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ABSTRACT

A class of multistage decision tree classifiers is

proposed and studied relative to the classification of

multispectral remotely sensed data. The decision tree

classifiers will be shown to have the potential for improving

both the classification accuracy and the computation

efficiency. To explain these advantages, the problem

of dimensionality in pattern recognition is discussed

in some detail; two theorems on the lower bound of logic

computation for multiclass classification are also

derived. After introducing the method of uniquely

specifying the decision tree structure, several approaches

to the design of decision tree classifiers are discussed.

Both interactive and automatic approaches are is.cluded.

Emphasis of the discussion is placed on the automatic

approach, i.e. the optimization approach. In this

approach, two design strategies will be introduced: one

focuses on designing classifiers with higher accuracy, the

other on designing classifiers with optimal "overall

U

E;
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performance". Finally, experimental results on real

data are reported, which clearly demonstrate the useful-

ness of decision tree classifiers.
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CHAPTER 1

INTRODUCTION

1.1 The Decision Tzee Classifier

The objective of this study is to develop a class of

decision tree classifiers for multivariate and multiclass

classificati: ,,n. The practical application of the proposed

classifier is also investigated for pattern recognition

problems encountered in multispectral remote F,ensing [1,2] ►

where the data is gathered in digitized form in several

spectral bands over a particular area of the earth under

observation; the purpose of classification is to obtain

information about the types of ground coverage in that area.

The conventional approach to multivariate and multiclass

classification would be to perform tests on the unknown

pattern* against all classes using a particular feature

subset and then assign the unknown to one of these classes.

The decision tree [3] approach classifies the unknown

through a hierarchical decision procedure. That is, if

after a decision is made, the outcome is not a terminal

one, anothQr decision will be made until a terminal

decision is reached. This terminal decision determines

to which class the unknown sample being tested belongs. 	
i

*In this work, the terms pattern, datum, and sample are
used interchangeably.
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In classifying multispectral remotely sensed data,

a typical example of the decision tree is shown in Fig. 1.1,

where an unknown datum (a ground resolution cell) is

classified into the class water or bare soil through only

one stage of decision (i.e. these two classes would be

terminal decisions), however for the unknown to be classi-

fied into other vegetation classes it takes several stages

of decision. In feature space, the idea of the multistage

decision tree approach is to partition the feature space

step by step, as shown in Figure 1.2. Here the circled

numbers indicate the order of the decision boundaries to

partition the feature space. These two figures are two

simple examples to illustrate the functioning of the
i

decision tree classifiers. More complex and realistic

decision trees will be constructed in later chapters.

The reason to pursue this investigation of the decision

tree approach is based on the advantages this approach may

have. Three major advantages have been found, namely, the

higher accuracy, higher efficiency and more meaningful

interpretation of the classification scheme.

The obstacle to implementing the decision tree classi-

fier is mainly the difficulty in designing the classifier

structure. To find solutions to the design problem and to

test their usefulness thus become the major work in

developing the decision tree classifiers. .
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/ I \
CORN SOYBEAN WHEAT

Figure 1.1 An Example of Decision Tree in classifying
Agricultural Data.

Cd

X,

Figure 1.2 Feature Space Partitioning by Multistag
Decision Tree.
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1.2 A Review of Related Work

The decision tree classifier is just one type of

multistage classifiers. A multistage (multileveled or

layered) classifier can be defined as a classifier which

may use more than one decision function in a sequential

manner to classify an unknown sample into a class. The

decision function (as will be used in later discussions)

is defined as the mathematical formulation of a decision

rule for simple or multi-hypothesis test. Classifiers

which have only one decision function, such as the

maximum likelihood classifier, are called single-stage

classifiers.

Most of the literature of pattern recognition deals

with single-stage classifiers and different types of

discriminant functions. For a broad understanding of

various pattern recognition techniques, the reader may

refer to the books by Duda and Hart [4] 0 by Fununaga [5]

and by Meisel [6], also to the survey papers by Fu and Swain

[7],  by no a. d Agrawala (81,  by Kanal (91,  and by Nagy [101.

For multispectral pattern recognition problems, a very

complete survey has been reported by Nagy [2].

For the particular case of multistage classifiers,

the research work reported can be summarized into three

i
al

categories. They are the sequential probability ratio

test, the decision tree method and the perception method.

Some important features of these methods will be briefly
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introduced in the .following paragraphs.

The application and generalization of Wald's sequential

probability ratio test (SPRT) [111 for pattern recognition

are described in the book by Fu [121. In this method,

observations are taken in a sequential manner. After taking

each observation, a decision is made; and this decision

determines whether the unknown sample is classified or

another observation is necessary for classification. This

sequential method is very useful for many practical problems

where the observations are sequential in nature, and the cost

of taking measurements is considered important.

