Quarterly Progress Report

Evaluation of SLAR and Thematic Mapper MSS Data for Forest Cover Mapping Using Computer-Aided Analysis Techniques

Contract No. NAS 9-15889

Reporting Period: June 1, 1980 - August 31, 1980

Submitted to: Exploratory Investigations Branch
NASA Lyndon B. Johnson Space Center

Prepared by: R. Hoffer, R. Latty, E. Dean, and D. Knowlton Laboratory for Applications of Remote Sensing

Purdue University

West Lafayette, Indiana 47906

Technical Monitor: Mr. Norman Hatcher
NASA Mail Code SF5

Exploratory Investigations Branch

Houston, Texas 77058

Principal Investigator: Dr. Roger M. Hoffer

Ecosystems Program Leader LARS/Purdue University

West Lafayette, Indiana 47906

Whale areliable under MASA Sponson Made archard of cody and wide curve IN THE INTEREST OF EATH AND MAKE STATES SEMINATION OF EATH RESENTERS JUNES AND LANDSHIP Ling BUN nee Wale Thereng

NASA-CP-167791

E83⁻10 148

Quarterly Progress Report

(E83-10148) EVALUATION OF SLAR AND THEMATIC MAPPER MSS DATA FOR FOREST COVER MAPPING USING COMPUTER-AIDED ANALYSIS TECHNIQUES Ouarterly Progress Report, | Jun. - 31 Aug. 1980 (Furdue Univ.) 57 p HC AC4/MF AO1

N83-16823

linclas 00148

G3/43

Evaluation of SLAR and Thematic Mapper MSS Data for Forest Cover Mapping Using Computer-Aided Analysis Techniques

> ORIGINAL PAGE 12 OF POOR QUALITY

Contract No. NAS 9-15889

Reporting Period: June 1, 1980 - August 31, 1980

Submitted to: Exploratory Investigations Branch

NASA Lyndon B. Johnson Space Center

Prepared by: R. Hoffer, R. Latty, E. Dean, and D. Knowlton

Laboratory for Applications of Remote Sensing

Purdue University

West Lafayette, Indiana 47906

Technical Monitor: Mr. Norman Hatcher

NASA Mail Code SF5

Exploratory Investigations Branch

Houston, Texas 77058

Principal Investigator: Dr. Roger M. Hoffer

Ecosystems Program Leader

LARS/Purdue University

West Lafayette, Indiana 47906

Original photography was be purchased NASA STI FACILITY ACCESS DEPT.

from EROS Data Center Si ix Falls, SD 57198

TABLE OF CONTENTS

		Page
I.	ACTIVITIES OF THE PAST QUARTER	1
	A. DATA COLLECTION	1
	1. Radar Data Collection and Evaluation	1
	2. Multispectral Scanner Data Collection	5
	3. Field Trip to the Study Site	5
	B. DATA ANALYSIS	7
	1. Selection of Test Fields	7
	2. Waveband Combination Evaluation	10
	3. Spatial Resolution Evaluation	13
II.	PROBLEMS ENCOUNTERED	22
III.	PERSONNEL STATUS	22
IV.	ANTICIPATED ACCOMPLISHMENTS	22
Ref	ferences Cited	24
	ADDENDIY	
	APPENDIX A	25
	APPENDIX B	38
	APPENDIX C	39

I. ACTIVITIES OF THE PAST QUARTER

A. Data Collection

1. Radar Data Collection and Evaluation

The radar mission, Mission Number 424, was successfully flown on June 30, 1980. This was the first radar data to be obtained in support of the current project. The sensor used was the APQ-102 side-looking radar, and the aircraft platform was the WB-57F flown at an average altitude of approximately 60,200 feet MSL. Small scale color IR photography was also obtained of the study site as part of this mission.

The APQ-102 side-looking radar is a fully focused synthetic aperature radar imaging system. A horizontally polarized pulse of energy of 9600 MHz + 5 MHz (this wavelength band is commonly known as X-Band) was transmitted by the radar system, and the returning energy was recorded on separate holograms as horizontally (HH) and vertically (HV) polarized responses. These holograms were then processed through an optical correlator and the resulting images recorded on positive film, which was the format in which the data were provided by NASA to LARS.

The positive-map film was received at LARS on August 8, 1980. Black and white negatives and positive prints were then made of the radar film for handling and pre-analysis purposes.

Visual comparison of the HH images and HV images indicates that there is a distinct dark band in the imagery which covers about 30 percent of the radar strip (see Figure 1). This band is very distinct on the HH images and is also quite noticeable on the HV images. Because the dark band falls on the test site for the Flight Line 2 data, the value of a detailed quantitative analysis of Flight Line 2 appears questionable (see Figure 2). However, the Flight Line 1 data looks reasonably good and the dark streak does not fall on the test site area, so this should provide a good data set for the quantitative analysis. Preliminary evaluation of the data indicates that various features on the HH and HV images seem to give different response levels, which provides promise for using this type of data to differentiate among various cover types and/or condition classes. This aspect of the data will be carefully studied.

The amount of sidelap due to the look-angle between Flight Lines 1 and 2 is negligible. This was surprising, since the flightline centers were defined to be only 5 n.mi. apart, but the swath width of the APQ-102 is 10 n.mi. Examination of the imagery indicated that the start (south end) of Flight Line 1 was exactly where it should have been, but apparently there was some drift as the aircraft flew up the flightline, resulting in a smaller portion of the test site being imaged at the northern end of the flightline (Figure 1). Flight Line 2 was flown 1-2 n.mi. to the east of the desired location, resulting in the lack of overlapping data. The slight amount of sidelap that does exist falls on the very edge of the data where the image quality is too poor to be of use. Since there is no useful sidelap in the data, analysis of forest cover as a function of look-angle (using the overlapping area of the two flight lines) cannot be pursued with this data set.

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

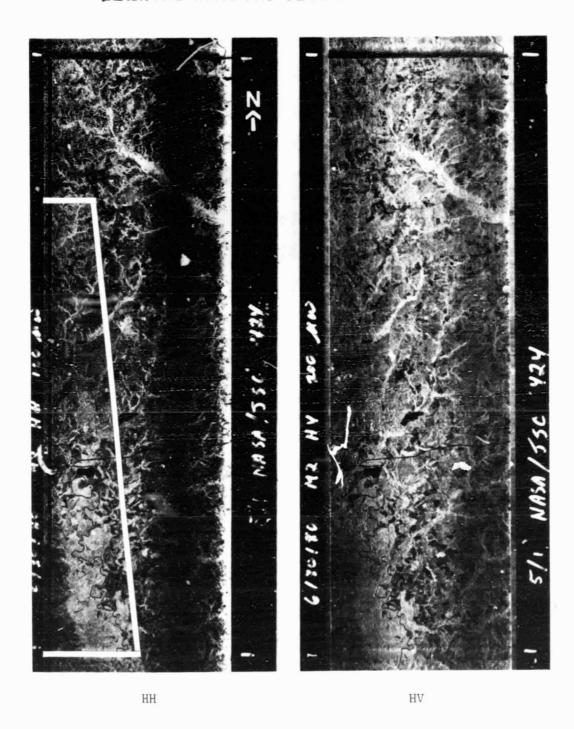


Figure 1. Radar images of flight line 1 for the HH and HV polarizations. The corresponding area of the MSS data is outlined in white.

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

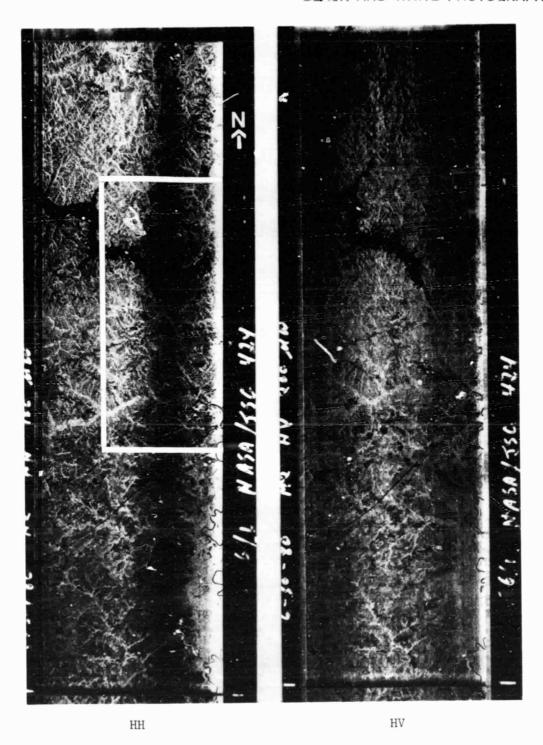


Figure 2. Radar images of flight line 2 for the HH and HV polarizations. The corresponding area of the MSS data is outlined in white.

ORIGINAL PACE BLACK AND WHITE PHOTOGRAPH

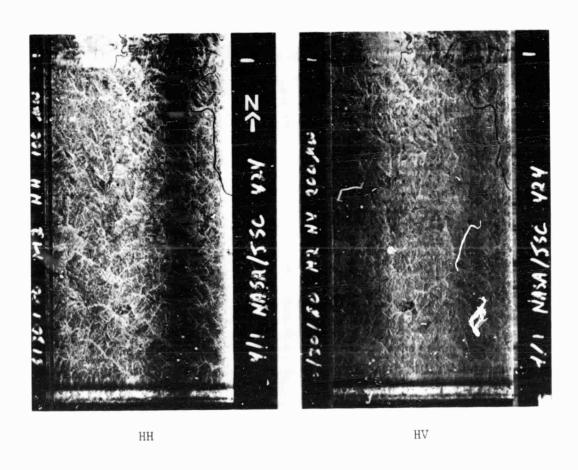


Figure 3. Radar images of flight line 3 for the HH and HV polarizations.

An estimation of the scale in the "along-track" and "across-track" directions indicates that there could be a significant difference between them. The scales were determined by measuring the distance between two points on the radar images and the same two points on USGS maps; two different measurements were taken for each direction and the averages computed. The approximate scale for the along-track direction is 1:361,000 and the across-track direction is 1:413,000. Normally on fully focused SAR systems the along-track and across-track scales are the same (Tomiyasu, 1978). This is because the length of the flight line over which the signals are combined is equivalent to the along-track length of the illuminated area at far range for any given pulse (Greer, 1975). Because of this relationship many variables can influence both the along-track and across-track scales, and thus create significant differences between the scales even though the system is a fully focused SAR system. The SAR system is a phase-coherent system and the differences or phase errors can be attributed to system imperfections such as radar-platform velocity deviations, targets in motion, electromagnetic path length fluctuations, and electronic equipment instabilities (Tomiyasu, 1978). Since spatial characteristics, such as resolution and swath width, of the radar system are based on the same properties used to determine the scale, the system parameters must be evaluated to make an accurate determination of the spatial characteristics of this data set.

2. Multispectral Scanner Data Collection

NASA Flight Mission #425 to obtain three flightlines of NS-001 MSS data and supporting aerial photography was successfully flown on July 2, 1980. A summary of the support data is shown in Table 1 along with characteristics of the camera equipment used.

The Flight Line 3 data quality was very good and virtually cloud-free. Flight Lines 1 and 2 both contained some cloud cover especially in the northern sections and near the city of Camden, South Carolina and over the adjacent Wateree Reservoir. Flight Line 1 over Camden and north of the city contained between 30% and 40% cloud cover while south of Camden the cover was only between 0% and 10%. The quality of Flight Line 2 was generally better than on Flight Line 1 and contained only between 10% and 20% cloud cover north of and over Wateree Reservoir.

Mission #425 was continued on July 3 in an attempt to collect scanner data over Flight Lines 1 and 2 under more favorable weather conditions. The weather was generally very hazy, however, and in some areas over 50% of the imagery was covered by either haze or cloud cover. This situation occurred both north of Camden on Flight Line 1 and north of the Wateree Reservoir on Flight Line 2.

