey
mapping units and discriminable spectral classes is unlikely for glacial soils
of western Indiana.

Kristof and Zachary (31), using aircraft data, were able to identify
gross variations in soil features. Variations in soil tone could be seen as
well as features related to soil tone such as drainage patterns and organic
matter content. They did find problems in extending spectral training samples
from one area to another. Kirschner, et al. (29), in a study on a 430-hectare




gsite in Indiana, were able to differentiate soil drainage classes by digital
analysis of Landsat data. The conclusion was that correlation of drainage
characteristics with soil series allows for the composition of soil map units
to be accurately ascertained. Stoner and Horvath (60) found that organic
matter content, texture, color, and soil type could be displayed on a computer
map of classified aircraft data. Cultural practices such as plowing and disk-
ing as well as the amount and kind of vegetative cover were found to affect the
multispectral response of surface soils.

Recent work by Weismiller, et al. has shown that combining ancillary data
in the form of physiographic boundaries with the classified Landsat spectral
data can greatly enhance the usefulness of the spectral data (67). In this
study this technique allowed for a better correlation of soils with the spec-
tral classes.

Using the idea of combining ancillary data with spectral data, Kaminsky
(26) produced a spectral soil map of Jasper County, Indiana using computer-—
aided analysis of Landsat data. The county was divided into six parent material
areas through image interpretation of Landsat data and the final classification
done exclusively within each parent material area. Her conclusions are that
these parent material areas contribute to a more representative statistical
classification of a county spectral soil map. Drainage characteristics, tex-
tural differences, organic matter differences, erosion and scattered vegetation
were significant contributors to soil responses. In general, Kaminsky felt
that the spectral map produced could be used in the future county soil survey.

It appears, then, that remote sensing products can be a great aid in pro-

viding an additional tool for the soil survey process. Of particular promise
is the computer—aided analysis of digital Landsat data.

Accuracy Checking of Spectral and Soil Maps

In most instances the accuracy of spectral maps has been evaluated in
general ways by comparing spectral classes to broad land use classes. In
remote sensing of soils, the comparison was generally made by visually com-
paring a conventionally prepared soils map with the results of a spectral
classification.

More quantitative work has been attempted particularly in the area of
land use map accuracy determination. In most instances multistage sampling
procedures have been used to sample before and after the spectral classifica-
tion. This, along with several stages of subsampling using low and/or high
altitude photography and/or ground data acquisition was used to rapidly check
land use interpretation (63).

Stratified random sampling techniques have also been used as a means of
checking land use maps. In a study of a semi-arid area, van Genderen and
Lock devised a method to rapidly check a land use classification (63). Their
conclusions were 1) stratified random sampling is the most appropriate method
of sampling to use; 2) there is no established method for determining the
ideal number of sample points, hence they developed a special method to over-
come the problem; 3) size of the "sample point" should be established after
considering the minimum mapping unit and image resolution. For their investi-
gation, a 250m x 250m sample size was adopted as the size of the sample point.




Other studies have also attempted to quantify remotely sensed map accu-
racy. Hord and Brooner (23) investigated classification, boundary line place-
ment and control-point placement for land-use maps. They sampled one acre
points with replacement, ground checked them and related the results to the
photo-interpreters classification for a fifty-six square mile area. They
then could calculate a confidence interval for each land use class. Their
work was done with aerial photography.

Many investigators have researched means of checking the accuracy of
soil maps. The techniques used can be divided into three categories: 1) grid
sampling, 2) transect sampling and 3) area sampling.

Soil scientists in the United Kingdom often use grid sampling to check
the accuracy of their soils data. Webster and Burrough (64) sampled twenty
soil properties at 100 meter grid squares for two rectangular areas 1400 x
1400 meters in size. Beckett (8), in an overview of soil survey in Britain,
felt that it is desirable to measure soil properties in a grid survey particu-
larly because a non-professional staff could do the work. Beckett claimed
that, at scales of 1:500 to 1:2000, the surveyor can achieve 80 to 90% preci-
sion using the grid sampling technique.

Transect methods have also been used by numerous investigators. Tran-
sects are either randomly followed in the field, referred to as a free survey
by Beckett (8) or they are predetermined transects, i.e., one where the direc-
tion is set before the survey begins traversing the field. Predetermined
transects have been used to determine such things as kind of mapping unit,
intricacy of soil pattern, soil boundaries, and variation in soil parameters
(clay, pH, etc.)(9,10,11,64).

Powell and Springer (50) describe two methods of transecting: 1) the
line-intercept transect and 2) the point-intercept method. The line-intercept
is quicker if the mapper can recognize the kind of soil without boring into
it. The point-intercept method is needed if the soil boundaries are not
easily observable.

Powell and Springer describe the two methods as follows:

1) 1In the line-intercept method, the surveyor selects the direction of the
transects at random. Starting at one edge of the area he walks along a
straight line in a pre-selected direction, counting his steps. He notes
the number of steps taken at each boundary between kinds of soil and
records the number in a notebook. Upon reaching a pre-selected point,
or the far boundary of the study area, he stops, records the total number
of steps at this point, and selects at random the direction of his next
transect. . After several transects have been measured in this fashion,
the results are totaled and averaged to obtain the proportions of each
kind of soil.

2) In the point-intercept method, the surveyor first selects at random the
directions of his transects. Instead of counting steps and noting where
the soil changes, he stops at regular intervals such as every fifty steps.
At each stop, an auger boring is made and notes taken on the soil. After
a number of transects are made, the results are totaled and a proportion
of each soil determined.




In their study Powell and Springer used the point-intercept method to
transect sixteen randomly selected 160 acre blocks of land to determine the
composition and precision of classification of several mapping units. Amos
and Whiteside (2) used the same technique to determine the composition of
twelve mapping units in south-central Michigan. Transects were taken at
500 foot (152.2m) intervals with observation points at 250 foot intervals
(76.2m). They concluded that the naming of series could be refined using
this transect technique.

Hajek (22) in a study in Alabama used a random point-intercept method
for evaluation of relatively large mapping units (300 acres or greater). He
concluded that, at this level of mapping (order two or three--previously re-
ferred to as reconnaissance mapping), many mapping units in a survey area can
be characterized with less than ten transects at 807% confidence.

Thompson (62) used an offset lateral transect on six 160 acre test sites.
Transect lines were 528 feet apart as were the observation points. A soil
boring and a complete morphological pedon description were made for each of
the preselected observation points.

While the investigators mentioned have utilized the transect methods in
their studies, there has been some indication that this method might not be
adequate. White (70) calculated that for an area having an average soil map
delineation of thirty-two acres, at least 150 miles of transects would be
needed to accurately estimate the composition of one mapping unit. This would
make the time and cost needed to adequately estimate the composition of one
mapping unit prohibitive. Even if the average map unit size is significantly
smaller than thirty-two acres, it is obvious that the length of transects
needed for accurate determination of mapping unit composition is prohibitive.

MATERTALS AND METHODS

It was the object of this study to correlate the spectral soils classes
derived from Landsat data and the soils found county-wide. The ideal method
of doing this would, of course, be to check every data point at every soil
location, therefore arriving at a one-to-one correspondence. This is, how-
ever, an impossibility. The practical way of doing such a correlation is to
devise a county-wide sampling plan that will allow for sampling of soils and
spectral classes, hence extrapolating over the entire area. This technique,
by its very nature, approaches accuracy checking of soils and spectral maps.

Data

The spectral data used for this investigation was that collected over
Jasper County, Indiana. These data had been classified using computer-
implemented processors as described by Kaminsky (26). For a detailed dis-
cussion of the techniques used for the classification the reader is referred
to that work.

The Landsat data were collected 9 June 1973 at 10:00 a.m. local time at
an altitude of 3,588,090 feet. The data chosen for classification were rela-
tively free of vegetative cover, interfering clouds, and other undesirable
features.
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Photographic data were collected in May of 1976 at an altitude of 6000
feet. The resulting block of eighty-five photos were at a scale of 1:15,840.

Using these photos as a base, the Landsat data were rectified in a north-
south direction and precision registered to ground control points. The spec-
tral data were rescaled to 1:15,840 to make them compatible with the aerial
photography. When the scale was expanded, essentially a "rubber sheet stretch,"
holes appeared in the data. Extra data were created to fill these gaps. For
this set of Landsat data a cubic convolution resampling algorithm was used.
Kaminsky (26) described it as an algorithm where the intermediate data values
were calculated using a Lagragian third order equation that used a 4 x 4 matrix
or sixteen spectral points. On the curve of this equation intermediate data
values were plotted and used in expanding the scale. This method had the
effect of smoothing the image which could contribute to a somewhat less accu-
rate classification but would provide a more suitable map for soil mapping.
Classes that are very close spectrally could lose their distinctness because
of their calculated intermediate values. The final accuracy resulted in a
one foot error in 751 feet in the east-west direction and a one foot error in
1088 feet in the north-south direction. This represents a 0.17% error in regis-—
tration.

Since the rescaling of these data, a technique has been devised to in-
crease the scale of the final classification map by using an electrostatic
printer/plotter. This eliminates the need for rescaling the data prior to
classification.

Geology of Jasper County

While glacial deposits from the Kansan and Illinoian age cover all of
Jasper County, it is the effect of the Lake Michigan and Erie glaciers of the
early Wisconsin age that dominate the surficial geology of the county. Under-
lying all glacial deposits are tertiary and quarternary bedrock valleys which
are filled by quarternary debris. Coral reef domes, possibly of Silurean or
Devonian ages are evident in the western part of the county. These domes
sometimes occur within one or two feet of the surface (55).

Three distinct glacially deposited parent materials are present in
Jasper County: outwash, till, and lacustrine.

The outwash deposits found consist of assorted materials that were
deposited by rivers, streams, and lakes that were present during the glacial
period. These materials are mostly stratified sand and gravel. Sand ridges,
occurring in the northern section of the county were formed by the action of
the wind on the outwash material.

The glacial till is the non-assorted material deposited by the glacier.
It is generally a mixture of pebbles, sand, and clay and a few large stones.
There are three separations of till found in the county. These are: 1) rolling
moraine  comsisting  of undulating topography where the slopes are domi-
nantly 4-10%, 2) ground moraine area where Mollisol soils predominate and .
3) ground moraine area where Alfisol soils predominate. The ground moraine
areas are nearly level to gently sloping with slopes being less than 4%.
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The lacustrine area has typically flat topography. Shorelines of what
were the larger lakes are characterized by beaches, bars, and sand dunes.
The lacustrine soils are underlaid by clays and silts that are distinctly
stratified.

A unique area lies in the northeastern part of the county. In this
area both outwash and till have come together. This outwash over till area
is characterized by having an underlying material similar to the material
found in the rolling moraine area. Over the till, outwash deposits
of varying thicknesses occur. The result is that the area is predominantly
outwash on the surface but is interspersed with knobs of till material show-
ing through where the outwash material is thin. These knobs are generally
an acre or less in size.

Organic deposits are interspersed throughout the county, particularly
in the outwash areas. They were not extensive enough to be separated.

Classification of Spectral Data

Based on the results from a previous study Kaminsky stratified Jasper
County by parent material type and classified the spectral data within each
parent material area separately (26). The parent material map had been pro-
duced by image interpretation of the Landsat data and verified by field in-
vestigation. The lines separating the parent material boundaries were digi-
tized onto the Landsat data, hence allowing for isolation of the spectral
data by parent material type. The parent material map is presented in Figure 1.

The spectral data were then classified using computer-implemented pro-
cessors. The technique used consisted of sampling every fifth line and column
in each parent material area which represented about four percent of the spec-
tral data. These samples were analyzed by computer-aided statistical analysis
procedures. The resulting statistics deck was used as input to a classification
algorithm which classified the spectral data into spectrally separable classes
within each parent material area. The resulting classification was used as
the spectral map input to this study. For an in-depth description of the
parent material stratification and classification procedures, the reader is
referred to the work of Kaminsky (26).

