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ABSTRACT

Classification of multispectral image data based on
spectral information has been a common practice in the ana-
lysis of remote sensing data. However, the results pro-
duced by current classification algorithms necessarily con-
tain residual inaccuracies and class ambiguity. By the use
of other available sources of.information, such as spatial,
temporal, and ancillary information, it is possible to
reduce this class ambiguity and in the process improve the
accuracy. Therefore, the purpose of this research is to
improve the accuracy of the classification by utilizing
such multitype information.

To accomplish this objective, three approaches are
proposed. The first approach is a stochastic model in the
time domain which utilizes spectral and temporal character-
istics. The second approach involves the probabilistic and
supervised relaxation methods which utilize multitype
information. The third approach is a stochastic model in

the spatial domain which attempts to extract interpixel

This research was supported in part by NASA Grant Nos.
NAS9-15466 and NSG-5414.
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class-conditional correlation and use this information with
spectral characteristics to classify an object.

As a result of adapting the above approaches to the
problem, the following five new classifiers are developed.

1. Markov pixel classifier

2. Non-iterative probabilistic relaxation

3. Modified minimum distance object classifier

4. Modified maximum likelihood object classifier

5. Linear minimum distance object classifier

For all the above algorithms, software systems are
developed or the existing software programs at the Labora-
tory for Applications of Remote Sensing (LARS), Purdue
University are modified. All these methods are experimen-

tally evaluated.




CHAPTER 1

INTRODUCTION

Looking at the past and seeing what has been accom-
plished utilizing spectral characteristics and looking at
the future and seeing the importance of utilizing temporal
and spatial characteristics made us aék, "What else can be
accomplished in classification of remotely sensed image
data?" Therefore, the main objectives are:

1. To advance the state of the art of pattern recog-

nition by developing algorithms which can utilize

combinations of spectral, spatial and temporal

information.
2. To improve the accuracy of the classification over

the current maximum likelihood pixel classifier.

1.1 Pattern Recognition in Remote Sensing

The field of pattern recognition is concerned with
designing machines to recognize patterns. The design
procedure typically has two phases:

1. Training or learning phase

2. Decision phase




In the learning phase, it is desired that the machine learn
the main characteristics of patterns, then in the decision
phase it identifies the class of an unknown pattern. Pat-
tern recognition methods have had large varieties of appli-
cations, for example, in information theory, control, image
processing and remote sensing. A pattern recognition sys-
tem in remote sensing consists of four parts; viz., the
scene, the sensor system, feature extractor and the classi-

fier (Figure 1.1).

1.2 Remote Sensing of Earth's Resources

In remote sensing, the spectral variations of the
electromagnetic energy of the scene have been studied
extensively. The spectral response which is a function of
wavelength has been modeled as a random process
[81,82,84,86]. 1In practice, the reflected and emitted
electromagnetic energy of each pixel in the scene in sev-
eral important wavelength bands as shown in Fig. 1.2 are
measured by an aircraft or spacecraft equipped with a mul-
tispectral remote sensor system. The output of the sensor
system, as a set of continuous electric voltages, is digi-
tized, calibrated and transmitted to the earth's stations.
Then by pattern recognition techniques the data is classi-

fied and the useful information is extracted.




5 X4 ~ ot Vi, Diser th;M .
ensor eature iscriminan aximum
System —)-(3-—-> Extractor ¥2 »| | Function ?2M> Detector | t—Resuilt
Xq Yo | |Estimator | gm(y)
Classifier
R(A)
Earth

Figure 1.1 A block diagram of pattern recognition system in remote sensing.
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Spectral Response, R(A)

Figure 1.2

Wavelength, A

The receptor's output provides a g-dimensional
vector representation of the spectral response
function.




1.3 Review of Literature

1.3.1 Utilizing Spectral Characteristics

There are both parametric and non-parametric
approaches which have been studied to characterize spectral
information. Let X be g-dimensional measurement space and
¥ be n-dimensional feature space which is the range of mea-
surement space under a linear transformation. The problem
of classification is estimating or learning decision boun-
daries to partition the feature space into non—overlapping
regions. 1In other words, it can be said a pattern classi-
fier is a mapping from n-dimensional feature space into
one-dimensional decision space. Let Y be a point in fea-
ture space belonging to the ith class and g; (Y) be a point
in decision space. Generally, all algorithms utilizing
spectral information can be divided into two main catego-
ries: linear and non-linear depending on the functional
form of gi(Y). For more detail, see Swain et al. [1],
Fukunaga [2], Duda and Hart [3], Nilson [4], and Mendel and
Fu [5]. An extensive bibliography on learning procedures

in pattern classifiers is given in [6].

1.3.2 Utilizing Spatial Characteristics
By the term spatial information is meant contextual
and textural information. The information provided by the

relationship of an object or a pixel to those surrounding




it is referred to as contextual information. The spatial
distribution of the reflected and emitted energy of an
object is referred to as textural information. 1In many
pattern recognition problems, there exists a spatial con-
text which describes the spatial dependencies among the
patterns to be recognized. There are numerous references
to the use of context in pattern recognition. See, for
example [7-12]. 1In all these references attempts have been
made to utilize the contextual characteristics by discrete
one or two dimensional Markov process. An extensive bibli-
ography on the use of context is given in [13]. A diffe-
rent approach which attempts to utilize spectral and spa-
tial context based on compound decision theory is given in
[14-161].

Another approach to incorporate the spatial context
with spectral information is through the use of probabilis-
tic relaxation methods. Within the last five years, seri-
ous efforts have been made to utilize spatial interaction
among pixel labels in a local neighborhood by heuristic
techniques. The probabilistic relaxation processes have
been extensively used in picture processing (17,181 espe-
cially for line and curve enhancement [19,20 and 21]. The
covergence properties of relaxation have been investigated
in [18,24,34]. Because of the heuristic nature of relaxa-
tion approaches, several algorithms have been developed

[17-351].




Another source of useful information which
characterizes an image is the local texture. The textural
information can be extracted in one approach based on a
"gray tone spatial dependence matrix" [36-38]. In another
approach, attempts have been made to model the texture by
one or two dimensional autoregression (AR) models [39-44].
In the unilateral AR model [39,40,43,44] the assumption is
that the current observation depends only on the past ones
and in the bilateral AR model [41,42] the current observa-
tion depends on the neighbors on either side. Also, AR
processes have been used for modeling of a noisy images and
then Kalman filtering approaches are used to reduce the
noise [45-52]. An extensive bibliography on statistical
and structural approaches to texture is given in [53].
However, most of Ehe references mentioned in this section
discuss methods capable of characterizing images in which
the measurement on each pixel is a one-dimensional observa-
tion. But in a remotely sensed image data a multidimen-
sional observation is available for each pixel. Therefore,
care must be taken for modeling. A number of papers on
combined use of spectral and textural characteristics for
the improvement of multispectral classification of remotely
sensed data are given in [38,57-63].

A different approach to utilize spatial characteris-

tics is to partition the scene into statistically




homogeneous objects [54]. Then based on the assumptions
that pixels with an object are uncorrelated and normally
distributed, the maximum likelihood object classifier is
developed [54,55,56]. This scheme provides consistently
better performance than maximum likelihood pixel classi-
fier. However, it does not incorporate the context of the

objects into the classification process.

1.3.3 Utilizing Temporal Characteristics and
Available Ancillary Data

Temporal variations in the scene and available ancil-
lary data such as topographic data, pixel radar response,
and soil type maps, are known to be information-bearing.
However, because of the complexity which they add to the
analysis of spectral and spatial characteristics, they are
not being effectively utilized. Thus far, there are three
approaches to utilize spectral/temporal and spectral/ancil-
lary data. The earliest approach is simply to increase the
dimensionality of feature space by concatenating the avai-
lable multitemporal measurement vectors, or spectral and
ancillary measurement vectors and is called the "stack vec-
tor" approach [65,66]. But increasing the dimensionality
increases the magnitude of the computation and number of
spectral subclasses which must be defined. This scheme
requires larger numbers of training samples to characterize

the data.



The second approach for joint use of spectral/temporal
information has been studied by Swain [67]. The idea has
been developed based on a Bayesian strategy (minimum risk)
for multitemporal data.

An approach for combined use of spectral/ancillary

data has been suggested in [64]. The idea of supervised
probabilistic relaxation is used to employ the

available ancillary information to improve the accuracy of
a predetermined spectral classifier.

The third approach utilizing multitemporal character-
istics is to find a mathematical model for spectral devel-
opment, see for example [68-71]. A more detailed discus-
sion on algorithms utilizing spectral, spatial, temporal

and ancillary information is given by Landgrebe [72].

1.4 Summary of Contents

In Chapter 2, multitemporal data is modeled as the
output of a stochastic dynamic systém, then by the Markov
process assumption attempts are made to utilize the tempo-
ral characteristics.

In Chapter 3, utilizing spectral, temporal, spatial
and ancillary information by probabilistic relaxation tech-
niques is investigated.

In Chapter 4, a two-dimensional autoregressive model
is used to extract the texture of an object. Then based on
this information and spectral characteristics, the object

is classified.
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In Chapter 5, a summary and the major contributions of
this research are stated. Directions for further study is
suggested. Finally, some analytical details, developed
computer programs and information about the data set are

placed in appendices.
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CHAPTER 2

UTILIZING MULTITEMPORAL INFORMATION BY A STOCHASTIC MODEL

2.1 Existing Algorithms

Utilizing Multitemporal Information

The spectral variation of energy is a function of
time, and at a given time it has been modeled as a random
process [81,82,84,86). However, in practice, at a given time
only the spectral variation of energy of selected bands is
measured. Therefore, the measurement of energy for éach
pixel by a remote sensing system can be viewed as perform-
ing a statistical experiment whose outcome is vector-
valued. The variation of energy as a continuous function
of time for q different bands or channels is shown in Fig-
ure 2.1. These curves are the spectral/temporal represen-
tation of a ground cover type. 1In practice, only discrete
time samples from these continuous functions are measured.

Multispectral image data consists of an observation
set X, location set Q and population set C where

® q

X(t), s, X(t)eR

g={s=(i,), 1 <i<1I,1<3 <dJ}

C = {wllwzl- . -U-\m}




x={x(s),seQ}

1
] |
i ) I i
Q=is=(i, j),1=isl, 1=jsJ} t ' ! N B
X - ] | :
C={wy, Wy, . ...WH! 42() | ! : !
| . | ;
! !
z ! ! !
; : ' '*»
S L
Do o
. ! I i :
Xq(t) ! f | !
i : | :
: ) : |
M
! I
P L
t-p t-p+1 t1 t

Figure 2.1 Temporal variation of energy as a sample
function from a g-dimensional stochastic

process.

12
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and m is the number of classes. By sampling the vector
continuous signal (P+1l) times, we will have (P+l) measure-
ment vectors X{(t), X(t-1l),...X(t-P) available for each
pixel.

It is commonly assumed that p(X(t)lwi) the class con-
ditional density function is multi-variate normal [1]; i.e.,

= . 4
P(X(£) Jwy) = N(X(£): M, (£),3,(t)) &

1
T
(2m ‘|z, (¢) ] (2.1)

exp{- - Ty-1 -
T exp{-%(X(t)-M, (£))" I 7(t) (X(t)-M,(£)) ]

where Mi(t) and zi(t) are the mean vector and covariance
matrices, respectively. Then assuming a maximum likelihood

pixel classification strategy, the decision rule is

P(X(t) |w,) = max p(X(t)ij), j =1,2,...m,
| J (2.2)

> X(t)emi; i.e., X(t) is classified into class wy-

The first algorithm which attempts to utilize temporal
characteristics is the so-called stack vector approach
[65,66]. As mentioned earlier, let X(t), X(t-1),...,X(t-P)
be P+l sampled value vectors of the continuous temporal var-
iation of reflected and emitted electroﬁagnetic energy. The

stack vector algorithm is the following:

P(X(t) ,X(t-1),...,X(t-P) | “’i) =

N(X(t),X(t-1),...,X(t-P); Mi,Zi) (2.3)

and decision rule is
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P(X(t) ,X(t-1),..., X(t-P) Ju;) =

max p(X(t),X(t—l),...,x(t-P)ij),
J

j=1,2,...,m > [X(t),X(t-1) ,...,X(t-—P)]ewi (2.4)
This algorithm sometimes provides increases in accuracy
over simple spectral means; however, disadvantages of this
method are that it

1. Expands the number of spectral subclasses.

2. Requires large numbers of training samples.

3. Increases the computational complexity.

Another algorithm which attempts to utilize multitem-
poral information is the cascade pixel classifier [67].
Based on thé Bayesian strategy and using some appropriate
assumptions, the decision rule for bitemporal information
is shown to be:

If gi(X(tz).X(tl)) =

my

m%x p(X(tz)ij)( i p(X(t1)|V2)P(wj,V2),

=1

j=1’2’.o-'m
then decide
[X(tz),X(tl)]€wi (2.5)

where

P(X(tz)le) = N(X(t,); Mj(tz)pzj(tz))
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P(X(t ) [V)) = N(X(t )5 M (t)),T, (t)))

X(tz) and X(tl) are multivariate observations at time t2

and tl, respectively. Vl,V?_,...,Vml and WyrWoreeerwmy

denote the set of classes at time tl and t2,

And P(wj,VQ) is the joint prior probability of class VK at

time tl and class wj at time t2. Problems with this scheme

respectively.

are:

l. It is very sensitive to the joint prior probabil-
ity; therefore, a good estimate of P(wj,VQ) should
be available.