3. Field Trip to the Study Site

A field trip to the study area was conducted by Ellen Dean from July 1 to July 3 for the purposes of obtaining ground information concurrent with NASA Flight Missions #424 and #425, and to become better acquainted with the study site and the characteristics and variability of cover types.

Table 1. NS-001 Scanner and Aerial Photography Information: NASA Flight Mission #425

Flight #18
July 2, 1980
18:22:40 (time of flight)

		Altitude(kft)			
<u>Flightline</u>	Run Time	MSL MGD	Line Miles	Ground Speed (mph)	Blackbody Temp (^O C)
1	6' 30"	21.4 20.9	35	299	14.8 (1o) 36.7 (hi)
2	6' 20"	21.7 21.2	35	300	14.8 (10) 36.9 (hi)
3	3' 40"	21.4 20.9	22	297	14.9 (10) 36.7 (hi)

6

Flight #19 July 3, 1980

14:52:35 (time of flight)

			<u>Altitu</u>	de(kft)					
Flightlin	<u>ie</u>	Run Time	<u>MSL</u>	MGD	Line Miles	<u>Gr</u>	ound Speed (mp	h) Blac	kbody Temp (^O C)
1		6' 30"	21.5	21.0	35		285		15.7 (1o) 32.7 (hi)
2		6' 30"	21.6	21.1	35		270		15.4 (1o) 32.7 (hi)
Film Type	Camera Type	Filter #1	Filter #2	Shutter Speed	Filter <u>Factor</u>	ASA	Focal Length	Forward Lap	Roll <u>Number</u>
S0397(C)	Zeiss	1 A	36% T	1/250	2	160	6"	60%	22
S0193(CIR)	Zeiss	12	36% T	1/250	2	100	6"	60%	23

The first two days were spent in the field gathering reference information and color photographs of the various agricultural and forest cover types and conditions. These sites were located on aerial photographs from the previous NASA mission, Mission #399, noting the occurrence of any specific changes in the cover type. On July 3 a rental plane was flown over Flight Lines 1 and 2 at an altitude of approximately 900 feet above mean sea level and numerous aerial photographs were taken to be used in conjunction with other ancillary data to compare with data obtained from Missions #424 and #425. Subsequently these photographs were identified and labelled as to their corresponding positions on the CIR photos from Flight Mission #425.

To provide background information to use in the interpretation of the radar imagery, data on weather conditions was obtained for a period of one and two weeks prior to the flight missions (Table 2). This data was recorded at the Camden Weather Station, which is located in the center of Flight Line 1.

B. DATA ANALYSIS

1. Selection of Test Fields

A COMTAL Vision One/20 display device was used to aid in selection and photo interpretation of the test fields for the various spatial resolutions being investigated. Blocks of the geometrically and "radiometrically" adjusted imagery (see Quarterly Progress Report September 1, 1979 - November 30, 1979 for discussion) were used.

The first step involved designing a test sample grid such that the cover classes occurring at the various coordinates of the coarser resolutions could be identified using data of only one resolution displayed on the By designing the grid such that the set of pixels examined for the test pixel identification corresponded exactly with the set of pixels averaged in the resolution degradation program, the identifications made using the finest resolution data could be precisely mapped into the coarser resolutions. The spacing for the grid is thus determined by the smallest number for which all resolutions provide a common denominator. Since, for the across-track dimension, the resolutions are the average of 1, 2, 3, and 4 pixels then the spacing for the grid in the across-track dimension which will allow us to map exactly between resolutions is 12. Similarly for the along-track grid spacings; the pixels averaged together for each resolution are 1, 2, 3, and 5. Hence, the grid spacing must be a multiple of 30. grid was generated by GRID·FTN (see Appendix B) for overlaying on the COMTAL image.

The COMTAL allows three different wavelength bands to be placed into separate image planes. These three planes can subsequently be assigned varying densities of red, green and blue colors, and overlaid to obtain a "truecolor" color composite image. This truecolor image was used, along with the ability of the COMTAL to magnify the image 1X, 2X or 4X, to accurately locate and identify the test fields. An example of this is shown in Figure 4 which displays one block of Flight Line 1 below Camden, South Carolina in magnification of 1X on which the Test Data Grid is overlaid. Figure 5 represents the central portion of the same scene at a 4X magnification.

Table 2. Weather Information from Camden, South Carolina

<u>Date</u>	Precipitation (inches)	Temperatu (high)	re (^O F) (1ow)	Relative Humidity (Kershaw Co.)
6/16	0.15			
6/17	0.15			
6/18	0.55			
6/19	none			
6/20	none			
6/21	none			
6/22	none			
6/23	trace	92	57	50%
6/24	0.7	90	68	-
6/25	1.37	90	68	-
6/26	trace	78	66	87%
6/27	none	82	62	58%
6/28	none	97	66	-
6/29	none	99	70	-
6/30	none	96	72	40%
7/1	none	98	64	41%
7/2	none	92	71	

Figure 4: A COMTAL Vision/One image of Flight-line 1-S south of Camden, S.C. The image is overlaid with the grid used to locate and evaluate the test fields.

Figure 5: A magnification of a portion of the same image as shown in Figure 4. Magnification to this scale was used for most of the interpretation and identification of test fields.

ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH

Identification of the cover type in the test fields at all resolutions on the COMTAL was done in comparison with photo interpretation of the CIR photos. Identification into various cover types followed the format as outlined in the Quarterly Progress Report of June 1, 1979 - August 31, 1979, except for an additional class of tupelo which was found to be both visually and spectrally separable. All test fields at the various resolutions were evaluated separately and any border test fields, i.e., pixels containing more than one cover type at a particular resolution, were excluded from the final data set. The COMTAL coordinates and the test point identifications were recorded for subsequent translation into MIST coordinates for each resolution. This work has been completed for Flight Line 1-S. Blocks in Flight Lines 1-N and 2-N are currently being analyzed.

2. Waveband Combination Evaluation

Much of the work conducted in waveband combination evaluation for this project is discussed in a paper prepared for presentation at the Fall Technical Convention of the American Society of Photogrammetry. A copy of this paper is included as Appendix A. Review of that article prior to reading the following text is suggested, as duplication is avoided wherever possible. However, there were several considerations and activities of the work that were not reported in the appended paper. The following discussions will focus primarily on these details of the analysis.

The <u>a priori</u> estimation of the probability of correct classification employing a measure of statistical difference between spectral classes relies heavily on: 1) the degree to which the group of class densities represent the distributions of spectral response vectors associated with each cover class (Swain, 1978) and 2) the degree to which the set of class densities is exhaustive of the range provided by the response vectors from the area to be classified (Wiersma and Landgrebe, 1979). If the class densities satisfy the above conditions, then statistical separability of the class densities should provide a fairly reliable estimate of percent correct classification.

The actual computation of transformed divergence, as well as the vast majority of other "separability" measures, involves only two class densities for each individual computation or value. Transformed divergence is thus a measure deemed appropriate for a two class case of equal a priori probability. A problem arises when such a measure is to be employed to provide an estimate of overall percent correct classification involving a multiple of spectral classes of unequal a priori probabilities. This problem is further compounded by the fact that subsets of these classes represent different cover classes. 1/2 The averaged transformed divergence is given by:

$$TD_{ave} = \frac{1}{n} \sum_{k=1}^{n} TD_{k}$$
 (1)

for n number of spectral class pairs.

^{1/}The need to provide estimates for only relative percent correct classifications for purposes of ranking possible waveband combinations does not alleviate the problem.

However, the relative frequency of each spectral class pair is assumed constant in such an approach. This is rarely the case.

An unweighted, arithmetic average of all TD-values will result in the separability of two infrequently occurring classes having equal impact on the percent correct classification estimate, as the separability of two common classes. Consider the following:

Given a probability space S, $s_{ij} \in S$, $i = 1, \ldots, k - 1$, $j = i + 1, \ldots, k$ for each j, where k = the total number of spectral classes. If each s_{ij} is considered the simultaneous occurrence of each spectral class of the pair $(s_i \text{ and } s_j)$, the occurrence of each being independent of the other, then the probability of the occurrence of the "spectral class pair" can be determined by:

$$W(s_{ij}) = P(s_i) P(s_j); (s_i s_j) = \emptyset$$
 (2)

 $W(S_{ij})$ is a weight, distinct from the probability associated with an occurrence. To ease the complexity of indexing, it is assumed here that each cover class is represented by only one spectral class. The computations are easily extended into the case where the number of spectral classes in each cover class is greater than one. Then an unbiased estimator of averaged transformed divergence, corresponding more closely to probability of correct classification is given by:

$$TD_{ave} = \sum_{i=1}^{k-1} \sum_{j=i+1}^{k} W(s_{ij}) TD_{ij}$$
(3)

These probabilities should be treated with caution, as they are directed merely at extending the application of statistical distance as an estimator of probability of correct classification from the two class case to the multi-class case. The above presentation also assumes the availability of estimates of the $P(s_i)$ and $P(s_i)$. These are empirically derived using the relative frequency of each spectral class in each cover class and the relative frequency of each cover class. Computationally:

$$P(s_i) = P(s_i/C_\alpha) P(C_\alpha) \quad \alpha = 1, \dots, m$$
 (4)

where: P(C) is given by the total number of pixels in the training data in cover class α divided by the total number of pixels from all cover classes in the training data.

 $P(s_i/C_\alpha)$ is given by the total number of pixels in the training data spectral class s_i , which is a subset of C_α , divided by the total number of pixels in cover class $C_\alpha \cdot 2^{i/\alpha}$

^{2/}As may well be apparent, the algebraic identify of these probability estimates provides a computational shortcut to the probabilities of interest.

While these frequencies are easily obtained, their use in providing unbiased estimations of the above probabilities is dependent on each observation being randomly selected. That is, the selection of each additional pixel in developing the training data is completely at random. While this is rarely the case, the extent to which this assumption is violated will erode the "goodness" of each P(s;) and hence the resulting TD ave this has been used by some researchers as the rationale for not weighting each observed TD, and employing the unweighted arithmetic mean in the multiclass case. While this may well be warranted in many cases, it must be reconciled that weights are always employed. Where they are not computed and employed in the summation, they are merely assumed equal. Obviously,

$$\frac{1}{n} \sum_{k=1}^{n} TD_k = \sum_{k=1}^{n} \frac{1}{n} TD_k$$
 (5)

The problem then becomes one of assuming some set of population parameters $(x_1, x_2, x_3, \ldots, x_k)$ where k is the number of spectral classes contained in the population and the x are the total number of pixels belonging to each ith spectral class. The actual probabilities are then,

$$P(x_i) = x_i \begin{bmatrix} x \\ y=1 \end{bmatrix}^{-1}$$
 (6)

Then, for the weighted as opposed to the unweighted case:

$$E_{1} = \sum_{i=1}^{k} |\hat{P}(x_{i}) - P(x_{i})|$$
 (7)

and

$$E_2 = \sum_{i=1}^{k} \left| \frac{1}{k} - P(x_i) \right|$$
 (8)

where \mathbf{E}_1 is the error for the weighted case and \mathbf{E}_2 is the error for the unweighted case,

is
$$E_1 \geq E_2$$
 ?

This is the consideration which, in spite of not being testable, must be resolved before proceeding with any multiclass case employing averaged statistical distances. While an in-depth evaluation of this problem is beyond the scope of this study, the evaluation of waveband combinations employing the weighted average was considered imperative for complete treatment of this part of the study. Table 3 provides a rank ordering of channel combinations for each waveband combination level for the weighted mean TD-values.

The work in waveband combination evaluation prompted the development of several programs which were written to be compatible with LARSYS. These are listed in Appendix B with brief descriptions.

Among these was a program which computed average transform divergence over all spectral class pairs for each cover class pair and over all spectral class pairs for each cover class. The tables of these results are shown in Appendix C, and provide insight as to the dependency of waveband combination rank on cover class composition of the area to be classified. Such output will also assist individual users of diverse interest to select those waveband combinations most suited to their particular application. By selecting that waveband combination of maximum TD in cover classes with which they are concerned, the classifier can be "fine-tuned" according to the users needs. The disagreement between max(TD ave ave class, cover class pair, and overall cover classes is very common.