A brief introduction to the decision tree method has

been given in the beginning of this chapter. Decision tree

cl a ssifiers so far reported in the literature are of the

binary tree type [13,141, i.e. at each stage of decision

there are only two possible outcomes.

Perceptron theory results from the study of neuro-

dynamics. The engineering application of perceptron

theory can be found in the books by Minsky and Papert [151,

and by Nilsson [161. A perceptron is a multiple-input

threshold logic unit. A layered perceptron machine (as

discussed in the book by Minsky and Papert) then consists

of several level of perceptrons.

These three methods so far discussed are three important

families of multilevel classifiers. other proposals

[17,18,191 can generally be fitted into, or considered as
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a generalized form, of one of these three methods. A class

of multistage decision logic worth mentioning is the

decoding trees, e.g. Ref. [20,211. These are in the form

of binary trees, and are being studied extensively in the

area of digital communication and information theory.

Since the nature of this class is different from those

classifiers where the received signals are physical

observations of unknown samples instead of predesigned

codes, the application context is somewhat different.

The sequential method and the decision tree method

have the similarity that different featurs sets can be used

in later stages of decision in order to reach a final

decision. The third method above is very distinct in

this aspect, because new features are formed by a

manipulation (linear combination with threshold) of the

old features. The distinction between the sequential and

decision tree methods is also clear. Considering the

generalized sequential method (GSPRT [121), the features

are used in a sequential manner, and the number of

possible decisions (which correspond to the classes retained

for further consideration) for each stage can be varied

according to different samples. For the decision tree

methodr the sets of features used along a decision path

can be different from those of another path, and the

number of possible decisions at each particular stage in

a decision tree is fixed.
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As far as the design procedure is concerned, for the per-

ceptron method, the values of the coefficients (of linear

combination) are usually obtained by learning, as proposed

by Nilsson [16]. However, analytical procedures such

as linear programming and extrema seeking can also be

found in literature (22,23]. For the sequential method,

the mathematical programming approach [24] is popular.

Slager and Lee [251 proposed the game tree search approach

to order features in implementing the sequential method.

For the decision tree method, early work by Mattson and

Damman [13] laid the basic background for designing the

tree structure. Meisel and Michalopoulos [141 suggested

a two step approach to solve the design problem: the first

step involved decision boundaries of a single variable

to be found by a nonparametric method, while at the

second step, dynamic programming was used to arrange these

decision boundaries (or functions) into a binary tree

decision--making structure. Both approaches have the draw-

back that the types of 4ree structures and discriminant

functions are highly restricted (they must be binary tree

structure with linear discriminant functions). Thus

for the purpose of efficiently designing a good decision

tree which is general enough to handle multivariate and

multiclass data (for which nonlinear discriminant functions

are usually involved in classification), several approaches

to the design will be proposed in this report.
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E 1.3 Summary of Contents and Contributions

In Chapter 2 1 the advantages of the decision tree

classifier are discussed. Three major advantages

are included; they are to improve the classification

accuracy, to improve the computational efficiency and to

provide convenience in applications.

In Chapter 3, the structure of the decision tree

classifier and a method of its representation are specified.

Notations adopted from graph theory are introduced for clearer

explanation.

In Chapter 4, several approaches to design decision

tree classifiers are proposed. Briefly, they are: the histo-

gram approach, the sequential clustering approach and the

optimization approach.

In Chaptei 5, experimental results on real and simu-

lated data are demonstrated. Finally, Chapter 6 concludes

the whole st, tdy. Some analytical and experimental details

are placed in Appendices, for the purpose of reducing

disgression.

Since the application of the decision tree classifier

to multispectral remote sensing data is emphasized, the

assumption of multivariate normal data distributions which

is often a reasonable assumption for remote sensing data [1:2]
will be constantly used in later derivations involving

data distributions.

'j
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The major contributions of this study are summarized

as follows:

1) The derivation of several theoretical results on

computation complexity for optimal classification, both

fe,iture and logic complexities considered.

2) The search approach to the design of decision tree

classifiers, which includes two procedures for two different

goals of decision tree optimization: one being the

maximization of accuracy, another the maximization of "overall

performance".

3) The development of a nonsupervised clustering

procedure which is easy to use and effective in determining

the associativity of points in clusters (when completely

separable clusters can not be found).

indeed, using a decision tree appro+

context of the multispectral remote sens
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CHAPTER 2

NEED FOR A DECISION TREE CLASSIFIER

Several, needs or potential advantages of the class

of decision tree classifiers will be discussed in this

chapter, through decision theoretical, computational

efficiency, and application users' considerations. These

needs stimulate the investigation of the decision tree

classifier, and are discussed to some detail for the

purpose of understanding what can be achieved by a decision

tree classification procedure.