2. It is sensitive to missing observation times.
However, the cascade classifier sometimes improves the
classification accuracy significantly.

As a third approach there are several algorithms which
attempt to utilize temporal characteristics by a regression
model. In [71] a procedure statistically modeling only
noise and not the signal has been investigated for classi-
fying observations based upon their growth profiles. The

model which was proposed in [71] with some modifications is:

Xi = ABi + Ui (2.6)
where
T
xi = [xi(l)rxi(z)l---lxi(P)] ’
Xi(k) = Xi(tk) is an observation at time ty of one of the

available channels from ith class,
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[ 2 N-1 ]
l tl tl L] - - - - tl
2 N-1
1l t2 t2 e o e s o t2
A =
2 N-1
L 1 tP tP - L ] . L ] - ‘tP

and
B; = [b,, b b, 1T
1 ig Yil °°*°°° TiN-1
Assuming U, is white noise with zero mean and covariance
matrix Vi' it can be shown that

p(X Iwi) = N(X,; ABi,Vi)

and the maximum likelihood estimates ﬂx:Bi and Vi are given

by
n.
1
8. = aTa)y"1aT(L = x.3 (2.7)
1 n. . 1
i i=1
nl
. =X ¥ (X, - AB,)(X. - AB;)" (2.8)
i T n. . i i’ t85 i .
i i=1

where nj; is the number of training samples from class i and
the decision rule is:

If P(Xlwi) = max P(xle), j=1, 2,...m,
J
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then classify X into class i. Spectral development of some
cover types may be accurately modeled by this algorithm;
however, problems with this method are the following:

1. The temporal observation is modeled by a N-1
degree polynomial by which the parameter N must be
estimated.

2. The classifier only uses one spectral feature.

3. Increasing P means increasing computational com-
plexity.

4. Small P means lower classification accuracy.

2.2 Proposed Algorithm for Utilizing

Temporal Characteristics

Ground cover types are considered as stochastic sys-
.tems with non-stationary Gaussian processes as input and
temporal variations of reflected and emitted electromagnetic
energy as output. Then by assumption that the behavior of
these stochastic systems is governed by first order Markov
processes, multitemporal information may be utilized.

It is logical to assume that the temporal change of
the energy of a pixel in all channels as shown in Figure 2.1
could be represented by a continuous time function. A hypo-
thetical distribution of the temporal variations of only one
channel for a cover type is shown in Figure 2.2. As men-
tioned earlier, let X(t) be a g-dimensional random variable

(g is the number of spectral features).




»
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Figure 2.2 A hypothetical distribution of spectral development for a cover type.
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Assumptions:
1) X(t~k), k=1, 2,..., P is a Gauss—-Markov random
sequence; i.e.
(a)  Pp(X(t)]w;) = N(X(t); M; (t),I;(t)) (2.10)

(b)  p(X(t) [X(t-1);0;) =
N(X(t),M, (£)+p, (t-1) (X(t-1)-M(t-1)),

Zi(£)=p, (£=1)T, (£-1)p T (£-1)) (2.11)
where Mi(t) and Zi(t) are the mean vector and
covariance matrix of the ith class at time t,
respectively, and pi(t—l) is the temporal corre-
lation matrix of the ith class between time t and
(t-1).

2) X(t), X(t-1),... are Markovian sequences, i.e.,
p(X(t)IX(t—l),...,xkt—P);wi) =
P(X(t) [X(t-1)50;) (2.12)

It is believed that many natural and man-made dynamic
phenomena may be approximated quite accurately by a Gauss-
Markov random sequence [83] and a Gauss~Markov random
sequence can always be represented by the state vector of a
multivariate linear dynamic system forced by a purely ran-
dom Gaussian sequence in which the initial state vector is
Gaussian; i.e.,

Xj_(t)"Mi(t) = pi(t-l) (Xi(t—l)—Mi(t—l)) + Wi(t) (2.13)
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where piﬁfl)isthe temporal correlation matrix between multi-
variate observations at time t and t-1 of class i. Let

Yi(t) = Xi(t) - Mi(t)

Then from (2.13) we have:
= - - .14
Yi(t) pi(t l)Yi(t 1) + wi(t) (2.14)
where

Y(t) and W(t) e RY

E[Y(t)] w.] =0 (2.15)
cov[Y(t)Imi] = I,(t) (2.16)
P(W(E) [wy) = N(W(t); 0, V;(t)) (2.17)
E[W(t) |wi] =0 (2.18)
cov[W(t)Iwi] = V;(t) (2.19)

Also, W(t) (error) is orthogonal to ¥Y(t); i.e.,
E[Y(t)WT(t) |wil = O | (2.20)
where E and cov denote the expectation and the covariance

matrix, respectively.

2.3 Parameter Estimation

for Multitemporal Observation

Suppose one has n; labeled observations from each
class mi_for i=1, 2,...m and that each of these observa-
tions has been observed at P + 1 distinct times. By the
Gauss-Markov and Markovian assumptions of observations we

can write




21
p(Y(t), Y(t-1), ..., Y(t-P)‘(ﬁi) =

P
[ I P(Y(t-j+1)|Y(t‘j);wi)] P(Y(t~P)|wi) (2.21)
3=1

Assuming the training samples are independent, then we

have:
p(Yl(t),Yl(t-l), cens Yl(t—P), Yz(t—l), cees Yz(t—P),

cees Yn.(t),Yn_(t—l), cees Yn_(t—P)lmi) =
1 1 1

ni P
I [H p(Yi(t-—j+l)|Yi(t-j; ‘”1)] p(Yi(t-P)lwi) (2.22)
k=1] Lj=1

The maximum likelihood estimates %}t—P), pi(t—j),

‘Va(t—j+l), j=1, 2, oo P, i =1, 2, ... m are given by

$ 1 i T (2.23)
Zi(t—P) = E;.kfl Yk(t—P)Yk (t-P) .

~ i T ny T -1

py(t-3) = kElYk(t-jﬂ)Yk (t-3) kElﬁfk(t-j)Yk (t—j)] (2.24)

n.
~ 1 "
U, (e-341) = f—i[kzlwku—jﬂ) = 0y (E=3)Y, (£-9)) (¥, (£-3+1) -

6i<t-j>Yk(t—j))T] (2.25)
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For more detail on estimates of the parameters see Appendix

A,

2.4 Decision Rule

To classify an unknown profile Y(t), Y(t-1) ¥Y(t-P),

the classification rule is:

If  p(Y(t),¥(t-1),...,Y(t-P)|w,) = max P(Y(1),Y(t-1),...,Y(t-P) fuy)
k

k=1,2,...,m

then assign

[Y(t), Y(t-1),..., Y(t-P)] to class i (2.26)
where

S(Y(t),Y(t-l),...,Y(c-p)|wi) -

[jIElN(Y(t—;Hl); Bi(t—j)Y(t-j), Gi(t—j))] [N(Y(t—P); 0, ﬁi(t_p))]
This classifier will be called a Markov classifier and its
block diagram is given in Figure 2.3.

In deriving the decision rule, it has been assumed that
the multichannel temporal change curve is a first order
vector Markov process and also the observations are a
Gauss-Markov vector random sequence. However, the temporal

change curve can be modeled by a second or higher order
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vector Markov process. For example, for a second order

Markov process, the stochastic dynamic model is given by:
Yi(t) = pPi(t-1)Y  (t-1)+p;(t-2)Y (t-2)+W;(t) (2.27)
where Y, (t) = X,(t) - M. (t)

énd the discriminant functions are:
POT(E),Y(t-1),.. ., ¥ (t-P) [w) =

P ~ ~ ~
[ T N(Y(t-3+2) 5 0o, (£-3+1)¥(e-3+1) + p (£-3)¥(t-3), Vi(t-j+2)]

j=2
[N(Z(t-P); 0, fi(t-P)] (2.28)
where Y(t-P+1)
Z(t-P) = (2.29)
Y(t-P)
2; (t-P) = cov[Z(t-P) |uw,] (2.30)

Obviously the second order stochastic dynamic Markov model

is more complex than first order Markov model.

2.5 Validity of the Assumptions and

Advantage of the Proposed Approach

In remote sensing it is commonly assumed that the

class-conditional density function is approximately
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multivariate normal. This assumption is usually justified,
particularly if spectral classes are defined by a suitable
mode-seeking method. Let X(t) and X(t-l1) be a g-variate
random vector observation at time t and t-1, respectively.

Based on the above Gaussian assumption, we can write:

P(X(t) Jwy) = N(X(t)s Mj(t), IZ;(t)) (2.31)

P(X(t-1) |w;) = N(X(t-1); M (t-1), I;(t-1)) (2.32)
Let W(t) = X(t)-M; (t)-p; (t-1) (X(t-1)-M; (t-1)) (2.33)
where

M; (t) = E[X(t) |wy;] (2.34)

M, (t-1) = E[X(t-1) |u,] (2.35)

- T T -1
py (-1) = E[X(t)xi(t-l)]{E[X(t—l)xi(t—l)]} (2.36)

Since the linear combination of normal random vectors are

also normal [81]; therefore,

p(W(t)lwi) N(W(t); 0, V.(t)) (2.37)

n

where V. (t) cov[W(t)Imi]

(2.38)
Now, suppose the objective is to utilize temporal
observations at two stages which correspond to considerable

differences in canopy structure. Therefore, let

p(x(t),X(t—l)lwi), i=1,2,...m be the discriminant functions

for the m classes. Then by the Bayes rule, we can write

P(X(t) ,X(t-1) |w;) = P(X(t) [X(t-1);uw;) P(X(t-1) |w;)
(2.39)
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For the proposed model, we need only assume that

P(X(t) [X(t-1);w;) = N(X(t);D;(t),V,(t)) (2.40)
where

D.(t) = E[X(t)lx(t—l);wi] (2.41)

v (L) = cov[X(t)|X(t—l);wi] (2.42)

It is shown in [81] that if X(t) and X(t-1l) are jointly

normal, i.e.,

P(X(t) ,X(t-1) |w;) = N(X(t),X(t-1);M,T) (2.43)
then
P(X(t-1) |w;) = N(X(t-1), M(t-1), I(t-1)) (2.44)
and
P(X(t) |X(t-1);u;) = N(X(t):D, (t),V, (t)) (2.45)
where
(M(t-1)
M= (2.46)
| M(t)
[z (t) T(t,t-1)
T = (2.47)
[ z(t=1,t)  s(t-1)

The converse is not necessarily true if they are not inde-
pendent. As mentioned earlier, we know that usually X(t)
and X(t-1) for a given class are marginally normal and also
are not independent. Therefore, if we assume that X(t) and
X(t-1) for each class are jointly normal, the normality

assumption of the transition probability density function




27

is true. However, the validity of the joint normal assump-
tion is left to be investigated.

The advantages of the proposed model are the follow-
ing:

1) Utilization of the temporal correlation between pat-
terns in different stages and incorporation of this
information into the classification process is pro-
vided to improve the accuracy.

2) Faster computation is provided over the stack vector

approach and the cascade classifier,

. 2.6 Experimental Results

2.6.1 Data Set

Multitemporal spatially registered Landsat multispec-
tral scanner (MSS) data acquired over Henry County, Indi-
ana, in 1978 were selected to evaluate the performance of
the Markov pixel classifier., The acquisition dates for
this data set are: June 9, July 16, August 20, and Septem-
ber 26. The number of channels available for the Landsat
MSS is four. Channels one and two are in the visible range
and channels three and four are in the reflective infrared
region of the electromagnetic spectrum. The informational

classes are corn, soybean and other,.
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2.6.2 Training Methods

If field boundaries are chosen with care, then typi-
cally data from an individual field, regardless of crop
type, is usually reasonably unimodel and symmetrical. How-

ever, occasionally individual fields do exhibit bimodality,

and combined data from different fields of the same crop
type frequently exhibits bimodality. Therefore, in order
to approximately satisfy the Gaussian assumption, the fol-
lowing two training methods are considered.

Histogramming Method. A large number of fields are

histogrammed for each main class and based on these histo-
grams the subclasses which approximately satisfy the normal
assumption are defined.

Clustering Method. All training fields for each main

class are clustered into various numbers of modes and sub-

classes are defined on the basis of mode separability.

Experiment 2.1

In order to make a comparison between the cascade
pixel classifier and the Markov pixel classifier, bitempo-
ral data were analyzed. 1In this experiment, we let t =
July 16 and t-1= June 9 (27 days apart). Then bitemporal
registered data of these two dates were used to evaluate
the relative performance of these classifiers. Spectral
classes were defined by the histogramming method and the

parameters estimated. Finally, test fields were used to
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make a comparison among the performance of the maximum
likelihood pixel classifier, the cascade pixel classifier
and the Markov pixel classifier. In all the experiments
that had been performed, the transition probabilities as
suggested in [67 ] were: P(wy,Vy) = 0.8, wy = Vy, P(wy,Vy) =
2/ (m2-1), wj # Vy. The results of this experiment are
shown in Figure 2.4 and more details -of the results are
given in Table 2.1. Information about the software system
and the training data are given in Appendix G. The results
show that the Markov pixel classifier has substantially
better performance than the cascade and either of the uni-
temporal maximum likelihood pixel classifiers. The Markov
classifier improved the overall performance by about 10

percent.