Separability by cover class pairs will also provide information on which cover classes may require additional spectral classes in order to reduce their variance. It will also give an estimate of the results to be expected in the omission-commission error matrix.

3. Spatial Resolution Evaluation

The development of test statistics have been completed for the southern half of the easternmost flight line (Flight Line 1-S) for all resolutions (i.e., 15x15, 30x30, 45x45 and 60x75 meter data sets). Prior to generating all of the statdecks for each resolution, an evaluation of the spectral classes for the 30 meter data was conducted by classifying the training fields.

As indicated in the paper included as Appendix A, statistics for each class density were provided by a supervised cluster approach. The line-column coordinates of supervised samples of each cover class were identified from the COMTAL Vision One/20. These coordinates were translated into MIST coordinates and a LARS-12 card deck was generated by CAGEN2 FORTRAN (see Appendix B). These were then sorted by cover class and separate cluster analyses were run for each cover class. The individual statistics decks were merged, providing 32 spectral classes for 12 cover classes. Table 4 contains the resulting class parameters by spectral class, by cover class.

Separability indicated that these class densities were on the average, very separable and that acceptable classification accuracies could be expected. However, in order for class densities to provide high classification accuracies the classes must be:

- 1) representative of the distribution of observations of the same class.
- 2) separable or distinguishable among all other classes,
- 3) exhaustive of the sample space from which observations are drawn.

Table 3. Rank Ordering of Best Seven Channel Combinations for each Channel Combination level (ordering criterion is Average Transformed Divergence over all spectral class pairs).

1	2	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>
6	3,4	3,4,5	1,3,4,5	1,2,3,5,6	1,2,3,4,5,6
3	3,5	3,4,6	3,4,5,6	1,2,3,4,6	1,2,3,5,6,7
4	2,4	3,5,6	1,3,4,6	1,2,3,4,5	1,2,3,4,6,7
5	4,6	2,4,5	2,3,4,6	1,3,4,5,6	1,2,3,4,5,7
1	3,6	1,3,4	2,3,4,5	2,3,4,5,6	1,2,4,5,6,7
2	2,5	2,4,6	2,3,5,6	1,2,4,5,7	2,3,4,5,6,7
7	5,6	2,5,6	2,4,5,6	1,2,4,5,6	1,3,4,5,6,7

Note: Channel 1 = 0.45 - 0.52 μm Channel 2 = 0.52 - 0.60 μm Channel 3 = 0.63 - 0.69 μm Channel 4 = 0.76 - 0.90 μm Channel 5 = 1.00 - 1.30 μm Channel 6 = 1.55 - 1.75 μm Channel 7 = 10.4 - 12.5 μm

Table 4 . Summary of Statdeck Containing 32 Spectral Classes.*

	<u>1</u>	2	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>
SOTL1	154.87	177.14	189.70	181.14	188.11	189.22	143.31
	243.34	635.95	705.00	320.86	308.40	513.50	757.91
SOILS	123.42	125.67	128.85	135.62	144.49	144.83	139.44
	36.26	194.+2	240.09	223.42	158.03	158.41	1162.87
SOTL3	111.10	95.43	92.80	99.29	109.41	106.21	135.06
	105.86	235.72	398.18	361.95	331.33	396.72	734.38
PAST1	93.34	74.46	62.05	118.41	122.58	91.51	137.99
	24.58	41.55	9 2. 69	259.57	187.63	90.66	432.61
SISVA	87.89	65.24	44.09	155.37	135.89	68.69	86.19
	22.39	38.95	24.31	140.19	93.50	68.35	74.75
PAST3	85.36	61.38	42.37	119.42	106.93	57.08	80.27
	20.05	27.50	40.48	258.94	140.35	57.77	122.54
PAST4	96.11 9.05	72.36	57.77 21.87	38.39 103.32	31.09 112.83	22.08 77.18	45.94 322.49
CROP1	117.55 42.54	111.12 130.55	100.67	172.25 203.03	161.50 140.88	119.58 229.37	201.02
CRUPS	100.77	76.21 16.76	52.34 22.41	610.17 176.97	160.62 39.00	60.76 40.72	82.34 40.46
CROP3	99.82	82.30	71.21	118.67	117.97	91.50	137.56
	37.79	37.35	70.78	115.25	118.15	203.40	268.31
CP1P4	96.03	76.54	54.45	150.22	127.02	64.76	97.05
	5.16	30.63	45.41	199.89	141.36	70.29	194.62
BINEI	92.26	69.7e	54.05	113.46	115.17	71.85	116.23
	3.11	6.35	13.48	81.46	55.40	50.93	288.47
PINES	94.75	57.40	48.67	118.79	112.27	59.60	83.64
	15.59	8.73	5.99	104.99	83.46	40.22	73.18
bIHD1	91.69 14.58	69.46 8.39	55.44 11.86	109.79 64.66	110.61	70.28 28.63	127.44 379.38
DIHUS	94.31	55.79	46.98	112.63	105.95	53.95	84.25
	5.04	7.81	7.09	119.94	85.44	29.96	54.55
HOWD1	84.36 9.19	51.83 19.05	42.03 14.24	140.52 228.86	125.34	63.50 67.39	34.96 98.88
HDMDS	91.78	70.90	59.56	99.01	101.23	76.15	125.33
	24.90	47.12	121.63	010.36	911.00	679.66	909.75
SGHD1	91.42	67.31	44.23	175.67	150.73	71.57	84.74
	7.13	9.40	5.47	55.54	38.43	29.82	55.83
SGHD2	85.10	51.11	40.45	155.12	133.78	63.66	81.08
	32.01	20.54	5.09	54.63	29.75	17.06	80.64
S6HD3	91.52 13.22	64.64 9.93	41.91	131.63 126.96	112.29 92.78	56.05 16.65	68.85 34.31
TUPE1	84.63	61.26	41.99	134.63	119.80	60.42	80.56
	4.51	12.07	15.19	366.89	253.77	69.31	146.03
TUPES	78.38	50.18	38.94	44.15	45.85	35.99	112.04
	3.70	15.81	23.85	168.05	386.93	304.10	809.13
SYCAI	87.53 2.93	66.20 4.89	50.40 13.40	123.40 368.97	124.13	82.87	116.73 165.64
SYCAZ	34.40 2.15	60.05 4.58	39.70 7.87	130.50	115.20 167.96	56.95 28.58	80.05 35.84

Table 4 . Summary of Statdeck Containing 32 Spectral Classes (cont'd.).

	1	2	3	4	<u>5</u>	<u>6</u>	<u>7</u>
CCUT1	99.76	82.77	83.34	91.37	102.79	102.92	136.91
	47.58	106.86	286.95	384.24	297.92	423.73	167.45
CCUT2	84.78	63•53	44.63	141.22	128.27	69.31	93.55
	17.53	36•59	43.53	238.84	127.66	81.24	197.84
MVEG1	102.64	79.12 73.10	65.10 174.96	110.00 58.54	123.25 51.46	89.91 102.11	123.56 204.00
MVEG2	100.76	76.83	52.67	123.72	112.42	64.49	80.16
	8.90	20.02	14.50	173.99	118.27	65.70	113.35
TUWA1	172.62	195.02	139.18	55.29	37.92	27.02	76.42
	107.95	279.18	79.42	94.48	120.65	95.07	28.94
VEGE1	126.03	114.84	88.24	104.06	95.38	63.05	90.47
	152.80	502.58	386.21	242.38	392.74	85.405	115.30
VEWA1	19 7. 63	82.53 36.55	55.08 27.39	61.83 119.81	57.93 111.52	42.91 59.06	88.04 29.35
WATRI	107.08	79.41	52.51	39.08	33.05	24.97	71.62
	43.52	123.32	31.19	13.04	17.75	14.22	143.33

^{*}Within each spectral class, the upper element is the mean and the lower is the variance.

Channel Number	Band
1	0.45 - 0.52 μm
2	$0.52 - 0.60 \mu m$
3	$0.63 - 0.69 \mu m$
4	0.76 - 0.90 μm
5	$1.00 - 1.30 \mu m$
6	$1.55 - 1.75 \mu m$
7	$10.4 - 12.50 \mu m$

ــــا

Table 5. Classification Performance Evaluation from Classification of Training Data with 32 Class Training Statistics.

	No. of	%															
	Pts.	Correct	Soi1	<u>Past</u>	Crop	<u>Pine</u>	<u>Pihd</u>	Hdwd	Sghd	Tupe	Syca	Ccut	Mveg	Tuwa	Mveg	Vewa	Watr
Soil	1946	88.6	1724	0	22	1	2	0	0	0	0	178	9	1	6	2	1
Past	987	24.7	60	244	520	1	0	144	3	0	0	6	6	0	3	0	0
Crop	1445	98.1	6	5	1417	2	1	0	1	0	0	11	1	0	1	0	. 0
Pine	805	81.4	0	7	0	655	125	14	0	0	0	0	4	0	0	0	0
Pihd	314	89.8	0	0	0	26	282	2	1	0	0	0	2	0	1	0	0
Hdwd	3997	5.1	0	637	1	1	11	202	2301	691	104	41	7	0	0	1	0
Sghd	2242	94.0	0	61	2	0	1	52	2107	9	0	7	1	0	0	2	0
Tupe	350	0.0	0	186	52	0	0	101	4	0	0	0	7	0	0	0	0
Syca	35	0.0	0	11	3	0	0	0	20	0	0	0	1	0	0	0	0
Ccut	4277	17.9	234	2460	40	156	4	508	33	3	28	765	32	0	2	11	1
Mveg	294	98.0	3	0	0	3	0	0	0	0	0	0	288	0	0	0	0
Tuwa	124	99.2	0	0	0	0	0	0	0	0	0	0	0	123	1	0	0
Mveg	66	100.0	0	0	0	0	0	0	0	0	0	0	0	0	66	0	0
Vewa	39	97.4	0	0	0	0	0	0	0	0	0	0	0	0	1	38	0
Watr	232	97.0	0	7	0	0	0	0	0	0	0	0	0	0	0	0	225

Overall Classification Accuracy (8136/17153) = 47.4%

Table 6 . Summary of Statdeck Containing 37 Spectral Classes.*

	1	2	3	4	<u>5</u>	<u>6</u>	<u>7</u>
SOIL1	154.87 243.34	177.14 635.95	199.70 705.00	131.14 320.86	188.11 308.40	189.22 513.50	143.31 767.91
SOILZ	128.42 88.26	125.67 194.42	128.85 240.09	135.62 223.42	144.49 158.03	144.93 158.41	139.44 1152.87
SOIL3	111.10 105.86	95.43 235.72	92.80 308.13	99.29 361.95	109•41 331•33	106.21	135.06 734.38
PASTI	107.48	93.05 29.30	81.10 74.74	148.14 151.33	162 .1 6 8 7. 59	131.79 83.29	197.08 283.63
PASTS	104.65 4.76	35.95 9.49	62.46 17.70	188.67 116.83	176.23 34.90	102.77 51.15	145.38 138.17
PAST3	104.30 19.73	35.V4 22.34	69.62 52.99	141.53 162.09	148.91 97.33	108.70 68.23	154.41 196.43
PAST4	99.52 8.07	39.96 13.68	56.73 17.95	71.73	154.58 59.78	64.27 35.41	115.33 58.15
PAST5	97.60 5.56	73.76 7.50	51.20 7.15	165.09	135.90 30.41	63•37 25•35	87.51 55.28
CROP1	117.65 42.54	111.12 139.55	100.67 309.76	172.25 203.03	161.50 140.88	119.50 229.87	103.02
CBÚBS	100.77 5.80	76.21 16.75	52.34 22.41	210.17 176.97	160.62 39.00	08.76 40.72	82.34 40.46
CROP3	99.82 37.79	32.30 37.85	71.21 70.78	118.67 115.25	117.97	91.60 203.40	137.56 268.31
CROP4	96.08 5.16	76.84 30.63	58.45 45.40	150.22 199.89	127.02 141.36	64.76 70.29	97.05 194.52
PINEI	92.26 3.11	69.76 6.35	54.05 13.46	113.45 81.46	$115.17 \\ 65.40$	71.85 50.93	116.23 288.47
BINES	94.75 15.59	57.90 8.73	48.67 5.99	118.79 104.89	112.27 83.45	59.60 40.22	83.64 73.18
bInDI	91.69 14.58	69.46 8.39	55.44 11.85	109.79 54.06	110.61 45.92	75.28 28.53	127.44 379.38
BIHDS	94.31 6.04	55.79 7.81	45.93 7.09	112.63 119.94	195.95 35.44	53.95 29.96	84.25 54.55
HDMD1	92.12 2.48	66.21 4.29	43.92	161.01 38.25	138.32 20.72	65.29 15.45	7 8.90 30.02
HD#D2	91.45	66.07 11.20	43.94 5.93	146.15 30.91	127.10 16.15	61.97 19.43	77.05 43.73
нрырз	34.52 3.75	58.21 7.59	38.78 5.89	124.69 36.31	108.22	52.82 10.90	72.92 19.29
SGHD1	91.42 7.13	67.31 9.40	44.23	175.67 55.54	150.73 38.43	71.57 29.82	84.74 55.83
SGHD2	86.10 32.01	61.11 20.54	49.45 6.09	155.12 54.63	133.78 29.75	63.65 17.06	81.08 80.84
SGHD3	91.52 13.22	64.64 9.93	41.01	131.63 126.96	112•29 92•78	56.05 15.65	60.85 34.31
TUPEI	95.44 7.53	80.55 12.71	91.29 3.64	183•49 66•36	155.89 30.81	77.28 10.74	80.27 97.30
TUPES	95.67 7.47	80.57 12.79	51.88 4.47	154.41 45.11	141.59 36.50	74.01 12.20	81.98 37.88