Selection of Sample Areas

It was obvious that, due to temporal and fiscal constraints, a sampling
plan would have to be instituted. It was decided that a sampling system
similar to that used for the 1958-1960 Conservation Needs Inventory (CNI) of
the Soil Conservation Service should be employed. 1In that study, thirty-
three quarter sections (160 acres each) were randomly chosen throughout Jasper
County by the Iowa Statistics Laboratory. The location and old soil maps of
these areas were obtained from the Soil Conservation Service office at
Rensselaer, Indiana.

Initially, it was thought that the CNI mapping could be used as an addi-
tional source of soils data. However, field investigation revealed that many
of the CNI quarter sections did not contain the detail desired in this study.
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Parent Materials of Jasper County.
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In addition, different names of the soils were used when this mapping was
done, hence making the conversion to current soil names difficult and unre-
liable. TField and soil conditions were not evident on the CNI maps, there-
fore eliminating any means of hypothesizing the differences in soil spectral
responses.

A random selection of quarter sections to be mapped was performed in the
southern and northern part of the county. To make the sampling area more
complete some of the quarter sections that had been selected for the CNI
study were selected for remapping. All areas mapped are shown in Figure 2.
The total area mapped in this study was 4480 acres which is approximately
1.25% of the county. Table 1 shows a breakdown of quarter sections sampled
by parent material area. :

Table 1. Acreage of Quarter Sections Sampled.

Parent Material Area Approximate Acreage Percent
Acreage Mapped

Outwash 202,040 1600 0.79

OQutwash over till 26,880 . . 480 1.79

Rolling '

moraine 35,840 480 1.34

Lacustrine 63,360 960 1.53

Ground moraine

Mollisol soils 16,640 640 3.85

Ground moraine

Alfisol soils 14,080 320 2.27
TOTAL 358,840 4480 1.25

The low percentage for the outwash area occurred because of the rela-
tively high amount of acreage of the outwash in the county. The high percen-
tages for the two ground moraine areas occurred because these areas are rela-
tively small; yet it was felt that at least two quarter sections should be
mapped for each parent material area.

Once the areas were located on the photos, they were located on the
spectral map. This was accomplished by locating the approximate area of the
quarter section on the gray scale map, noting the line and column coordinates
and printing this portion of the map. This map was then overlaid onto the
appropriate photo and the boundaries of the quarter section precisely located
on the Landsat data. This was done by comparing distinctive vegetative fea-
tures, man-made features, and soil patterns.

Collection of Soils Data

The spectral soils information was, as previously indicated, a fixed
factor. The soils information gathered was to be compared to this spectral
data for correlation of the soil spectral classes with actual soils. Two
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areas were investigated to determine the proper technique for gathering soils
information and relating it to the spectral map. The first was to review the
work of others in testing the accuracy of spectral classifications. The second
was to explore those techniques that have been applied to checking the accuracy

of soils maps.

None of the accuracy checking studies that have been done by other inves-
tigators, as reviewed earlier, were suited to this investigation. The methods
employed for land use map accuracy checking were either too general, being a
visual comparison only, or if quantitative, were not applicable to soils since
the land use maps were dealing with relatively large areas.

In this study an initial investigation of soil map accuracy checking was
made using both the line- and point-intercept transect methods. The grid
survey method was rejected because it was felt that this method would not
adequately represent the diversity of soils found in Jasper County.

The line-intercept method was tested on a 160 acre tract of land in the
outwash area. The transects were parallel and spaced 500 feet apart, with the
direction randomly determined before going into the field. This method was
rejected after the initial investigation due to difficulty in noting the
differences in the soils solely from the surface features.

The point-intercept transect method was also investigated. 1In this study
the transects were again parallel (500 feet apart) and randomly oriented. The
observation points were taken at 250 foot intervals along the transect lines.
After field testing, it was felt that this method also was not adequate for
correlation of soils to the Landsat spectral map for the following reasons:

1) the Landsat data have the characteristics of separating small differences
which may be important soil characteristics but may not be noted in a tranmsect
sampling scheme, 2) due to lack of ground control points in some areas the
transects could not be located accurately enough on the ground, hence leading
to significant error, and 3) even if the transects could be located accurately
on the ground, they could not be accurately correlated to the corresponding
area of Landsat data. This is complicated by the fact that the Landsat data
are only registered to within one foot in 751 feet in the east-west direction
and one foot in 1088 feet in the north-south direction (a 0.1% error).

The method of free survey, or conventional mapping techniques, and area
sampling were employed in this survey. The free survey consisted of walking
in a random direction over each 160 acre plot, making soil borings where
needed and drawing boundaries on a black and white aerial photo. In addition,
the spectral map for the area of concern was used to locate areas displaying
a unique spectral class. This method, while lacking the ability for quanti-
fication, allowed for sampling the largest area in the shortest amount of
time. Specifically, the methodology used for gathering the soils data was:

1) Randomly choose the quarter section from those shown on Figure 2.

2) If the quarter section was one of the reselected CNI sections, a
brief check was made of the previous mapping. If there were any
discrepancies between those soils mapped in the CNI and what was
in the field, the CNI mapping was rejected.
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3) An aerial photo (from the 1976 photo block) and the corresponding
spectral map were taken to the field. The mapping was done by an
experienced SCS soil scientist and the author.

4) The soil series mapped were recorded on the photo and notes made of
any differing situations in the field that could affect spectral
response.

5) The field mapping and notes were brought back to the office, a
final map inked, and an appropriate legend made.

While the majority of the mapping was conventional soils mapping, it
was in much more detail than is typical for this area of Indiana where an
average of 250-300 acres per day can be mapped. The average rate of mapping
is, therefore, 275 acres/day/man. By comparison, the rate of mapping in this
study was 160 acres/day/two men or 80 acres/day/man. This is a much slower
rate than typical, but it was felt that the accuracy was much better. In
addition, areas smaller than three acres are generally ignored in typical
field mapping. In this study such small areas were, where practical, delin-
eated.

Determination of Percent Soils for Each Spéctral Class

7 Various ways were considered for quantifying the amount of soils within
each spectral class. Counting picture elements, or "pixels," in a study such
as was conducted here encounters a few problems. First, in some instances,
the pixels will fall on a boundary line, therefore, raising the question of
whether or not to count these points. Secondly, by counting pixels and re-
lating them to a soil, the soil is defined as a group of spectral classes
rather than defining a spectral class as a group of soils. Based on these
problems this method was rejected.

Another method was to draw boundaries on the spectral map and compare
them to the soils map on the basis of relative area. This was not done
because of the difficulty of accurately computing acreages on small areas
and also because of the difficulty of comparing the areas outlined on the
spectral map with those areas on the soil map.

The method used was to draw a boundary around each spectral class on the
map (Figure 3). These boundaries were then transferred to a clear acetate
sheet as represented by Figure 4. This acetate sheet was then overlaid on
the soils map that was made by the field survey. A dot grid (64 dots per
square inch) was overlaid on both of these sheets (the soil map and acetate
sheet). Overlaying of the grid was random in orientation. A dot count of
each soil occurring within a spectral class was made. An example is presented
in Table 2.

In this example, the darkest soil class, soil 7, is represented. As
overlaid on the soils map it is obvious that four soils are present: Chelsea,
Starks, Mahalasville, and Rensselaer. The dot grid count reveals a total of
thirty-one dots occurring within this spectral class. Of these dots, five
are Chelsea, four are Starks, three are Mahalasville and nineteen are Rensse-
laer. The breakdown of the spectral class for this quarter section is shown
(Table 2). The breakdown by drainage would be: 71% poorly drained, 137%
somewhat poorly, and 167% well drained. The soil map for this area is shown
in Figure 5.




ok
EBEY

N+ SHTHITETE il

Figure 3.

Figure 5.

GG 3
TR TE b e R
NP EEETER

v
106 04S0il 1

A s

1.»sw;&
'R EE A
5‘!:&9:”"’

Soil 2
f:iff*ﬁ’stll 3

Soil 4

—"JYJJ"V
Ef‘fVJ::)P)"

W o
g s SotL

u“

¢ \ N o
\\\&: :\\ Soil 6

AamR Soil

~1

VE¥EY
yyyvy Vegetation

Spectral map of T28N, R7W, Sec. 33, SE4.

it}

Legend

AlA - Alvin, 0- 2% slope
Ch - Chelsea

Gf - Gilford

Ma - Mahalasville

Rr - Rensselaer

St Starks

Soil map for T28N, R7W, Sec. 33, SEL%.

17




U

Soil 2

O
O
o
Soil 1
@]
O
R
) VAN

LS

(| <ol _
P

Soil 3

Soil 4

?F%/ID@ o:j@
R

Soil 5

Soil 6

Figure 4. Soil Spectral Classes As Delineated by Boundaries.




2
2]

Soil 7

Figure 4. (Continued).

19

.

Vegetation




20

Table 2. Example Dot Grid Count.

Soil Class Well Drained | Moderately Somewhat Poorly Total
Well Drained Poorly Drained
Drained
Soil 7 Chelsea:5 Starks:4 Rens:19
Mahal:3
Dots % Dots % Dots % Dots 7 Dots
5 16 - - 4 13 22 171 31

This technique was employed for every quarter section in every parent
material area. The dot counts were grouped for those quarter sections in
each parent material area and relative percentages calculated. Other compari-
sons and calculations were made on the basis of these dot counts.

The results of the grouped dot counts are presented in tables in the
discussion of each parent material area. Comparisons of all soil spectral
classes are made within each parent material area. Due to the subjective
nature of the soil sampling technique as well as the inherent variability of
soils, statistical analysis procedures were not employed in the study.

RESULTS AND DISCUSSION

A total of twenty-eight quarter sections were mapped in detail by the
methods described previously. These areas represented a total of 4480 acres,
approximately 1.25% of the county. The results of this mapping are shown on
representative quarter sections for each parent material area.

In the discussion of each parent material area, a table showing the
summed results of the grid count is presented as is a legend for each spec-
tral class. Possible combinations of soil spectral classes representing
similar soils are presented. These combinations are made by displaying the
distinct soil spectral classes with the same pattern.

The soils were grouped by their internal drainage classes as defined
in Table 3. 1In all spectral classes soils of differing drainage classes
were found although one drainage class predominates. This should be expected
since even in the conventional field mapping of soils, inclusions of differing
drainage classes are typically found within the named mapping unit.

It does not appear from this study that soil series can be consistently
separated using spectral data on a county-wide basis. However, if the internal
drainage of the soils of an area can be ascertained and the parent material
of this area known, a group of soil series can be predicted. This does, in
fact, seem to be a possibility.

The general trend for all soils spectral classes was for the poorly
drained soils to have a lower magnitude of reflectance. This can best be
seen by comparing the graphs of percent composition versus soil spectral
class that accompany the discussion of each parent material section.
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Table 3. Guide for determining natural soil drainage class.

Overall Appearance
of the Diagnostic

Zone When Moist
(Ped Coatings)

Closer Examination
of Diagnostic Zone
(Ped Interiors)

Drainage
Class

A. Soils with ten inches or more of dark-colored surface.

Gray
colors

Gray or brownish
colors

Brownish
colors

B. Other soils.

Gray
colors

Gray or brownish
colors

Brownish
colors

Gray colors predominate in the Poorly
6-inch layer below dark-colored Drained
soil material.

Brownish colors predominate in Somewhat
the 6-inch layer below dark- Poorly
colored soil material, but gray Drained
mottles are present.