Experiment 2.2
The same data set used in Experiment 1 is used here,
with t = August 20 and t-1 = July 16 (34 days apart).

Exactly the same procedures as Experiment 1 for training

the classifiers were performed and the results are given in
Figure 2.5 and Table 2.2. The reshlts show that the maxi-
mum likelihood pixel classifier at time t (August 20) has
higher overall performahce. However, it is worthwhile to
note that the classification accuracy for each class by the

Markov pixel classifier is uniform and above 75%. This is
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Table 2.1 Classification performance by class for different classifier
(Henry County data; June 9 and July 16).

(a) June 9, 1978

No. of Percent No. of Samples Classified Into
Group Samples Correct CORN SOYBEANS OTHERS
1 CORN 401 64.8 260 114 27
2 SOYB 366 27.9 169 102 95
3 ELSE 285 94.0 9 8 268
TOTAL 1052 59.9 438 224 390
(b) July 16, 1978
No. of Percent No. of Samples Classified Into
Group Samples Correct CORN SOYBEANS OTHERS
1 CORN 401 69.6 279 19 103
2 SOYB 366 48.9 96 179 91
3 ELSE 285 45,6 123 32 130
TOTAL 1052 55.9 498 230 324
(c) Multitemporal Results (Cascade Classifier)
No. of Percent No. of Samples Classified Into
Group Samples Correct CORN SOYBEANS OTHERS
1 CORN 401 69.3 278 19 104
2 SOYB 366 48.4 100 177 89
3 ELSE 285 49.8 112 31 142
TOTAL 1052 56.7 490 227 335
(d) Multitemporal Results (Markov Classifier)
No. of Percent No. of Samples Classified Into
Group Samples Correct CORN SOYBEANS OTHERS
1 CORN 401 78.8 316 38 47
2 SOYB 366 45.4 87 166 113
3 ELSE 285 94,7 10 5 270
TOTAL 1052 71.0 413 209 430
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Table 2.2 Classification performance by class for different classifier
(Henry County data; July 16 and August 20).

(a) July 16, 1978

No. of Percent No. of Samples Classified Into
Group Samples Correct CORN SOYBEANS OTHERS
1 CORN 401 69.6 279 19 103
2 S0YB 366 48.9 96 179 91
3 ELSE 285 45.6 123 32 130
TOTAL 1052 55.9 498 230 324
(b) August 20, 1978
No. of Percent No. of Samples Classified Into
Group Samples Correct CORN SOYBEANS OTHERS
1 CORN 401 93.8 376 5 20
2 SOYB 366 79.5 48 291 27
3 ELSE 285 65.6 87 11 187
TOTAL 1052 81.2 511 307 234
(c) Multitemporal Results (Cascade Classifier)
No. of Percent No. of Samples Classified Into
Group Samples Correct CORN SOYBEANS OTHERS
1 CORN 401 90.3 362 10 29
2 S0YB 366 79.8 47 292 27
3 ELSE 285 67.4 82 11 192
TOTAL 1052 80.4 491 313 248
(d) Multitemporal Results (Markov Classifier)
No. of Percent No. of Samples Classified Into
Group Samples Correct CORN SOYBEANS OTHERS
1 CORN 401 76.3 306 1 9y
2 SOYB 366 79.2 1 290 75
3 ELSE 285 76.8 64 2 219
TOTAL 1052 77.5 371 293 388
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very important in estimation of crop areas and crop produc-

tion.

Experiment 3.3

The same data set and the same training procedure
used in Experiments 1and 2 are used here, except t = August
20, and t-1 = June 9 (71 days apart). The classification
results are given in Figure 2.6 and Table 2.3. Again, the
Markov pixel classifier has higher accuracy than the maxi-
mum likelihood and cascade pixel classifiers. As shown in
Table 2.3 the performance of the maximum likelihood classi-
fier in June is poor and in August is reasonably good
because corn and soybeans are separable in August but not
in June. However, we see that the Markov classifier has
improved the overall performance by about five percent by
incorporating the temporal correlation of observations in

June and August into the classification process.

2.7 Summary and Conclusions

The temporal variation of energy has been considered
as the output of a stochastic dynamic system. Then based
on the assumption that the observed temporal data are a
Gauss-Markov sequence, a new-classifier, the so-called Mar-
kov classifier, is developed. This stochastic model success-
fully utilizes multitemporal data characteristics. Actually,

the spectral development curves of the classes have been
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Table 2.3 Classification performance by class for different classifier
(Henry County data; June 9 and August 20).
(a) June 9, 1978 data
No. of Percent No. of Samples Classified Into
Group Samples Correct CORN SOYBEANS OTHERS
1 CORN 401 64.8 260 114 27
2 SOYB 366 27.9 169 102 95
3 ELSE 285 94.0 9 8 268
TOTAL 1052 59.9 438 224 390
(b) August 20, 1978
No. of Percent No. of Samples Classified Into
Group Samples Correct CORN SOYBEANS OTHERS
1 CORN 401 93.8 376 5 20
2 SOYB 366 79.5 48 291 27
3 ELSE 285 65.6 87 11 187
TOTAL 1052 82.1 511 307 234
(¢) Multitemporal Results (Cascade Classifier)
No. of Percent No. of Samples Classified Into
Group Samples Correct CORN SOYBEANS OTHERS
1 CORN 401 90.0 361 10 30
2 SOYB 366 79.8 47 292 27
3 ELSE 285 66.3 85 11 189
TOTAL 1052 80.0 493 313 246
(d) Multitemporal Results (Markov Classifier)
No. of Percent No. of Samples Classified Into
Group Samples Correct CORN SOYBEANS OTHERS
1 CORN 401 85.0 31 28 32
2 SOYB 366 79.5 1 291 T4
3 ELSE 285 91.2 11 14 260
TOTAL 1052 84.8 353 333 366
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modeled by a stochastic Markov process. The experimental
results show that the Markov classifier has significantly

better performance than the maximum likelihood and cascade

pixel classifiers.
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CHAPTER 3

PROBABILISTIC RELAXATION ON MULTITYPE DATA

Classification of multispectral image data based on
spectral information has been a common practice in the ana-
lysis of remote sensing data. However, the results pro-
duced by current classification algorithms necessarily con-
tain residual inaccuracies and class ambiguity. By the use

of other available sources of information, such as spatial,

temporal, and ancillary information, it is possible to
reduce this class ambiguity and in the process improve the
accuracy.

In this chapter, probabilistic and supervised relaxa-
tion techniques are adapted to the problem. The probabil-
istic relaxation labeling algorithm (PRL) given in [26],
which in remote sensing pixel labeling usually improves
performance but deteriorates after the ovtimum number of
iterations, is modified. Experimental results show that
the modified relaxation algorithm reduces the labeling
error in the first few iterations, then remains constant
at the achieved minimum error. Also a noniterative label-
ing algorithm which has a performance similar to that of
the modified PRL is developed. Experimental results from

Landsat and Skylab data are included.
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3.1 Probabilistic Labeling

Our objective is to develop heuristic algorithms to
utilize a combination of spectral, spatial, temporal, and
ancillary information. In remote sensing, the spectral
variations of electromagnetic energy of the scene have been
studied extensively. The spectral response, which is a
function of wavelength, has been modeled as a random pro-
cess [81,82,84,86]. Another source of useful information is
the spatial context of a pixel.

The dependencies between pixel labels are referred to
as contextual information. 1In many pattern recognition
problems, there exists contextual information which
describes the spatial dependencies among the patterns to be
recognized [13]. Also, temporal variations in the scene
and available ancillary data, such as topographic data,
pixel radar response, and classification labeling maps, are
known to be information-bearing [72]. Based on these
sources of information, the class membership probabilities

may be estimated by probabilistic labeling methods.

3.1.1 Probabilistic Labeling
by Maximum Likelihood Classifier
Probabilistic labeling is a process of estimating the
initial labeling probabilities. Let X be a point in g-di-
mensional measurement space containing m classes. Also

assume that the probability density function associated
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with each class is Gaussian. Let p(x|wk) and P(w)) be the
class-conditional density function and prior probability of
the kth class, respectively. To characterize each class,
the class mean vector and covariance matrix are estimated
from training samples. Then pixel-label probabilities are
estimated by calculating the a posteriori probabilities

P(w, |X), as follows:

P(X|w) P (uwy)
T p(Xlw,) P(w,)
=1 2 2

o L _
Pi(wy) = P(w %) =

k=1, 2, ... m (3.1)

where Pi(mk) is the initial estimate of probability of the

ith pixel”s label.

3.1.2 Probabilistic Labeling by Cascade Classifier
To utilize spectral and temporal information jointly,

a classifier based on the Bayesian strategy has been proposed

[67]. Let X(tz) and X(tl) be multivariate observations at

time t2 and time tl’ respectively. And let {Vj' j =

1,2,3...m.}, and {wK, K = 1,2,...m2} be the set of possible

1

classes at time tl and time t2,

shown that [67] the estimate of class membership for bitem-

respectively. It can be

poral observations is given by

my
P(X(ty) ) I PX(t)) |V))Plwy.Vy)
pOw) = = (3.2)
1 m2 1

T p(X(t,) |w:) I pXE)|V,)P(w.,V,)
5=1 2 j 0=1 1l ') 378
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In practice, p(X(t,)|w,) and p(X(ty)|Vy) are available
after estimating their corresponding mean vectors and
covariance matrices from training data. As suggested in
[67], the prior joint probability P(wk'vl) may be estimated

ass

Pluy rVy) = Ploy [VIP(V) : (3.3)

Assuming P(VQ) = ﬁ;, then the transition probabilities are
‘ 1
given by
= pO -

P(wk'vz) P° for o, =V,

and
(0]
P(wkIVR) -1 for w  # V,

where 0<P%<l1.

3.1.3 Probabilistic Labeling by Markov Classifier

The Markov classifier, which utilizes multitemporal
information very effectively, is discussed in Chapter 2.
For bitemporal obvservations pixel-label probabilities can

be estimated as:

p (X ()X (t-D,w, ) P (x (t-1)w, )
2 | k k (3.5)

0
Pi (wk)

n~s

P (X (£) |X(£-Dy0,) P (X (£-1) [wy)

=1

The main objective of estimating the initial labeling

probabilities by the cascade or Markov classifier is to
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incorporate the temporal information in the classification
process and, therefore, reduce the ambiguity of the initial
labeling. Later, we will show how the initial labeling
ambiguity can be reduced even more by utilizing spatial
information.

However, if the initial labeling probabilities cannot
be statistically estimated, then we may assign probabili-

ties to the predetermined labels, as follows:

o ——

o]
Pi(wl) ==—-—, £ =1, 2, ... m (3.6)

L#k

where it is assumed that the ith pixel”s label is w, and
%<Wil. This way of assigning the initial labeling proba-
bilities will be referred to as the arbitrary weighting
method because we use the initial labeling and then assign
arbitrary weights which are between zero and one and agree
with the labeling.

This weighting method is faster computationally
because the previously mentioned methods for probabilistic
labeling are not needed. However, this method also is
biased. We know that in order to support the initial
labeling, the labeling weight W should be greater than 1

m

and less than or equal to one. Choosing %<W§l is not
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justifiable unless we have some prior information about the
performance of the algorithm which performs the initial
labeling. Then based on that, we may be able to make the

range for W narrow.

3.2 Existing Algorithms Utilizing Multitype Information

3.2.1 Spectral-Spatial Classifier
Based on Compound Decision Theory
In general, contextual classifiers attempt to incorpo-

rate pixel context or information surrounding a pixel into
the identification process of that pixel. Multispectral
image data consist of a set {, set {X(s),seQ} and set C =
{l,2,...m} where 2 is a two-dimensional array of pixel
locations, i.e., Q = {s = (i,3j), 1l<i<I, 1<j<J}, and X(s) is
a g-dimensional random observation at point s. Also let N
denote the neighbor set. Typically, N = {(0,0), (0,-1),
(-1.0)} or N = {(0,0), (0,-1) (-1,0), (0,1) (1,0)}. Illus-
trative examples of different neighbor sets are given in
Figure 3.1. The discriminant function for a pixel at point

s+ (0,0)=s based on its neighborhood is given by [14-16]:

P(w(s) |[{X(s + (1,3)), (i,3)eN}) « z ([ i
(i,3)eN (k,2)eN
w(s+(i,j))eC
(i,3) # (0,0)

p(X(s + (kx,))|w(s + (x,2))] -

P({w(s + (1,3)), (i,j)eN}D : (3.7)



S+(-1,0)

S+(0,-1)

N={(-10), (0,1}

S+(-1,0)

S+ (0,-1)

S+ (0,1)‘

N=

Figure 3.1 Examples of different neighbor sets.

S+(1,0)

0,1),¢10), (01, (10)|

4%
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where X(s) g-dimensional random measurement

for a pixel at point s;
w(s) class of a pixel at point s;

p(X(s)lw(s)) class-conditional densiﬁy function

of X(s);

p({w(s+(i,3)) , (i,3) e N})

is the joint probability set of possible classes in the

neighborhood.

The contextual information is contained in
p{wts+(i,3)), (i,j)e:N})._ However, in practice, this has
to be estimated from a prelabeling process and to have a
good estimate of P({w(s+(i,j)), (i,3) ¢ N}) is computation-
ally costly. A simpler algorithm which attempts to utilize

contextual information for further study is given in Appen-

dix B.

