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ABSTRACT: Thermal data from Landsat 4 TM were used in conjuncticn with the six reflective TM bands to assess
the contribution of the thermal band in eight multispectral classifications using four different data sets.
Despite dts coarse resclution and differences in radiometric measurements, the thermal data provided an
additional informational plane in the peneration of Principal Components. This informational plane did not
appear when the thermal band was excluded from the linear transformation. The use of all seven TM bands for
cluster statistics géneration provided greater statistically separability between pairs of spectral classes
than when only reflective bands were used. Classification with subsets of selected bands gave better results
than classification performed without the use of the thermal band for statistics generation. Classifications
with Principal Components reduced the number of spectrally separable classes, but with a significant reduction
in computer time,

The present paper is an abbreviated version of a Master of Science thesis (Valdés, 1984), as part of the LIQDA
NASA contract NAS5-26859 conducted by LARS/Purdue University.

1 INTRODUCTION ‘craphic areas,

There is a great amount of documentation available
Thematic Mapper sensor era started with the launch of related to the physiological, physical and spectral
Landsat Y4, the first of the second generation of Land behavior of vepetation. These must be considered in
sat satellites, This sensor has better spatial reso- underﬁandmg.how solar energy interacts with the_vg
lution than the earlier Multispectral Scanner onboard getation and in order to interpret data from multi-
Landsats 1,2 & 3 (30 m -vs~ 80m), seven spectral spectral sensors. ) ) )
bands instead of four, and four the number of auanti- In 1963, Hoffer and Johannsen working with different
zation levels (256 -ys- 64, vegetative species (corn, soybeans and 3 timber spe-
The T.M. alsc has a band in the thermal infrared re- cies), found that the spectral response of all those
gion of the spectrum, this band differs from the re- species have the same typical vegetation curve. They
flective bands in its spatial resolution (120 m) and also found significant d-fferences in the respanse --
the type of electromagnetic measurements, This band at certain wavelengths, mainly in the visible and
has not been used often by the scientific community near infrared portions of the spectrum,
either in the experiments with T.M. simulators or in To discriminate crop specles by means of remote sen
the first analvsis conducted by NASA an the Landsat sing, several factors related 1.:0 the qu;tural practl
Image Data Ouality Analysis. ces for each crop must be considered, sugh as plant
The hypothesis of this study is that the use of the and row spacing, geometric arrangement of the plants,
T.M. thermal infreres band in conjunction with the fertilization and irrigation practices, and growth
six reflective bands will provide better discrimina- cycles. The differences in reflectance wich allows us
tion of agricultural and urban features than does to discriminate between vegetative species, are due
classifications with the six reflective bands only. to the characteristics of the leaves and canopies of
The hypothesis can be expressed as: different species. All these internal and external

Ho = P(7 TM bands) »P(6 TM reflective bands) factors influence the optical properties of the lewes
H1 = P(7 TM bands) € P(6 TM reflective bands) and canopies. The spectral patterns sensed by the scan
Where P = g().odnegs of Classifica'tion. ners represent the m‘tegr\atlon of all of them.

Principal Components analysis (data compression tech
nique) was also performed to evaluate the contribu- ~

tion of each band to the informational cantent of the 2.2 Thermal and envirconmental effects of incoming
T.M. data. solar energy

In order to interpret remote sensing data of vegeta-
2 LITERATURE REVIEW tion, it is important to comprehend the interaction

of the plant with its environment. A plant is exposed
2.1 Agricultural mapping with remote sensing data to electromagnetic radiation from its surroundings,