Brownish colors with few or no Moderately

gray mottles in the 6-inch layer Well
below dark-colored soil material, Drained
but with gray mottles above 30

inches.
Brownish colors below dark soil Well
material with few or no gray Drained

mottles above 30 inches.

Gray colors predominate in the Poorly

10 to 18 inch layer. Drained
Brownish colors predominate to Somewhat
10 to 18 inch layer, but gray Poorly
mottles are present. Drained
Brownish colors with few or no Moderately

gray mottles in the 10 to 18 Well
indh layer, but with gray mottles Drained
between 18 and 30 inches.

Brownish colors with few or no Well
gray mottles between 10 and 30 Drained
inches.

Note: The term 'gray mottles'" means that more than 2% of the soil
material is gray. (From: Understanding and Judging Indiana
Soils. ID-72 Pilot, Agronomy Dept., Purdue University.

March 1978.)
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Various confusion factors were also noted in this study. At least one
soil-vegetation confusion class was noticed for each parent material area. A
soil-vegetation confusion class can be defined as a spectral grouping where
the reflectance characteristics of vegetation have been mixed with the re-~
flectance characteristics of soils. These confusion classes are likely to
occur in one or both of two ways. i

The first way is that the area used as a training area for the spectral
statistics may have been planted and the crops were just beginning to emerge.
An example using corn is presented in Figure 6a where the corn is four to six
inches high. 1If it was this way during the Landsat overpass, the vegetative
cover of these corn plants would not mask the soil spectral response but
would influence the spectral response of the area. An example of this can
be seen by comparing the graph of two spectral soils classes of the outwash
over till area (Figure 7). The statistics for the four Landsat bands are
presented in Table 4 for comparison. Notice that the total magnitude of
the two soils is almost identical. When graphed, however, the curves appear
very different. Soil 3 has the depression in channel 2 (0.60-0.7um) and ele-
vation in channel 3 (0.7-0.8um) which is characteristic of the spectral re-
sponse of vegetation. Figure 7 presents the curve for the two soils and a
vegetation response curve.

Table 4. Relative spectral magnitudes.
Band {(um)

Spectral Class 0.5-0.6 0.6-0.7 0.7-0.8 0.8-1.1 Total
Soil 3 39.33 34.50 46.85 22.71 143.39
Soil 4 41.87 40,19 41.80 19.16 143.01
Vegetation 40.49 35.93 53.12 27.10 156.64

The second way that a soil-vegetation confusion class could occur is
because of "mixed pixels." This term can best be defined as a pixel result-
ing from a situation where the resolution element of the satellite falls on
a boundary of a vegetation class and a soils class. The illustration below
represents a hypothetical situation.
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Figure 6a. Emerging corn.

Figure 6b. Edge vegetation.
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It can be seen that the resulting resolution element (or pixel) would
actually be an average of a vegetation and a soil spectral response.
The resulting spectral curve would be similar to that described before. An
illustration noted in the field is shown in Figure 6b. - It is believed that
both of these situations contributed to the soil-vegetation confusion classes
found.

In all parent material areas the soil-vegetation confusion classes are
described. A reclassification of specific areas was made using statistics
where these soil-vegetation confusion classes were eliminated. An analysis
of the percent of change of these classes is made. Over the entire classi-
fication, however, it is recommended that these confusion classes be main-
tained because it is felt that they may offer some useful soil information
when used in the field, particularly when interpreting boundaries. Strict
interpretation of these soil-vegetation confusion classes should, however, be
avoided. It also seems from the analyses made that the soil-vegetation classes
are not consistently reclassified into only one of the remaining soil classes
but reclassified into several of the remaining classes.

Surface conditions were also found to influence the spectral response of
the soils. Such conditions as a sandy surface, recent disking versus a crusted
soil, extreme moisture, and an exposed subsurface were all noted in the field
investigation and are likely influences in the soil spectral response. De-
tailed discussion of specific examples is presented later.

There is one combined vegetation class for the entire classification.
Soils are associated with this vegetation class, but no consistent association
occurs. Those areas covered by vegetation must, therefore, be field checked
for accurate interpretation of the soils. It would appear possible, however,
that if an association of soil and vegetation could be arrived at, soils could
be mapped by mapping vegetative classes.

Outwash

Table 5 indicates the percentage make-up of the soils spectral classes
for the outwash area. Outwash soils include approximately 202,040 acres
representing 56.3% of the entire county. The graph of the soil spectral
curves is shown in Figure 8.

In this area the equivalent of ten quarter sections was mapped. Eight
of these quarter sections were contiguous and mapped as entire sections. The
area sampled was 1600 acres in extent and represented 0.79% of the total area
of outwash soils. The following legend is presented for the eight spectrally
separable soil classes and the one combined vegetation class. No separate
class was developed for water; therefore, water bodies are classified as
Soil 9.

Soil 1 ~ This spectral class indicates predominantly excessively
drained and well drained soils. Those soils sampled were Plainfield,
Chelsea, and Oshtemo. Significant inclusions of somewhat poorly
drained soils (Morocco, Brady, Tedrow) and very minor inclusions of
very poorly drained soils (Maumee) are found.
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Table 5- Dot grid count for outwash area.
Class ED - WD SPD VPD T
Ch: 2 Bb:15 Md: 3
Os: 3 Mr: 8
Soil 1 | Pn:31 Td: 4 66
D % % D % D %
36 55 27 41 4
Pn:20 Bb: 4 Gf:24
Db:21 Md: 3
Soil 2 Mr: 1 Rr: 4 91
Td: 7 Sb: 2
Wk: 5
D A A D % D %
20 22 38 42 33 36
Pn: 6 Gf: 8
Md: 2
Soil 3 24
D % % D % D %
6 25 33 10 42
Pn: 5 Db: 6 Gf:140
Mr: 4 Md: 13
Soil 5 168
D % % D % D %
3 10 153 91
Mb: 3 Mr: 8 Gf:190
Pn: 8 Sa:12 Ho: 6
Md: 24
Soil 6 Rr: 7 259
Sa: 2
D % % D % D %
11 4 20 8 228 88
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Table 5. (Continued).
Class ED - WD MWD SPD VPD T
Mb: 4 Bb:10 Gf:134
Pn: 2 Db:10 Md: 16
Mr: 2 Mu: 24
Soil 7 Rr: 14 221
D % D % D % D y4
6 3 22 | 12 | 188 | 85
Mr :10 Ad: 9 Rr:21
‘ Gf:142 Sb:23
Ho: 7
Soil 8 Md: 26 254
Mu: 16
D % D % D % D %
T 10 4 244 96
Db:11 Ad: 5
Gf:576
Md: 21
Soil 9 Mu:125 846
Rr: 66
Shs: 22
D 7% D % D % D YA
11 1 835 99
Pn:53 Be:14 Bb: 2 Gf:271
Mr: 38 Mau: 7
Sb: 3
Veg 388
D % D A D % D %
53 14 14 40 10 281 72
Total 137 22 183 1975 2317




Table 5. (Continued) .
Soil Key
Ad Adrian
Bb Brady
Be Brems
Ch Chelsea
Db Darroch
Gf Gilford
Ho Houghton
Mb Martinsville
Md Maumee
Mr Morocco
Mu Mussey
Os Oshtema
Pn Plainfield
Rr Rensselaer
Sa Seafield
Sb Sebewa
Td Tedrow
Wk Whitaker
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Table Key

excessively drained
well drained
moderately well drained
somewhat poorly drained
very poorly drained
Total

Dots
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Soil 2 - This spectral class is dominated by somewhat poorly drained
soils including Whitaker, Morocco, Darroch, Brady, and Tedrow. The
poorly drained soils are also present as significant inclusions (Gil-
ford, Rensselaer, Maumee, Sebewa). The excessively drained soils are
also (Plainfield) significant inclusions. :

Soil 3 - This spectral class is dominated by the very poorly drained
soils including Gilford and Maumee. Significant inclusions of moder-
ately well drained Brems and excessively drained Plainfield are apparent.
This class is a soil-vegetation confusion class.

Soil 5 - This spectral class is dominated by the very poorly drained
soils. Those soils sampled were Gilford and Maumee. Minor inclusions
of somewhat poorly drained soils (Darroch, Morocco) and excessively
drained soils (Plainfield) are also found.

Soil 6 - This spectral class is dominated by the very poorly drained
soils including Maumee, Gilford, Sebewa, Houghton, and Rensselaer.
Minor inclusions of somewhat poorly drained Morocco and Seafield and
well drained Martinsville and excessively drained Plainfield occur.
This class is a soil-vegetation confusion class.

Soil 7 - This spectral class is predominantly very poorly drained soils
including Gilford, Maumee, Mussey and Rensselaer. Minor inclusions of
somewhat poorly drained soils (Morocco, Darroch, Whitaker and Brady)

are found. An extremely small percentage of well drained and excessively
drained soils (Plainfield, Martinsville) were found as inclusions.

Soil 8 - This spectral class is predominantly very poorly drained soils
including Mussey, Gilford, Maumee, Houghton, Rensselaer, Sebewa and
Adrian. Very minor inclusions of the somewhat poorly drained Morocco
were sampled. This class is a minor soil-vegetation confusion class.

Soil 9 - This spectral class is predominantly very poorly drained soils.
Soils sampled included Gilford, Mussey, Rensselaer, Maumee, Sebewa and
Adrian. Very minor inclusions of the somewhat poorly drained Darroch
were also found. Water is most likely to fall into this spectral class.

Vegetation - The vegetation class is predominantly poorly drained soils
including Gilford, Sebewa and Maumee. Inclusions of excessively drained
(Plainfield), moderately well drained (Brems) and somewhat poorly drained
(Morocco, Brady) were sampled.

Discussion

Soils 1 and 2 appear to be the only distinct soil groups when grouped
by drainage classes. Soil 1 is predominantly well or excessively drained
while Soil 2 is predominantly somewhat poorly drained. Soils 3 through 9
are all predominantly very poorly drained soils. Of these classes Soil 3
and Soil 6 are soil-vegetation confusion classes. This was noted here and
in all other parent material sections in two ways: (1) by the spectral
curve as described earlier and (2) by the spatial association with known
vegetative classes. Soil 8 is also somewhat of a soil-vegetation confusion
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class but is of only minor importance. It has been noted that this spectral
class has been confused with coniferous vegetation. This is not a serious
problem because of the lack of coniferous vegetation in Jasper County. It

is recommended that where known coniferous vegetation occurs (i.e., from
aerial photography), investigation should be made into that area to determine

what soil actually occurs there.

Soil 5 is predominantly very poorly drained soils but contains a large
percentage of borderline somewhat poorly drained soils. Soils 6,7,8 and 9
are all predominantly poorly drained soils. :

Figure 9 indicated the trend of drainage class versus relative magnitude.
As the magnitude of spectral response decreases, the percent of well drained
soils decreases and the percent of very poorly drained soils increases.

Soil 3, a soil-vegetation confusion class shows a broad range of percen-
tages for soils of different drainage classes (Figure 10).

The vegetation class shows soils represented in all drainage classes
with those soils in the very poorly drained class being represented in the
greater percentage.

On the basis of the analysis presented it appears that certain spectral
classes can be combined because of similarity in soils composition. Figure 12
displays the three suggested combinations for T32N, R6W, Sec. 12, SE%. Combi-
nation one is actually no combination. Combination two displays soils 6 and 7
similarly and soils 8 and 9 similarly. Combination three displays 5,6 and 7
and 8,9. Figure 1lla shows the soil map. '

It appears that combination two best represents the actual soil condi-
tions for this area. There is not much difference, however, between combina-
tion one and combination two. Combination three results in too great of a
loss of soil information. It may be best in this parent material area, as
well as the other areas, to suggest which spectral classes are to be com-
bined but to leave them distinct on the map. These suggested combinations
can then be made at the discretion of the soil surveyor.