2.1 Decision Theoretical, Considerations

The first need for the decision tree classifier originates

from the dimensionality problem [Ref. 1,26,27; summarized

in Ref. 4, pp. 66- 73] which can be described as follows:

there may be some feature subsets which are more effective

than the complete set. In other words, the dimensionality

problem implies that the error frequency for multivariate

classification may not be a monotonically decreasing func-

tion of variable dimensionality. In two class classifications,

the problem calls for an effective method for feature

selQction in which the optimal feature subset can be selected

out of the complete feature set. For multiclass (more than

1 J^



I	 I	 I	 I	 !	 .
11

two classes} classification the situation is even more

complicated. This .,:s because optimal feature subsets for

different subsets of classes may be different. Therefore,

a conventional procedure which uses only one feature subset

in all tests may not be optimal. The decision tree classi-

fier which has the ability to classify different class

subsets by using different feature subsets certainly has

the potential to improve the classification accuracy.

The theoretical evidence for the dimensionality

problem will be discussed, because of its importance

to the selection of optimal dimensionality for classification.

2.1.1 The Dimensionality Problem

The dimensionality problem has been studied by many

researchers [27] - [34]. To seek an understanding of this

problem is important because the fact contradicts one's

initial impression that in estimation, prediction or

classification of stochastic systems the higher the

observation dimensionality the better would be the results.

And a solution to the problem or the need to obtain a

reliable method to predict the optimal dimensionality

is urgent. For multispectral remote sensing, such a

solution will not only provide optimal feature selection

for ground data processing but will also help in the

selection of channels in designing on board sensor systems.

Generally speaking, the dimensionality problem is

attributed to the insufficient number of training samples.
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Error involved in density estimation accumulates as feature

dimensionality increases, and if the accumulation of error

is faster than the increase of separability, the

dimensionality problem occurs. Among those reported work,

the early work of Hughes [28] and its later developments

[291 -[32] can be thought of as an approach to the explana-

tion from a nonparametric point of view. This is similar

to the explanation of the relationship between error rate,

the size of the training set and the width of Parzen's

window function [35] in a nonparametric classification'

approach. The explanation given by Wacker and Landgrebe

[34] is of another nonparametric case, where the Euclidean

distance measure is used for discrimination. And assuming

a fixed signal-to-noise ratio in each dimension, it has

been shown that the ratio of the means of between and

within class distances decreases monotonically with

dimensionality.

Consider the problem involved in parametric classifica-

tion schemes. Allais [27] first derived the mean performance

of the least square linear classifier. For the class of

maximum liI:elihood classifiers with multivariate normally

distributed data, not much work concerning the dimensionality

problem has been reported yet. For the purpose of having a

closer look, some derivations have been made here, which

provide some quantitative explanation to the dimensionality

problem in this particular circumstance.
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Estimation of probability densities is involved in

many practical classification problems. Assuming

data of each class are of multivariate normal distribution,

the statistical parameters may then be estimated in the

following manner:

A	 n

Mn E Xj	 (2.la)

1	 n	 A	
" T

E 

=
R-

	

	 (X _M)-M) (Xj _M)	 (2.  lb )
j=1

where Xi is a m--dimensional column vector with m the feature

dimensionality, and n is the number of training samples.

According to these parameters, the estimated conditional

{	 probability P(Xlw i ) for a given class w i is expressed as:

A

P(Xlwi) = N (Mi j E 1 )	 (2.2)

I	 where N( • , • ) denotes the multivariate normal density

functions and suffix i is added to the quantities in Eq. 2.2

to indicate the class designation of the estimated parameters.

f With the assumption of zero--one loss function and equal a
I

priori probabilities, based on these estimated density

functions, the Bayes decision rule for minimum risk can

be written as:

r
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i

gk (x) = Min gi (x) -4 X E wk	
(2.3)

l	
15i^N

where	 gi {x) = - log P (X I w k )	 (2.4)

and N is the total number of classes to be classified.

Again, a hat is used for the quantity g i (x) to indicate

that it is also an estimated quantity. Since the true value

of gi ( x) gives the optimal result for classifying unknown

samples, any deviation of g i ( x) from g i (x) certainly

degrades the result. The total amount of degradation

expressed by the increase in error rate in N-class classi-

fication is bounded above by the sum of degradations of (Z)

two--class classifications each being a class pair of the N

classes to be classified [33].