Table 6. Summary of Statdeck Containing 37 Spectral Classes (cont'd.).

	<u>1</u>	2	3_	4	<u>5</u>	<u>6</u>	7
TUPE3	82.83 8.41	72.87 3.40	46.51 0.89	124.39 11.67	109.04	60.90 1.53	79.67 22.23
SYCA1	87.53	66.20	50.40	123.40	124.13	82.87	116.73
	2.98	4.89	13.40	358.97	204.27	11.41	105.64
SYCAS	34.40 2.15	4.58	39.70 7.80	130.50 294.47	115.20 167.96	56.95 28.55	30.05 35.84
CCUT1	101.66	33.29 50.16	73.24 145.27	121.39 163.30	135.02 73.32	112.71 123.54	189.76 463.75
CCUTS	96.86	76.45	64.94	107.61	114.36	91•23	137.69
	17.11	35.73	117.13	191.87	140.05	98•60	198.27
CCUT3	91.66	70.97	50.25	142.64	131.36	77.78	100.85
	7.20	11.70	19.19	276.54	110.55	44.09	132.54
CCUT4	91.17	66.86	52.46	83.56	83•20	62.04	98.73
	19.28	26.99	75.15	330.60	325•53	164.53	300 . 15
MVEG1	102.64	79.12 73.10	65.10 174.96	110.00 58.84	123.25 51.45	89.91 102.11	123.56 204.00
MVEG2	100.76	76.83 20.02	52.67 14.56	123.72 173.99	112.42	64.49 66.70	80.16 113.35
TUWAl	172.62	195.82	139•18	55.29	37.92	27.12	76.42
	107.95	279.18	79•42	94.48	120.65	95.07	28.94
VEGE1	126.08	114.84	98.24	104.06	95.88	63.05	90.47
	152.80	502.66	336.20	242.38	392.74	20+.28	115.30
VFWA1	107.63	82.53 36.65	55•08 27•39	61.83 119.81	57.93 111.52	42.91 59.06	88.04 29.35
WATRI	107.08	78.41	52.51	39.08	33.05	24.97	71.62
	43.52	123.32	31.19	13.04	17.75	14.22	143.33

*Within each spectral class, the upper element is the mean and the lower is the variance.

Channel Number	Band
1	0.45 - 0.52
2	0.52 - 0.60
3	0.63 - 0.69
4	0.76 - 0.90
5	1.00 - 1.30
6	1.55 - 1.75
7	10.4 - 12.50

Classification Performance Evaluation from Classification of Training Data with 37 Class Training Statistics. Table 7.

No.

Watr		Н	0	0	0	0	0	0	0	0	H	0	0	0	0	232
•	•													0		
Ирор	1971	9	0	\vdash	0	Н	0	0	0	0	1	0	Н	99	Н	0
T111479	TOM	↔	0	0	0	0	0	0	0	0	0	0	123	0	0	0
Mypo	11 V C B	7	0	Н	7	2	4	ᆏ	2	Н	15	287	0	0	0	0
, i.	ן נ	97	29	5	19	7	75	16	0	3	3693	7	0	0	0	0
277.5	27.0	0	0	0	0	0	37	H	0	0	25	0	0	0	0	0
_	1													0		
g th	nuge	0	П	Н	0	0	357	1907	0	20	22	0	0	0	0	0
	- ',													0		
7. 7.	LING	2	0	H	124	282	10	0	0	0	2	0	0	0	0	0
Dino	LTHE	H	0	2	653	26	H	0	0	0	107	2	0	0	0	0
<u>د</u> د	do Io	22	8	1402	0	0	 1	2	0	0	36	0	0	0	0	0
D	rast	3												0		
1.00	301T	1855	5	6	1	0	0	0	0	0	147	3	0	0	0	0
* * * * * * * * * * * * * * * * * * *	COLLECT	95.3	92.6	97.0	81.1	89.8	87.7	85.1	98.9	0.0	86.3	9.76	99.2	100.0	97.4	100.0
of D+2	r LS	1946	186	1445	805	314	3997	2242	350	35	4277	294	124	99	39	232
		Soil	Past	Crop	Pine	Pihd	Hdwd	Sghd	Tupe	Syca	Ccut	Mveg	Tuwa	Vege	Vеwa	Watr

Overall Classification Accuracy (15335/17153) = 89.4%

TT. PROBLEMS ENCOUNTERED

No problems of significance were encountered during the past quarter. Some difficulties were encountered in following the methodology initially established for identification of the cover type in the defined test pixel, thereby causing some delay in the analysis of the 1979 TMS data. However, these problems have been resolved, and the modified methodology currently being used is much faster and should produce test data sets having a higher degree of reliability among the different analysts involved.

III. PERSONNEL STATUS

The following personnel committed the respective percentages of time to the project during the past quarter:

Name	Position	Ave. Monthly Effort (%)
Bartolucci, Luis	Professional Research Analyst	10
Dean, Ellen	Research Associate	100
Frazee, Michael	Research Assistant	50
Hoffer, Roger	Principal Investigator	80
Knowlton, Douglas	Research Associate	50
Latty, Rick	Research Associate	100
Peterson, John	Associate Director	5
Prather, Brenda	Secretary	50
Stiles, Stephanie	Secretary	3

IV. ANTICIPATED ACCOMPLISHMENTS

The following are the anticipated accomplishments of the forthcoming quarter (September 1, 1980 - November 30, 1980):

- 1) Digitization of the SAR data for Flight Line #1, HH and HV polarizations.
- 2) Completion of the definition of the test data sets for Study Site 1-N and 2-N.
- 3) Continuation of the analysis of the four different spatial resolutions of the 1979 data.
- 4) Continuation of the analysis of the spectral characteristics of the 1979 TMS data.
- 5) Receipt of the 1980 TMS data and initiation of the reformatting and rectification procedures.

- 6) Prepare the 18-month report required by this contract.
- 7) Definition of the Statement-of-Work to be followed during F.Y. '81 and renegotiation of the contract for F.Y. '81.

No major technical problems are anticipated during the forthcoming quarter. Due to (a) an announced plan to significantly decrease the level of funding on this contract during F.Y. '81, and (b) the delays in obtaining, and characteristics of the TMS and SAR data obtained in support of this project, it is anticipated that the objectives initially proposed will need to be modified. These modifications will be reflected in the Statement-of-Work which will be developed during this next quarter.

References Cited

- Greer, J.D., "Ground Dimension from Slant/Range Radar," Photogrammetric Engr. and Rem. Sens., Aug., 1975.
- Tomiyasu, K., "Tutorial Review of Synthetic-Aperature Radar (SAR) with Applications to Imaging of the Ocean Surface," Proc. IEEE, Vol. 66; 5 May 1978.
- Swain, P.H., "Fundamentals of Pattern Recognition in Remote Sensing," in Remote Sensing: The Quantitative Approach, ed. by P.H. Swain and S.M. Davis. McGraw-Hill Inter. Book Co., pp. 136-185.
- Wiersma, D.J. and D.A. Landgrebe, "An Analytical Approach to the Design of Spectral Measurements in the Design of Multispectral Sensors," 1979 Mach. Proc. of Remotely Sensed Data Symp. pp. 331-341.

APPENDIX A

Paper entitled "Waveband Evaluation of Proposed Thematic Mapper in Forest Cover Classification," by R. S. Latty and R. M. Hoffer, to be presented at the 1980 Fall Technical Convention of the American Society of Photogrammetry, to be held in Niagara Falls, New York.

WAVEBAND EVALUATION OF PROPOSED THEMATIC MAPPER IN FOREST COVER CLASSIFICATION

Richard S. Latty and Roger M. Hoffer Purdue University West Lafayette, Indiana 47907

ABSTRACT

This study involved the evaluation of the characteristics of multispectral scanner data relative to forest cover type mapping, using NASA's NS-001 multispectral scanner to simulate the proposed Thematic Mapper (TM). The objectives were to determine: (1) the optimum number of wavebands to utilize in computer classifications of TM data; (2) which channel combinations provide the highest expected classification accuracy; and (3) the relative merit of each channel in the context of the cover classes examined. Transformed divergence was used as a measure of statistical distance between spectral class densities associated with each of twelve cover classes. The maximum overall mean pair-wise transformed divergence was used as the basis for evaluating all possible waveband combinations available for use in computer-assisted forest cover classifications.

INTRODUCTION

Early work in leaf spectra analysis (Billings and Morris, 1951: Gates and Tantraporn, 1952; Gates, et al., 1965; Gausman, et al., 1969; Knipling, 1970; Wooley, 1971; Gausman, 1977) provided much of the initial understanding of the variations in the amount of radiant energy returned from vegetated surfaces. Colwell (1974) identified the value of hemispheric leaf reflectance as only one of several important parameters responsible for these variations, and cautioned against making inferences about scene reflectance from leaf spectra information alone. Plant canopy modeling efforts (Idso and De Wit, 1970; Nilson, 1971; Oliver and Smith, 1972; Suits, 1972; Colwell, 1973) have identified many of the parameters which account for variations in the amount of radiant energy returned from the scene. The selection of waveband combinations which will provide accurate classification of the various earth surface features requires an understanding of the reflective characteristics of those features relative to the various wavebands available. Properties of the data consequential to classification accuracy are not dependent solely on earth surface, atmospheric, and illumination conditions. They are also very dependent on the parameters of the sensor system to be employed (Silva, 1978). Therefore, the need exists to investigate these reflective properties employing data more closely simulating the data which will ultimately be employed for such classifications.

With parametric classifiers, the resulting classification accuracy is dependent on (1) the degree to which the

training classes (i.e., spectral classes) represent the spectral variability of their respective cover classes, and (2) the level of statistical "separability" among the training classes (Swain, 1978). The first condition is difficult if not impossible to assess without conducting the actual classification - the expense of which precludes evaluating many different waveband combinations. One can justifiably assume that the first condition is satisfied if the points providing the data for establishing the training classes are randomly generated, and are "sufficient" in number for each class relative to the number of wavebands employed. The number of samples statistically sufficient for the development of training classes increases exponentially with an increase in the number of channels employed in classification (Duda and Hart; 1973). Duda and Hart (1973) pointed out that, "beyond a certain point, the inclusion of additional features leads to worse rather than better performance." They provide an excellent review of the problem. This problem has also been examined by Allais (1966), Dynkin (1961), Fukunaga and Kessell (1971), Kanal and Chandrasekaran (1971) and others. The level of statistical "separability" can be computed from the mean vectors and covariance matrices associated with each of the training classes employing one of several statistical distance measures (Kailath, 1967; Swain, Robertson and Wacker, 1971; Wacker and Landgrebe, 1972; King and Swain, 1973).

