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ABSTRACT

Successful application of automatic information extraction techniques
to seismic exploration data would greatly relieve the burden of manual
inspection of large quantities of seismic section plots. We describe here
work directed toward generation of features and classification methods for
pattern recognition of seismic signals. In this work, a simulated seismo-
gram of primary reflections is generated for a simple bright spot model.
The first task discussed is the estimation of the reflection coefficients
from layer interfaces in the model. Gaussian noise with a negative exponen-
tial autocorrelation function was added to the synthetic seismogram to
simulate reverberations, weak reflections, and instrumentation noise.

From the simulated seismogram, the density profile is estimated. The
velocity distribution is assumed to be known from CDP stacking analysis.
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The reflection coefficients are estimated from the polarity and amplitude
of the reflected signal as derived from the analytic signal representation.
The reflecting interfacgé are assumed to be located at the times of peaks
of the envelope of the analytic signal. From these calculations, a
sequence of estimated reflection coefficients is found. Densities of the
layers between each interface are computed from the expression for normal
incidence reflection coefficient. The densities are computed iteratively,
assuming the first layer density is known. The veloecity - values from the
bright spot model are modified with noise to simulate errors in the CDP
analysis process. Statistical pattern analysis is then performed on the
two variables to discriminate the different layers in the model. Maximum
likelihood classification of the veloecity and density values estimated for
each layer are performed and results are presented for several signal-to-

noise ratios.




INTRODUCTION and GENERATION OF SYNTHETIC SEISMOGRAM

Selsmic petroleum exploration has become more and more important in
recent years and will continue so in the future as the energy crisis
becomes more severe. Because of this, there is an ever-increasing load on
the data analyst and there is, therefore, a need to consider new data pro-
cessing procedures. One of the data analysis techniques that has not yet
found application in seismic exploration 1s that of pattern recognition.
In this paper, the application of this technique to a simple'analysis prob-
lem is described.

The problem to be considered is that of a bright spot model as shown
in Figure 1 which consists of six distinect layers. The density and veloc-
it& are assumed constant throughout each layer although in practice they
would be expected to vary with depth. In the gas and oil zones, the densi-
ties and velocities are significantly lower than those in the other zones.
The gas sand zone has density D=1.8 gm/cm**3 and velocity V=1.8km/sec. And
the oil sand zone has density D=2.2 gm/cm**3 and velocity V=2.2 km/sec.

The amplitude of a seismic wave reflected from an interface between
two materials 1s governed by the reflection coefficient R which 1is
expressed for normal incidence by the relation

R=(D(2)*V(2) - D(1)*V(1))/(D(2)*V(2) + D(1)*¥V(1))
where D(1) and D(2) are the respective densities on the near (incident) and
far sides of the boundary and V(1) and V(2) are the respective velocities
for the two sides. The product of D and V is known as the acoustic impe-
dence. A high-amplitude portion of a seismic trace corresponding to a high

reflection coefficient is referred to as a bright spot[4].



Convolution of the average excitation wavelet W(t) with a system
function R(t) consisting of delta functions at the boundary layers having
amplitudes equal to the primary reflection coefficients generates the seis-
mogram S(t) of bright spots as shown in Figure 2. The seismogram plus zero
mean Gaussian random noise with variance 0.0152 is shown in Figure 3. The
mathematical expression for the seismic signal pius noise is

S(t) = R(t) * W(t) + N(t)

The average wavelet W(t) was chosen to be a duration-limited 25 Hz
Ricker wavelet. The minimum reflection coefficient is 0.11 corresponding
to a signal-to-noise ratio of 17.3 dB. A sampling rate of 0.004 seconds/
data interval is employed. The model contains 512 seismic traces. The
total receiving time is 2.044 seconds, corresponding to 512 points in each
trace (line). Figure 3 consists of 512x512 pixels. The value of the pixel
is the seilsmogram value scaled from 0 to 255. The data of Figure 3 will be

used in the pattern recognition procedure.