3.2.2 Utilizing Spectral, Spatial Characteristics

by Probablistic Relaxation Algorithm

Relaxation labeling processes use an iterative heuris-

tic approach which attempts to extract contextual
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information in a scene to reduce the ambiguity of a predet-
ermined labeling. Relaxation labeling techniques use two
sources of information, an initial (ambiguous) labeling and
information imbedded in the spatial context of a pixel. A
block diagram of a post classifier which utilizes probabil-
istic and supervised relaxation is given in Figure 3.2.

Let us consider the probabilistic relaxation algorithm
which has been suggested by Zucker et al. [26]. Let P?(wk)
denote the estimate of the probability that on the nth
iteration the label or class of the ith pixel of a scene
k=1, 2,...m. Then define

is Wy 7

n n
n n
lPi(wz) Qi(wl)

n+1l
Py (o)

N9

L

where Q?(wk) is called the neighborhood function and is

defined by
n J n
Qi(wk) = E d. . Elpij(wklwz) Pj(wz) (3.9)

In this equation Pij(wklwz) is the probability that pixel i
is from class Wy given that pixel j is from class wy . The
dij are a set of neighborhood weights which satisfy

J

Idg.. =1 (3.10)

j=1 13




—| Classifier

g(x)

Probabilistic
Labeling

Predictor

Q' |Relaxation

Figure 3.2 Block diagram of a post classifier.

LLabeling

n+1

T

Wi

Ly
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with J as the number of pixels in the neighborhood and m as
the number of classes. Examples of J =5 and J = 9 are
given in Figure 3.3. 1In all our analysis, the J = 5 neigh-

borhood will be used.

3.2.3 Utilizing Spectral, Spatial, Ancillary
Information by a Supervised Relaxation Algorithm
Supervised- relaxation processes [64] are a more
general version of probabilistic relaxation methods which
attempt to utilize multitype data characteristics. 1In
supervised relaxation, first an appropriate likelihood for
the label of each pixel is estimated based on the statisti-
cal information of available data. Then the neighborhood
function for the 1label most favored by ancillary data
is increased and others decreased in proportion to their
support from the ancillary data source. The relaxation
algorithm does not know, of course, which are the correct
and which are the incorrect labels. It only "knows" which
labels are consistent with their neighbors and with the
ancillary data. Consequently, an image with initial label-
ing errors will be iterated until consistency between spec-
tral, spatial and ancillary information is achieved.

Let us consider the supervised relaxation algorithm
which is suggested by Richards et al. in [64].

n n
P. (w,) R, (w,.)
_ itk ik (3.11)

n n

Pp+l(w
i

k)

Mg

2
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Figure 3.3 Example J-pixel neighborhoods.
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n
where Ri(wk) = Q?(wk)wi(wk) (3.12)
n J m n
. = ¥ d.. P.. .
Q4 (wy) 5 13151 lj(wk|m2) Py(wy) (3.13)
and
¥ () = [148 (mp. (w ) - 1)] (3.14)

In the above equations P?(mk),Q?(wk) are the same as we
defined earlier and Wi(wk) is an estimate of the likelihood
for the ith pixel”s label on basis of ancillary data. 1In
(Eq. 3.14), ¢, (w.) is the probability that the ith pixel be-
longs to class w, based on ancillary information, and B is a param-
eter that adjusts the degree of supervision; itis between zero
and one. The parameter B is chosen heuristically; however,
it should reflect one's confidence in the anéillary’ data in
comparison to the other sources of information. As before,

m is the number of possible classes or labels.

3.3 Proposed Algorithms

for Utilizing Multitype Information

The spatial context of a pixel or dependency among the
labels in a neighborhood is incorporated via Pij(wklwz)'
the transition probability that pixel i is from class w,

given that pixel j (one of its neighbors) is fromw,. In past
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practice, Pij (wk|w£) has been estimated fromthe result of pro-
babilistic labeling over the whole data set, which means the

transition probabilities are assumed constant over the data

set. In fact, in an actual data set, they may be expected
to vary from place to place. What we are suggesting is,
Pij(wklwl) should slowly vary over the data set and the
following procedure is suggested to estimate these transi-
tion probabilities.

1. Depending on the number of classes, choose a
square window of size L x L centered at the ith pixel. For
example, for two classes, we have chosen a window of size 5
x 5 and for the three classes a window of size 6 x 6 may be

considered.

2. Estimate the probability of jth pixel”s label by

2

1
P.(w ) = = I P2
k cp (@)
J L¢ r=1 JF k

=

(3.15)

where Pjr(wk) is the initial estimate of a pixel”s label at
location jr of the chosen window.
3. Estimate the transition probability by

(3.16)
Pj(“ﬁ)

Piglolug) =

and the joint probability by
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2

4
- 4 o o
Py g (wprwp) 5 I Pr(wk)[%ji Pry(wy)] (3.17)

(L-1) r=1 1

where Pi(wk) is the initial estimate of rth pixel surround-
ing the ith pixel and including ith pixel itself. And
ng(wg) is the initial estimate of jth pixel surrounding the
rth pixel but excluding it.

Now, by using this adaptive procedure, the spatial
context of each pixel is estimated and incorporated by the
neighborhood function to predict the estimate of the proba-
bility of each pixel”s label. It is believed this simple

algorithm can extract most of the contextual information by

only one iteration. The adaptive labeling algorithm is

given by:
n J m n
Q:(w,) = X d.,. I P..(w |w,)P" (3.18)
itk j=1 1Jg=p i3 kI ) j(wl)
l—di
Let d.. = =—=—, then it can be shown that
1j J-1 -
of (w) = af (w) + d; [P} (wy) q; (w)] (3.19)
where
J-1
n _ 1 n
qi(wk) = ZPij(“’kI“’z) [3_—1— E Pj(‘*’z)] (3.20)
L J=1
and
n+l _ ..n n n
PP (wy) = afw) + 4, [PReey) - af )] (3.21)
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The new formulation of the probabilistic relaxation will

therefore be

d [Pn( ]2 n n

n+l
P.
i () =4 - ; N - (3.22)
T d.[P. ] _
z=£ 1P ]+ (1-a)) P (wy) ] (wp)
In Eg. 3.17, if we let di = l—Yi, then we can write
n+l _ 4N n n
Py T (wp) = Pilw) + oy lay () - PU(w)] (3.23)

A summary of all the algorithms is given in Table 3.1.

In the above algorithms, if di = 0.0, then the label
of the ith pixel will be decided, based on spatial informa-
tion (assuming its initial label probability is not zero or
one). 1If di = 1.0, then we are not using any spatial
information for the ith pixel.

As mentioned in Section 3.2.3, the supervised proba-
bilistic relaxation algorithms are heuristic techniques
which attempt to reduce the ambiguity of a predetermined
labeling by measuring consistency of pixel labels based on
multitype data characteristics. Labeling consistency is
measured by multiplying appropriate label likelihoods,

which can be obtained from spectral, spatial, and ancillary



Table 3.1 Summary of probabilistic and supervised relaxation algorithms.

Algorithm Probability
Initial Labeling Transition
(1) P (4. ) 0% (w, ) Weighting Over the
Probabilistic n+l _ iVk’*iVk method region
. P- (w ) -
Relaxation i k mo. n
Labeling (PRL) )} Pi(wg)Qi(wQ) Probabilistic Window
=1 labeling
n J n
Q; (wy) = 2 dijZPij(wklwl)Pj(wz)
j=1 '3
(2) n+l n n n Weighting Over the
Iterative P, ) = Pi(wk)+yi[qi(wk)—Pi(mk)] method region
Adaptive
Labeling (IAL) J-1 Probabilistic Window
n _ 1 n labeling
q; (w,) = iPij(wkle)[E:Ijzle(wl)]

Oiyiil
(3)

Non-Iterative Adaptive
Labeling (NAL)

Supervised
Relaxation

The same as Algorithm 2 with only one iteration

The supervised version of Algorithms 1, 2, and 3 will be
referred to as algorithms 4, 5, and 6, respectively.

4%
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information. In our analysis, the following ancillary in-
formation was utilized:

1. Probability of a given label based on elevation data.
This data represents a quantitative version of the fact that
some classes are more likely than others at a given elevation;
this is particularly true in regions of high terrain relief.
If we constantly remind the relaxation process about these
features, then the algorithm performance may be expected to
improve.

2. Objects in the scene having narrow shapes, such as
roads and rivers ("geometric features") may consist of spec-
trally separable classes which can be accurately classified
by maximum likelihood and minimum distance pixel classifiers.
If the labeling results of these classifiers are used to
supervise the relaxation, the correct labeling of these geo-
metric features can be preserved.

3. The results of classification based on temporal in-
formation, for example at time t-1, can be used to supervise

relaxation labeling at time t or vice versa.

3.4 Experimental Results

In order to evaluate the performance of the above heuris-
tic algorithms, two data sets were selected. Data Set 1 was
multitemporal spatially registered Landsat MSS data acquired
over Henry County, Indiana in 1978. Data Set 2 was multi-
spectral Skylab S$-192 data from northeast of the Vallecito
Reservoir region in the Colorado Rockies. This data set was
classified into a number of tree species using the maximum
likelihood classifier. The classification map so produced
was rearranged for simplicity into the two categories of
spruce/fir and other. For the region, elevation data as
well as a probability model for the occurrence of spruce/fir
vs. elevation were chosen as an ancillary data variable.
Information about software systems and data sets is given

in Appendix G.
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Experiment 3.1

The objective of this experiment is simply to investigate
the probability of error when the initial labeling probabil-
ities are assigned by the weighting method. Therefore, using
the maximum likelihood classifier, Data Set 1 (Landsat MSS
data), collected on August 20, was classified into corn/soy-
bean and other. A block of 30 x 30 pixels from this data set
was selected, and by the weighting method, the initial label-
ing probabilities were assigned. Then Algorithm 1 (PRL) was
applied to the selected block of data, using 40 iterations.
The result is shown in Figure 3.4. It suggests the following:

1. If the result of the spectral classifier is weakly
supported (P?(mk)z%) for all pixels), then there is really no
useful spatial information available for the relaxation pro-
cess to utilize to reduce the ambiguity. As seen in Figure
3.4, the results of relaxation applied in such a situation
may be even worse than the initial labeling error.

2. Since choosing W arbitrarily is not justifiable, the
initial labeling probabilities should be estimated from the
probability density function, if they are available.

The effect of relaxation from a spatial standpoint can be
seen by comparing Figures 3.5 (ground truth), 3.6 (initial
labeling and 3.7 (final labeling). To be clearer, a spatial
or geographic standpoint usually means the true labels are
spatially clustered and this is especially true for agricul-
tural fields. However, if we look at the ground truth pro-
vided by an operator (Figure 3.5), we may observe isolated
pixels from a class surrounded by another class. Simply,
there may be ambiguity in the ground truth, and usually by
examining the initial labeling which is shown in Figure 3.6,
more ambiguity can be seen. However, the results of relaxa-
tion labeling after 40 iterations (Figure 3.7) may be closer
to reality. Therefore, labeling error may be even less than

what we have observed.
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27

26

25

24 Initial labeling error (23.9)

% Error

20

17f

1 ] 1 - |

1
06 0.7 . 0.8 0.9 10
PﬂUUkl

16 L 1 1 1

Figure 3.4 Error vs. the initial labeling probability
at 40th iteration.
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Experiment 3.2

A block of 40x30 pixels different from Experiment 3.1
was chosen from Data Set 1 (Landsat MSS data) collected on
August 20. Then Algorithm 1 (PRL) with two different meth-
ods of estimating the initial probabilities
the selected block of data and the results are shown in
Figure 3.8. The results suggest:

1. By employing the probabilistic relaxation labeling
as a post classifier, we can reduce the probability of
error.

2. The performance of PRL with probabilistic labeling

is better than PRL with the weighting method.

Experiment 3.3

A block 30x30, the same as Experiment 3.1, was chosen
from Data Set 1. Using the maximum likelihood classifier,
the data were classified into two classes: corn/soybeans
and other. Again a comparison of the weighting method and

the probabilistic labeling by maximum likelihood is made,

as shown in Figure 3.8. The same conclusions as in Experi-
ment 3.2 are indicated from these results; however, the

accuracy improvement is larger in this case.

Experiment 3.4
The objective of this experiment was to study the per-
formance of Algorithm 1 (PRL) with two different ways of

estimating the transition probability. The difference
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between thses two methods is that one (region or block) is
independent of the location and the other (window) is de-
pendent on the location of a pixel under consideration, i.e.,
adaptive. The block data set of Experiment 3.2 was chosen
and initial probabilities were estimated by probabilistic
labeling based on the maximum likelihood classifier. The
results are given in Figure 3.10 and indicate the following:
In both cases there was at least some improvement in
accuracy; however, algorithm 1‘(PRL), adaptively estimating
the transition probability, does not exhibit the deteriora-
tion phase. The original algorithm suggested in [26] de-
creased the labeling error, passed through a turning point,
and increased again before settling down to a pessimistic

final value.

Experiment 3.5

A block of size 30x30 pixels from Data Set 1, col-
lected on September 26, was chosen. Then the same proce-
dures as in Experiment 3.4 were applied to this block of
data. Results are given in Figure 3.l11. The same conclu-

sion as for Experiment 3.4 can be drawn from these results.

