AN APPROACH TO THE USE OF STATISTICAL
CONTEXT IN REMOTE SENSING DATA ANALYSIS

E.F. Kit and P.H. Swain
School of Electrical Engineering
Purdue University

West Lafayette, Indiana 47907

ABSTRACT

A statistical model is developed for
using image context in maximum likelihood
classification. Experimental results using
both simulated and real multispectral re-
mote sensing data demonstrate the utility
of the model. Some practical problems as-
sociated with the use of the model are dis-
cussed.

RESUME

Les auteurs développérent un modéle
statistique afin d'utiliser un "contexte"

de 1'image en matidre de classification des
probabilités maximales. TIls démontrent
1'utilité du mod&le par des résultats d'essais
qui utilisent des données simulées et réelles
de télédétection multispectrale. TIls
discutent de quelques probldmes pratiques
relids & 1l'utilisation du modéle.

INTRODUCTION

It does not require a highly skilled
photo interpreter to appreciate the fact that
much remote sensing imagery is rich in spa-
tial information content; i.e., information
inherent in the image nature of the data
which improves our knowledge about the
ground scene. Historically, however, efforts
to analyze multispectral remote sensing data
by automatic or computer-assisted methods
have focused largely on the spectral informa-
tion contained in individual pixels ("pic-
ture elements")!, thereby ignoring the spa-
tial information. Only fairly recently has
attention turned to making use of spatial in-
formation in the data.

The most effective approaches to utiliz-
ing spatial information in multispectral im-
agery have drawn on special characteristics
of the imagery or intuitive notions of
features which seem likely to be information-
bearing. A notable example is the ECHO (Ex-
traction and Classification of Homogeneous
Objects) process which segments a scene into
"objects," and then uses sample classifica-
tion to assign each object, as a whole, rath-
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er than its individual pixels, to an appro-
priate ground cover class2. Provided the
average size of the objects is large relative
to the resolution of the sensor system, this
method offers both improved classification
accuracy and speed.

Another example is the use of features
based on gray-tone spatial-dependence ma-
trices, as described by Haralick et al?, to
characterize local scene texture. These
matrices are features which seem to be
comparable to intuitive notions of texture.
Experiments have shown them to be useful for
classification purposes.

In this paper, we consider the "context"
of a pixel in a still more general way. It
has long been known that in written language
one finds certain letters occurring frequently
in the company of others. Examples include
"qu," "ee," "ing." This phenomenon can be
used to increase the probability of correct
recognition of letters in the machine analysis
of hand written or printed text. The same
principle can be used effectively in the anal-
ysis of multispectral remote sensing image
data: The method is an extension of the sta-
tistical decision theory approach used for
pixel-by-pixel classification. TIts advantages
over the spatially oriented methods cited
above are at least two-fold: (i) the mathema-
tical foundations of the underlying model are
firmly rooted in the theory of optimal deci-
sion making, and (ii) the context classifier
does not require a number of user-specified
and scene-dependent parameters.

THE MODEL

We assume a two-dimensional array of pix-
els of fixed but unknown classification, as
shown in Figure 1. Associated with the pixel
having coordinates (i,j) is its true classi-
fication eij, where GijEQ = {1,2,...,k}, and

a random vector (observation)Xij having class-

conditional distribution fe , where

1]
feije{fl,fz,...,fk} is a member of the set
of density functions associated with the clas—
ses. The observations are assumed to be
class-conditionally independent. We wish to
classify the N = Nl x N2 observations in the
array.

Let the action (classification) taken
with respect to pixel (i,j) be denoted by
aijeﬂ. Let the loss suffered by taking action

aij when the true class is eij be denoted by



L(@ij, aij)’ for some fixed non-negative

function L(*,*). Then the average loss suf-
fered over the N classifications in the ar-
ray is
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If we make the action aij a function of the

observations, then the expected loss is
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where X is the set of N observations
array. When context is ignored, the
(classification) depends only on the
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which is the Bayes risk given the frequency
distribution G(8) of the classes (prior
probabilities). The decision rule a(X),
which maps the observation space into €,
should be chosen to minimize R.

To introduce the context, we focus on
some fixed arrangement of p pixels fin the
frame which we wish to incorporate fin each
decision. TFor example, see Figure 2. The
arrangement actually chosen will be dictated
by practical considerations (recall we are
classifying pixel (i,j)). Denote the p-vector
of states as eij and the p-vector of obser-

vations zij' Now a function a(gij) will map

p-vectors of observations into actions. In
this case, (2) and (3) become
1
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where now GP(S) is the frequency distribution
of the p-vectors 6. Again, this expression
gives the Bayes risk associated with the de-
cision function a(X) which should be chosen to
minimize R. -

What form should the decision function
take? To minimize (4), it sufficies to choose
a(§) to be an action which minimizes

p
P
g L(e,a>[ i fei(xi)jc )

or, taking L(6,a) to be the usual 0-1 loss
function, choose a(§) so that it maximizes
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where ei and Xi are the state and measurement

of the ith pixel in the p-array and 61 and X

1
refer to the pixel being classified. The sum
a. This

is over all p-vectors for which 61 =

strategy parallels closely that followed for
pointwise classification, but incorporates the
p-array context.

EXPERIMENTAL RESULTS

A data analysis experiment was designed to ex-
plore the effectiveness of this approach for
classification of earth resources data. More
specifically, it was desired to determine the
degree to which the use of context character-
ized as described above would improve clas-
sifications as compared to results achieved
without context.