SEISMIC PATTERN RECOGNITION SEQUENCE
The seismic pattern recognition approach is shown in Figure 4. The
simulated seismogram of Figure 3 1s assumed to correspond to the stacked
selsmogram. The reflection seismogram will be transformed into density and
velocity data. From the CDP stacking technique, the optimal stacking vel-

ocity can be derived[1]



PREPROCESSING: CALCULATION OF REFLECTION COEFFiCIENTS
FROM THE ANALYTICAL SIGNAL
Reflection coefficients are calculated from the data of Figure 3 by
the procedure shown in Figure 5.
The envelope of the signal is calculated as the square root of the sum

of the square of the signal S(t) and its Hilbert transform S(t)[2,5]; thus

Envelope {S(t)} =[S(E)**2 4+ S(t)**2

The envelope describes the outer shape of the wavelet, even in the
noise case. The envelope of Figure 3 is shown in Figure 6.

Envelope values below an appropriate threshold level are set to zero.
The threshold is selected empirically to reduce the effect of noise. The
next step 1s to find the maxima of the envelope function. Because the
reflection coefficient between the free surface and the first layer is
unity, the amplitudes can be compared to this value to determine the cor-
responding reflection coeffiecients.

The "peak signal" is defined as the value of the normalized maximum
with the polarity of the original signal at that point. The "peak signal"
is made up of the reflection coefficients R(1), R(2),..;,R(n-1) at the

boundaries,

FEATURE SELECTION
Two features sufficient for classifying the various strata are the

density and velocity at each point. These can be estimated from the seis-




mogram. From the CDP stacking velocity analysis, one feature--velocity
distribution-~is found. The interval velocity of the same layer 1s assumed
constant along one trace (line) and to have a Gaussian random distribution
for different traces (lines), as shown in Figure 7. The other feature is
density. It is assumed that the first layer’s density D(1) is known and
that the reflection coefficients R(1), R(2)y...,R(n-1) can be calculated
from "peak signal." Then for normal incident, the reflection coefficient
is
R(1) = (D(2) * V(2) - D(1) * V(1)) / (D(2) * V(2) + D(1) * V(1))
Solving for the density D(2) gives
D(2) = (D(1) ®* V(1) 7/ V(2)) * ((1+R(1) 7/ (1=-R(1))

Repeating this calculation for subsequent 1layers gives D(2), D(3),
D(4),...,D(n). The result of this calculation is shown in Figure 8. Since
density 1s calculated iteratively, there is error propagation. The deeper
the layer, the larger the error, as shown in Figure 9. From Figure 8 it is
seen that at the Jjunctions of the layers (shale and gas, shale and 0il),
the reflections from the boundaries are mixed. The reflections of the two
layers cannot be distinguished, since the two boundaries are too close.
This is called a disturbance area. It affects calculation of the reflec-
tion coefficients from the seismogram and affects the density calculation.
The number of 1layers can be reduced or increased by computer calculation,

as shown in Figure 8.




PROCESSING OF SIMULATED EXPLORATION SEISMIC PATTERN RECOGNITION

A seismic exploration supervised classification analysis flow chart is
shown in Figure 10.

In order to use an existing data analysis and classification sys-
tem[3], the sample values are adjusted to cover the dynamic range of (0,
255) from their actual range of (1.4, 3.3). Any data value less than 1.4
is assigned to 0 and any data value over 3.3 is assigned to 255.

For each trace (line), the density or velocity is assumed to be the
same value 1in the same layer, but they are random for different traces
(1ines) in the same layer. A set of training areas in the seismogram is
selected which is representative of the various classes (layers) present.
Tﬁe training areas are from trace 210 and 290 and one horizontal line for
one layer because the data are redundant. The testing area is from trace
150 to 350 and one horizontal line for one layer. The classifier computes
the statisties of these classes from the training sets and then goes
through the test and the entire data sets and assigns each point to that
class for which it has the greatest probability. The result is shown in
Figure 11. The statistical mean of the density and velocity at the
selected training area can be linked with the kinds of geblogy. The com-
puted means are D(1)=1.596 gm/cm**3,  V(1)=1.596 km/sec, D(2)=1.963,
V(2)=1.997, D(3)=2.420, V(3)=2.495, D(4)=1.709, V(4)=1.797, D(5)=2.063,
V(5)=2.196, D(6)=2.585, V(6)=2.797. The training and test areas avoidéd
the disturbance areas. The supervised classification based on the maximum

likelihood decision rule is used. For a given sample X, 1if P(X/W1) >




P(X/W2), then X belongs to W1 class. If P(X/wWi), i=1,2,...n, 1s a multi-
variate Gaussian density funetion. The classifier is
i - T -1
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The classifier is quadratic if covariance matrices are different.