Experiment 3.6

The objective of this experiment was to study the per-
formance of Algorithm 1 (PRL) and Algorithm 3 (NAL). A
block of size 30x30 pixels from Data Set 1, collected on

August 20, was chosen. Initial probabilities were
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estimated by probabilistic labeling and the transition
probabilities were estimated over a window of size 5x5 pix-
els. The parameter d; was chosen, as in previous experi-
ments, to be 0.1. Results are given in Figure 3.12. The
results suggest that the performance of noniterative adap-
tive labeling and probabilistic labeling are almost the

Same.

Experiment 3.7

A block of size 30x30 pixels from Data Set 1, col-
lected on September 26, was chosen. Then the same proce-
dures as in Experiment 3.6 were applied to the block data.
Results are given in Figure 3.13. The same conclusion as

for Experiment 3.6 can be drawn from these results.

Experiment 3.8

A block of size 30x30 pixels from multitemporal Data
Set 1, collected on August 20, 1978 (time t;) and September
26, 1978 (time t,), was chosen. The initial labeling prob-
abilities at times t; and t, were estimated by the maximum
likelihood method and the transition probabilities were
estimated over a window of size 5x5 pixels. Algorithm 1
(PRL) with di=1—Yi=0.l was compared to Algorithm 4 (with
d;=0.0 and B8=0.5). Information at time t, was used as
ancillary information to supervise Algorithm 1. The objec-

tive of this experiment was to preserve some geometric
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features (roads, line pixels and isolated pixels) and
therefore improve the performance of Algorithm 1. The

results are given in Figure 3.14.

Experiment 3.9

The objective of this experiment was to improve the
performance of Algorithms 1 and 2 by supervising them by
labeling results of a linear classifier. A block of 40 x
30 pixels from Data Set 1 was chosen. Then the performances
of Algorithms 1,4, and 5 were evaluated using initial label-
ing probabilities assigned by the weighting method, esti-
mating the transition probabilities over the chosen block,
and setting d;=0 and B=0.25. The results are given in
Figure 3.15. The results show that Algorithm 5 has a bet-
ter performance than Algorithms 1 and 4. Also Algorithm 5

reaches its fixed point or steady state in few iterations.

Experiment 3.10

A block of size 129 x 91 pixels from Data Set 2 was
chosen. The accuracy of the labeling was measured by using
88 pixels whose correct labeling was known. Then the perfor-
mances of Algorithms 1,3,4, and 6 were compared, estimating
initial probabilities by weighting method and estimating
the transition probabilities over the whole region. The
results are shown in Figure 3.16 and suggest the use of a
supervised non-iterative approach for reduction of the

labeling ambiguity.
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3.5 Conclusion

The probabilistic relaxation technique suggested by
Zucker et al. [26] may be applied to the remote sensing
data as a post classifier. However, the suggested algo-
rithm usually decreases the labeling error (improving
phase), passes through a turning point and increases the
labeling error (deterioration phase). We have modified the
algorithm by assuming that the transition probabilities are
slowly varying over the scene and a method to estimate the
transition probabilities has been suggested. The experimen-
tal results suggest that the modified algorithm does not
exhibit a deterioration phase anymore. Also, a non-itera-
tive adaptive labeling algorithm has been developed which
performs as well as the modified probabilistic relaxation
algorithm. In addition, in order to be able to preserve
the geometric features, i.e., roads, line pixels and iso-
lated pixels, supervised relaxation labeling was developed.
By supervising the process by the available ancillary infor-
mation, we indeed incorporate "memory" into the labeling
process to constantly remind the algorithm about some geo-
metric features which are strongly supported by ancillary
information. Finally, it has been shown that by utilizing
spectral, spatial, and ancillary data, the initial labeling

accuracy can be improved.
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CHAPTER 4
STOCHASTIC MODEL UTILIZING SPECTRAL AND

SPATIAL CHARACTERISTICS

The main objective is to exploit the spatial correla-
tion between the pixels comprising an object by a two-
dimensional Markov model and as a result of that develop a
new object classifier., First, the minimum distance (MD)
and the maximum likelihood (ML) object classifiers are dis-
cussed. Then based on a proposed model these two classi-
fiers are modified and a linear object classifier is intro-

duced. Finally, experimental results are presented.

4.1 Object Classifiers

Multispectral image data consist of an observation set

X, location set { and population set C where:

x = {x(s),se0}

Q={s=(i,§), 1 <i<1,1<3<7d}

0Q
|

{wlrwzt---wm}

and X(s) is a g-dimensional random observation. Let {X(s),

seQ,} where
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<igI,, 3, <33

X {le 2% 1x — 2x}

be the set of observations of an unknown object. Now, the
problem is how to classify this object to one of m possible
classes.

In remote sensing the set of observations of an object

is commonly modeled as:
X(s) = M_ + W(s); X(s)eR? (4.1)

where W(s) is a set of uncorrelated random vectors and com-
ing from a normal population distribution. Let us assume
that the object belongs to class W s where w eC. Then we

can write:

E[X(s) |w, ] = M, (4.2)
E[W(s) [w ] =0 (4.3)
z s=t
T X
E[W(s) W (t)|wx] = (4.4)
0 s#t

Let p(x(s)]wx) denote the class conditional density func-
tion for the class w.. Based on the above assumption we

have

P(X(s) [w,) = N(X(s); M_,I_)

and
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&

N(X(s); M_,Z.)

X' 'x
1 exp{-5(x(s)-M_J I "T(x(s)-Mp ]
(zn)%lzx|% (4.5)

In practice, the parameters of classes Wyr Woe oo rp the

mean vector M. and covariance matrix Zk, (k =1,2,...m) are

k
estimated from sets of training data supplied for each

class.
~ 1 X
My = o sep X(8) (4.6)
X X
S _ 1 =z _ T
Zx = T osen (X(s) Mx)(X(s) Mx) (4.7)
X X
where
nx = (IZX_IlX+1) (JZX—J1X+1) (4.8)

The decision rule for a minimum distance object clas-

sifier [1] is given by:

if  dy, = min d . + {X(s), seQx}er

X

where

d £ alp(X(s) | wy seRy), p(X(s)|wy, sefy)] (4.9)

where d,), denotes the statistical distance between the
probability density functions of class w, and class wg.
Some popular distance measures for two normally density

functions are given by:
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1. The Bhattacharyya distance

~ ~ _l A A
A A~ \T /I +I A A |%(z +2,) |
=1 - x 'k - 1 X 'k
Bk F(Mka) ( 2 ) (Mx”k)“”z“‘ S% 5%
12 1% 1T, ]
2. The Divergence (4.19)

S N [P B I N | a-1 , 2-1, 5 2
D, = ftr[(ZX-Ek)(Zx zk.)]+ ftr[(zx + I ) (M M)

v T
(M_-M ) ]

3. The Jeffries-Matusita (J-M) distance (4.11)
Jxk = Z(l-e—Bxk) % i
4. The Transformed Divergence
| _ka
Tk 72 (l-e “§—) (4.13)

4.2 Maximum Likelihood Object Classifier

The maximum likelihood object classifier also assumes
that observations within an object are uncorrelated and

normally distributed. Then the decision rule is given by:
if  p({x(s), seQX}Iwz) = mix p({x(s), seQX}Iwk),

k = 1’2,o..’m (4’14)
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then classify {X(s), seQx} into class wy. By the above
assumption the class conditional density functions can be
calculated by
p({x(s), seq }w,) = T p(X(s)]|w, (4.15)
X L L
sef
X
A block diagram of an object recognition system in remote

sensing is given in Figure 4.1.

4.3 Proposed Object Classifiers

It has been observed in [73-76,85] that two pixels in
spatial proximity to one another are class unconditionally
and class conditionally correlated. The unconditional cor-
relation usually decays slowly with distance but condi-
tional correlation decreases very rapidly. The sources
of this spatial correlation can be due -to physical
properties of the sensor and the target and can also be
induced by the atmosphere. Therefore, this spatial corre-
lation introduces redundant data in the object.

Our objective as mentioned earlier is to extract spa-
tial (class conditional) correlation and generate indepen-
dent observations for each object. Then there will be no
redundant information in each object. To do so we are
assuming this spatial variation of energy can be modeled by

¥(s) = 1 Py 5 Y(s+(1,3)) + W(s), seny (4.16)

(i,j)eN
where

Y(s) + X(s)-M,, {X(s), sef,}eu,,
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Figure 4.1 Block diagram of an object recognition system.
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N = {(0,-1), (-1,-1), (-1,0)}

p? 3 are q x q diagonal matrices and

z
sefl

M =.r1L.
k

X(s)
k

Also, {w(s), ser}, k =1,2,...m are Gaussian white noise

fields.
E[W(s)|w] =0 (4.17)
Rk s=t
EIW(s)W (t) [0 = (4.18)

E[Y(s) [{¥(s+(i,3)), (i,3)eN}s0,.] =

(i,?)eN pK(i,j) Y(s+(i,3)) (4.19)
cov[Y(s){Y(s+(i,j)), (i,3)eN};u,1 = R (4.20)

k

Since W(s)“s are uncorrelated and Gaussian random vectors,

p{w(s), seq}lw) = 1 p(W(s)|wy) (4.21)

ser

By assumption that the observations are Gaussian and come

from a first order Markov process the following can be

written:
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P({Y (s), SEQk} lwk)

[ I p(Y(s)I{Y(S+(in)I (ilj)EN}iwk)]'
ser

SA(L,3), (ig,1); 37=1,2,...35 1)=2,3,...T,

[p(Y(l,l)...Y(l,Jk), Y(2,l)"..Y(Ik,1)huk)] (4.22)
However, practically, it is not possible to estimate the
distributions of the -pixels on the boundaries but if we do
estimate since generally the pixels on the boundaries are
mixed, the second term of eqg. 4.22 will be almost constant.
Hence, in computing the decision rule for classifying an
object based on the proposed model, this term may be ignored.

p(Y(s) [ {¥(s+(i,3)), (i,3)eN};w) = N(Y(s); D, (s),Ry)

(4.23)

z k .
where D(s) = p. Y(s+ (i,3))
(i,3)eN 1] (4.24)

It is assumed that pij‘s are diagonal matrices. There-
fore, the spatial correlation on each channel can be esti-
mated independently of the others. The case when P34 is a
full matrix is given in Appendix D. When pij's are diagonal,
their estimates are called limited information [78,79] and
are given by:

K_ I T -1, =
p [ser Z,(s) 2,(s)] [SEQk Y (8) z,(s)] (4.25)

>
|

K _ (oK K K
0p = [0 (0,-1), &7 (1,0), 65 (-1,-1)]"

Zp(s) = [¥p(s+(0,-1)), Y (s+(-1,0)), Yy(s+(-1,-1))]

Y(s)

[¥)(8), ¥Yp(8), 0« . o v (s))”

P l1,2,...g and k = 1,2,...m
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~ 103 T ~K o
R =y seq, (Y80 (i 5)en Pi,5 Y(SH(L,3D))
Y Z AK Y + - . T
(Y(S)= (5, 5)en 2 (s+(i,3))) (4.26)

4.4 Modified Minimum Distance

Object Classifier (MMDO)

Let 5K be a set of parameters for class Wy The
existing object classifiers characterize each class or

object by two parameters, i.e.,

X = {f 5 )

where Mk and I, are the estimate of the mean vector and

k

covariance matrix of class Wy - But by the proposed model

for each class or object we have

~ /\K . . A
6K = {My, (05 50 (1,3)eN), Ry}

The proposed model can be thought of as a filter which maps

the data into uncorrelated Gaussian random vectors.