METHODS AND ANALYSIS

Data Acquisition
The data were obtained on May 2, 1979 from the NASA NC-130 aircraft flying at an altitude of 20,000 ft. (MGD) over an area immediately south of Camden, South Carolina. The multispectral scanner (MSS) data were obtained by the NASA NS-001 multispectral scanner. (Table 1 shows the NS-001 scanner specifications as compared to the Thematic Mapper). Color and color infrared photographs (1:40,000 scale transparencies) were obtained at the same time. Cloud coverage was minimal and atmospheric conditions were considered excellent.

Data Handling and Preprocessing
The across track change in scale of the imagery was adequately reduced by employing a geometric model which describes the ground resolution element dimensions as a function of aircraft altitude, IFOV (instantaneous field-of-view) of the scanner, and change in scan angle corresponding to the analog signal integration interval.

A study of the data quality revealed an apparent correlation between scan angle and response level (different for each channel). The relationships appeared to be sufficiently high to obscure sources of variation otherwise correlated with differences between cover classes. Therefore, an empirically derived function was generated which described the variation in response level by column (corresponding with scan angle). Data were employed from areas where no

apparent stratification of cover class by column was present.* The shape of these functions were evaluated against both empirical (Anuta and Strahorn, 1973; Landgrebe, Beihl, and Simmons, 1977) and theoretical work (Kondratyev, 1969; Jurica and Murray, 1973) prior to actual response level adjustment. The final data product was considered appropriate for the analysis.

Table 1. Comparison of the NASA NS-001 multispectral scanner and the proposed Thematic Mapper (TM).

NS-001 Hultispectral Scanner (1)					Proposed Thematic Mapper (2)				
Channel	Bandwidth (pm)	Low Level Input (W-CN ⁻² -SR ⁻¹)	NEAP	Channel	Bandwidth (ym)	Low Level Input (W-CM ⁻² .sR ⁻¹)	· NEap		
1	0.45-0.52	8.7 x 10 ⁻⁶	0.5%	1	0.45-0.52	2.8 x 10 ⁻⁴	0.8%		
2	0.52-0.60	6.8 x 10 ⁻⁶	0.5%	2	0.52-0.60	2.4 x 10 ⁻⁴	0.5%		
3	0.63-0.69	5.0 x 10 ⁻⁶	0.5%	3	0.63-0.69	1.3 x 10 ⁻⁴	0.5%		
4	0.76-0.90	4.4 x 10 ⁻⁶	0.5%	4	0.76-0.90	1.6 x 10 ⁻⁴	0.5%		
5	1.00-1.30	6.0 x 10 ⁻⁶	1.0%						
6	1.55-1.75	6.2 x 10 ⁻⁶	1.0%	5	1.55-1.75	8.0 x 10 ⁻⁵	1.0%		
7 ⁽³⁾	2.08-2.35	4.7 x 10 ⁻⁵	2.06	6	2.08-2.35	5.0 x 10 ⁻⁵	2.41		
	10.4-12.5	NA	NEAT=0.250K	7	10.4-12.5	300°K	NEAT-0.50K		
	l		l		I				

⁽¹⁾ Data was obtained from the "Operations Manual, NS-001 Hultispectral Scanner," NASA; JSC-12715, April 1977.

Development of Spectral Classes A COMTAL Vision One/20, displaying a composite of channels 3, 4, and 5, in conjunction with the aerial photography, was employed to ascribe cover class labels and ground condition descriptions to line-column coordinates in the imagery in a supervised fashion. This approach was considered more appropriate than the unsupervised clustering approach, since cover classes could be defined more nearly independent of their spectral characteristics in the wavebands to be evaluated. The method used to develop training classes was of particular concern since the affect of different within-class variances for each channel by cover class on cluster class composition is not currently well understood (Bartolucci, 1978; Anuta, 1979). Once the training fields had been identified, they were grouped according to cover class. cover class groups of training fields were then individually clustered to resolve the cover classes into a set of spectral classes. This provided training class statistics corresponding to a set of spectral classes associated with each cover class. Clustering at this stage provided a means of

⁽²⁾ Data was obtained from Salomonson, 1978.

⁽³⁾ Channel 7 (2.08-2.35 μm) was not operational at the time of the mission; all subsequent references to "channel 7" refer to the 10.4-12.5 μm waveland.

^{*}The function was generated using data obtained outside of the area from which the data for this analysis was obtained.

establishing the spectral classes on the basis of spectral variability within each cover class, but did not completely avoid the problem mentioned above. Failure to provide training statistics representing the spectral variability within each cover class was considered more deleterious to the objective of the study than clustering to obtain those classes.

Data Analysis
The mean vector and covariance matrix computed for each of the spectral classes define the individual statistical density associated with each respective spectral class. A measure of statistical distance between all pair-wise combinations of the spectral classes provides information on the "separability" of these spectral classes. This "separability" represents an a priori estimate of the probability of correct classification (Swain, Robertson, and Wacker, 1971) for measurements provided by each channel or channel combination. Only pairs of spectral classes belonging to different cover classes are of interest, since low separability between different spectral classes of the same cover class does not affect classification accuracy.

Transformed divergence was used to compute the separability. Divergence is defined as: $n_{-}(x)$

gence is defined as:

$$D = f[p_1(x) - p_2(x)] \ln \frac{p_1(x)}{p_2(x)} dx$$
(1)

where: p₁(x) = statistical density of spectral class 1

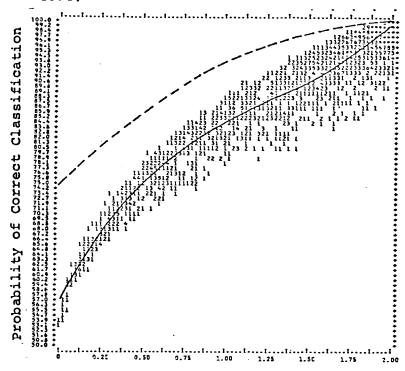
p₂(x) = statistical density of spectral class 2

or computationally, for the Gausian multivariate case:

$$D = \frac{1}{2} \operatorname{tr} \left[(\Sigma_{1} - \Sigma_{2})(\Sigma_{1}^{-1} - \Sigma_{2}^{-1}) \right] + \frac{1}{2} \operatorname{tr} \left[(\Sigma_{1}^{-1} + \Sigma_{2}^{-1})(m_{1} - m_{2}) \right]$$

$$(m_{1} - m_{2})^{T}$$
(2)

where: Σ is the covariance matrix and m is the mean vector associated with the respective spectral class, and


tr (trace) is the sum of the diagonal elements.

Since divergence increases without bound as the statistical distance between the two classes increases, a saturation transform is employed, resulting in a measure (i.e., transformed divergence) which corresponds more closely with percent correct classification (see Figure 1). After a certain level of statistical difference has been attained, virtually no confusion exists between the two class densities, and percent correct classification "saturates" toward 100%. The resulting transformed divergence is provided by:

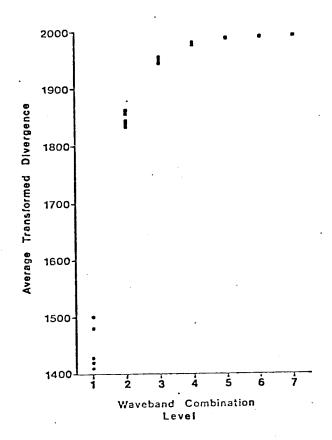
$$TD = 2000 [1 - exp(-D/8)]$$
 (3)

There are some disadvantages to the use of transformed divergence as a measure of statistical difference between class densities*, but because of relative computational efficiency it is used in lieu of the alternative measures.

Figure 1. Probability of correct classification regressed against transformed divergence. (Swain et al., 1971)

Transformed Divergence

Transformed divergence (TD) values were computed for each pair of spectral classes representing different cover classes, for each channel and channel combination. These mean pair-wise TD-values were then sorted for each set of combinations involving the same number of channels. The seven channel combinations providing the highest mean pair-wise TD-values were obtained. Additional programs were written to generate summaries of the mean TD-values for each pair of cover classes (i.e., over all spectral classes representing the cover class pair) and each cover class


^{*}It should be pointed out that transformed divergence is not "metric" in multivariate normal distribution functions of non-equivalent covariance matrices (Landgrebe and Wacker; 1972). That is, a pair of class densities having non-equivalent covariance matricies yet having equal mean vectors could have a transformed divergence value of zero. Also, there is no estimate for a lower confidence limit for the regression relation between transformed divergence and percent correct classification (Swain, Robertson, and Wacker; 1971).

(i.e., over all cover class pairs involving the jth cover class; j = 1, ..., 12) for these seven channel combinations.

RESULTS AND DISCUSSION

To define the optimum number of channels to use in a classification, the relationship between cost of misclassification and the probability of error must be determined. Otherwise there is no meaningful way to compare classification cost to classification accuracy. It can be observed from Figure 2 that the increase in transformed divergence (the correlate to probability of correct classification) drops off sharply after three channels, and very little is gained by using more than four channels. This result is similar to those obtained previously with the Michigan M-7, 12-channel scanner (Coggeshall and Hoffer, 1973), and the skylab 13-channel S-192 scanner (Hoffer et al., 1975). The shape of the relationship shown in Fig. 2 indicates that transformed divergence increases logarithmically as the combination level increases linearly*. The spread of the points representing the five highest ranked channel combinations for each combination level represents the difference between

Figure 2. Averaged transformed divergence for the best five waveband combinations for each combination level.

*To simplify the following discussions, "combination level" will refer to the number of channels involved in any particular set of channel combinations.

successively ranked averaged transformed divergence. As seen in Fig. 2, the mean difference between successively ranked mean separabilities decreases logarithmically as the combination level increases linearly. This implies that the rank of overall mean separability as a feature selection criterion decreases in value as the number of features comprising the selected feature subset increases.

The best combined sources of information for distinguishing between various cover classes need not have as a subset the best single source of information. This is indicated in Table 2, which shows, for example, that the single channel having the highest mean TD-value (i.e., channel 6) is not included in the 2, 3, and 4 channel combination levels having the highest mean TD-values. By comparing Table 2 with Table 3, it can be observed that the best channel or channel combination for each combination level, on the basis of mean overall separability, is not necessarily superior on a per cover class basis.

Table 2. Channel combinations, ranked by overall mean TD-value for combination levels one through six.

	COMBINATION LEVEL								
1	2	3	4	5	6				
6	3,4	3,4,5	1,3,4,5	1,3,4,5,6	1,2,3,4,5,6				
3	3,5	3,4,6	3,4,5,6	2,3,4,5,6	2,3,4,5,6,7				
1	2,4	3,5,6	1,3,4,6	1,2,3,4,5	1,3,4,5,6,7				
5	2,5	2,4,5	3,4,5,7	1,3,4,5,7	1,2,3,4,6,7				
2	3,6	2,4,6	2,4,5,7	3,4,5,6,7	1,2,4,5,6,7				
4	4,6	2,5,6	2,3,4,6	2,4,5,6,7	1,2,3,4,5,7				
7	1,4	1,3,4	1,3,5,6	1,2,3,5,6	1,2,3,4,6,7				

Table 3. Best channels and channel combinations by TD-value for each cover class. TD-value is in parentheses.