Figure 13 of T28N, R6W, Sec. 33, NE%, a quarter section not mapped in
this study, indicates that combination two is again the best for an inter-
pretive map (assuming the field mapping is correct). The soil-vegetation
confusion classes 3 and 6 appear to be a problem on this area. The Whitaker
soil (Wk) is represented as soil 6, a predominantly poorly drained soil in
the southwest corner of the quarter section. The relatively large area of
soils 1 and 2 in the northeast part of the quarter section does not seem to
represent what is mapped in the field. The soil pattern on the photo
(Figure 11b) does seem to fit better to the spectral map. In this case,
an error in mapping is possible.

Figure 14 is a reclassification of T32N, R6W, Sec. 12, SE% eliminating
soil-vegetation confusion classes 3 and 6. Likewise Figure 15 is a reclas-
sification of this quarter section eliminating soils 3,6 and 8. The results
are presented below (Table 6).

This analysis presents situations that may occur when eliminating soil-
vegetation confusion classes. They may, if strongly influenced by vegetation,
be dominantly reclassified as vegetation. This appears to be the situation
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Figure 1la. Soil map of T32N, R6W, Sec. 12, SEL.

Legend 2

Br - Brookston

Mb - Martinsville

Mb B2 - Martinsville,
2-6%, moderately eroded
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Rr - Rensselaer

Wk - Whitaker

Figure 11b. Soil map of T28N, R6W, Sec. 33, NEL.
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Table 6. Soil-vegetation analysis, outwash.

Soil-vegetation Total Points Points after

Confusion Class in % Section Reclassification % Change

24 to vegetation 83%

3 29 5 to soil 1 17

11 to vegetation 69

6 16 5 to soil 5 31

4 to vegetation 40

2 to soil 2 20

8 10 1 to soil 5 ' 10

1 to soil 7 10

2 to soil 9 20

with soils 3 and 6. However, if the soil-vegetation confusion class is pre-
dominantly soil, it will be reclassified as such. Soil 8 is an example of
such a situation. A problem arises with soil 8, however, in that those
pixels reclassified as soil are separated broadly into four soil classes.

An analysis of all the soil-vegetation confusion classes for all six parent
material areas and suggested reasons and solutions will be presented later.

It appears that soils 3 and 6 are predominantly vegetation and soil 8,
while influenced by vegetation, also represented a wide range of soil classes.

Outwash Over Till

Table 7 indicates the relative percentage of soils for each spectral
class for the outwash over till area. This area includes 26,880 acres repre-
senting 7.5% of the entire county. The graph of the spectral responses for
the soil classes is shown in Figure 16.

In this parent material area three quarter section (480 acres) were
mapped, representing 1.79% of the outwash over till area. The composition
of the eight spectrally separable soil classes and the one all-inclusive
vegetation class follows. Water is classified as soil 7.

Soil 1 - This spectral class predominantly represents the somewhat

poorly drained soils (Whitaker, Morocco). Inclusions of excessively
drained soils (Chelsea) and moderately well drained soils (Brems) are
present.

Soil 2 - This spectral class is dominated by the somewhat poorly drained
soils (Whitaker, Tedrow, Seafield, Morocco, Brady). Inclusions of ex-
cessively drained (Plainfield, Chelsea) and moderately well drained
soils (Brems) are significant. The very poorly drained soils (Rensse-
laer, Gilford, Maumee) are relatively minor inclusions.

Soil 3 - This spectral class is dominantly very poorly drained soils
(Rensselaer, Maumee, Muskego, Houghton) with an almost equal represen-
tation of somewhat poorly drained soils (Tedrow, Whitaker, Seafield,
Morocco). Moderately well drained soils (Brems) represent only minor
inclusions. This spectral class is a soil-vegetation confusion class.
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Table 7. Dot grid count for outwash over till.
Class ED - WD MWD SPD VPD T
Ch: 4 Be: 3 Mr: 2
Wk:13
Soil 1 22
D % D % D % D %
4 18 3 14 15 68
Ch: 5 Be: 11 Bb: 1 Gf: 1
Pn: 8 Mr: 4 Mu: 1
. Sa: 1 Rr: 3
Soil 2 Td: 9 : 72
Wk:28
D % D % D 7% D %
13 18 11 15 43 60 5 7
Be: 3 Mr: 9 Ho: 4
Sa: 1 Md: 7
. Td: 3 Mu: 3
Soil 3 Wi: 3 Rr: 7 43
D % D % D % D A
5 19 45 21 50
Ch: 4 Be: 3 Mr: 7 Ho: 4
Sa: 1 Mu: 5
» Td: 2
Soil 4 | Wk:33 59
D % D % D % %
7 5 43 73 15
Ch: 1 Be: 2 Mr: 2 Gf: 1
Sa: 2 Md:10
Wk: 8 Pb: 7
Soil 5 Rr:79 124
Mu:12
D % D % D % D %
1 1 2 1 12 10 109 88
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Table 7. (Continued).

Class ED - WD MWD SPD VPD T
Mr: 1 Gf: 1
Md: 13
Soil 6 Pb: 26 176
Pk: 2
Rr:133
D % D % D % D A
1 AT 1 175 99
Mr: 2 Ad: 9 Rr:21
Ho: 16
Md: 3
Soil 8 Mu: 41 93
Pk: 3
D % D % D % D %
| 93 | 98
Gf: 3
Ho: 28
Soil 7 Mu: 10
Pk: 9 77
Rr: 27
D % D % D % D %
77 100
Ch: 2 Be: 19 Mr: 35 Ad: 5
Ph: 6 Sa: 1 Gf: 10
Veg Ho: 3 136
Md: 54
% D % D % D %
6 19 14 36 26 73 54
Total 30 41 169 562 802




Table 7. (Continued).
Soil Key
Ad Adrian
Bb Brady
Be Brems
Ch Chelsea
Gf Gilford
Ho Houghton
Md Maumee
Mr Morocco
Mu - Muskego
Pb Palms
Pk Patton
Pn Plainfield
Sa Seafield
Td Tedrow
Wk Whitaker

ED
WD
MWD
SPD
VPD
T

D

Table Key

excessively drained
well drained
moderately well drained
somewhat poorly drained
very poorly drained
Total

Dots

43
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Soil 4 - This spectral class represents somewhat poorly drained soils

(Morocco, Whitaker, Seafield, Tedrow). Very poorly drained soils make
up relatively significant inclusions (Houghton, Maumee). Excessively

drained soils (Chelsea) and moderately well drained soils (Brems) make
up minor inclusions.

Soil 5 - This spectral class is dominantly very poorly drained soils
(Muskego, Rensselaer, Palms, Maumee, Gilford). Some inclusions of
somewhat poorly drained soils (Seafield, Morocco, Whitaker) are apparent.
Other inclusions of well drained and moderately well drained soils are
minor.

Soil 6 - This spectral class is dominantly very poorly drained soils
including Palms, Maumee, Gilford, Rensselaer, and Patton. Inclusions
of somewhat poorly drained soils (Morocco) are minor.

Soil 8 - This spectral class is dominantly very poorly drained soils
(Rensselaer, Patton, Maumee, Muskego, Houghton, and Adrian). Very minor
inclusions of somewhat poorly drained soils (Morocco) are apparent.

Soil 7 - This spectral class is entirely very poorly drained soils (Gil-
ford, Maumee, Houghton, Adrian).

Vegetation - The vegetation spectral class is dominantly very poorly
drained soils but represent significant inclusions of soils of other

drainage classes.

Discussion

This area has an extremely complex mottled surface pattern caused by
the interspersed knobs of till as described before. This pattern made detailed
field mapping difficult since very small inclusions could not be separated.
Similarly, the mottled pattern may have influenced the spectral map because
of an averaging effect (described later).

The general trend of the increasing percentage of very poorly drained
soils with decreasing magnitude is apparent here as is the trend of decreasing
percentage of well and excessively drained soils with decreasing magnitude
(Figure 17).

None of the spectral classes in this classification were dominated by a
well drained class. Soil 1 and 2 have significant inclusions of excessively
and moderately well drained soils but are dominated by somewhat poorly drained
soils. This may be due to an averaging effect as described below.

As can be seen from viewing the picture of the sample'quarter sections
(Figure 18a) the soil pattern is mottled, interspersed with light and dark
soils. Due to the size of the resolution element of the Landsat satellite
an averaging effect of the light (well drained) and dark (poorly drained)
soils is likely. The result would be a soil curve with an intermediate
value that would appear similar to the magnitude of a somewhat poorly drained
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soil. This seems to be tne case 10r soils 1,< and 4. Figure 18b shows the
field view of an arca where such uan averaging effect mav occur.

Soil 3 is a soil~vegetation confusion class. The graph of the spectral
curve is shown in Figure 19. This soil should not be taken as a strict soil
information class.

Soils 5,6,7 and 8 are all dominantly very poorly drained soils. Soil 5
has significant inclusions of soils represented by other drainage classes.

L vegetation class is predominantly very poorly drained soils as it
was in the outwash area described previously. Soils of all drainage classes
are represented however.

On the basis of the analysis presented, certain of the soil spectral
classes can be combined. Combination one represents no combination. Com-
bination two represents a combination of soils 1 and 2 together and soils 6,

7 and 8 together. The results of these combinations are presented in Figure 20.
Mapped photos are Figures 2la and 21b.

When compared to the field mapping, it appears that for T30N, R6W, Sec. 24,
SW% (mapped in this study) combination two results in no loss of information
and, in fact, makes the spectral map easier to interpret. When a comparison
of the spectral map and the CNI mapped quarter section (Figure 22)(not mapped
in this study) is made, combination two also appears to be the best of those
combinations considered.

Soil 3, the svil-vegetation confusion class, was eliminated and T30N,
R6W, Sec. 24, SW: was reclassified. The resulting spectral map is shown in
Figure 23. The results are below (Table 8).

It appears that soil 3 is predominantly vegetation. Combination of the

soils classes as described before can also be used if the soil-vegetation
confusion class is eliminated.

Table 8. Soil-vegetation analysis, outwash over till.

Soil-vegetation Total Points Points after
Confusion Class in % Section Reclassification 7% Change
16 to vegetation 59
3 27 6 to soil 4 22

5 to soil 5

Rolling Moraine

Table 9 indicates the relative percentage of the soil spectral classes
for the rolling moraine area. These soils include approximately
35,840 acres, representing 10.0% of the entire county. The graph of the
relative spectral responses is shown in Figure 24.
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Legend 1

Pn - Plainfield
Rr - Rensselaer

Wk - Whitaker

Figure 2la. Soil map of T30N, R6W, Sec. 24, SWi.

Legend 2

Db - Darroch
Ho - Houghton
Md - Maumee

Rr - Rensselaer

Figure 21b. Soil map of T30N, R5W, Sec. 7, SEL.
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Table 9. Dot grid count for rolling moraine.
Class ED - WD MWD SPD VPD T
Mb:23 Wk:15
4 Mn: 2
Soil 1 Pn: 2 42
D % D % D % D %
27 64 15 46
Mb:15 Cc:3 Wk:23 Rr:2
Mg: 4 ‘
Soil 2 Mn: 4 52
Pc: 1
D A % D % %
24 46 3 6 23 44 2
Mb: 5 0od: 1
Mn: 3 Wk: 1
Soil 3 | Pc: 2 ' 12
D % D % D % D %
10 83 2 17
Je: 2 Cc:5 Au: 2 Pk:3
Mn: 4 Co:1 Db: 1 Rr:9
Soil 4 | Pc:15 od: 2 51
Sp: 1 Wk: 6
D % D % D % D A
22 43 6 12 11 22 12 23
Mb: 2 Fr:2 0d:11 Rr:2
Pc: 4 Wk: 1 Wo:5
Soil 5 27
% D % D % D %
6 22 2 8 12 44 7 26
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Table 9. (Continued).
Class ED - WD MWD SPD VPD T
Mb: 2 Cc:4 0d: 8 Pk:21
Mn: 1 Fr:3 Rr:13
Soil 6 Pc:20 Wo: 6 78
D 7% D % D % D %
23 29 7 10 8 10 40 51
Ay: 3 Cc:2 0d:16 Br:14
Mb: 1 Fr:2 Pk:14
Soil 7 Pc:13 Rr:13 78
D % D % D % D %
17 22 4 16 21 41 53
Pc: 1 Fr:2 0d: 6 Br:14
Pk: 1
Soil 8 Rr:10 34
D 7% D 7% D % D %
2 6 18 25 74
Ay: 1 Fr:6 Db: 2 Br:37
0d:16 Ho: 2
Pk:32
Soil 9 Rr:17 111
D % D % D % D %
4 7 18 16 86 77
Br:16
Pk: 2
Soil 10 Rr: 5 28
D % D % D % D %
28 100
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Table 9. (Continued).