The objective here is to modify the MDO classifier.
so as to increase its effectiveness. As shown in
Figure 4.2a, when classes are not separable,
it is very important to improve the performance
of the classifier for such cases. The decision rule for
the modified minimum distance object classifier is given

by:

if BxR = min Bxk




b) !
| 1
| |
p(x|co,) P (x|wy)

| {

| |

c) : :

| |

i ]
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> {y(s), seszk}ewQ (4.27)
where

|5(R_ + R ) |
Py = %hi |R Ii . RE %
x IRy |

~ _ 1 T
e gggk W(s)WT(s)

W(s) = Y(s) - (i,g;eN pi'j Y(s+(i,j)). sef,

and

Y(s) = X(s) - ﬁk

4.5 Modified Maximum Likelihood Object Classifier

As mentioned earlier, the maximum likelihood object
classifier assumes that observations from an object are

uncorrelated and Gaussian. The decisipn rule for MLO clas-

sifier is given by

classify {X(s), seQx} in w,

if  n p({X(s), seQ.}]w)) max tn p({x(s), se@.}|wy)

(4.28)
where
nx ~
tn p({X(s), se }w) = -—="[(q n2M+n| Iy ]) +
er (371 9,)1 (4.29)
k "k
~ A ko) T
O, = = ol (X(s)-Py) (x(s)-fip) (4.30)
X - X



But our assumption is that observations in spatial proxim-
ity to one another are class conditionally correlated.
Based on the proposed model, the decision rule for the

modified maximum likelihood object classifier is given by

classify {w(s), segk} in o,

if n p({wW(s), seQX }lwz) = mix tn p({W(s), SeQx}|wk)
(4.31)
Since we are assuming {W(s), ser} are identically, inde-

pendently, and normallydistributed and from equation 4.16

the Jacobian of the transformation is unity; therefore

tn p({w(s), se }luy) = in p({¥(s), seq }|u))

= in p{x(s), sea } o) (4.32)
. ) _
in p (W(s), seQxlwk) =-€§Nq2n2H+ZnIRk|) +
A_l ”~
tr(Rk Qk)] (4.33)
A T
Qk = B ose W(s)W~ (s) (4.34)
X X

z ~k

W(s) = Y(S)"(i’j)eN pi,j

Y(S+(irj))

and Y(s) X(s) - ﬂk

Equation (4.33) clearly shows the dependency of the
k|
1,3°

are different for inseparable classes, then one expects

decision rule on the spatial correlations 8 1f ai,j

to see the probability of error in MMLO to be less than

the MLO classifier.
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4.6 Linear Minimum Distance Object Classifier (LMDO)

When the classes are separable, data is not complex or
very limited numbers of training samples are available, we
do not need a sophisticated classifier such as MMDO or
MMLO. A simple linear minimum distance object classifier
(LMDO) can do as well or sometimes even better, because in
LMDO classifier, we need only to estimate the mean vector,

but in MMDO or MMLO, we must also estimate {pij' (i,]) eN}

and Ry - If a limited number of training samples are

available, estimates of R .» (i,3)eN} may be poor.

k ]
As a result of this, the performance of the MMDO or MMLO

and {pi

may be deteriorated (see Appendices E and F). The decision

rule for the LMDO classifier is given by

if tr Q .= min tr Q (4.35)
L k
k
then classify {X(s), seQx} into class Wy where
~ _ 1 z e o T
Qk = I seQ (X(s) Mk)(X(S) M) (4.36)
X X
Then
~ = l Z _A T _A
tr Qk = oo (X(s) Mk) (X(s) Mk)
X X
- l Z T - T A —/\ _ATA
= seq [X*(s)X(s8)-X (s)Mk ka(s) Mk k]
X X
l Z T /\TA AT/\ /\Tl\
= - + - -— -
n sef X" (s)X(s) [ Mka MkMx MkMk]
X X
where
ﬁ = X(s)

w
xb|“

%)

%tﬂ

Since
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1 z

T
. sep X (5) X(s)
X X

is common to all classes; therefore, the equivalent discri-

minant function is

/\T/\ ATA ATA

-MXMk - M % M M (4.37)
or equivalently .

L. = MM - MM, - MM_ - MM

xk X X x 'k Tk'x k 'k

A

~ ~ T ~
(Mx Mk) (Mx M

k) (4.38)

If L min Lok then classify the object into class w,.

xL k

4.7 Experimental Results

Spatially registered multitemporal Landsat multispec-
tral scanner (MSS) data acquired over Henry County, Indiana
in 1978 and the aircraft data set of the 1971 Corn Blight
Watch flightline 210 were selected to evaluate the perfor-
mance of the maximum likelihood pixel and object classi-
fier, modified maximum likelihood object classifier, mini-
mum distance object classifier, modified minimum distance
object classifier and linear distance object classifer.

The acquisition dates for the Landsat MMS data are: June 9,
July 16, August 20 and September 26, 1978. The classes
corn and soybean were chosen for analysis.

These two data sets were chosen for analysis for the

following reasons:
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1) Wall-to-wall ground truth is available. This is
important both for deriving good guality training sam-
ples and for accurate determination of performance.

2) The ground spatial resolution of the aircraft data set
is much finer than the Landsat MSS data set. It is
important to see how this effects the spatial class
conditional correlations.

3) The performance of the proposed classifiers with Land-
sat MSS (4 channels, low ground resolution and and 6
bit data representation) and aircraft (12 channels,
high ground resolution and 8 bit data representation)
data sets under different class separabilities could

be evaluated.

4.7.1 Training Methods

Histogramming and clustering are two commonly used
training methods which could be used to find rectangular
shaped objects with approximately Gaussian observations
from training fields. We used the histogramming method to
define the spectral classes from training fields or
objects. The training objects were chosen to be represen-
tative of the informational classes. Then based on the
proposed two-dimensional Markov process only horizontal and
vertical correlations were extracted. Information about the

software system and data sets are given in Appendix G.
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Experiment 4.1

The test objects of Landsat multispectral scanner data
collected on June 9 were classified by six classifiers.
The results are given in Figure 4.3.

Usually in early June corn and soybeans are very much
like each other. This can be seen from the results by the
maximum likelihood pixel .and object classifiers or the
minimum distance object classifier. However, the two modi-
fied object classifiers improved the overall accuracy by

about 10%. And this is significant when the separability

is not class means dependent.

Experiment 4.2

The objective of this experiment was to show that if
the classes are moderately separable, then a linear dis-
tance object classifier may do as well as a non-linear
object classifier. Therefore, the Landsat MSS data set
collected on July 16 in which corn and soybeans are usually
separable was analyzed by five different classifiers, The
performance of the classifiers by class is given in Figure
4.4. The results show that the overall performance of the
MMLO is better than the other classifiers which have about
the same performance; however, the linear distance object

classifier is much faster than the others.




NN Overall

Soybeans

s Corn

3OO0

T Irrryreayrsrryr sy s rssvss " 2

777222

TR TSNS T T T T T T TSI T I T TN I N ICIYSTS
28O0 NEEERDSBNSESE I ECREE NS AR RPN
=R S0 80 eESSRESENOSERNEsEENSERSAFENSSRES
LN D IR N e et e e e )
B & B8 S0 ENSSA S EASAN0ESSRGAaENESESSESS
ALARSER SENDESSNLSSASSASLSASSSNASAENER

MDO

MLP

100+

90+

80-
0]

(%) Aoeinooy

'.RMJD

Processor Type

Figure 4.3

processing scheme

June 9).

Overall classification performance vs.

({Henry County data;

91



92

\\ Overall

Soybeans

d
p

Corn

MMLO

T TEFRTrY Y-y
L] CRCNC RO IR )

LMDO

0]
Processor Type

MD

100+

(%) Aoeindoy

MLO

MLP

90+

804
0
0
0]
0
0
0

7
6
5
4
3
2

ion performance vs.
H

t
heme (Henry County data

processing sc

Overall classifica
July 16)

igure 4.4

F



93

Experiment 4.3

Here we just wanted to show another example that if
the classes are separable, then a linear distance
object classifier may do as well as a non-linear
object classifier. The Landsat MSS data collected on
August 20 were classified with five classifiers. The

results are given in Figure 4.5.

Experiment 4.4

Two classes of wheat and hay were selected from air-
craft data of 1971 flightline 210 from the Corn Blight
Watch Experiment. The performance of ML pixel classifier,
MDO and MMDO classifiers are given in Table 4.1. The
results show that when the classes are not very separable,
the MMDO classifier which utilizes the textural information
together with spectral characteristics has a better perfor-

mance than the existing object classifiers.

4.8 Conclusion

Based on the assumption that pixels in spatial proxim-
ity to one another are conditionally correlated, the two-
dimensional stochastic Markov process was proposed to
extract this spatial correlation. Then as a result of the
model, the maximum likelihood and minimum distance object
classifiers were modified and also a linear distance object

classifier was introduced. Spatially registered
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Maximum Likelihood Pixel Classifier

No. of
Sample
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862

-
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Percent
s Correct
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Minimum Distance Object Classifier

No. of % Field No. of % Sam.
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1 WHEAT 8 1
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No. of % Field
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2 HAY 7
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=1 2O
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Correct WHEAT
94,6 7
73.2 2
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multitemporal Landsat MSS (low complexity data) and air-
craft (higher complexity data) data sets for classes with
different separabilities were analyzed. The results suggest
that when classes are not very separable, the modified min-
imum distance object classifier has significantly better
performance than existing object classifiers. Also, when
the classes are moderately separable, the linear distance

object classifier does as well as the others.
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CHAPTER 5

SUMMARY AND CONCLUSIONS

5.1 Summary

The purpose of this research was to develop analytical
techniques for incorporating spectral, spatial, temporal,
and ancillary data characteristics into the classification
process. In Chapter 2, based on the assumption that tempo-
ral observations are from a Gauss-Markov process, a new
processor, called the Markov pixel classifier, was devel-
oped. The results of experiments show that this classifier
has better performance than the maximum likelihood and cas-
cade classifiers.

In Chapter 3, probabilistic and supervised relaxation
labeling (PRL) techniques were adapted for utilizing multi-
type data. The PRL algorithm suggested by Zucker et al.
[26] was modified and an algorithm called non-iterative

adaptive labeling was developed. Also, in order to pre-

serve the isolated, line, and corner pixels and narrow geo-
metric features such as road of the scene and to incorpo-
rate "memory" into the probabilistic relaxation process, we
supervised the relaxation process with the classification
results of the scene at different times by a linear classi-

fier or by using ancillary data. The experiment results
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suggest that the performance of the non-iterative adaptive
labeling (NAL) is very close or even sometimes better than
the iterative PRL algorithm. Also, the results suggest
that by supervising the relaxation process or the NAL
algorithm, the accuracy of classification can significantly
be improved.

In Chapter 4, based on the assumption that pixels in
spatial proximity to one another are conditionally corre-
lated, a two-dimensional stochastic Markov process was
developed to utilize this correlation and to generate
another two-dimensional uncorrelated Gaussian process. As
a result of adapting this model to the problem, the minimum
distance and maximum likelihood object classifiers were
modified. Also, a linear distance object classifier was
developed. The experiment results suﬁgest that if the
separability between classes is dependent only on covari-
ance matrices, the modified minimum distance object classi-
fier significantly improves classification accuracy over
the MDO and MLO classifiers. The results also suggest if
there is moderate separability between classes, the linear

distance object classifier does as well as the others.

5.2 Recommendations for Further Work

The objective was to incorporate the temporal class
conditional correlation, the labeling correlation and spa-
tial class conditional correlation into the classification

process. However, to be able to say whether these sources
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of information are consistently useful or not, more inves-
tigation needs to be performed. For example, one would
expect that the temporal correlation is very useful in the
accurate estimation of the development stage of a given
crop, based on the spectral/temporal observations. 1In
Chapter 2, the temporal variations of energy of the crop
was modeled by a stochastic Markov process. It should be
possible to adapt this model for predicting the development
stage.

In Chapter 4, we developed a stochastic model to uti-
lize class conditional interpixel correlation. It is
important to find out for what classes it brings useful
information into the classification process and also how
the proposed model can be adapted into the image partition-
ing process. Also in Chapter 4, based on separability bet-
ween classes, we suggested the type of object classifier
that should be used. But it is important to generalize
this and, based on some criteria, predict the type of pro-
cessor that should be used; for example, in a tree classi-
fier at each node. 1In addition, an iterative contextual

classifier for further study is given in Appendix B.
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APPENDIX A

PARAMETERS ESTIMATION FOR THE MARKOV CLASSIFIER

The purpose of this appendix is to find the maximum
likelihood estimates of the parameters of the Markov clas-
sifier which was described in Chapter 2.

Let xil(t), Xiz(t), oo Xini(t) be the g-dimensional
available training samples of the ith class at time t,
and assume that these samples are uncorrelated and from a
normal distribution with parameters M;(t) and Z;(t). 1In
practice Mi(t) and Zi(t) are estimated from training sam-
ples. It has been shown [2] that the maximum likelihood
estimates of a mean vector and a covariance matrix may be

estimated by
n

i
A. =_l_ > . . -
Mie) =T Ky (A-1)
nj
2 _ 1 o 5 T _
PO =g T KM () (X (6) M (6) (A-2)

In Chapter 2 the temporal variation of energy was

modeled by

Y () = p(t-1) Y, (t-1) + W, (t) (2-3)

where

Yi(t) = Xj(t) - Mj(t) (A-4)
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Note that the model is applied to the prelabeled training
samples. The objective here is to estimate P;(t-1), the
temporal correlation between observations at time t and t-1,
from training samples. The simplest way to estimate

p;(t-1) is by the projection principle [81].

E[W; (£) Yj(t-1)] = 0 (A-5)
From (A-3)

Wi(t) = ¥;(t)-P5(t-1) ¥;(t-1) (A-6)
Then from A-5, we can write

E[(Y; ()= Py (t-1) ¥;(t-1)) ¥;(t-1)]1 = 0 (A-7)

E[Y;(t) Y'ir(t_l)] = p;(t-1) E[Y;(t-1) Yz(t-l)] (A-8)
Let

L;(t,t-1) = E[Y;(t) Yli(t—l)] (A-9)
and

I (t-1) = E[Y;(t-1) Y;(t-1)] (a-10)

Then from (A-8)

Di(t—l) = Zi(t,t—l) Z;l(t—l) (A-11)

an estimate of o, (t-1) is given by

A A /\_l

ps(t=1) = I,(t,t-1) I ™ (t-1) (A-12)
where n

& 1 i T

i j=1

and n

- 1 i T

Zi(t-l) = ﬁzjilYl](t-l) Yij(t—l) (A-14)
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APPENDIX B

ITERATIVE CONTEXTUAL CLASSIFIER

The main objective here is to propose for further
studies an iterative contextual classifier, which attempts
to incorporate the spatial labeling dependencies to reduce
the initial labeling error.

A multispectral image data set consists of a location
set Q, an observation set {X(s), seQ}, and a class set C =
{wl,wz,...,wm} where Q is a two dimensional array of pixel

locations, i.e.,

Q={s=1(i,5) 1 <1i21,1%273<da},

X(s) is a g-dimensional random observation at point s and C

is the set of all possible classes.