such as soil, rocks, plants, sun, sky, clouds and
The specialized literaure in remote sensing contains atmosphere. All cbjects above. absolute zero radite
many exanples of the detection and quantification of energy by virtue of their tempreature and emittance.
crope using techniques of digital analysis. Many of At temperatures normally exhibited by objects at or
these applications are considered either experimental near the earthf surface, this radiation is almost en~
systems (Bauer, et al.,1971;Bauer, 1977; Valdés,1381) tirely in the infrared wavelength region from % um to
or quasi-operational systems (McDonald and Hall,1978) 100 um -approximately (Swain and Dams,.1978) . )
The results of some of these experiments show diffe- Plants in stress caused by insects, diseases, physio
rent degrees of accuracy in the identification and logical disorders, nutrient deficiency and adverse en
quantification of crop resources. However, all these vircnmental effects suffer detectable temperature and
results demonstrate a preat potential for surveying or emittance changes (Kumar and Silva, 197{3).
crops due to the characteristics of the data obtained Several authors have presented ﬂle.potentlal use of
by the lLandsat sensors, and the computer processing, thermal change detection on plants in order to evalua
for monitoring the vegetative resources in large geo te stress causal agents. Clum (1926) and Curtis (1Y38)
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related soil moisture stress with temperature differen
ces in cotton and potatoes. Wear (1966) found an in-
crease in temperature in forest trees with roots dama

ged by insects. Myers and Allen (1968) realted soil —

salinity with high cotton leaf temperatures.

The Corn Blight Watch Experiment, demonstrated that
use of infrared remote sensing has possitive effects
in stress lewels determinations (MacDonald, et al.,
1972; Kumar and Silva, 1973).

2.3 Airbone multispectral scanning thermography

Myers, et al. (1966) made use of pictorial and thermal
infrared data to determine differences in the tempera
ture of plants as an indicator of the relative subsur
face salinity and moisture conditions affecting crop
production. They stated that the temperature contrasts
between salt affected and unaffected cotton plants are
likely to be greater than the temperature contrasts
between moisture stressed and unstressed cotton.
Wiegand, et al. (1968), using the UNiversity of Mi-
chigan airborme thermal scanner in Texas, studied the
thermal behavior of several variables such as crop
species, plant spacing, tillage, irrigation regime and
special features, such as highways and water reservoirs.
They found that irrigated crops tend to be cooler that
non irrigated at midday conditions, but the opposite
results were obtained at early morning hours. Thermal
differences related to tillage were minimal.

The feasibility of using thermal imagery for land use
land cover studies has been demonstrated. Brown and
Holz (1976) following Anderson”s classification system
(Anderson, et al.,1976), produced a land use/land cover
map of Oak Creek Lake, West Texas.

2.4 Thermal band of Landsat 3

The Landsat 3 MSS characteristics are in sense the same
as those of the previous Landsats, except that Landsat
3 acquired additional data in the thermal infrared por-
tion of the spectrum (10.4 to 12.6 um) with a ground
resolution of 237 m. As a result, a single thermal
band measurements corresponds to an area represented
by nine measurements in each of the four reflective
spectral bands, a 9 to 1 ratio (Price, 1981).

The Landsat 3 thermal band did not function properly
due to several unexpected causes. The problems asso-
ciated with the thermal sensing system were reflected
in the quality of the imagery. Both thermal and spa-
tial resolution were affected and the thermal imaging
system was eventually turmned off in the spring of 1979
(Price,1981; Lougeay,1982).

Despite the problems associated with the thermal band,
some analysis was performed to evaluate the contribu-
tion and usefullness of this band. Price (1981), using
Principal Components analysis, assessed the statistical
correlation between the emissive band, and the four
reflective bands. He found that the thermal data ei-
ther were not useful or were associated with a physical
parameter that is not directly related to surface type.
He found that thermal data made a limited contribution
to multispectral classifications. He cancluded that its
use for classification is subject to ambiguities and
prone to error: "...an indiscrimante use of the thermal
data appears to be undesirable because of many possi-
bilities for misinterpretation and the fact that the
thermal 'signature' is not a direct indicator of sur-
face type."

Lougeay (1982) compared the Landsat 3 MSS band 5
(0.6 to 0.7 um) and the thermal MSS band 8 (10.4% to
12.6 um). He found the thermal imagery of MSS band 8
to be of limited use by itself due to its coarse spa-
tial and thermal resolution. However it did provide
a rendition of gross topographic structure which was
not readily available from the other MSS spectral
bands.