Class ED - WD MWD SPD VPD T
Mb: 2 0d:9 Br:16
Mg: 2 Pk: 2

Veg Mn: 20 Rr: 5 66

D 7% D 7 D % D yA
34 52 13 23 35

Total 165 30 120 264 579

Soil Key Table Key

Au - Aubbeenaubbee ED - excessively drained

Ay - Ayr WD - well drained

Br - Brookston MWD - moderately well drained

Cc - Celina SPD - somewhat poorly drained

Co - Corwin VPD - very poorly drained

Db - Darroch T - Total

Fr - Foresman D - Dots

Jc - Jasper

Mb - Martinsville

Mg - Metea

Mn - Miami

0d - 0dell

Pc - Parr

Pk - Patton

Pn - Plainfield

Rr - Rensselaer

Wk - Whitaker

Wo - Wolcott
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In this parent material area, four quarter sections were mapped. This
corresponds to 640 acres and represents 1.34% of the total area. The
composition of the ten spectrally separable classes and the combined vegeta-
tion class is shown below. Water is classified as soil 10.

Soil 1 - This spectral class represents predominantly well or exces-
sively drained soils. Those soils sampled included Miami, Plainfield,
and Martinsville. Significant inclusions of somewhat poorly drained soils
(Whitarer) are also found.

Soil 2 - This spectral class is dominantly well or excessively drained
soils (Miami, Parr, Martinsville) but represent almost an equal per-

centage of somewhat poorly drained soils (Whitaker). Minor inclusions
of the moderately well drained soils (Celina) and very poorly drained

soils (Rensselaer) are found.

Soil 3 - This spectral class represents the well drained soils (Miami,
Martinsville, Parr). Some inclusions of somewhat poorly drained soils
(0dell, Whitaker) are apparent. This class is a soil-vegetation confu-~
sion class.

Soil 4 - The spectral class predominantly represents well drained soils
(Miami, Parr Sparta, Jasper). Significant inclusions of somewhat poorly
(Aubbeenaubee, 0Odell, Darroch, Whitaker) and very poorly drained soils
(Patton, Rensselaer) are found. Minor inclusions of moderately well
drained soils (Celina, Crosby) are also present.

S0il 5 - This spectral class represents the somewhat poorly drained soils
(0dell, Whitaker). Signficant inclusions of very poorly drained (Wolcott,
Rensselaer) and well drained (Parr, Martinsville) are also represented.
Minor inclusions of moderately well drained soils occur (Foresman).

This class is a soil-vegetation confusion class.

Soil 6 - This spectral class represents very poorly drained soils
(Wolcott, Rensselaer, Patton). Significant inclusions of well drained
soils (Parr, Martinsville, Miami) are present. Minor inclusions of
moderately well drained soils (Celina, Foresman) and somewhat poorly
drained soils (0Odell) also occur.

Soil 7 - This spectral soil class is predominantly very poorly drained
soils (Brookston, Rensselaer, Patton) with a high percentage of well
drained inclusions (Parr, Ayr, Martinsville). The somewhat poorly drained
soils (0dell) also represent significant inclusions. The moderately

well drained soils (Celina, Foresman) represent only minor inclusions.

Soil 8 - This spectral class is predominantly very poorly drained soils
(Brookston, Rensselaer, Patton). A significant portion of somewhat
poorly drained soils (0Odell) occur. Minor inclusions of well drained
soils (Parr) and moderately well drained soils (Foresman) are represented.
This is a soil-vegetation confusion class.
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Soil 9 - This spectral class is dominantly very poorly drained soils
(Patton, Houghton, Rensselaer, Brookston). Some inclusions of some-
what poorly drained soils (0Odell, Darroch) are significant. Minor
inclusions of well drained (Ayr) and moderately well drained (Foresman)
also occur.

Soil 10 - This spectral class represents only very poorly drained soils
(Patton, Houghton, Rensselaer, Brookston).

Vegetation - The vegetation class in this parent material area repre-
sents well drained soils (Miami, Metea, Parr, Martinsville). Signif-
icant inclusions of very poorly drained soils (Rensselaer, Patton,
Brookston) occur. Minor inclusions of somewhat poorly drained soils
(0dell) are also represented.

Discussion

The general trend of soil spectral class versus percent well drained and
very poorly drained is apparent in this parent material area (Figure 25).

Soils 1,2,3, and 4 are predominantly well drained soils with soils of all
drainage classes represented. 1In fact, this parent material area has a broad
range of percentages of soils of all drainage classes as compared to other
parent material areas. The reason for this may be in the nature of the soils
that are developed in this parent material. Till has a characteristic mottled
pattern with many light and dark soils delineations. The averaging effect as
described before may be at work here.

Soil 5 is predominantly somewhat poorly drained soils but also includes
significant percentages of well drained and very poorly drained soils. Soils
6,7,8,9 and 10 are all predominantly very poorly drained soils. With the
exception of soil 10, however, all of these spectral classes have significant
inclusions of soils of better drainage classes.

Soils 3,5 and 8 are soil-vegetation classes. Figure 26 presents a graph
of these three spectral classes as compared to a vegetation class. Interpre-
tation of these spectral classes as soils should be avoided. They should only
be interpreted in conjunction with surrounding soils classes.

The vegetation class is predominantly well drained soils. This is in
contrast to the previous parent material areas where vegetation is predomin-
antly very poorly drained soils. -

Based on the grid count, some combinations of spectral classes can be
made. Combination one is no combination. Combination two combines 4 and
5 together, 6 and 7 together, and 8 and 9 together.

The results of these combination of classes can be seen in Figures 27
and 28. Analysis of T29N, R7W, Sec. 12, NW% which was mapped for this study
indicates that the best spectral class combination is combination two.
Combination three eliminates too much soil information. Combination one (no
combination) also appears to be adequate for *his area. Figure 29a is the soil
map for this quarter section.




Percent

* Numbers represent soll classes

100
|
*

10
Very poorly drained

- —— — Well and excessively drained

q\a , \

= [ .
o Il \ i
ol | / \ 7

v | \,~

2 /

O | 5/

/

2 /
2
=) I . 9 4 —F—B/ { | | 3/1/ l\l\f\P-
""" 100 110 120 130 140 150 160 170 180 190 200 210
Relative magnitude of spectral reflectance
Figure 25. Relative drainage composition of spectral soil classes vs. magnitude (rolling

moraine).

09



Mean relative reflectance

ol
O
[ew)
g
* \
ol *% Voo, 3
L g P fea, - L0
& ~ . \'.. "Vg/.
~— =
ol ~ . .
1) & <
. \4
N3
* Numbers represent soil classes N s
S ** Vegetation \8
[ 3
—
| J l |
e (.5-.6um) (.6-.7um) (.7-.8um) (.8-1.1um)

Wavelength (um)

Figure 26. Soil-vegetation confusion classes—-~rolling moraine.

19



Combination one

¥ YYYYYYYYYREIM
Y¥¥¥ ¥y ¥y AR

mmxkﬁ vy§

Combination two

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ XINImm
YyR¥ ¥ X ¥ ¥ ¥ ¥ ¥y XU RREN
mm%kaHIHl

WA
I
C TR AN
MY
IR ¥ 5 3

Figure 27.

vyewwws

D00015011 1

RPAPAP

RN
\\\\\\\\\ Soil 5

//
?éé% Soil 6

P WM

oeﬂucSOll 1

Vala'ala

oil 2

IRAX o3
$§$é8011 3

i Soil 4

AN
Nigy Seil

v

Combinations for T29N, R7W, Sec.

62

A
i Seil 9

NNBE . ;
g Soil 10

Yy ¥y

yviiVegetatlon

W 5
g SOt 852

LT TR

Y ¥ ¥ ¥ .
vy yy vegetation

12, NWx.




Combination three

¢y ¥ ¥y ¥ ¥y I
By Sy ¥ ¥ ¥ ¥ B
iy v

Figure 27. (Continued).

7Y w e oa

reveSoil 1

Cvang

oil 6,7

T
iy SOt 89

BEEAA 4
n“u'18011 10

¥YY ¥ .
vy vy vegetation

63




Combination one

L SsE e
11 QIR

A
IHTE
NN
¥Y¥¥&§k\
\Esss 595 A hss y ¥y

wmmwm
T
A S
mmmmmuaw

L1 P :
Saniiniinvan

Combination two

VV%Y&&&&WWM
XM U ¥ > o I
WWWMBSMHH
W O 10
I A1 3
I A B

b1 g N
NSNS

Figure 28. Combinations for T29N, R7W, Sec.

rv! 'V‘

IR A

oil

§§§§8011

vooo¢5011

valalas

64

B

; 5011 8

Iy

55§
s
" one

= H

l;:;,l

»

e
miy SO °

nRan
T Soil 10

Y¥ YV

V¥ Vegetation

oil 6,7

R e
ey mll5011 8,9

[ 1101 e
'“““8011 10

¥Y¥¥Y

yyyvVegetation

15, SWi.




Combinat ion three

""‘

soooc Soil 1

.-A-a

Soil 2 ﬁ”'“sOll 8,9
T ¥¥%¥¥ 5011 3 BEIRS0i1 10
Lo mnf i ; YHYY L
i
{
% ::’;;Vegetation

Figure 28. (Continued).




bE

66

Legend 1

Ay - Ayr

0d - 0Odell

PcB - Parr, 2-6% slope
Sp — Sparta

Wo - Wolcott

Figure 29a. Soil map of T29N, R7W, Sec. 12, NWk.

Legend 2

AdB - Ade, 0-27% slope

Ay - Ayr

AyB - Ayr, 0-27% slope

Br - Brookston

Co - Corwin

PnA - Plainfield, 0-2% slope

Figure 29b. Soil map of T29N, R7W, Sec. 15, SW.
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Analysis of the CNI plot (not mapped in this study) supports the
conclusion that combination two is ideal and combination one is adequate.
The soil spectral classes generally agree with the CNI mapping, but the
spectral map seems to indicate a greater percentage of poorly drained soils.
While this quarter section was not mapped, the results of field checking
indicated that there was, in fact, a greater percentage of poorly drained
soils than is represented in the CNI map (Figure 29b).

Figure 30 is a reclassification of T29N, R7W, Sec. 12, NWY% elimination
the soil-vegetation confusion classes (soils 3,5 and 8). The changes are
indicated below (Table 10).

This indicates that soils 3 and 5 are dominantly vegetation, but soil
8 is predominantly soils. These spectral classes should be interpreted with

this in mind.

Table 10. Soil-vegetation analysis, rolling moraine.