Let p(wk(s)|X(s),x(s + (i,3j)), where (i,j) €N
{(0,-1), (-1,0), (0,-1), (1,0)}, be the a posteriori proba-
bility that, given the observation X(s) at point s and X(s
+ (i,3j)) at point s + (i,j) belonging to one of the neigh-

bors of the pixel at point s. From Bayes rule we obtain
P(w(s) yw, (s+(i,3) |X(s) ,X(s+(i,3))) =

P(X(8) s X(s+(i,3)) luy (8) sw, (5+(1,3))Pluy (S) sw, (s+(1,3)))
B(X(s), X(s ¥ (1,31))

(B-1)
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By assuming class conditional independencies, we can write
p(X(s) ,X(s+(i,3)) !wk(S) ,U)R’(S+(i,j))) =

P(X(s) |w (5)) P(X(s+(i,3))|w,(s+(i,3))) (B-2)

Also we can write

m
I Plog(s), w,(s+(i,3))|X(s), X(s+(i,3))) =
2=1
P(w, (s) |X(s), X(s+(i,3))) (B-3)
and
m m

I T Pl (8),ug (s+(1,3))|X(s),X(s4(i,3))) = 1 (B-4)
k=1 =1

thus

P(w,(s)|X(s), X(s+(i,3))) =

m
22 P(wk(S),wQ(SHi,j))IX(S),X(S+(i'j)))
=1

m m

z L Plw (s),wy(s+(1,3)) X(s), X(s+(i,])))
k=1 2=1

(B-5)

By substituting (B-2) in (B-5) we can write
Pﬂnk(S)IX(S), X(s+(i,3))) =

m
P(mk(s)lx<s>)£§1P<wz(s+<i,j)>IX(s+(i,j)>) r(w, (s),w, (s+(4,3)

m

m
I P(u (s)|X(s)) T P(wy(s+(1,3)[X(s+(1,1))) r(w, (s),0y(s+(i,3)))
-1 =1 (3-6)

where
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Plug (5)s w, (s+(1,3))
" Pluy (8)) Plu, (57(3,3))

r(wk(S), wg(s+(i,j)) (B-7)

Let qn(wk(s)IX(s)) be a predicted or an approximate esti-
mate of P(wk(s)|X(s)) based on spatial dependency of label-
ing in a neighborhood at nth iteration. Also let the pred-

iction error be

e” (0 (8) [X(5) = q" (w(s) [X(5)) = P"(u () [X(s)  (B-8)

where

() [X(8) = & ; B P () [X(s),X(s+(1,3)))  (B-9)

Since the objective is to incorporate local contextual in-
formation, therefore, we expected the prediction error to
approach zero in few iterations. The prediction error
should strongly affect our decision in the first few iter-
ations because it brings useful information., However, if
the prediction error does not approach zero after few iter-
ations, it may be taken to imply that there is insufficient
labeling dependency among the pixels in the neighborhood
of the pixel under consideration.

Based on the above discussion and from the adaptive
labeling algorithm which was developed in Chapter 3, the

following algorithm is proposed for further study.

B (0 () [X(8)) = pRu () [X(s)) + i e™u (s)]X(s))

(B-10)




113

APPENDIX C

PROGRAMMING CONSIDERATION FOR THE PROBABILISTIC LABELING

To estimate the initial labeling probabilities, we need

fn p(X]uwg) which for some pixels ranges

to compute the term e
over a large negative exponential that may cause underflow
or overflow. As discussed in Chapter 3 the probabilistic
labeling by maximum likelihood is given by
p; (o) = eiz zﬁi{ﬁk;
ie o k

(Cc-1)

If the denominator in equation (C-1) is very small, i.e.,
close to zero, then underflow may occur. To overcome this
computational problem

let M(X) = max *n p(X|w.), k=1,2,...,m
k
Now, let us rewrite equation (C-1l) by

_ dan p(X|uy) - M(X))
Pile) = T Hm p(X[w) - M(X)
K

(C-2)

In equation (C-2) the wunderflow problem does not

occur because the denominator is always greater than one.
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Th- -:me method can be used for the probabilistic
labeli: -y the cascade and markov pixel classifiers to
avoid t: underflow problem. The modified equation for

cascad: _: given by
m

fn p(X3|ug) I pUX|V))P(w, ,u))
=1

1
+ P \Y (C-3)
=1
where gk(xz) = 9n p(lewk)
let M(Xq) = max gk(xl) £=1,2,...,m (C-4)
2

Then the initial probability can be calculated by

ng'egg(xl) + &n pw,Vy) - M(Xl)]}

gk(Xz) + M(X;) + £n[2=1

pi(mk) = &

my
+ ,Vo) = M(X
v {gi(Xy) + M(X;) 4—£n{ p e8p(¥1) + fn plug,Vg) = M( 1)]}
K€ =1
(C-5)
Finally, for the markov pixel classifier the modified equa-

tion is <Tiven by

élnlp(x(t)lx(t-l):wk) p(X(t-1) |wk)] - M(X)}

Pilus = CR[BIR (O [X(E-1T70,) BO(E-T) [0, )] - WX}
k (C-6)
where M(I = max 2nlp(X(t)|X(t-1);wy) P(X(t-1)|wy)],
k
(c-7)

k=1,2,...,m
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APPENDIX D
PARAMETERS ESTIMATION OF THE 2-DIMENSIONAL

STOCHASTIC MARKOV MODEL

The purpose of this appendix is to find the maximum
likelihood estimate of the parameters of the 2-dimensional
stochastic markov model of Chapter 4.

In Chapter 4 the spatial variation of energy for each

class has been modeled by
. oay = Kggi_q 4 K3 a_ Keayri_1 4_
y(i,j) = aly(l 1,3) + a2y(1,3 1)y + a3y(1 1,3-1) +
W(ilj)r (D-1)

(ilj)gﬂkr Y(iij)ER
where

y(i,3) = x(i,3j) - x?nk, Q=

I < i< I J i J —

{ 1k = 1S ot Vi 232 2k} (D-2)
and m is the estimate of mean of a channel and class under
consideration. By using the projection principle [81]

which says

E[z(ilj) W(irj)] =0 (D-3)
where
z(i,3) = [y(i-1,3), y(i,3-1), y(i-1,3-1)]T

Equation (D-1) can be rewritten by
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y(i,9) = 2T(i, )85 + wii,3) (D-4)
and from (D-4)
T k
w(i,j) = y(i,3) - z7(i,3) © (D-5)
where

1 2 3

By substituting (D-5) in (D-2) we can write
{ : . - T,s = ek } = (D"G)
Etz(i,3) [y(i,]) z7(i,3)07] 0
From (D-6) we obtain

ok = {Elz(1, )27 (1, NI} Elz(L, )y, D], (1,3) 9
(D-7)

Since it has been assumed that the observations come from a

normal distribution, we can estimate ok by

~ . . R | . . . .

ok = [n—l— Z QZ(l.J)zT(l,:l)] [nL z Qz(lrl)Y(lrJ)]
k i,. E k (i,.)e

The parameter Ny the number of pixels in class k, can be

canceled from equation (D-8) and, therefore,

“k _ A S . ..
6" =1 I z(i,j)z" (i, 991 [ 2 z(i,J)y(i, )]
(i,3)efy (1,3)efx

(D-9)
After estimating ek, the error signal is predicted for each

channel. So, from (D-5) we have

Wi, 3) = y(i,d) - 27 (1,965, (1,3) e (D-10)
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As mentioned in Chapter 4 w(i,j) s are spatially
uncorrelated. However, spectrally they are correlated and
the estimate of the covariance matrix of the g-dimension

error signal is given by

R,= 2= I Wi, )W (i,3) (D-11)
k (i,j)eQk

where
W(i,3) = Dwo(ie3), wolid)eeew (4,517

If it is desired to utilize spatial and spectral corre-

lation simultaneously, the model is given by
S S . Koo o Ke s .
Y(i,j) = Al Y(i-1,3) + A2 Y(i,j-1) + A3 Y(i-1,3j-1) +
W(i,J); (i,3) e, ¥(i,3)er? (D-12)

where A, A, and A3 are q x q matrices.

r -

ak
k k k k
Let A i =12, and a, = [a2 at ce- @y 1,
2 1 11 12 1g
) L =1,2,3.
ak
| "Aq ]
k
Also let eg = [aklpyakzpra 3P]T, n, P=1,2,...q. Then from

equation (D-12), we obtain

. R S ..
ypl(i,J) = ZT(1,J)9P + wp(i,]) (D-13)

where
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2(i,3) = [¥(i-1,3),¥(i,3-1),¥(i-1,3-1)17 (D-14)

is a 3qg x 1 vector. An estimate of eg as considered ear-

lier can be obtained by

op =1 I 2(L,3ZTED) 1T 2,3y, (4,9)]
(1,3)69k (1,3)er
(D-15)
p=1,2,...q9
Now, Gp(i,j) = yp(i,j) - Z(i(j)eg are spatially and spec-
trally uncorrelated. Therefore,

R = Hl‘ 5 W(i, )W (i,9) (D-16)
Kk (1,3)e,

should be a diagonal matrix. The estimate of variance of
error signal for each channel is given by

~ k

_ 1 A2, .
rpp = = )X vy (1i,3) (D-17)

k (ilj)EQk

A more detailed discussion on parameter estimation in mul-
tivariate stochastic difference equations is given in

[77-80].
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APPENDIX E

PREDICTING THE REQUIRED NUMBER OF TRAINING SAMPLES

In this appendix a criterion which measures the qual-
ity of the estimate of the covariance matrix of a multivar-
iate normal distribution is developed. Based on this cri-
terion, the necessary number of training samples is
predicted. Experimental results which are used as a guide
for determining the number of training samples are
included.

In practice, the number of training samples is fre-
quently limited because it is expensive to collect many
training samples. A typical application in which this is
the case is the field of remote sensing, and we will use
this application to illustrate the technique.

In remote sensing, the reflected and emitted electro-
magnetic energy of each pixel of a scene in several impor-
tant wavelength bands is measured by a multispectral remote
sensor system mounted on board an aircraft or spacecraft.
The output of the sensor system is used to form a point in
a g-dimensional space [E-6] A commonly used pattern classi-
fication algorithm in this application is the maximum like-

lihood Gaussian scheme. In this instance, the classes are
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each characterized as a Gaussian distribution in g-space
and these distributions in turn are specified by estimates
of the means and covariances of each. However, we know
that the performance of the estimators is dependent on the
number of training samples. In the case of limited train-
ing samples, the estimates of the first and second order
statistics cannot accurately depict all the information
which is contained in the data. In particular, the esti-
mate of the covariance matrix may be poor. As a result of
this poor estimation, later analysis of the data (for exam-
ple, classification accuracy and statistical distance mea-
sures) will be degraded. See [E-1]for more details. There-
fore, it is important to predict how many samples will be
needed in order that the performance of the estimators be
statistically réasonable. In the following, a criterion ié
developed to measure the performance of the estimate of the
covariance matrix; then the number of required samples is

predicted.

E.l Prediction Criterion

Let Xy, X5,...X, be g-dimensional random sample vec-
tors which are drawn from a normally distributed population
with parameters 6 = (M,Z), where M is the true mean vector
and I the true covariance matrix. In practice, M and I are
not available, so they must be estimated from the observed

data. The maximum likelihood estimates of M and I are:
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A lN
M=s<1 X (E-1)
N. 1
i=1
L = ﬁiil(xi - M)(Xi - M) (E-2)

For more detail, see [E-2]

The performance of an estimator is measured by proper-
ties, such as whether it provides (a) an unbiased estimate,
(b) a consistent estimate, (c) an efficient estimate, and
(d) a sufficient estimate. Now, let us study the proper-

ties of maximum likelihood estimates of M and I. From [2]

we have:
E[M] = M (E-3)
A1
CovIM] = %I (E-4)
B[r] = X1y (E-5)

Thus, by definition, M is an unbiased estimate of M,

but £ is not an unbiased estimate of I. However, if

=gl (% - Mg - M) (E-6)

~

I which is unbiased. The density function of M

then E[Z]
and I are:
-1

- T
5 )qllzl%exp{—%(M-M) N: (M-M)} (E-7)
2N

~

p (M)




-1 2] N-2)/2 oy (n-1) £r2 1)
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p(T) =

(E-8)

- - - q
o (N-1)a/2,a(q-1) /4 ;| (N 1)/2.n P[%(N-1i)]

i=1

That is, MmN(M,%Z), a normal distribution and ZW(ZI,N), a

Wishart distribution. For more details of other properties

of these estimators, see [E-2,-3]and for various properties

of the Wishart distribution see [E-4].

Though the distribution of I is complex, the perfor-

mance of the estimates of the covariance matrix which are

of interest can be measured by the variance of the diagonal

components of I, as follows:

A

2
- mk) k=l,2,'o¢'q

N

o]
In {3] it is shown that (N—l)gkg-has a chi-square
kk

distribution with (N-1) degrees of freedom. And

E [og] = oy
8]

E .o_k..}_(. =1
kk

~ 20
- kk
var [ckk] = =1

(E-9)

(E-10)

(E-11)

(E-12)
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var | —— |= §{-1 (E-13)

In a similar manner, and in order to facilitate the
evaluation of the covariance matrix one can work in a new

space via the following transformation:

% T (X - M)

Y = A
where ¢ and A are respectively the eigenvector matrix and
the eigenvalue matrix of Z.