534

2.5 Classifiaction and data compression techniges

If the use of all available chamnels was not possible,
data compression techniges have been used to represens
the large content of data into fewer companents,

Principal Components or Karhunem - Loeve transfora-
tion is an orthogonal linear transformation that oom.
presses multidimensional data into fewer dimensicns
without significant loss of information content. This
transformation assigns the random variance or noize -
eigenvectors with lowest variance (Bartolucci, et al.,
1983).

Data compression is one result of the generaticn cf
principal components. It is possible to describe the
relative influence or "pull" of the original tan-s un
each of the new components. This procedure alicws us
to evaluate which of the original bands contains wcst
of the significant variance or information ccntent ¢ r
a particular data set (ANuta, et al., 198u)

3 METHODOLOGY
3.1 Landsat TM characteristics

The TM data utilized to carry out the present profect
were gathered by Landsat 4 on 3 September 1982 cuer
the central Iowa. The NASA scene number is 400%3-Icl
accesion 182, path 27, row 31. The TM data used was
radiometrically and geometrically corrected, i.2.
P-tape or fully processed tape, and consisted of 3,:%%
scan lines with 6,376 pixels per line. The geomtric
correction of the TM thermal data requires special
ccnsideration, since the spatial resolution of thermi.
data is 129 m compared to 30 m for the other TM bwioo.
One image sample or pixel of raw thermal data repre-
sents an area equivalent to 16 area units from any =
the reflective bands. The coarse resolutlon of the
thermal data is resampled to forma a registered ~r-!
of 28.5 m by 28.5 m pixels. Thus all bands of the =7~
metrically corrected TM data contain the same numer
of pixels per unit area.

3.2 Descripticn of the study area

A study area of 10 by 10 sections (approxi:rat?ll‘,«’ .
26,000 hectares), was selected as representative <!
a great diversity of land use/land cover features.
This area is located in Polk County which 1s N Zowss
central Towa. o \ .

The area lies between latitudes 41 37'WS" N e
41°u6 115" N, and from longitude 93 37" W to 93 ":‘:ﬂ"?
The general topography is nearly level to undulating
with some steep areas along the streams and rivers.
The geology of the area consists mainly of a .vl:}-J‘a"
scnian glacial till, The entire area is underlain =Y
a shale bedrock of the Des Moines Group. .

The native vegetation of Polk County was praire ’:*:é
sses and hardwood forests. The forests grew r‘lldjgmj:'g!‘
major streams, particularly along the Des Moines :'.3: -
The cover types in this area are water bodies ,1351":”
cultural fields, urban areas (new and old deve‘kcé???ét‘
industrial and commercial parks, and a dense roac =
work (from gravel roads to four lane mghwayﬁ; cor
The Agricultural Stabilization and Conservatien -==
vice (ASCS) of the US Department of Agmcult:ﬁ ::r'
Polk County collected 35 mm color aerial slides or
the entire county in August 1982. Each slide c:ox4
two sections (approximately 520 ha) on the gm\‘m?
These slides were used in conjunill)gn thlth %2??:?""
infrared slides obtained by the ratory O frier
cations of Remote Sensing (LARS) .of Purdue L&n'.er‘b;:v’
in May 1983 over selected sites in the county as I
ference data.

The hardware and software used for the present “18:'%
searcg resided at LARS/Pufldue U. The SOftwaIeJ;f':
for digital analysis of multispectral data 138{‘) R
(Phillips, 1373) and LARSYSDV (Mreoczynskl,l98%7-
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3.3 Study data sets

Tour data sets of the clascified arva were used to
evaluatc the contribution of the thermal data in the
multispectral classifiaction. The first data set is
the oripinal seven TM bands. The second set is compo-
sed of the same original TM bands excluding the ther-
mal band. The third data set is formed by Principal
Components loaded from the #riginal seven TM bands.
The fourthdata set is also Princiapl Components, but
generated from the second data set, i.e., anly the
reflective bands.

The satistics used in calculating the Principal Com-
ponents were generated from data samples of the ori-
ginal TM data set using evepy fifth line and fifth
column,

Tables 1 and 2 shew the statistics for both Principal
Components data sets. Tables 3 and 4 list the eigen-
vales and the corresponding amount of data variance
taht is accounted for by their respective eigenvectors
for both data sets.