Soil-vegetation Total Points Points after

Confusion Class in % Section Reclassification % Change

3 6 6 to vegetation 1007

20 to vegetation 77%

5 26 4 to soil 6 15%

2 to soil 7 8%

6 to vegetation 247

8 25 8 to soil 7 32%

11 to soil 9 447

Lacustrine

Table 11 indicates the relative percentage composition of soil for the
spectral classes found in the lacustrine area. Lacustrine soils include
43,360 acres, representing 17,7% of the entire county. The graph of the
spectral responses is shown in Figure 31.

In this parent material area six quarter section (960 acres) were
mapped, representing 1.52% of the lacustrine area. The composition of the
seven spectrally saparate soil classes and the combined vegetation class
is described below. No separate class was developed for water; therefore,
it will be classified as soil 7.

Soil 1 - This spectral class is predominantly well and excessively
drained soils (Chelsea, Dickinson) with significant inclusions of the
moderately well drained Alvin.

S0il 2 - This spectral class is dominated by well and excessively drained
soils (Jasper, Sparta, Plainfield, Chelsea, Dickinson) with significant
inclusions of the moderately well drained Alvin soil. Minor inclusions
of somewhat poorly drained Darroch and Tedrow are found as are very
poorly drained soils (Rensselaer).
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Table 11. Dot grid count for lacustrine area.
Class ED - WD MWD SPD VPD T
Ch: 3 Al: 3
Dk: 3
Soil 1 8
D % D % D % D A
6 63 37
Ch:15 Al:38 Db:18 Rr: 15
Dk:32 Td: 1
Jc: 3
Soil 2 Pn: 3 133
D % D % D % D %
61 46 38 29 19 14 15 11
Ch: 1 Al :12 Rt: 1 Rr: 4
Dk: 7
Soil 3 Jc: 2 30
Pn: 3
D % D % D 7 %
13 43 12 40 4 4 13
Ch: 8 Al:29 Db:37 Ma: 2
Dk:33 Rt: 5 Rr:103
Soil 4 Je: 7 Td: 1 233
Sp: 3
D % D % D % D %
51 22 29 13 43 18 110 47
Ch:13 Al:23 Db:76 Ma: 14
Jc: 3 od: 1 Rr:156
Soil 5 Sp: 1 St: 1 293
Td: 1
D % D % D A D %
17 6 23 8 79 27 174 59
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Table 11. (Continued).
Class ED - WD MWD SPD VPD T
Ch:2 Al: 6 Ma: 5
Dk:3 Rr: 4
Soil 6 20
D % D 7% D 7% D %
25 30 45
Ch:5 Al: 4 Db:12 Ma: 39
Dk:6 Rt: 3 Rr:156
Soil 7 St: 4 228
D % D % D % D %
11 5 4 2 19 8 194 85
Dk:6 Al:27 Db: 1 Ma: 2
Jc:2 Rt: 1 Rr: 15
Veg Pn:9 63
D % D 7% D % D %
17 27 27 43 4 3 17 27
Total 180 142 163 523 1008
Soil Key Table Key
Al - Alvin ED - excessively drained
Ch - Chelsea WD - well drained
Db - Darroch MWD - moderately well drained
Dk - Dickinson SPD - somewhat poorly drained
Jc - Jasper VPD - very poorly drained
Ma - Mahalasville T - Total
0d - Odell D - Dots
Pn - Plainfield
Rt ~ Roby
Sp - Sparta
St - Starks
Td - Tedrow

Rr - Rens

selaer
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Soil 3 - This soil spectral class predominantly represents well
and excessively drained soils (Jasper, Plainfield, Dickenson,
Chelsea). The moderately well drained soils represent an almost
equal percentage (Alvin). Minor inclusions of the somewhat poorly
drained soils (Roby) and very poorly drained soils (Rensselaer)
are also apparent. This class is a soil-vegetation confusion
class.

Soil 4 - This spectral class is predominantly very poorly drained soils
(Rensselaer, Mahalasville). Inclusions of somewhat poorly drained
(Darroch, Roby, Tedrow) and moderately well drained (Alvin) and well
and excessively drained soils (Dickenson, Chelsea, Sparta, Jasper) also
occur.

Soil 5 - This spectral class is dominated by the very poorly drained

soils (Rensselaer, Mahalasville). The somewhat poorly drained soils
(Darroch, Starks, Tedrow, Odell) are significant inclusions. Minor inclu-—
sions of moderately well (Alvin) and well and excessively drained soils
(Chelsea, Jasper, Sparta) also occur.

Soil 6 - This spectral class has a wide spread of soils but predominantly
represents the very poorly drained soils including Rensselaer and Mahalas-
ville. The well and excessively drained (Dickenson, Chelsea) and moderately
well drained (Alvin) are significant inclusions. This class is a soil-
vegetation confusion class.

Soil 7 - This spectral class is dominantly very poorly drained soils
(Rensselaer, Mahalasville). The somewhat poorly drained soils (Darroch,
Roby, Starks), moderately well drained soils (Alvin), and well and exces-
sively drained soils (Chelsea, Dickenson) all make up minor inclusions.

Vegetation -~ The vegetation class is dominated by the moderately well
drained soils (Alvin). The well and excessively drained soils (Plainfield,
Jasper, Dickenson) and the very poorly drained soils (Rensselaer, Mahalas-
ville) are equally represented. The somewhat poorly drained soils (Roby,
Darroch) represent minor inclusions.

Discussion

The trend of increasing percent of very poorly drained soils with decreasing
magnitude of spectral reflectance is indicated in Figure 32.

Soils spectral classes 1,2 and 3 are dominated by well and excessively
drained soils while 4,5,6 and 7 are predominantly very poorly drained soils.
Soils 2 and 3 have significant inclusions of somewhat poorly and very poorly
drained soils. Soil 4, while predominantly very poorly drained, has significant
inclusions of other drainage classes, as do soils 5 and 6.

Soils 3 and 6 are soil-vegetation confusion classes as illustrated in
Figure 33. This explains the significant percentages of unlike soil drainage
classes for these two soil spectral classes. Soil 4 also has a broad range and
may represent a transitional soil. Comparing the spectral map to the conven-
tional soils map (Figures 34a and 35), this seems likely.




Percent

100

OL——
& . 7 * Numbers represent soil classes
, Very poorly drained
S — — — Well and excessively drained
QO o
M~
1
s e
e ~
-
P
R ! 4 2"
d
3//

40
|
N

QO |
o
1 N
o
\5”"/’ 3
/ \2
o
Sl
'l/ .

° el | ] | | | | | ] 1 ]

100 110 120 130 140 150 160 170 180 190 200 210

Relative magnitude of spectral reflectance

Figure 32. Relative drainage composition of spectral soil classes vs. magnitude (lacustrine).

€L



Mean relative reflectance

OP——
D
O f—
Vo]
o
g
O f—
o
o
~N P
* Numbers represent soil classes
*% Vegetation
ol
—
5 | L I 1
(.5-.6um) (.6~.7um) (.7-.8um) (.8-1.1lum)
Wavelength (um)
Figure 33. Soil-vegetation confusion classes--lacustrine.

KZA



75

Legend 1

Db - Darroch

DkB - Dickinson, 2-6% slope

DkB2 - Dickinson, 2-67% slope, moderately eroded
Rr - Rensselaer

Figure 34a. Soil map of T28N, R7W, Sec. 32, Sk.

Legend 2

Db - Darroch
Fr - Foresman
Rr - Rensselaer

Figure 34b. Soil map of T28N, R7W, Sec. 31, NWi.
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The vegetation class is dominantly somewhat poorly drained soils but has
significant inclusions of well and excessively drained and very poorly drained
soils. These results for the vegetation class are not consistent with the
vegetation classes in the previous parent material area.

The following combinations of spectral classes are proposed based on the
above analysis. Combination one is no combination. Combination two groups
soils 2 and 3. Combination three groups 2 and 3 together and 4 and 5 to-
gether. The resulting maps displaying these combination are displayed in
Figures 35 and 36. Soil maps are shown in Figures 34a and 34b.

Analysis of T28N, R7W, Sec. 32, S% (mapped in this study) indicates
that combination two is the best combination for this area. Combination
three results in a loss of soil information and combination one appears
too confusing. Analysis of the CNI quarter section (not mapped in this
study) also indicates that combination two is quite adequate although
combination one is not significantly different.

Figure 37 is a reclassification of T28N, Sec. 32, S% elimination the
soil-vegetation confusion classes 3 and 6. The changes are shown below.

Table 12. Soil-vegetation analysis, lacustrine
Soil-vegetation Total Points Points after
Confusion Class in % Section Reclassification Z Change
3 15 12 to vegetation 807
3 to soil 5 20%
6 15 11 to vegetation 73%
4 to soil 7 27%

This indicates that soils 3 and 6 are influenced by vegetation. In both
cases any data points that were reclassified as soil became soil of a lesser
spectral magnitude. Combination two still appears to be the best of those con-
sidered for this area.

Ground Moraine, Alfisols

Table 13 indicates the relative percentage composition of the soil spectral
classes for the ground moraine, Alfisol area. These soils include 14,080 acres
representing 3.97 of the entire county. The curves of the spectral responses
are shown in Figure 38.

In this parent material area two quarter sections (320 acres) were mapped,
representing 2.277% of the ground moraine, Alfisol area. The composition of the
eleven spectral classes of soils and the one combined vegetation class are des-
cribed below. A separate class was not developed for water; therefore, it is
classed as soil 11.

Soil 1 - This soil spectral class represents predominantly well drained
soils (Octagon). The moderately well drained soils (Corwin) represent
significant inclusions. The somewhat poorly drained soils (Darroch)
represent relatively minor inclusions.

Soil 2 - This soil spectral class represents a wide range of soil drainage
classes but has a equal precentage of moderately well drained (Corwin) and
somewhat poorly drained (Darroch, Odell) soils. The well and excessively
drained soils (Chelsea, Octagon) represent significant inclusions while
the very poorly drained soils (Rensselaer) are only minor inclusions.
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Table 13. Dot grid count for ground moraine, Alfisols.
Class ED - WD MWD SPD VPD T
Oc:10 Co: 6 Db:2
Soil 1 18
D % D A D % D A
10 56 33 2 11
Ch: 1 Co:5 Db:2 Rr:1
Oc: 3 0d:3
Soil 2 15
D A D % D % D %
4 27 5 33 5 33 1 7
Co:3 0d:9
Soil 3 12
D pA D A D % D A
25 9 75
Ch: 4 Co:15 0d:7 Br:6
Mo: 2 Rr:3
Soil 4 37
D pA D % D % D %
4 11 17 46 7 19 9 24
Ch: 2 0d:3 Br:3
Soil 5 8
D A D % D % D %
2 24 3 38 3 38
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Table 13. (Continued).
Class ED - WD MWD SPD VPD T
Ch:1 Co:13 0od: 9 Br:21
Rr: 4
Soil 6 48
D % D pA D % D A
13 27 9 19 25 48
Ch: 2 Co: 6 Db: 1 Br:45
. 0d:10 Rr: 2
Soil 7 66
D A D pA D % D A
2 3 11 17 47 71
Ch: 2 od: 1 Br:18
) Rr: 3
Soil 8 24
D % D % D % D A
8 1 4 21 88
Co: 7 0od: 8 Br:50
Rr: 5
Soil 9 70
D % D % % D %
10 8 11 55 79
Co: 3 0d: 5 Br:30
Rr: 1
Soil 10 39
D % D yA D % D A
3 5 13 31 79
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Table 13. (Continued).