	COMBINATION LEVEL							
	1	2	3	4				
soil	3 (1820)	24 (1941)	256(1987)	1346,2346,1356(1992)				
past	6(1476)	35(1878)	345 (1971)	3457(1987)				
crop	3 (1390)	34 (1836)	345(1971)	1345(1991)				
pine	2(1435)	34(1780)	346(1912)	3456(1960)				
pihd	2(1580)	36(1883)	356 (1982)	3456(1997)				
hdwd	3(1688)	34(1881)	134(1933)	2346 (1952)				
sghđ	3(1691)	35(1933)	346(1960)	1345,1346,2346(1972)				
tupe	6(1658)	34(1896)	245,345(1979)	2457 (1992)				
syca	5 (1753)	35 (1979)	345(1994)	1345,1346,1356(1999)				
ccut	6 (1329)	46(1707)	356(1889)	3456 (1947)				
mveg	4 (1270)	14(1739)	134(1941)	1345(1990)				
watr	5(1853)	25(1988)	246,256(1999)	1345,1346,1356(2000)				

SOIL, bare soil; PAST, pasture; CROP, row and cereal crops; PINE, pine forest; PIHD, pine-hardwood mix; HDWD, old age hardwood; SGHD, second growth hardwood; TUPE, water tupelo; SYCA, sycamore hardwood; CCUT, clearcut areas; MVEG, marsh vegetation; WATR, river water and quarry water.

Examination of the transformed divergence averaged for each cover class pair indicated that the proper selection of a single channel may provide greater separability between two cover classes than a combination of two or three channels. More specifically, the channel combination with the highest mean separability for a particular combination level does not necessarily provide a greater separability for all cover class pairs than channel combinations of a lower combination level, when the combination of the lower level is not a subset of the combination of the higher level. Examples of this relationship are: soil vs. water has a mean TD-value of 1942 in channel 6 and a mean TD-value of 1824 in channel combination 3,4; PIHD vs. CCUT has a mean TD-value of 1835 in channel 6 and a mean TD-value of 1641 in channel combination 3,4; PINE vs. MVEG has a mean TD-value of 1424 in channel 1 (the channel ranked third on the basis of mean overall TD-value) and the mean TD-value of 1182 in channel combination 3,4 (the number one ranked channel combination of all combinations involving two channels). The same relationship holds for many other cover class pairs. Such a relationship was not found when the lower level channel combination was a subset of the higher level channel combination (as would be expected).

The additional average separability achieved for each cover class, by increasing the combination level, varies greatly between cover classes and combination levels, but generally decreases logarithmically with increasing combination level. Figure 3 can be thought of as a "separability response surface." The apparent length of the lines connecting different combination levels of the same cover class is proportional to the added separability resulting from the information in the additional channel. Note that the greatest increase in separability due to the addition of the second channel occurs with second growth hardwood. As one would expect, the smallest increase in separability occurs with that cover class with the highest single channel separability (soil, in this case). It should be noted that the lines connecting the different cover classes are present merely to indicate relative differences of separability and in no way imply any functional relationship.

Figure 3 plots the maximum transformed divergence observed for each cover class in each combination level. This displays the maximum separability attainable for each cover class if the waveband combinations were selected on the basis of each cover class TD-value alone. As is clearly shown, the specific waveband combination resulting in each particular TD-value for any given waveband combination level is not constant over the different cover classes. In comparing Figures 3 and 4, it is apparent that the shapes of the curves increase in similarity with an increase in waveband combination level and are nearly identical in shape after combination level 4. This indicates that the separability by cover class provided by the best overall channel combination (Fig. 3) is nearly identical to the separability by cover class provided by the best channel combination for each individual cover class (Fig. 4) beyond waveband combination levels of 4. Thus, the best four waveband combination, based on overall transformed divergence, should provide very

close to the maximum classification accuracy for each individual cover type. However, if one were interested only in a particular cover type, high classification accuracy could be achieved using less than four channels of data.

Figure 3. Averaged transformed divergence provided by the overall best waveband combination by waveband combination level and cover class.

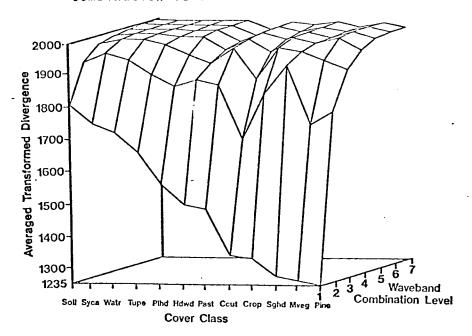
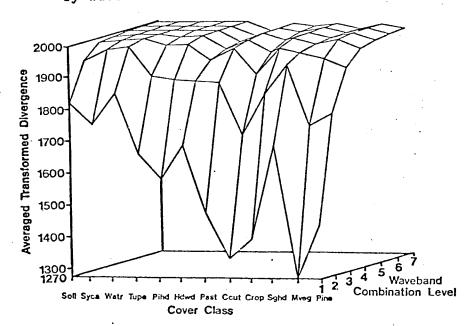



Figure 4. Averaged transformed divergence provided by the best waveband combination for each cover class by waveband combination level and cover class.

SUMMARY AND CONCLUSIONS

Based upon the results of this study, one would not expect a computer-based classification employing more than four channels to provide much improvement in classification accuracy. The highest overall mean separability was provided by channels 1, 3, 4, and 5 (0.45-0.52, 0.63-0.69, 0.76-0.90, and 1.0-1.3 μm). This channel combination did not always provide the highest mean separability by cover class nor by pairs of cover classes. A different set of cover classes, or even a subset of the cover classes considered in this work, could result in other channel combinations yielding higher predicted classification accuracies.

Results such as these are highly data and application dependent. The conclusions pertain to channel subsets selected for classification and in no way imply that scanner systems need only obtain data in those channels in order to adequately provide remote sensory data to the various disciplines. Similar studies involving different cover classes and different seasons need to be conducted along with follow-up studies involving actual classifications.

ACKNOWLEDGEMENTS

This work was supported by NASA Contract NAS9-15889, NASA Johnson Space Center, Houston, Texas.

REFERENCES

Anuta, P.E. and D.F. Strahorn. 1973. "Sun Angle Effect Preprocessing with Predicted Ramp Functions." LARS Technical Memorandum T-12.

Anuta, P.E. and Nim-Yau Chu. 1979. "Multidimensional Scaling for Clustering of Dissimilar Data Type." LARS Information Note, prepared for NSF, grant #ENG-7614400. 27 pp.

Bartolucci, L.A. and R.B. de Castro. 1979. "Clustering of Landsat MSS Data: Certain Limitations." LARS Technical Report.

Billings, W.D. and R.J. Morris. 1951. "Reflection of Visible and Infrared Radiation from Leaves of Different Ecological Groups." American Journal of Botany, Vol. 38, May 1951. pp. 327-331.

Colwell, J.E. 1973. "Bidirectional Reflectance of Grass Canopies for Determination of Above Ground Standing Biomass." Ph.D. dissertation. University of Michigan, Ann Arbor, Michigan.

Colwell, J.E. 1974. "Vegetation Canopy Reflectance." Remote Sensing of Environment, 3. pp. 175-183.

Dynkin, E.B. 1961. "Necessary and Sufficient Statistics for a Family of Probability Distributions." In Selected Translations in Mathematical Statistics and Probability. Vol. 1. pp. 17-39.

Duda, R.O. and P.E. Hart. 1973. "Pattern Classification and Scene Analysis." John Wiley & Sons, New York. 482 p.

Fukunaga, K. and D.L. Kessel. 1971. "Estimation of Classification Error." IEEE Trans. on Computers. Vol. 20:12. pp. 1521-1527.

Gates, D.M., H.J. Keegan, J.C. Schleter and V.R. Weidner. 1965. "Spectral Properties of Plants." Applied Optics, Vol. 4, No. 1. Jan. 1965. pp. 11-20.

Gates, D.M. and W. Tantraporn. 1952. "The Reflectivity of Deciduous Trees and Herbaceous Plants in the Infrared to 25 Microns." Science, 115. pp. 613-616.

Gausman, H.W., W.A. Allen and R. Cadenas. 1969. "Reflectance of Cotton Leaves and Their Structure." Remote Sensing of Environment, Vol. 1. pp. 19-22.

Gausman, H.W. 1977. "Reflectance of Leaf Components." Remote Sensing of Environment, Vol. 6. pp. 1-9.

Hoffer, R.M., R.E. Joosten, R.G. Davis and F.R. Brumbaugh. 1978. 'Land Use and Cartography.' Chapter 2 in: Skylab EREP Investigations Summary. NASA SP-399. National Aeronautics and Space Administration, Washington, D.C. pp. 7-77.

Idso, S.B. and C.T. de Wit. 1970. "Light Relations in Plant Canopies." Applied Optics, Vol. 9, No. 1. pp. 177-184.

Jurica, G.M. and W.L. Murray. 1973. "The Atmospheric Effect in Remote Sensing of Earth Surface Reflectivities." LARS Info ation Note.

Kailath, T. 1967. "The Divergence and Bhattochargga Distance Measures in Signal Selection." IEEE Trans. Comm. Tech., Vol. 15:7. pp. 52-60.

Kanal, L. and B. Chandrasekaran. 1971. "On Dimensionality and Sample Size in Statistical Pattern Classification." In Pattern Recognition, Pergamon Press, Vol. 3. pp. 225-234.

Knipling, E.B. 1970. "Physical and Physiological Basis for the Reflectance of Visible and Near-IR Radiation from Vegetation." Remote Sensing of Environment, Vol. 1. pp. 155-159.

Kondratyev, K.Y.A. 1969. 'Radiation in the Atmosphere." Academic Press. 912 pp.

Landgrebe, D.A., L. Beihl and W. Simmons. 1977. "An Empirical Study of Scanner System Parameters." IEE Transactions on Geoscience Electronics, Vol. GE-15, No. 3. pp. 120-130.

Nilson, T. 1970. "A Theoretical Analysis of the Frequency of Gaps in Plant Stands." Agricultural Meteorology, Vol. 8. pp. 25-38.

Salomonson, V.V. 1978. "Landsat-D Systems Overview." Proc. of the 12th Inter. Symp. on Rem. Sens. of the Environ. pp. 371-385.

Silva, L.F. 1978. "Radiation and Instrumentation in Remote Sensing." In Remote Sensing: The Quantitative Approach, McGraw-Hill Inter. Book Co., N.Y. pp. 21-133.

Smith, J.A. and R.E. Oliver. 1972. "Plant Canopy Models for Simulating Composite Scene Spetroradiance in the 0.4 to 1.05 Micrometer Region." Proc. of the 8th Symp. on Remote Sensing of the Environ. pp. 1333-1353.

Suits, G.H. 1972. "The Calculation of the Directional Reflectance of a Vegetative Canopy." Remote Sensing of Environment, No. 2. pp. 117-125.

Swain, P.H. "Fundamentals of Pattern Recognition in Remote Sensing." In Remote Sensing: The Quantitative Approach, McGraw-Hill Inter. Book Co. pp. 136-185.

Swain, P.H., T.V. Robertson and A.G. Wacker. 1971. "Comparison of the Divergence and B-distance in Feature Selection." LARS Information Note. 12 pp.

Swain, P.H. and R.C. King. 1973. "Two Effective Feature Selection Criteria for Multispectral Remote Sensing." LARS Information Note. 5 pp.

Wacker, A.G. and D.A. Landgrebe. 1972. "Minimum Distance Classification in Remote Sensing." LARS Print. 25 pp.

Wooley, J.T. 1971. "Reflectance and Transmittance of Light by Leaves." Plant Physiology 47:656-662.

Appendix B - Computer Programs Developed

The following is a list of some of the programs written during the quarter June 1, 1980 - August 31, 1980. A brief description is included to assist those in need of similar code.

- WGHT2 FORTRAN Reads a file containing: 1) number of the cover classes to which a spectral class belongs, and 2) the number of pixels from each spectral class. It then computes a weight for each spectral class pair and writes a disk file of "WEIGHTS" cards within the restrictions of *SEPARABILITY. Another disk file of real variable probabilities for the occurrence of each spectral class, and the conditional probability of the occurrence of the spectral class given the occurrence of the cover class of which it is a subset.
- GRID•FTN A FORTRAN program written for the PDP-11/34 to generate a user specified grid for use in systematic sample selection on the COMTAL Vision one/20.
- DIVPRT FORTRAN A modified version of the DIVPRT subroutine called in *SEPARABILITY which is the printer output supervisor.