3.4 Spectral analysis procedure

A non-supervised approach (Clustering) was selected
to generate the training statistics. This approach
groups spectrally similar pixels regardles of their
spatial position (Tilton and Bartolucci, 1982). and
extracts the maximum quantity of information availa-
ble in the TM data.

Eight classifications were carried out in this study.
Only four spectral analysis were conducted, cne for
each of the data sets, the classifications are results
of different charnel combinations selected after the
analysis procedure (Table 5).

To avoid analysis bias in the generation of training
statistics, the same eight training areas and number
of cluster classes were requested for each of the
four data sets,

The analysis was performed utilizing a defined thres-
hold of 1850 for the transformed divergence distance
(D.T.) ,(Swain and Davis, 1982).

Table 1. Eigenvector values for by their respective TM band for the

original seven TM bands (Data set C).

Wavelength Principal Component (Karhunen & Loeve) Eigenvector
Band 1 2 3 4 5 6 7

1 0.0376  0.4331 0.5665 -D.1086 -0.1359 -0.6781 -0.0092
2 2 0.0377 0.26u41 0.2770 -0.0547 -0,1632 0,4311 0.7988
3 3 0.0293 0.4032 0,3564 -0'0806 -0.0598 0.5838 -0.5930
4 4 0.8109 -0.4312 0.3666  0.0817 0.1167 0.0396 -0,0163
5 5 0.5574  0.4391 -0'5642 -0.0719 -0.4097 -0.0659 -0.0275
7 7 0.1670  0.4115 -0,1578 -0.0465 0.8770 -0.02i0  0.0961
6 6 -0.0101 0.1830 0,0285 0,9822 -0.0272 -0.0116 -0.0013

Table 2. Eigenvector values for by their respective TM band for
the six reflective TM bands (Data set D).

Wavelength Principal Component (Karhunen & LOeve) Eigenvector
Band 1 2 3 i 5 6

1 0.0392 0.4400 0.5694 -0,1389 -0.6792 -0,0092

2 0.0388 0.2654 0.2787 -0.1646 0.4307 0.7386

3 0.0309 0.40986 0.3590 -0.061% 0.5888 -0,5932

4 0.8093 -0.4u43y 0.3638 0.1190 0.0405 -0.0162

5 0.5591 0.4440 -0.5619 -0.4115 -0.0666 -0,0275

7 0.1686 0.4177 -0.1454 0.8754 -0.0220 0.0360

Table 3. Eigenvalue and the correspanding amount of
variance that is accounted for by their respective
eigenvector for the data set C.

Table 4, Eigenvalue and the corresponding amount of
variance that is accounted for by their respective
eigenvector for the data set D.

Eigenvector Eigenvalue Percent Cumualative Eigenvector Eigenvalue Percent Cumulative
Variance  Percent Variance Percent
Variance Variance
1 795,642 S 4Lg 5S4, uu4g 1 795,569 55,706 55.706
2 554,802 37.967 92.416 2 536.714 37.581 93.287
3 81, 346 5.567 97.983 3 81.290 £.692 98.979
U 14,888 1.018 98,002 b 10,285 0.720 99.699
5 10.281 0,704 99,706 5 2.820 0,197 99.896
6 2.818 0.193 99.899 6 1.482 0,104 100.000
7 1.482 0.101 100,000
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Table 5. Study data sets used for multispectral analysis
and the eight different classification approaches.

Data Classif. Statistics Clasgification
Set Approach Generation Bands

A I 7 TM bands 7

A 1I 7 T™ bands 6 reflective
A III 7 TM bands 6 best

A v 7 TM bands 4 best

B v 6 reflective 6

c VI 4 Princ. Comp. Y

C VII 4 Princ. Comp. 3 best

D VIIT 3 Princ. Camp. 3

If a pair of classes had a value of DT of 1850 or
greater, these classes were considered different and
spectrally separable. Then the analysis was focused
on those with DT values less than 1850,

Final cluster classes selected to train the computer
for classification are those which were considered
totally discriminable within the cluster classes and
representative of the land cover/land use features
present in the study set. The cluster classes that
were not used for classification were "deleted" from
the stattistics deck.