Class ED - WD MWD SPD VPD T
Co:3 0d:7 Br:30
Soil 11 40
D A D /A D % D %
7 7 18 30 75
Ch:30
Veg 30
D VA D % D % D %
30 100
Total 55 63 67 222 407
Soil Key Table Key
Br - Brookston ED - excessively drained
Ch - Chelsea WD - well drained
Co - Corwin MWD - moderately well drained
Db -~ Darroch SPD - somewhat poorly drained
Oc - Octagon VPD - very poorly drained
0d - 0Odell T - Total
Mo ~ Montmorenci D - Dots
Rr - Rensselaer
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Soil 3 - This soil class is predominantly somewhat poorly drained soils
(0dell). The moderately well drained soils (Corwin) represent signif-
icant inclusions. This class is a soil-vegetation confusion class.

Soil 4 - This soil spectral class represents moderately well drained
soils (Corwin, Montmorenci). The very poorly drained soils (Rensselaer,
Brookston) are significant inclusions as are the somewhat poorly drained
(0dell). The excessively drained soils (Chelsea) represent only minor
inclusions.

Soil 5 - This soil class represents the very poorly drained (Brookston)
and somewhat poorly drained soils (Odell) equally. Excessively drained
soils (Chelsea) are significant inclusions. This class is a soil-veg -
etation confusion class.

Soil 6 - This soil spectral class is predominantly the very poorly
drained soils (Brookston, Rensselaer). The moderately well drained
soils (Corwin) and somewhat poorly drained soils (Odell) are signif-
icant inclusions. The excessively drained soils (Chelsea) are only
minor inclusions.

Soil 7 - This spectral class is predominantly very poorly drained soils
(Rensselaer, Brookston). The somewhat poorly drained soils (Darroch,
Odell) represent significant inclusions. The moderately well drained
(Corwin) and excessively drained (Chelsea) soils are minor inclusions.

Soil 8 - This soil spectral class is predominantly very poorly drained
soils (Brookston, Rensselaer). Excessively drained soils (Chelsea) and
somewhat poorly drained soils (0Odell) represent minor inclusions.

This soil class is a soil-vegetation confusion class.

Soil 9 - This spectral class is predominantly very poorly drained soils
(Brookston, Rensselaer). Moderately well drained soils (Corwin) and
somewhat prooly drained soils (Odell) both are minor inclusions.

Soil 10 - This soil spectral class is predominantly very poorly drained
soils (Brookston, Rensselaer). The somewhat poorly drained soils (Odell)
represent significant inclusions. The moderately well drained soils
repesent minor inclusions.

Vegetation - The vegetation class, as found on the sample quarter
sections, as entirely well drained soils (Chelsea).

Discussion

In this material area the trend of increasing percent of very poorly
drained soils with decreasing magnitude of spectral reflectance is evident
(Figure 39).

All soil spectral classes in this parent material area represent a
broad range of soils of all drainage classes. In addition, there are more
distinct spectral classes in this parent material area than in any other
parent material area, as illustrated below (Table 14).
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Table 14. Comparison of number of spectral classes within parent
material areas.

Ground Moraine, Alfisols Other Parent Material Areas

11 spectral classes Outwash - 8 spectral classes
Outwash/till - 8 spectral classes
Rolling moraine - 10 spectral classes
Lacustrine - 7 spectral classes
Ground moraine, Mollisols - 8 spec-
tral classes

The reasons behind so many spectral classes are elusive. The nature of
the till area and the averaging effect, as described before, may contribute
to the large number of classes. There may have been different cultural prac-
tices in this area, hence creating distinct spectral classes. Relatively few
sample points used in the training for creation of the spectral statistics
may have contributed to the problem.

Soil 1 is the only spectral class that represents well drained soils.
Soils 2 and 4 show a broad range with soil 2 representing moderately well and
somewhat poorly drained soils equally. Soils 3, 5 and 8 are soil-vegetation
confusion classes (Figure 40). Soils 6 and 7 are increasingly poorly drained
soils but have significant inclusions of soils of other drainage classes.

Soils 9, 10 and 11 are also predominantly poorly drained soils but also con-
tain a significant percentage of soils of other drainage classes. The vegeta-
tion class in this area was entirely well drained. This is not consistent with
the vegetation classes found in the previously described parent material areas.

Based on the results found, certain combinations of spectral classes can
be made in the final display map. Combination one is no combination. Combi-
nation two groups soils 9, 10 and 11 together. Combination three groups soils
6 and 7 together and 9, 10 and 11 together. The results of these combinations
are presented in Figures 41 and 42. Soil maps are shown in Figures 43a and 43b.

Comparing the three spectral maps to the mapped photo for T27N, R6W, Sec.
29, SE% (mapped for this study), it appears that combination three is adequate
and results in no significant loss of soil information. A similar comparison
for the CNI plot (not mapped in this study) supports the conclusion that com-
bination three is adequate for mapping.

Figure 44 illustrates the result of a reclassification of T27N, R6W, Sec. 8,
SE% eliminating the soil-vegetation confusion classes 3, 5 and 8. The changes
are indicated below (Table 15).
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Legend 1

Br - Brookston
Co - Corwin

Oc - Octagon
0d - Odell

Figure 43a. Soil map of T27N, R7W, Sec. 29, SEL.

Legend 2

Br - Brookston
Ch - Chelsea

Co - Corwin

Db - Darroch

Mo - Montmorenci
Rr - Rensselaer

Figure 43b. Soil map of T27N, R6W, Sec. 8, SEX.
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Table 15. Soil-vegetation analysis, ground moraine, Alfisols.

Soil-vegetation Total Points Points after
Confusion Class in % Section Reclassification 7Z Change
5 to vegetation 83%
3 6 1 to soil 2 17%
5 to vegetation 55%
3 to soil 6 33%
5 9 1 to soil 4 12%
15 to vegetation 60%
7 to soil 6 28%
8 25 3 to soil 7 127

This indicates that all these soils are dominated by vegetation. Points
in soils 5 and 8 that are reclassified as soil classes split between the next
highest and next lowest magnitude soil class. It should be noted that rela-
tively few points exist for soils 3 and 5. The combination of spectral classes
recommended before should remain the same.

Ground Moraine, Mollisols

Table 16 indicates the relative percentage composition of the soil
spectral classes for the ground moraine, Mollisol area. These soils include
approximately 16, 640 acres, representing 4.6% of the entire county. The
curves of the spectral responses are shown in Figure 45.

In this parent material area four sections (640 acres) were mapped,
representing 3.857 of the ground moraine, Mollisol area. The composition of the
eight spectrally separable classes and the combined vegetation class is des-
cribed below. No separate class was developed for water; therefore, water
bodies are classified as soil 8.

Soil 1 - This so0il class represents predominantly somewhat poorly
drained soils including Odell and Conover. There are also a high
percentage of well drained (Parr) and moderately well drained
(Corwin, Montmorenci) inclusions. A minor amount of inclusions of
very poorly drained soils (Wolcott) are found.
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Table 16. Dot grid count for ground moraine, Mollisols.
Class Ed - WD MWD SPD VPD T
Je: 1 Co:12 Cn:33 Wo: 7
Pc:26 Mo: 9 0d:37
Soil 1 124
D % D % D % D %
26 21 21 17 70 56 7 6
Pc: 2 Co:14 Cn:48 Wo:33
Mo: & 0d:13
Soil 2 114
D % D A D % D %
2 1 18 16 61 54 33 29
Pc: 5 Co: 3 Cn: 6 Wo:10
0d:11
Soil 3 35
D % D % D Z D Z
5 14 3 17 49 10 29
Pec: 9 Co: 6 Cn:28 Wo:38
Mo: 4 0d:20
Soil 4 105
D % D % D % D %
9 8 10 10 48 46 38 36
Pe: 7 Co: 1 Cn:13 Wo:1l7
0d:10
Soil 5 48
D % D pA D A D A
7 15 23 48 17 35
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Table 16. (Continued).
Class ED-WD MWD SPD VPD T
Pc: 4 Mo:4 Cn:28 Wo:92
0d:16
Soil 6 144
D % D % D % D %
4 3 4 3 44 [ 30 92 64
Cn: 4 Wo:51
Soil 7 55
D % D % D % D %
| 4 7 51 | 93
Wo: 8
Soil 8 8
D % D % D % D A
8 100
Pc:10 Co:3 Cn:12 Wo:20
0d:21
Veg 68
D % D % D % D %
10 15 5 7 33 49 20 29
Total 63 62 300 276 701




Table 16. (Continued).
Soil Key
Cn Conover
Co Corwin
Je Jasper
Mo Montmorenci
0d Odell
Pc Parr
Wo Wolcott
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Table Key

ED excessively drained

WD well drained

MWD - moderately well drained
SPD - somewhat poorly drained
VPD - very poory drained

T Total

D Dots
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Soil 2 - This soil spectral class is also dominated by the somewhat
poorly drained soils (Odell, Conover). The very poorly drained soils
(Wolcott) represent significant inclusions, as do the moderately well
drained soils (Montmorenci, Corwin). The well drained soils represent
only minor inclusions.

Soil 3 -~ This soil spectral class is dominantly somewhat poorly drained
soils (0dell, Conover). There are also significant inclusions of very
poorly drained soils (Wolcott). Well drained (Parr) and moderately well
drained soils (Conover) are also present. This class is a soil-vegeta-
tion confusiocn class.

Soil 4 - This spectral class is predominantly somewhat poorly drained
soils (0dell, Conover). There are significant inclusions of very poorly
drained soils (Wolcott). Relatively minor inclusions of well drained
(Parr) and moderately well drained (Corwin) soils also occur.

Soil 5 - This soil spectral class is dominantly somewhat poorly drained
soils (0dell, Conover). Very poorly drained soils (Wolcott) represent
significant inclusions. Minor inclusions of well drained (Parr) and
moderately well drained (Corwin) soils are present. This class is a
soil-vegetation confusion class.

Soil 6 - This soil spectral class is dominated by very poorly drained
goil (Wolcott). Significant inclusions of somewhat poorly drained soils
are also present (Odell, Conover). Minor inclusions of well drained
(Parr) and moderately well drained.

Soil 7 - This soil spectral class is predominantly very poorly drained
soils (Wolcott). Minor inclusions of somewhat poorly drained soils
(Conover) are also present.

Soil 8 — This soil spectral class represents very poorly drained soils
entirely.

Vegetation - This spectral class represents a broad range of soils.
Somewhat poorly drained soils (Odell, Conover) predominate but well
drained soils (Parr) and very poorly drained soils (Wolcott) are
significant inclusions.

Discussion

The consistent trend of magnitude versus spectral class is evident in
this parent material area (Figure 46).

Soil spectral classes in this parent material area show a wide range
of percentages of all drainage classes of soils. This trend is consistent
with the wide range of drainage classes found in the other till parent
material areas.

Of all spectral classes found in this parent material area none
dominantly represent well drained or moderately well drained soils. Soils
1,2,3,4 and 5 are dominated by the somewhat poorly drained soils with varying
amounts of inclusions in the other drainage classes. 1In all cases these
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inclusions are significant.

Soils 3 and 5 are soil-vegetation conflusion classes. The spec-
tral curves of these two soils are presented in Figure 47. Soil 6 is increas-
ingly poorly drained with significant inclusions of somewhat poorly drained
soils. Soils 7 and 8 are dominantly very poorly drained soils with only minor
inclusions of other soil drainage classes. The vegetation class was
predominantly somewhat poorly drained soils, but there were significant
inclusions of soils of other drainage classes. This vegetation class
indicates no trend when compared to the vegetation classes in the other
parent material areas.

Based on the analysis some combinations are possible on the final
spectral map. Combination one is no combination. Combination two groups
soils 2 and 3 together, 4 and 5 together, and 7 and 8 together. Combina-
tion three groups soils 2,3,4 and 5 together and soils 7 and 8 together.
The results of these combinations are shown in Figures 48 and 49. Soil
maps are Figures 50a and 50b.