In order to avoid confounding other ef-
fects with the impact of context, it was de-
cided to use a simulated data set generated
as follows. A classification of multispectral
remote sensing data was selected which had been
judged to be very accurate (typically, pro-
duced by careful analysis and refinement of
multitemporal data). Such a classification
could be expected to embody the contextual
content of an actual ground scene. Using the
classification map and the associated statis-
tics of the classes (developed in producing
the classification), data vectors were pro-
duced by a Gaussian random number generator
and composed into a new data set. Thus the
new data set had the following character-
istics:



Each pixel in the "simulated" data
set represented the same class as in
the "template" classification. The
template could be considered the
"ground truth" for the new data set.

All classes in the data set were
known and represented.

All classes had multivariate Gaus-
sian distributions with statistics
typical of those found in real data.

All pixels were class-conditionally
independent of adjacent pixels.
5. There were no mixture pixels.
Although the simulated data are somewhat
of an idealization of "real" remote sensing,
its spatial organization is consistent with
a real world scene and its overall character-
istics are consistent with the context model
set out above. In essence, then, what the
experimental results based on the simulated
data show is the effectiveness of the con-
text classifier, given that the underlying
assumptions (approximations) are reasonable.
Further experiments are required to generalize
the conclusions of these results to real data.

Three data sets were selected to repre-
sent a variety of ground cover types and
textures. Data set 1 is agricultural (Wil-
liston, North Dakota), with ground resolution
and spectral bands approximating those of the
projected Landsat D Thematic Mapper. Data
set 2a is Landsat 1 data from an urban area
(Grand Rapids, Michigan). Data set 2b is
from the same Landsat frame as 2a, but from a
locale having significantly different spatial
organization. Each data set is square, 50
pixels on a side.

Figure 3 shows the achieved classifica-
tion results. The "no context' classifica-
tion accuracy is plotted on the vertical axis
of each graph. Data set 1 was classified
using successively 0, 2, 4, 6 and 8 neighbor-
ing pixels; data sets 2a and 2b were clas-
sified using 0, 2, 4 and 8 neighboring pix-
els. The results speak for themselves. The
accuracy improvement resulting from the use
of contextual information is quite signifi-
cant.

To accomplish the context classification
using this approach, it is necessary to have
available a set of class-conditional density
functions (fe) for the classes to be recog-

nized and the frequency distribution for the
p-vectors (Gp(§)). In remote sensing appli-
cations, the class—conditional density
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functions are typically learned from training
samples. For the experiments described above,
the Gaussian class statistics on which the data
simulation was based were used for the clas-
sification (these were originally the training
statistics used to produce the "template" clas-
sification). An important question is how in
practice to determine the p-vector frequency
distribution. In the foregoing experiment,
this distribution was simply tabulated from

the "template" classification. But in a real
data situation, such a template is not availa-
ble (else there would be no need to perform
any further classification).

One can envision a number of ways in
which the p-vector distribution might be
estimated for a remote sensing application.
For example, it could be extracted from a clas-
sification of the same area obtained previous-
ly. This would require that the area not have
changed much in its class make-up since the
earlier data were collected and that the earli-
er classification was reasonably accurate. Or,
the distribution might be obtained from a clas-
sification of any similarly constituted area.
Still another possibility would be to estimate
the p-vector distribution for the context clas-
sification from a "conventional classification
with "reasonably good'" accuracy. All of these
methods produce an estimate of the p-vector
distribution, and a crucial question on which
hinges the utility of this approach is how
sensitive the contextual algorithm is likely to
be to the "goodness'" of the estimate. This
question is the subject of ongoing research.

An experiment was formulated to obtain
some evidence concerning the feasibility of
applying the context classifier to a real data
situation. The data set used covered a some-
what larger area of Grand Rapids, Michigan,
containing both data sets 2a and 2b. Data
from small areas of known ground cover were
used to estimate the training class statistics,
and data from a disjoint set of areas of known
ground cover were used as "test samples" to
evaluate the classifier accuracy (unfortu-
nately, the set used for this test was rather
small, consisting of only 136 pixels dis-
tributed among 4 urban classes).

A non-contextual classification was per-
formed and found, based on the test set, to be
81.6 percent accurate. The p-vector distri-
butions were estimated from this classifica-
tion and used to perform context classifica-
tions using first four and then eight nearest
neighbors. The four-neighbor classification
was 83.1 percent accurate; the eight-neighbor
classification was 84.6 percent accurate. For
this case, then, some improvement in classifi-
cation accuracy was again achieved by



incorporating context in the decision pro-
cess.

One might ask what would happen if the
contextual classification were iterated on
each interaction, basing the p-vector distri-
bution on the results of the previous itera-
tion. Certainly the use of such a procedure
would involve questions of stability.

CONCLUSIONS

We have formulated an approach for max-
imum likelihood classification of multispec-
tral image data using the context of each
pixel to be classified. Experimental results
using simulated data have demonstrated that
the context classifier is indeed capable of
improving classification accuracy over that
obtainable by means of no-context classifi-
cation. Very limited results suggest the
feasibility of the approach for real data
classification.

The price paid for incorporating context
into the classification process by the ap-
proach suggested here is considerable in terms
of the amount of computation required and the
amount of prior knowledge about the data
which is used in the classification. How-
ever, these problems appear to be resolvable,
and the general approach to contextual clas-
sification should prove valuable where con-
text is an important information-bearing
characteristic of the scene.
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Figure 3. Context classifier results. (a) Data set 1 (agricultural, Landsat D reso-
lution); (b) Data set 2a (urban, Landsat 1 resolution); (c) Data set 2b
(urban, Landsat 1 resolution). Vertical scale is percent correct recognition.
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