The multispectral classifiaction was performed using
a "Per - Point" Maximum Likelihood Classifier.

4 RESULTS
4.1 Principal Components evaluation

To evaluate the importance of the thermal band for
classification purposes, two Principal Components
transformations were performed, cne utilizing the se-
ven original TM bands and other with the six reflec-
tive bands. The coefficients of the high ordered
Principal Compcnents describe which of the TM bands
contains most of the significant variance of informa~
tion for this data set.

The fourth Principal Component was almost entirely
loaded with the thermal band (98.22%) and accounts
for 1.019 % of the scenen variation. This result
show that the thermal band is highly correlated with
the fourth Principal Compcnent (Table 1) as first
reported by Bartolucci, et al.,1983. Even though the
thermal data provided only cne percent of the total
scene variation, (Table 3), thermal information or
variance may be distinctly unique from the rest of
the bands. .

The use of the thermal band in linear transformaticns
of TM data creates a fourth dimension or Principal
Component which is highly correlated with the thermal
band (Table 1). This plane or Fourth Principal Compo-
nent does not appears in the transformation performed
using the six reflective TM bands only (Table 2).

Figures 1 and 2 show graphically the loadings or
coefficients for both principal components data sets.
Principal Components 1, 2, and 3 of both data sets
had more or less the same shape as did the last three
Principal Components of both data sets.

The results of the linear transformaton performed in
the data set B containing the six reflective TM bands
were compared with the results obtained by Crist and
Cicone (1984) with a scene over North Carolina. They
did not use the thermal band for the '"Tasseled Cap
Trans formation!. The found that with six TM reflective
bands there are only three components or features. If
the thermal band is employed in the transformation,
the result will be four planes of information in
which the use of a fourth component will account for
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Figure 2, Loadings or
coefficients for Prin-
cipal Compcnents of 6
reflective TM bands.
(Data set D).

Figure 1. loadings or
coefficients for Prin.
cipal Compcnents of
original-7 TM-barids
(Data set C).

over 99 % of the cumulative data variation.
Considering that MSS data have two main Principal
Components (Anuta, et al.,1384) or Tasseled Cap Plaiwcs
and that TM data have four features of data when toe
thermal band is considered in the transformation; then
the uncorrelated planes of data provided by the M
can be considered twice that those obtained with S
data. This results agrees with the results of Anutd,
et al. (1984), where they obtained 42 spectrally ze-
parable classes with TM data and only 21 spectrally
separably classeswith MSS data from the same area.

4.2 Classifiaction with all available bands (Appreach
I)

The multispectral analysis performed in the first 474
set produced 37 spectrally separable classes. The c-3-
sses selected for classification were ccnsidered we
most representative of the scene variation from all

the spectral cluster classes obtained. .

This type of classification is the standard procediI®
when there are no constrains in computational facil:-
ties (Anuta, et al., 1984). :

4.3 Classifiaction with six reflective TM bands
(Approach II)

This approach was performed to compare the classn’l—;_
cation results with the first classification. IN this
approach the thermal band was not included in the Pef, .
Point classification, but the training classes selecte~
were generated with the inclusion of that band.

4.4 Classifiaction with the best six TM bands (Appree?
I

To evaluate the possible changes in classifiactiol 5‘6”'
the second approach, a classification with the be:'ieuj
bands (Bands 1, 3, 4, 5, o4& 7) was performed to 457
the effect of elimination of a single band on class*”
fication.
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u,5 (lassification with the best four TM bands
(Approach IV)

A classification with the best four bands was merfor
med to compare this results with those of four Prin=
cipal Components. Even though the combination of
bands 1, 4, 5, and 6 -had a greater average DI (1975
~vs— 1973); the 1, 4, 5 and 7eband combination was
selected because of the higher minimum DT value ob-
tained with this combination (660 -vs- u57),

These results confirm that band 7 provides more
information in the higher ordered Principal Compo-
nents transformation than does the thermal band.