Comparing the above combination to the conventional soils map for T27N,
R7W, Sec. 28, E% (mapped for this study) indicates that combination two is
the best combination of those considered. Combination three results in too
much of a loss of soil information while combination one results in a map
that is confusing to interpret. This area is a good example of the problem.
that a soil-vegetation confusion class may cause. The rectangular area
located in the upper center of the half sections is actually a soil-vegetation
confusion class, and the pooriy drained Wolcott soil is masked and erroneously
mapped as a somewhat poorly drained soil.

Comparison to the conventional soils map to the spectral map for T27N,
R7W, Sec. 14, NW% (mapped in the CNI study) supports the conclusion that
combination two is the ideal combination. On this quarter section; however,
combination three would also seem adequate.

Figure 51 shows T27N, R7W, Sec. 28, E)% reclassified eliminating the
soil-vegetation classes 3 and 5. Results are presented below (Table 17).

Soil 3 should be eliminated entirely from the classification as a soil
class. Soil 5 is predominantly vegetation and should be interpreted as such.
Those data points that were reclassified as soils were equally split between
the so0il class of the next highest and next lowest magnitude.

Table 17. Soil-vegetation analysis, ground moraine (Mollisols).

Soil-vegetation Total Points Points after
Confusion Class in % Section Reclassification 7 Change
3 30 30 to vegetation 100%
32 to vegetation 767
5 to soil 4 12%

5 42 4 to soil 6 12%
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Combination three
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Legend 1

Cn — Conover
MoA - Montmorenci, 0-27% slope:
MoB2 - Montmorenci,
2-67% slope, moder-
ately eroded
Wo - Wolcott

Figure 50a. Soil map of T27N, R7W, Sec. 28, E}.

Legend 2

Br - Brookston

JcA - Jasper, 0-2% slope

JcB2 - Jasper, 2-6% slope,
moderately eroded

0d - 0Odell

Figure 50b. Soil map of T27N, R7W, Sec. 14, Nk,
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The suggested combination twe should be valid in fiee scil=-vegetation
confusion classes are eliminated.

Surface Conditions Affecting Spectral Response

In manv instances there were distinct spectral classes that were
found to represent the same soil. For example, it is ecvident, in the out-
wash area {(fable 5), that scil spectral classes 8 and 9 represent basically

Che @ary g » of soils: :ilford, Mussey, Maumee, Adrian, Sebewa and Kenssel:or.,
Combinations of these two classes were proposed earlier for displayv on the
final spuctral map. Likewise, combinations of distinct spectral classes for
other soils in other parent material areas were recommended because of similar
compositions. The question, then, is if these spectral classes represent

the same soils, why are they spectrally distinct.

Unfortunately, since the Landsat data were collected in June of 1973,
the photography in May of 1976, and the field observations and mapping
performed in the spring of 1978, the reasons behind the differing spectral
responses can only be speculated upon. This was done bv noting conditions
in the field that, in the opinion of the author, could possibly affect the
spectral response of soil.

While there are likely many reasons and surface conditions that will
affect the spectral response of soils, only the major ones are discussed
here.  These are: vegetation-soil confusion classes, surface moisture
conditions, subsurface horizon exposure. separated sand cccurring on the
surface, cultivated versus crusted soil, and textural and organic matter
differences.

The first of these, soil-vegetation confusion classes, was discussed
previously. Those soil-vegetation complexes seem to pose the most widespread
problem in the interpretation of remotely sensed data for soil survey.
1f these classes are known, however, they can be used in an interpretive
manner with the surrounding soil classes.

Surface moisture conditions were, in at least one instance, noticed

- to change the soil spectral response. Figure 52a is an aerial photograph

of T32N, R6W, Sec. 12, SE%. The area directly south of the mapped portion

is displayed as soil 9. This soil, upon field investigation, was of the
Gilford series, the same soil that was found in the mapped quarter section.

It was noted, however, that the surface of the soil was extremely wet.

Upon further investigation, it was found that this fieid did not have a

tile drainage system, hence retained the moisture longer than did the ade-
quately drained Gilford soil directly to the north. Figure 53 is the spectral
map.

Reasons for this darker class can be explained because water has a
characteristically low reflectance, particularly in the third and fourth
L.andsat bands (0.7-0.8 and 0.8-1.1 micrometers). The presence of free water
on the surface or among the soil particles would influence the spectral char-
acteristics of the soil, resulting in a unique spectral class. Figure 52b
is a ground view of this area.
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Presence of a exposed subsurface horizon has also been noted to
affect spectral response. Note in Figure 55 soil 5 occurs along the
southern edge of the quarter section. This soil, based on field in-
vestigation (Figure 54), is still a poorly drained soil but shows up
a lighter class. 1In this instance the spoils from the ditch, a much
lighter colored subsurface horizon, were exposed. The result is that
the spectral data indicate a lighter soil. While this is a confusion
factor in instances such as this quarter section, the delineation of an
exposed subsurface horizon has been found by others to be a potentially
powerful tool in mapping severe soil erosion (54).

Clean washed sand occurring on the surface has also been found to
affect spectral response, particularly in the outwash area. An example
is presented in T32N, R6W, Sec. 12, SEY% (Figure 56). Note in the north-
east part of the quarter section that the somewhat poorly drained Tedrow
soil appears as soil 1, the brightest soil. This contradicts the
trend of poorer drainage with decreasing magnitude of spectral reflect-
ance. Field checking revealed large amounts of clean, washed medium
sands in the lower spots of the furrows. Figures 57a and 57b illustrate
the occurrence of sand in this quarter section. After cultivation the
sand is separated from the finer particles by the action of falling rain.
The cleaned sand particles are bright, hence reflect brightly. As is
indicated by Figure 57b, there is, in any one area, approximately an
equal percentage of clean washed sand and darker soil. This then would
average out to approximate a somewhat brighter soil, therefore, a lighter
spectral class.

A similar effect was noted because of crusting of the soil. 1In
the instance noted, the soil was fall plowed and had formed a crust over
the winter (Figure 58b). During the spring preparation of the soil the
farmer disked the soil, therefore, breaking the crust. The result was
a darker surface color and a lower spectral reflectance (Figure 58b).
Cultural practices have been found by others to affect multispectral
response of soil (60).

Figure 59 shows the spectral map of T29N, R6W, Sec. 15, NW4, and
Figure 60 is the aerial photo of this quarter section. Note that in the
southern part of this quarter section soil 1 and 2 appear. Upon field
investigation this area was equally a well drained soil (Chelsea) and
a somewhat poorly drained soil (Haskins). It is believed that this
light class is, at least in part, caused by the crusting.

Differences in surface texture have been noted to change the spec-
tral response of soils. Figures 48a and 49 show the soils map and spec-
tral map for T27N, R7W, Sec. 28, E%. Note in the NE}% of the southern
half of this area soil 7 occurs in the midst of soil 6. Both soil
spectral classes represent poorly drained soils, but field investigation
revealed that the surface texture of soil 7 was dominantly silty clay
loam while soil 6 has a surface texture of silt loam. This area was
also a slight topographic low and appeared wetter than the surrounding
soil 6. The difference in texture, topographic position, and wetness
are all likely to influence the spectral response in this area.

High organic matter amounts have also been noted to mask other soil
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differences. Figures 61 and 62 are an area mapped during the CNI study,
and the corresponding spectral map of T30N, R6W, Sec. 17, SE%. While
this area was not mapped in the course of this study, field checking
revealed that the CNI mapping was correct, and the soils were either
muck or soils having a high amount of organic matter (estimated greater
than 5%). ‘

SUMMARY AND CONCLUSIONS

In this study soils found within Jasper County, Indiana were cor-
related to a spectral soils map produced by computer-aided analysis of
Landsat MSS data. The spectral map, completed in a previous study, con-
tained fifty-two spectral soil classes in six parent material areas.
From the resulting correlation, a descriptive legend was developed for
each soil spectral class.

To achieve the correlation, twenty-eight 160 acre sites were ran-
domly chosen throughout the county. The soils at these sites were
inventoried by combining conventional soil mapping techniques and area
sampling. The field mapped areas were located on the spectral map
and by overlaying the spectral map, the conventional soil map, and a
dot grid, a count of the relative amount of soils for each spectral
class was made. Percentages were calculated and a descriptive legend
for each soil spectral class was developed. These descriptive legends
identify the dominant soils represented by the spectral class, as well
as soils that are significant inclusions.

In addition to developing a legend for each soil spectral class,
various factors involved in the analysis and interpretation of re-
motely sensed data for soil survey were identified. These factors
included: soil-vegetation complexes, crusting of the surface soil,
subhorizon exposure, soil surface moisture, organic matter content
texture, and free sand on the surface. Of these, the soil-vegetation
complexes presented the most widespread problem in interpreting the
spectral data. The other factors all altered the spectral response of
the soil to some degree, but their influence appeared rather localized.

Specifically, the findings and conclusions of this research are:

1. Of the sampling techniques considered a combination soil mapping
and area sampling offered the most practical method for gathering
soils data.

2. Using the dot grid count a relative percentage composition of soils
can be calculated for each spectral class. From these percentages,
a legend describing the dominant soil(s) and inclusions can be
developed.

3. The internal drainage class seems to be correlated with magnitude.
For every parent material area, the more poorly drained soils
had a lower magnitude of reflectance. Likewise, the better the
drainage, the greater the magnitude of reflectance.
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Soil spectral classes seem to be predominantly one internal drain-
age class.

While soil series were not consistently spectrally separable in
this study, it is felt that if the soil surveyor knows the internal
drainage (from the spectral map) and parent material for a partic-
ular area, a prediction of a soil series (or group of soil series)
can be made for that area.

Soil-vegetation complexes and resulting confusion classes can occur
in the calculation of the spectral statistics. Preliminary invest-
igation of these soil-vegetation confusion classes indicate that
they are affected by vegetation to varying degrees. t is recom-
mended that these confusion classes be maintained because of poten-
tial loss of useful soil information if deleted.

Distinct soil spectral classes can be very similar in soil series
composition. These distinct spectral classes are likely to be
attributable to overriding surface conditions such as crusting,
subsurface horizon exposure, sand on the surface, or an extremely
wet surface.

In summary, the major soil characteristics affecting spcctral

reflectance, hence the mapping of soils using Landsat data, are:

a. Soil series and related internal drainage;

b. Presence of vegetation that does not mask but strongly
influences so0il spectral reflectance;

c. Surface moisture conditions at the time of data collection;

d. Crusting conditions at time of spectral data collection;

e. Free washed sand on the surface;

f. Surface texture; :

. Organic matter content; an

h. Subsurface horizon exnosure, including erosion.

SUGGESTED RESEARCH

Results of this research indicate that Landsat data can be uti-

lized in soil survey. Some improvements that mav increase the use and
reliability of the Landsat data are:

1.

Develop a sampling scheme of soils that is more amenable to a
quantitative analysis. This would include:

a. Determining the minimun area and/or sample size to adequately
sample any area; o

b. Determining the method of sampling, i.e., simple random
sampling of stratified random sampling;

¢c. Determining, if stratified random sampling is used, what the
units should be, i.e., parent material, topography.

If possible, coordinate the time of all data collection within, at
least, one season. For examnle, collect the Landsat data, aerial
photography, and ground soil mapping within the spring of one year.




Determine the need for incorporating ancillary data as parent
material areas, into a spectral soils map. If the need is present,
at what point does the cost of incorporation become prohibitive?

Is there a limit on geographical size for incorporation of ancil-
lary data? Is incorporation of more than one type of ancillary
data necessarv and/or practical?

Improve the techiques of registration of the Landsat data to.
ground control points as well as improving the ability for locating
points on the ground in relation to the Landsat data.

Although no consistent correlation was present in this study between

vegetation and soils, it is assumed that mapping native vegetation
as soil indicator species is possible in other areas of the country
and the world. A study performed in an appropriate area could do
much to determine the validity of this assumption.
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