This transformation leads to:

a) choose the mean M as origin.

b) transform the covariance matrix into the unity matrix.

In effect, we have:

vvT = 17% 6T (x-M) (x-m)Ton"2

_;i T

6T son

and cov(Y) = A

So $"Z® = A because the orthonormal matrix ¢.
Thus cov(Y) =1I
In practice ¢ and A are the eigenvector matrix and the

eigenvalue of .

A—%A

T A
Hence Y = A ‘07 (X-M)

~

and cov(Y) = I where the diagonal elements are noted as

Y kk* Because of the orthonormal transformation, the
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features in the new space are independent; therefore,
(N—l)ykk has chi-square distribution with (N-1) degrees of

freedom. For brevity, let:

(N-1)7 v X*(N-1) (E-14)
and 6 = [§ll +eoot ;qq] (E-15)
then (N-1)Q ~ x2(q(N-1)) (E-16)
E[(N-1)Q] = q(N-1)) (E-17)
E[Q] = q (E-18)
var[(N-l)é] = 2q(N-1) (E-19)
var(a) = ﬁ%% (E-20)

~

A logical choice for our prediction criterion is var(Q)
because it measures the dispersion of the estimate of the
covariance matrix.

To see how to apply the criterion, suppose it is

desired that var(Q) < o. Therefore, from (E-20)
N >1 + %% , (E-21)

Note that the minimum value of N is g + 1, because if
N is less than g + 1, then the covariance matrix will be

singular. So,

var (Q) =2 (E-22)
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A plot of the var(Q) as a function of N with g as a parame-
ter is shown in Figure E.l. Now, if for example o = 0.2,

then N > 1 + 10q.

The next question to be addressed is how does one
choose a reasonable value for a. To answer this question,

let us consider the following. As shown in Figure E.1l, if

~

N >1 + qu,Athen var (Q) is decreasing very slowly and its
slope (_X§§i21) is small, less than -.02/q because from
equation E-20, if N > 1 +mg then slope will be less than

2

" Ig This suggests that if N = 1 + 10g, then the statis-
m

tical distance between the true probability density and the
estimated one may be close to zero because the estimates of
the mean vector and covariance matrix are very close to the

true ones (var(Q) = 0.2). The transformed divergence [E-5,-6]

is a useful statistical distance measure and is given by

DT = 2000[1 - exp(-D/8)], (E-23)
where
D = %tr(z-g)(g’l-z’l) + %tr(2—1+2—1)(M—M)(M-M)T
(E-24)

We will use it to experimentally measure the quality of the
estimates of the parameters and also as a guide to choosing
a or N. The following procedure provides a practical means
for doing so:

1. Assume that the true probability density of the

data is normal with mean vector M and covariance
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Figure E.l1 Variance of Q as a function of number of
training samples N.
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matrix £ (M and I are chosen to be 12 x 1 and 12 x
12 matrices, respectively).

2. Based on the true parameters of the distribution,
N; data points are randomly generated.

3. The parameters of the distribution are estimated
based on the N; randomly generated samples and
then, using transformed divergence, the statisti-
cal distance between the true probability density
and the estimated one is computed.

4, Step 3 is repeated five times and the average
transformed divergence is calculated.

5. The average transformed divergence for different
values of var(&) is computed and shown in Figure
E.2.

The result in Figure E.2 shows almost a linear ;elationship
between Dy and var(a). This implies that when var(é) =
var(a)max = 2, then Dp = (Dqglpax = 2000. This indicates
that the quality of the estimates of the parameters (mean
vector and covariance matrix) is very poor. However, if
var(é) = 0.2, then D = 175, which suggests that the esti-
mated probability density is very close to the true one.

In practice, however, the true parameters of the distribu-
tion are not available and neither is the transformed
divergence. As mentioned earlier, a logical choice for our

prediction criterion is var (Q) because it measures the dis-

persion of the estimate.
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Figure E.2 The average transformed divergence as a function
of variance of Q.
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We have found that D= 500, or equivalently, o = 0.4

is a logical threshold to decide whether the estimates of

the parameters are good or not.

This choice implies that

the number of training samples should not be less than 1 +

5q. However, we believe by using information given in

Table E.1l, one should be able to establish an upperbound on

~

var(Q) and consequently estimate the required number of

training samples.

Table E.1 Distance between the true distribution and

~

estimated one as a function of var(Q) or

number of training samples.

var(é) DT D N
1.00 1250 7.85 1+ 2g
0.50 675 3.40 1l + 4q
0.40 500 2.30 1 + 5g
0.25 210 0.80 1 + 8q
0.20 175 0.70 1+ 10q
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APPENDIX F

FEATURE SELECTION WITH LIMITED TRAINING SAMPLES

A criterion is developed which measures the quality of
the estimates of the parameters of multivariate normal dis-
tributions for two class problems when limited number of

samples are available. This criterion predicts if the

Hughes phenomenon occurs. The maximum number of features
which does not degrade the accuracy of the classifier is
then predicted.

In pattern recognition, it is frequently possible to
find a subset of features which gives almost the same or
perhaps even better probability of correct classification
than if all features are used. 1In the case of parametric
classifiers, if accurate estimates of the parameters are
available, then feature selection is done simply to reduce
the computational complexity. But if the number of train-
ing samples is small, estimates of the parameters may be
poor. In this case, feature selection becomes more impor-
tant; if all features are used, the probability of error
will be greater than when only a smaller number of features

are used (see
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An example of where the proper choice of feature sub-
sets is especially important is that of the decision tree
classifier. Let us assume that we are dealing with a
binary tree classifier such that a limited number of train-
ing samples at each node is given and the problem is to
find the maximum number of features that must be used at
each node without increasing the probability of error.

(For more detail on a binary tree classifier, see [F-21.

F.l Prediction Criterion for Determining the

Maximum Number of Features

If the number of training samples is guite limited,
one might suppose that there will be more difficulty esti-
mating covariances than means. With this in mind, let us
consider two class problems. Let 51 and 22 be estimates of

the covariance matrices based on n; and n, samples of class

~ ~

wy and class w,, respectively. Then let I, A be the esti-

mates of covariance matrices of w, and w, after applying

~

simultaneous diagonalization transformations where I is an

~

estimate of the identity matrix and A is a diagonal matrix

~

(see [F-2]). Let o, and X;; be the diagonal elements of I

il 1

and A, respectively. Then let

~ g
Ql = .Z %54 (F-1)
i=1
~ g A,
ii
Q= I 3y (F-2)

i=1 i1
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(F-3)

where a4 and Aii are the true variances of the ith feature

of class w, and Wy in the new space and q is the number of

1
features used. In the new space, the features are

independent and so are their variances in class w, and

1
class w,. Furthermore, we are assuming the elements of the

2
covariance matrices of two classes in the new space are
independent. Consequently, it can be said that Q; and Q,
are two independent random variables; then we can write
var (Q) = var(Q;+Q,) = var(Q;)+var(Q,) (F-4)
In Appendix E, it is shown that

var(Q;) = 2 a/(n;-1) (F-5)

~ ~

We will choose var (Q;+0Q,) as our prediction criterion to
determine the maximum number of features for which there is

no degradation in accuracy. Then we have

var(Q) = 2 g/(ny-1) + 2 g/(ny-1) (F-6)

The proposed criterion measures the quality of the estima-
tors and for a given n; and n, suggests the maximum number
of features that should be used. For simplicity, suppose g
= 1. The probability of error is given by the shaded area
of Figure F.la. Let €9 be this probability of error if the
parameters of the class distributions are known or if accu-
rate estimates of these parameters are available. To have

an accurate estimate of the parameters, a large number of
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p(xjw,)  p(xjw,)

a)
Eo
P(xlw,)  p(xjw,)
b) g\\
|
s‘ |
c)

Probability of Error

Figure F.1

Pl

o
Var(é)

Degradation in accuracy as explained by class
probability densities with a) known and b)
estimated parameters and c) a hypothetical

curve of the probability of error as a function
of Var (Q).
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training samples is needed. Let %)be the probability of
error if the parameters of the distributions are estimated
from a limited set of training samples. Equation (F-6)
indicates when n; is very small, then var(é) is large.
With the presence of a fixed, limited training sample size,
any increase in dimensionality necessarily results on the
average in a degradation in the accuracy of statistics
estimation of the class distributions. Because of variance
of the estimated parameters (particularly covariance matrices),

one should expect EO to be greater than e, (Figure F.,1lb).

0
of error as a function of var(Q). We expect the probabil-
ity of error to be almost constant at a low variance, then
as the estimate of the covariance matrices becomes poorer
and poorer, it begins to increase. For the worst case,
whenn =g+ 1 then'from equation (F-6) var(é) = var(é)

= 4, the accuracy of the classification will be degraded
the most.

Our objective is to find the maximum number of fea-
tures (corresponding to some threshold value ao) for a
given number of training samples for which there is no deg-
radation in accuracy. It must be recognized, however, that
estimated performance is a random variable since it is
based upon estimated class statistics. We will therefore
determine the maximum number of features based upon an

ensemble average performance since we cannot insure what

will take place precisely on any one trial. % will be
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experimentally determined. The maximum number of features
for a given number of training samples which does not
degrade the performance of a binary tree classifier at each

node can be calculated from equation (F-6) by

o = (nl-l)(nz—l)
2(nl+n2-2)

0 (F-7)

In deriving equation (F-7), it has been assumed that for
var(a)z % Hughes Phenomenon begins to occur. Figure F.2
shows the Var(é) plotted against the number of features for
different numbers of training samples, using equation
(F-6), with oy = 1.0 shown on the curve. It shows that

when n, = n, = 13, the number of features to be used is

1 2

close to 3, and is close to 5 when n, =n, = 20.
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ay

Figure F.2 Variance of Q as a function of the number
of features for different number of
training samples.
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APPENDIX G

INFORMATION ABOUT THE SOFTWARE SYSTEM AND DATA SETS

Table G.1 Information about the (modified or developed)

programs for Markov classifier.

Location
Programs Tape File File name File type
Programs for 858 33 CLASS ASSEMBLE
writing the CLSFY2 FORTRAN
likelihood CONTEX FORTRAN
values
Programs for 858 35 STASUP FORTRAN
generating STAINT FORTRAN
statistics PCHSTA FORTRAN
LEARN FORTRAN
Programs for 858 36 CLAINT FORTRAN
classification CLASUP FORTRAN
CLSFY1 FORTRAN
CLSFY2 FORTRAN
CONTEX FORTRAN
PRINT FORTRAN
REDSAV FORTRAN
REDSTA FORTRAN
STATS FORTRAN
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Table G.2 Information about the data set and statistics
for Markov classifier.
ocation
Data/
Statistics Tape File File name File type
Training 501 9 STATF M843
data
Test data 501 9 CLASS 843F
Statistics 501 6 843F1 STATDECIC
6 843F2 STATDECIC
6 843F3 STATDECIC
6 843T12 STATDECIC
6 843723 STATDECIC
1 843P13B STATDECIC
Likelihood 500 1
values (t=June 9)
(2n p(X(t)lwi)
2

(t=July 16)
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Table G.3 Information about the (modified or developed)
programs for the probabilistic relaxation
algorithms.

ocation

Programs Tape File name File type

Programs for 858 CLASS ASSEMBLE

writing the CLSFY2 FORTRAN

likelihood CONTEX FORTRAN
values

Programs for 501 r RELAX EXEC

classification RELAX FORTRAN

RELSUB1 FORTRAN
or
\ \RELSUB3 FORTRAN
( RELAX3 EXEC
RELAX3 FORTRAN
RELSUB1 FORTRAN
or
\ {RELSUB3 FORTRAN
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Table G.4 Information about data set and the likelihood

values for probabilistic relaxation algorithms.

Location
Data/
F - - F . .
Likelihood Tape ile ile name File type
Test data 501 9 843G12 DATA
843G22 DATA
843G13 DATA
843G23 DATA
843MD12 DATA
843MD13 DATA
843ML12 DATA
843ML13 DATA
843ML22 DATA
Likelihood 4280 1 (843G1l2 DATA; August)
values 4280 2 (843G22 DATA; August)
4280 3 (843G22 DATA; September)
4279 1 (SKYLAB DATA)
4281 1 (843G13 DATA; September)
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Table G.5 Information about the (modified or developed)

programs for MMLO and MMDO.

\\\\&SSifion

Programs‘\\\\\\ Tape File File name File type
Programs for 501 9 GSTASUD EXEC
generating LEARN FORTRAN
statistics SPCOR FORTRAN
Programs for 501 9 GCLASUP EXEC
classification CLAINT FORTRAN
(MMLO) CLASUP FORTRAN
CLSFY1 FORTRAN
CLSFY2 FORTRAN
CONTEX FORTRAN
REDSAV FORTRAN
REDSTA FORTRAN
Programs for 501 9 GSAMSUP EXEC
classification SMCLS2 FORTRAN
(MMDO) SPCOR FORTRAN
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Table G.6 Information about data set and statistics for

MMLO and MMDO.

Location
Data/ Tape File File name File type
Statistics
Training data 501 9 STAFF M843
STATWH 539
Test data 501 9 CLASS 843F
SAMP2WH 539CL3
CLASS 539WH
Statistics 501 6 843F1 STATDECK
6 843F2 STATDECK
6 843F3 STATDECK
5 843111 STATDECK
5 843122 STATDECK
5 843133 STATDECK
5 123843B STATDECK
9 WH539MD STATDECK