4.6 Classification with the six reflective bands
(approach V)

If digital pattern recopnition analysis of remotely
sensed data is performed with a selected combinatio-
of spectral bands the training statistics (cluster)
must be generated with those bands (Swain, 1983).

A second multispectral analysis was conducted over
the same area to evaluate a classification performed
without the thermal band. The training stattistics
were derived from the six reflective bands anly.
There were 37 spectrally separable classes as in
the data set A, but there were differences between
the training statistics of the two data sets. This
second set of training statistics had more mixed
spectral classes than did the data set A. This mixing
occured mainly in non-water, non-vegetative classes.
Both the minimum and the average DT values for the
second data set (B) were greater than those obtained
in the data set A.

4,7 Classification with 4 Principal Components
(Approach VI)

The multispectral analysis of Principal Components
was carried out with a slightly different technique
than that used for the analysis of the TM bands. The
selection criteria used in the analysis of Principal
Components was based mainly on the separability
betweeen pairs of classes and their spatial distribu-
tion on the cluster map.

The final training statistics for approach VI con-
tained 35 spectrally separable classes. However, the
number of mixed spectral classes had increased. The
minimum and average separability values were greater
in approach VI than those obtained using the best
four bands (approach IV).

4.8 Classification with 3 Principal Components
(Approach VII)

The first three principal compcnents of data sets

C and D contained approximately the same amount of
information, the difference being that the data set
D had slightly greater cumilative percentage variance
than did the data set C (Tables 3 and 4). A classi-
fication with the first three Principal Components of
data set C was performed to be compared with the cla-
ssification from data set D.

4.9 Multispectral analysis of data set D (Approach
VIII)

In data set D the first three principal components
account for 98.979 % of the total variance in the
scene (Table 4). These three components were utilized
in the multispectral analysis, in which 31 spectrally
separable classes were obtained.

The minimun DT value obtained in this approach was
significantly greater taln that obtained in the data
set C for the best (first) three Principal Components
(Approach VII). There was no great difference among
the average separability of all the eight approaches.
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Table 6. Averare and minimum separability values
(Transformed Diversence Distance, DI') for each cla-
ssifiaction approach.

Minimum
Separability

Average

Approach Bands or .
Separability

P. Components

Data set A = 37 spectrally separable classes

1 1,2,3,4,5,6,7 1625 1991
I 1,2,3,4,5,7 959 1983
IIT 1.3.4.5.6.7 1578 1990
IV 1,4,5,7 660 1973
— 1,4,5.6 457 1975

Ll ]

Data set B = 37 spectrally separable classes
v 1,2,3,4,5,7 1659 1991
Data set C = 35 spectrally separaeble classes

1650
753

1986

VI 1,2,3,4
VIT  1,2,3 1970

H

»2
2
Data set D = 31 spectrally separable classes
1534 1979

VITT  1,2,3

4,10 Visual evaluation

The eight classifiactions were displayed on a color
video display device where they were visually evalua-
ted. This evaluation was performed by assigning a
different color for each of the spectral classes
obtained in the 8 classifications and comparing them
with the low altitude afrial photographs.

The classifiactions performed with the data set A,
were considered the best. THe classifications perfor-
med with data sets B, C and D were ranked from good
to bad in that order.

4,11 Statistical evaluation

To evaluate the classification accuracy of each appro-
ach, the final spectral classes obtained for each data
set were grouped into nine major domains: Corn, soy-
bean, forest, grass, bare soil, roads, urban, industry
and water. One hundred pixels of known identity were.
defined for each of the nine cover types. Those nine
hundred points were compared with the identification
label obtained for each of them in the eight classi-
fications.

Confidence intervals may be more useful than signis
ficance test in multiple comparisons. Cenfidence in-
tervals shew the degree of wuncertainty in each compa-
rison in an easily interpretable way. Considering this,
a BOnferroni confidence interval test was adopted to
evaluate the classification performance of each of
the eight approaches for the nine cover types.

The results of the BOnferroni test are presented in
Table 7. The eight approaches of classification were
evaluated for each cover type.

There was not an approach that could be considered
different from the others for all the nine cover
types.