 This was modified to write out the class symbols and separability for each channel combination and each channel combination level, for each spectral class pair.
- SPECSEP FORTRAN Reads the disk file created by the modified DIVPRT and computes the averaged transformed divergence by cover class pair. It also sorts for and prints out the minimum TD value.
- SUMG FORTRAN Reads the disk file created by the modified DIVPRT and computes the averaged transformed divergence by cover class (i.e., for each cover class over all cover class pairs it uses the original TD 's in order to avoid excessive rounding errors).
- CAGEN2 FORTRAN Reads a deck of COMTAL image coordinates and field descriptions; queries the user for the line-column coordinate of the first pixel displayed in terms of MIST coordinates; the run number desired on the output file; and pixel averaging if any. It then computes the MIST coordinates for each field and creates a disk file of LARS-12 card formatted records.

APPENDIX C

Tables of Averaged Transformed Divergence by Cover Class Pairs (generated by SPECSUP FORTRAN) and by cover Class (generated by SUMG FORTRAN).

					Cha	nnels			
			<u>6</u>	<u>3</u>	1	<u>5</u>	2	<u>4</u>	<u>7</u>
SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	>>>>>> >>>>>>	TYCUTRATION OF THE REPORT OF T	1948 1312 1640 1993 710 1642	1555635 11555635 1155635 1155635	1998	11111 11111111111111 11 11111111 11 1111	112222221211 1111	11 1 111 1111 1111111111111 1111 11111 1111	11111111111111111111111111111111111111

Table C-1. Averaged and Minimum Transformed Divergence Values for Single Channels by Cover Class Pair (cont'd.).

Channels

<u>6</u>	<u>3</u>	1	<u>5</u>	<u>2</u>	<u>4</u>	<u>7</u>
21600300202053725075896623631114492588801366150315666690766749913309112000600907482 1836221711302 593 354981226858 3439984333317832527711900900293 1 72216 22 603 112 44214 09328 29217453157215619351	910000000549272476283910606903200582774899802133348 310000000488793084141684536435 4993981916544662623446 1 00000009 1 42 6111684536435 4993981916544662623446 1 22222221 11 11 11 11 11 11 11 11 11 11	2971967071009141902761663685627787647351826283209091967018887741678 0 999990101 5 21124 2277 4 42 113 053632425 7 79 7 586355519352 1 111211 11 11 11 11 11 11 11 11 11 11 1	3384660443719107338966654927610969 4480686322539423441366222365445 102347 2212211 4337 22331 821 11 12 1	1167	22552190499282410012724842904950 103127707	466253191781745192543789631594280262306294542377555193990670949795 3 159889 314 4 1 22 1 1 1313131531 1 31 1 241 7 18 1021521 11111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table C-2. Averaged and Minimum Transformed Divergence Values for Each of Best 2-Channel Combinations by Cover Class Pair.

	3,4 1961 1913 2000 2000 2000 2000 2000 2000	3,5 1980 1835 2000 2000 2000 2000 2000 2000	2,4 19652 2000 2000 2000 2000 2000 2000 2000 2	2,5 1984 1814 2000 2000 2000 2000 1997 2000	3,6 1967 1640 2000 2000 2000 2000 2000 2000 2000	4,6 1860 1897 1994 2000 2000 2000 2000	1,4 1935 19999 19999 20000 20000 20000
ATGRP FODDEATGREDDDEATGRDDDEATGRDDDEATGRDDDATGRDDEATGRDEATGREATGRATGRCUETCUETCON WHAT COMMINION WHEN COMMINION WHEN COMMINION WALLD GUYCOVALLD GUYCOVA DGUYCOVA GUYCOVA UYCOVA YOU WALLD GUYCOVA WALLD GUYCOVA DGUYCOVA WALLD GUYCOVA WALLD GUYCOVA DGUYCOVA WALLA COMWINION WALLD GUYCOVA DGUYCOVA GUYCOVA WALLA COMWINION WA	11111111111111111111111111111111111111	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	11111111111111111111111111111111111111	11111111111112111111111111111111111111	11111111111111111111111111111111111111	11111111111111111111111111111111111111	111111111111111111111111111111111 111111
CVETTGREGRE WALLER WALL	1816 1942 2000 1972 1999 1105 11814 1841	1900 1900 1900 1200 1200 1256 1956	1856 1810 1820 1920 1935 1944 1949	1777 1746 2000 1932 1999 2000 1120 1978 1982	1641 1862 17934 179908 13159 1896	1854 1961 1999 1999 1999 2000 1250 1797	1770 1960 1960 1990 1990 1304 1963

Table C-2. Averaged and Minimum Transformed Divergence Values for Each of Best 2-Channel Combinations by Cover Class Pair (cont'd.).

<u>Channels</u>

3,4	<u>3,5</u>	2,4	<u>2,5</u>	3,6	4,6	<u>1,4</u>
4700000004488495349692729188557748145250338416896319271509339740376 7600000004488495349692729188557742587896296989255369266808780890381 76000000147799645626566995774258789629698972908927968780890381 11222222211 11111 1111111111 1 11111 11111 111111	010000000000143295497940075437854124649754393706986899110407530890249810000000250453570955973574729284698986756859750189189687903070290151822222111 111111 11 111 1 1 1 1 1 1 1 1	99000090215030739833046815225532256402776298513000447903360190749 110000090406395944618706715396774952977598691232000694804510870828 11222212111 1111 11 11111111 1 1111 1111 1 11111	77000005026141693209404357354441612625746547650771030393102010270194500000502614169320940435735444161262574654765077103039310201027019430000905425753611740236465739277496493969740099670864903450790789194	070000001969225248637210399540677310732690306365046879701750740474 94000000416067794972719761963308499249529608093389780904540490474 1222222111 1111 1 1111 11 1 11 11 111211 111111	38500000032627091788344496656732160782913340112085371438174559870497896000004276897820177503748721672792562670535259439666897483790797111222222 11 11 11 1111 1 11111 1 11112 11121 1 11111 11111 111112	55650000024150738739768909315337284055419326078549606004082802505456189900006208382695788711688886270808082819729001830535901860280829469990035284543403785695834294074921989994491993906849081809908777

Table C-3. Averaged and Minimum Transformed Divergence Values for Each of Best 3-Channel Combinations by Cover Class Pair.

Averaged

			Δ	R	C	ת	E.	F	G			
NOOCOOCO GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	TPFOODWATGRPEDOON ATGREDOORATGROODOFATGRODATATGROTATGREATGREATGRETGRORR SONH WHPOUETO MHWHPOUHTZH WHPOUHTHWHPOUHTWHPOUHTWHPOUHTHDOUYOVACUYOVACUYOVACVAYOVACVAYAAAAAAAAAAAAAAAAAAAAAAAAA	14000000000000000000000000000000000000	B 86000000000000000000000000000000000000	0500000422930073,05201908906170731047960503085408879073990600620 96000000449293000897360049097050308079808080899809999069999008989809999000508998980090909090909	190000009+2599565821044248962089717650045000170173060310908600200847 D 9700000037828974594504989598204119940059901701898807429057904909999999999999999999999999999999	E 990000001752111111111111111111111111111111	4700000002357224576990142545350090100409900560838080584801400100793 F 97000000359759547342029796883702998027089809906998909999900760600799 F 99000000999989898989999999999999999999	96000000000000000000000000000000000000	B C D E F	= 3 = 3 = 2; = 2, = 1,	,4,5 ,5,6 ,4,5 ,4,6 5,6

Table C-3. Averaged and Minimum Transformed Divergence Values for Each of Best 3-Channel Combinations by Cover Class Pair (cont'd.).

${\tt Minimum}$

<u>A</u>	<u>B</u>	<u>C</u>	D	E	F	<u>G</u>			
76000000983885663867518981067655511717159294501761600006709400100236 98000000577699997947999999904493989994969992706071503899087900817 98000005776999979479999990449398999270507150389908790080817	6000000099951481199713019434476387694430990920040520465501370200131800000005559399913799999999998959899508895399909200405207979003801009579800000055593999999999999999508895960940989720507900380100957808989322222222111111111111111111111111111	2600000034783342193489676181547391959399400309912302216073709005939700000003478334219348967618154739195939940000059912302216073709005939146000005794999959459999989977360797194940000064991051590237030014612222222211111111111111111111111111	220000000000986785342904270154639926750940987308908902556013808908479900000075749987734706989694393879997993991901475409699030506902579999000000757499877347069896943938799979989919014954096990305069025799299	76000000061231436552406024329191325904058907809429909014056906009906200000076939977333360697950289477993360899014056906009901422007693997733336069795069996249739939019959086790598070099901422222222222222222222222222222222	6400000091177777803170129735097934497709560070843110230404660200194 9900000089429360599604701380499734943069208808397906739009404040287 9900000077935967244605939482994779999607990099580883906880803399 11222222211111111111111111111111 111 121112112	860000000 62388329 8536011277779 5311074332870923048799.0667700580070856 760000004899997516489399969899118992199999630477250336900540090988 8600000048999975164893999698991189921999996001893906979083900908899 86000000489999751648939996989911899211111111111111111111111111		A = 3 B = 3 C = 3 D = 2 E = 2 G = 1	,4,5 ,5,6 ,4,5 ,4,6

Table C-4. Averaged and Minimum Transformed Divergence Values for Each of Best 4-Channel Combinations by Cover Class Pair.

Averaged

	<u>A</u>	<u>B</u>	<u>C</u>	$\underline{\mathtt{D}}$	<u>E</u>	$\underline{\mathbf{F}}$	<u>G</u>		
SONTWIND THE TOTAL TOTAL TOTAL CONTROL TO THE TOTAL CONTROL TO THE TOTAL THE TOTAL CONTROL TO THE TOTAL C	6000000127930638084000008090015 900000057979099709800000908090090 122222111121121122222221212211	\$9.00000078438070606704 0008073944979506 0800009148397109199000NN0800044439700000009184380706066704090900000000000000000000000000	910000000198980543089050007096048450530808000003593806090046800000700 870000004893950995088090009919088580808090579599099905940009800 990000009999009900 990000099990090900 9100000999900900900	6000000064779098601309000804004719805010907602465703560058506009998000000009990760246570356005850600999980000000999900089080686007590900999999999999999999999999999999	68000000840970314033039693076073147570500029053698064090515070030995000000000000000000000000000000	29000000406870659069059000093006560940300000037940032100036090060998000000004994907980900609900004081690140600000003794003210003809000009990000999000000099900000000	270606665379022346660166986830766602221076967667667667666663706660637 9906666999779973007080098609027460960966799999999999999999999 990666699979999999999	B = C = D = E = F =	1,3,4,5 3,4,5,6 1,3,4,6 3,4,5,7 2,4,5,7 2,3,4,6 1,3,5,6

Table C-4. Averaged and Minimum Transformed Divergence Values for Each of Best 4-Channel Combinations by Cover Class Pair (cont'd.).

<u>A</u>	<u>B</u>	<u>c</u>	D	<u>E</u>	<u>F</u>	$\underline{\mathbf{G}}$		
666000000012078011179970800060979567852890800990450260284906190000166990000007348909489580900089995637996959900099908999000089999000007348995765899589000089999900008999	33000000046572088099585009403917844075950000708064467006690300185 670000003829907499769800980629336507196000090119460328908460700858 9800000699790998958990099057992890769900090299690898908890900799	640000000920029871062070097915069500718402001018662048190541000009869900000079959999970590999949005189057990908028969089898909890000999912222222211111111112112222211111111	13000000073954084004909900970493088429697979830555630103809100500842990000000194590888307908009709904590696969992800388260547909380800019990000000378890999088999900899969089996908999088999900899	560000000139880649849065146019084378610088991702041605567014806008025300000013988064984906514601908437861008899170204160556701480600802999000000978790999999909000099990909099990900009999090	7100000001979690460430130800749197305903000990397050066809340700998 150000000345189769013029090079925880390900990149860962903740900498 99000000897799990490990036962890670800099029979089990699009599 1122222211111111112112112112211111111	89000000003131577605709094691706152003810500809265708689019100009719900000005662333590060109909660883000119707008006928096690706000069999000000799660680909999999000009999	B = 3 $C = 1$ $D = 3$ $E = 2$ $F = 2$	1,3,4,5 3,4,5,6 1,3,4,6 3,4,5,7 2,4,5,7 2,3,4,6 4,3,5,6

Table C-5. Averaged and Minimum Transformed Divergence Values for Each of Best 5-Channel Combinations by Cover Class Pair.