The performance is 100% in the above simulation. Because the proba-
bility distribution of density and velocity does not overlap in Figure 9,
the classification error is zero and the gas and oil layers are clearly

delineated.

The confusion matrix P is an identity matrix from 100% performance,

For Z =7p13

S0 Z:i
where Z = [g] is the matrix of the actual number pixels of classes,
Z = [Y] is the matrix of the classified number pixels of the
D
classes.

Although there are serious distortions in density distribution at the
disturbance areas, the assumed velocity has no serious distortion in these
areas. This was sufficient to permit 100% classification performance to be
obtained.

For the same processes, the classification result for a signal-to-

2 2
noise ratio of 15.7 dB (noise ¢ =0.018") is shown in Figure 12.



CONCLUSIONS AND SUGGESTIONS

Conclusions:

1. Two features, density and velocity, can be estimated from seismo-
gram, Velocity is obtained from seismic CDP stacking velocity analysis.
Density D(1) is known, then D(2), D(3),..., D(n) are calculated from itera-
tion by D(2) = (D(1) ®* V(1) 7 V(2)) * ((1+R) / (1-R)).

2. Because the calculation of density is iterative, errors will pro-
pagate. The distribution of density in Figure 9 is larger than the veloc-
ity distribution at every layer. The deeper the layer, the greater the
distribution of the density because of error propagation.

3. Use of the envelope can improve the calculation of the reflection
coefficients because it describes the outer shape of the wavelet, even in
the noise case.

y, Supervised classification using the maximum 1likelihood decision
rule was highly accurate in this simulation at the chosen S/N ratios. Gas
and oil layers are clearly classified, although there are serious distor-
tions in density distribution at the junction of shale and gas layers and
the junction of shale and oil layers. Lower signal-to;noise ratios were

not tested in this study.
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Suggestions:

1. Change the assumed constant stacking velocity at every layer to
other velocity functions. For example, use linear function V = VO+A*Depth,
where A is a constant. That will approach the real case.

2. Add larger noise to the velocity distribution, then density and
velocity distribution will overlap in this simulation. The classification
accuracy will approach what may be the encountered in practice.

3. Thinner gas and oil layers can be assumed.

4. Find other features for pattern recognition; for example, the well
log information.

5. Deconvolution techniques may improve the result at the disturbance
areas.
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FIGURES

Bright spot model.

Seismogram of bright spots.

Signal plus zero-mean Gaussian random noise (S/N = 17.3 dB).
A selsmic pattern recognition sequence.

Calculation of reflection coefficients from analytical signal.
Envelope of Figure 3.

Velocity distribution.

Density distribution.

Velocity versus density from training areas of six layers (Trace
210 to 290).

A supervised seismic exploration classification analysis flow
chart.

Maximum likelihood classification result (S/N 17.3 dB).

n

Maximum likelihood classification result (S/N 15.7 dB).
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Figure 1. Bright spot model.
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Figure 2. Seismogram of bright spot,




~14-

Figure 3. Signal plus zero-mean Gaussian

random noise (S/N = 17.3 dB).
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Figure 4, A seismic pattern recognition sequence.
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Figure 6. Envelope of Figure 3.
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Figure 7. Velocity distribution.
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igure 8. Density distribution.
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Figure 9. Velocity versus density from training areas

of six layers (Trace 210 to 290).




-21-

Examine Data

Quality
2

Select Training
Area at Every
Layer

Check Velocity
Versus Density f
Plot of Training

Area

Evaluate Statisties Select Another
of the Training Area Training Area

at Every Layer
¢ A

Test Areas
Classification

v/

Compare Performance not good

good

Select Training Area
Which Has the Best
Performance

Evaluate Statistics
of This Training
Area

Classification of
Whole Samples and
Result Display

Figure 10. A supervised seismic exploration classification
analysis flow chart.
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Figure 11. Maximum likelihood classification result
(S/N = 17.3 dB).




Figure 12.
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Maximum likelihood classification result

(8/N = 15.7 dB).