Approaches T and IT were considered non significantly
different for the nine cover types. Approaches I and
V were not considered different for cover types in-
dustry, soils and water. Approaches IT and III were
considered different for the cover type roads, and
approaches VI and VIII where considered significantly
different for the non-vegetated cover types.




Table 7. Percent correct classification of nine major cover types by each classification approach.

Classi COVER TYPES Ovez;all

fication Perfor-

Approach  Corn Forest Grass Industry Roads Soils Soybean Urban Water mance
I 100 a * 100 a 79 a 30 a 84 a 93 a 100 a 37 a 100 a 93.7 %
IT 95 a 89 ab 65 ab 83 ab 76 ab 88 ab 39 a 89 ab 100 a 87.1 %
ITT 39 a 98 a 75 a 87 a 81 ab 80 ab 39 a 98 a 100 a 30.8 %
v 92 a 73 ¢ 63 ab 83 ab 71 ab 73 b 98 a 92 ab 100 a 82.8 %
v 53 be 78 bc 22 d 85a 62 b 80 ab 86 b 64 cod 100 a 70.0 %
VI 49 be 88 abc 50 be 75 ab 74 ab 74 b 8% b 60 d 100 a 72.9 %
VIT B4 b 55 d %0 <od 66 b 82 a 73 b 86 b 58 d 100 a 67.4 %
VIIT Ll c 77 be 87 ab 36 c 38 c 49 ¢ 8 b 78 be 100 a 63.8 %

MSE (%) 14 13 21 15 14 17 . 6 14 —

* Within each cover type, approaches followed by the same letter are not significantly different at

= 0.08

level by the Bonferroni T - test. (Degrees of freedom = 792, Critical value of T = 3.13)

4.12 Computer time evaluation

Considering classifiaction approach I as the standard
procedure, the CPU time consumed for the Maximum Li-
kelihood Classifier in this approach (7,783 secs)

was considered as the reference time to compare with
the other approaches.

A reduction in CPU time is result of less charnnels
used in the classifications.

" Table 8. Computer time (CPU) consumption for each
approach.

Classification CPU Time Ratio

Approach
I 1 :1
II 1 :1.3
117 1:1.3
v 1:1.3
v 1:2.5
VI 1:2.6
VIT 1 : 4,0
VITT 1 :4.5

5 CONCLUSIONS

The four data sets examined in this research provide
a method for evaluatting the effect of the TM thermal
infrared band in multispectral classifications. A
Per Point GAussian Maximum LIkelihood classification
was performed with eight different approaches. The
analysis of the data sets with all seven bands or the
six reflective bands (i.e., data sets A and B), pro-
vided 37 spectrally separable classes. THe use of
four or three Principal Components provide fewer
spectrally separable classes.

The use of the seven TM bands for the analysis pro-
cedure gave better discrimination among classes and
fewer mixed classes. This same situation prevails
between data sets C and D where the use of three
Principal COmponents gave more mixed classes than

set

The use of the seven TM bands gave the best minimum
and average separability values. Tf the thermal

band is not included for multispectral classification,
then it is better to generate the training statistics
(cluster) without the theymal band.

Water features show to be cqually discriminated with
all the approaches. “oybean and corn were better
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discriminated with classificaticns of the data set A.
Urban classifications using statistics generated with
the seven TM bands (data set A) were significantly
different from these of the other three data sets,

Soils and industrial classes in the approach VITI
(Three Principal Camponents) were significantly di-
fferent and had the lowest accuracy mean values.
Classifications performed with data sets B, C and D
provided fores/corn mixed classes because of lower
separaebility values between those “eatiures.

In general, classifiactions using the thermal band
were significantly different from classifications
without this band. THe separability values between
pairs of classes were higher when the thermal band was
used.

when there is a constraint on computer time and/or
hardware, the use of data compression techniques such
as PRincipal Components may be advantageous due to
the drastic decrease in CPU time consumed.

The thermal band itself has great possibilities for
specific types of research, specially in the areas <
thermal polluticn mapping, detection of vegetation -2
stress situations and mapping of sea currents.
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