Table C-5. Averaged and Minimum Transformed Divergence Values for Each of Best 5-Channel Combinations by Cover Class Pair (cont'd.).

				<u>M</u> :	inimum		
		Cl	nannels	<u> </u>			
<u>A</u>	<u>B</u> .	<u>C</u>	$\underline{\mathtt{D}}$	<u>E</u> .	F	<u>G</u>	
37 00 00 00 0 6 0 43 8 0 29 6 0 11 0 9 0 0 0 0 0 5 0 0 4 2 8 2 0 3 8 9 8 0 0 0 0 0 8 0 8 6 2 0 0 7 4 9 0 0 0 0 0 0 1 0 7 3 9 0 8 6 0 0 9 0 0 0 0 0 8 6 0 0 0 0 8 6 0 0 0 0 7 3 9 0 0 8 6 0 0 0 0 8 8 8 9 0 0 0 0 0 0 0 8 8 9 0 0 0 6 0 0 0 9 9 9 9 0 0 0 0 0 9 9 9 0 0 0 0	1245963055290793090099 12998055290793090099 11988055290793090099 119980990099 119980990099	1991 1999	2000 2000 1996 2000	1692 1999	2000 1961 1961 1981 2000 1981 2000 1959	43000000044523303503709097904708009906500000099995200700013500000693 99000000787369569065050999903702309078090000064949068700088990000899 990000008445233035037090999903702309078090000039999000999900008999	A = 1,3,4,5,6 B = 2,3,4,5,6 C = 1,2,3,4,5 D = 1,3,4,5,7 E = 3,4,5,6,7 F = 2,4,5,6,7 G = 1,2,3,5,6

Table C-6. Averaged and Minimum Transformed Divergence Values for Each of Best 6-Channel Combinations by Cover Class Pair.

			<u>A</u>	<u>B</u>	<u>c</u>	D	<u>E</u>	<u>F</u>	<u>G</u>		
LULLULLULLITTTTTTTTTTTTPPP PPPPPPPPPPPPPPPPPPPPP	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	PORRESTSOM VORRESTSOM WRRITERSOM WRITERSOM WHISTSOM WISTSOM WISOM WISOM WOM WM WW. ARIHOGUYOVAR IIDGUYOVATIORUDDEATGREDDDEATGREDDDEATGREDDDEATGREDDDEATGREDDDEATGREDDDEATGREDDDEATGREDDDEATGREDDDEATGREDDDEATGREDDDEATGREDDEATGREDDEATGREATGREATGREATGRETOR WAS CAMEN WAS	9,0000000709,40008500N8,000000000000000000000000000000	970000000050050000004700000000000000070000005402K02940067800000000000059079000000000000000000000	97000000000000000000000000000000000000	\$600000003991508000065090000730D680045090000000040790505007700000600 9900000099999909000690900000990951700270900000039079090990009900009 990000009999990900069090000990099	970000000809100078000860000909090900850000000000000000000	95000000000000900000000000000000000000	7600000003790007000700000000000000000000	B = C = D = E = F =	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Table C-6. Averaged and Minimum Transformed Divergence Values for Each of Best 6-Channel Combinations by Cover Class Pair (cont'd.).

Ch	anne	18

<u>A</u>	<u>B</u>	<u>C</u>	D	<u>E</u>	<u>F</u>	G
30000000404780860009309000003005550090000000000669680599000830000070998000000066968059900099900009099909000090908000000000	37000000607090730000009000000040318301100000000440960767904720000010997000000507099073000000090900000000000	4200000001057906790530000000000009090440900000908399070176008399000099809000000905790530000000000000090090090090090999900099999	620000000555388957000990209600270565903007000000076084008900888600002097700000005553895700099096003805329080090000077009998900888600009999099990	4900000000944400750959090495029071790410900000000903403960059002079700000009739999999999999999999999	440000000492670560063000000009009149061060009000195805540071000000800 860000005985909900680000000800952903309000900989690897009990000900 99000009999006800000000074990890900099896908970099000900 9000009900	4500000051988038007709000000600729043070000000990370181006190000100 9700000039879099000280900000290133390300000087099089600899900009900 9900000099999000290133900900000870999990008999900009900 900000009900

A = 1,2,3,4,5,6 B = 2,3,4,5,6,7 C = 1,3,4,5,6,7 D = 1,2,3,5,6,7 E = 1,2,4,5,6,7

F = 1, 2, 3, 4, 5, 7

G = 1,2,3,4,6,7

Table C-7. Averaged and Minimum Transformed Divergence Values for the 7-Channel Combination by Cover Class Pair.

Ave.

 $\underline{\text{Min}}$.

				<u> </u>
INTITITITITITITITITITITITITITITITITITIT	いていて、	TO HOUSEATGREEDODEATGREEDODEATGRETORDEATGROODEATGROODEATGREATGREATGRATGRORR SONT WIROUETOWN WIND TO MAN WHO COME WAS COME WOUNT OF COME WAS COME WA	080000001097000000009900000009000900000000	4500000050130089003000000000000000000000000000000

Table C-8. Average Transformed Divergence Values for Each Channel by Cover Class.

Channels

	6	3	1	5	2	4	7
SPACHED DE LA TORRESTA DE	1806 1476 1325 1235 1255 1425 1425 1425 1325 1325 172 172	1820 1401 1390 12727 13689 1513 11231 1261 1433	1730 13149 131446 133444 15577 161990 11608	12474 1474 1277 11770 11570 11575 11755 11753 11753	1771 13331 12331 14336 16401 1397 11173 1495	1196 1397 13176 1416 14284 1536 1759 1270 1791	1558 1373 1067 1074 831 11706 9951 12041 1012

Table C-9. Average Transformed Divergence Values for Each of the Best Seven 2-Channel Combination by Cover Class.

	3,4	3,5	2,4	2,5	3,6	4,6	1,4
LTPRUDDDDDDATAR OARDIDDDDDDATAR OARDIDDDDATAR	256013 19833 17833 1883 1896 1896 1794 1794 1794 1794 1794 1794 1794 1794	19348 1976 1739 1873 1873 1973 1977 1672 1197 1197	19420244527 1775527 1786117 189723 16737 179723 179723 179723	78775521 98745521 18745521 1876518 11795568	19134130 449 47116886176861768673	19375 1775 17716 1776 1778 1778 1770 1770 1770 17927	19752155555 207521555555 17755555555 1797575

Table C-10. Averaged Transformed Divergence Values for Each of the Best Seven 3-Channel Combinations by Cover Class.

Channels

	<u>A</u>	<u>B</u>	<u>C</u>	<u>D</u>	<u>E</u>	<u>F</u>	$\underline{\mathbf{G}}$	A = 3,4,5
SOIL	1977	1978 1960	1980 1958	1940 1955	1984 1944	1987 1941	1975	B = 3,4,5
CROP PINE	1971 1903	1947 1912	1941 1888	1955 1895	1925 1910	1922	1914 1900	C = 3,5,6
OHIA OHES OHES	1947 1919 1958	1980 1929 1960	1982 1925 1959	1946 1913 1947	1950	1976 1911 1949	1955 1933 1955	D = 2,4,5
TUPE SYCA COUT	1979 1994 1870	1965 1990 1886	1957 1991 1839	1974	1955 1971 1880	1947 1977 1885	1940 1988 1854	E = 2,4,6
MVEG	1931	1885	1871 1996		1904	1903	1941	F = 2,5,6
								G = 1,3,4

Table C-11. Averaged Transformed Divergence Values for Each of the Best Seven 4-Channel Combinations by Cover Class.

	<u>A</u>	<u>B</u>	<u>c</u>	<u>D</u>	<u>E</u>	F	<u>G</u>	A = 1,3,4,5
SOIL	1991 1985	1990 1984	1992 1976	1999 1997	1991 1984	1992 1980	1992 1975	B = 3,4,5,6
CROP PINE PIHO	1991 1951	1985 1960	1983 1949	1988 1939	1986 1940	1979 1950	1981 1941	C = 1,3,4,6
HÕWÒ SGHO	1991 1948 1972	1997 1947 1958	1989 1951 1972	1941 1941 1970	1986 1941 1965	1989 1952 1972	1991 1949 1971	D = 3,4,5,7
TUPE SYCA CCUT	1991 1999 1943	1986 1996 1947	1984 1999 1941	1990 1997 1945	1992 1994 1938	1989 1993 1933	1975 1999 1938	E = 2,4,5,7
MVEG WATE	2000	1975 1998	1989	1973 1998	1985		1994	F = 2,3,4,6
								G = 1,3,5,6

Table C-12. Averaged Transformed Divergence Values for Each of the Best Seven 5-Channel Combinations by cover Class.

Channels

	<u>A</u>	<u>B</u>	<u>C</u>	D	<u>E</u>	<u>F</u>	<u>G</u>	A = 1,3,4,5,6
SOIL	1995	1996 1991	1995 1991	1997 1 9 93	1996 1993	1998 1990	1995 1939	B = 2,3,4,5,6
PAST CROP PINE	1995 1975	1993 1975	1993 1965	1996 1962	1995 1965	1993 1969	1988 1965	C = 1, 2, 3, 4, 5
PIHD HDWD SGHD	1999 1961 1977	1999 1960 1976	1993 1963 1980	1994 1957 1977	1998 1955 1975	1999 1954 1972	1996 1964 1980	D = 1,3,4,5,7
TUPE SYCA CCUT	1995 1999 1969	1995 1998 1970	1999 2000 1962	1995 1999 1958	1992 1998 1972	1994 1995 1971	1998 1999 1962	E = 3,4,5,6,7
WATE WATE	1997	1994 2000	1997	1945	1999 1999	1991 2000	1995	F = 2,4,5,6,7
								G = 1, 2, 3, 5, 6

Table C-13. Averaged Transformed Divergence Values for Each of the Best Seven 6-Channel Combinations by Cover Class.

	<u>A</u>	<u>B</u>	<u>c</u>	$\underline{\mathtt{D}}$	<u>E</u>	<u>F</u>	<u>G</u>	A = 1, 2, 3, 4, 5, 6
SOIL	1998 1995	1998 1995	1998 1996	1998 1995	199н 1994	1998 1995	1998 1994	B = 2,3,4,5,6,7
CROP PINE PIHO	1995 1983 1999	1998 1980 1999	1998 1979 1999	1996 1975 1997	1997 1979 2000	1996 1974 1996	1996 1975 1994	C = 1,3,4,5,6,7
HÕWĎ SGHD	1970 1932	1967 1980	1965 1980	1970 1932	1966 1980	1968 1982	1970 1983	D = 1,2,3,5,6,7
TUPE SYCA CCUT	1999 2000 1980	1997 1999 1985	1997 2000 1983	2000 2003 1923	1999 2000 1982	1999 2000 1980	1999 2000 1981	E = 1, 2, 4, 5, 6, 7
MVEG WATP	2000 2000	2000	1998 2000	1997 2000	1997 2000	1998 2000	1998 2000	F = 1,2,3,4,5,7
								G = 1, 2, 3, 4, 6, 7

Table C-14. Averaged Transformed Divergence Values for the 7-Channel Combination by Cover Class.

SOIL	1999
CROP PINE	1999
ΒΙΗĐ	1999 1997 1999 1986 2000
HDWD SGHD	$\frac{1974}{1934}$
THPF	1974 1934 1999 2000
SYCA CCUT MVEG	1990 1999 2000
MATE	5000