Considering the degradation for two-class classifica-

tion, the variance of the difference cf true and estimated

likelihood ratios r 12 and x 12 will be examined first,

where the ratios are defined as follows:

r	 -
12 	

log P(X WI)	
(2.5a)- 

P(x^W2)

P(X W1)

r12 = log	 ( 2.5b)
P (X w2)

The mean square error of r 12 is expressed as

V [Arj = E [ (rl2-rl2) 2 ]	 {2.6}
X, fi

i

E
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where the squared quantity is averaged over the distributions

of sample points X and the Estimated parameters given in

Eq. 2.1. With the assumption given by Eq. 2.7

n1 = n2 = n	 (2.7a)

n > m	 (2.7b)

E 1 :1 E2
	

(2.7c)

where ni is the number of training samples for class wi,

and m is the feature dimensionality, an approximation of

V[Ar] in Eq. 2.6 is evaluated and is shown in Eq. 2.8 (the

detailed derivations are placed in Appendix A)

V[Ar] = 1 [2m2 +20m+2mD+14D+DS +0( z)	 (2.8)
n

where n is given by Eq. 2.7a,D is the divergence of two

multivariate normal distributions, which is expressed as

D E 2tr[El ^-E Z ] [ E 2 1 -- E 1 1 ? + z[Ml-MZ I T [ E 1 l+ E Z 1 1 [M1-M2 ]	 (2.9)

Eq. 2.8 is an approximate expression. If the variances

E  are known, the exact problem-averaged expression for

V [dr] is as follows

V [Ax]	 _ 3m	 + 2m- 2	
(2.10)

E i = E i	 2n	 2~ 

}

i
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erf (x) -	 1 e 2 da (2.12)

1	 ^	 I	 I	 I
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From both Eq. 2.8 and 2 . 10, it is noted that the problem

averaged variance of or increases with dimensionality m.

However, as m increases, with more features the class

separability does not decrease. This implies that classifi-

cation accuracy may be improved as m is increased; never-

theless it is also clear that the dimensionality problem

occurs if the first effect overrides the second. An

expression for approximating the overall inference of these

two effects is given by Eq. 2.11 (which is an exact expres-

sion for the case with equal covariances E  = E 2 , and

is a rough approximation otherwise as explained in

Appendix A)

-1/2
e = erf{- 2(c^Vi °2 )	 ?

D
(2,11)

where a is the error rate for two— l ass classification,

D is the Divergence given by Eq. 2.9 and er€(x) is

expressed as follows:

Simulated data sets which were generated with E 1 = E2

have been used to te st the validity of Eq. 2 . 11, and the

results are given in the beginning of Chapter 5.

The dimensionality problem in real classification problems

will also be shown in that chapter.

i
i
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2.1.2 Discussion

The existance of the dimensionality problem for pattern

recognition with multivariate normal distributions is

explained in the previous subsection. The remaining ques-

tion is how to find optimal feature subsets for different

class subsets. Although Eq. 2.9 and 2.11 have shed

light on the theoretical prediction of optimal dimension-

ality, practical, difficulties still exist.

Basically there are two difficulties: One is that

the divergence value "D" calculated from the estimated

parameters by using Eq. 2.9 is not always close to its

true value. Although Eq. 2.1a and 2.1b are expressions for

unbiased estimators for the mean and covariance matrix,

Eq. 2.9 is not an unbiased estimator for D. And the

deviations can be large; some experimental results are

shown in Chapter 5.

The second difficulty is that in the case with 	 i

unequal covariances, Eq. 2.11 is not a good approximation

of the error probability. It is known from past experience

in multispectral pattern recognition, that in classifying

a pair of spectral classes based on a limited number of

training patterns the effective number of spectral features
t

can be four or less, and this number will be used for

maximum feature dimensionality in most of the experiments

given in Chapter 5.	 i

I
1.

4
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2.2 Computation Efficiency Consideration

As often cited, an advantage of the multistage decision

procedure (cited in several reports.[12,13,141)

is higher computation efficiency. These multistage pro-

cedures reduce either the number of measurements or the

number of tests necessary to reach a terminal decision.

As an example, it has been shown [36] that for a two-class

classification the sequential probability ratio test (SPRT)

(11,12] with a fixed stopping boundary (specified by a given

error rate) is optimal in the sense of minimizing the average

number of measurements. It should be mentioned that this

does not apply to the generalized sequential method (GSPRT)

for multiclass classification. In a decision tree procedure

the feature subset used at each stage can be designed

according to the class separability at that stage. For

different patterns to be classified, the sequences

of feature subsets used may not be the same (following

different paths in a decision tree). Thus the use of

features can be more flexible than in the sequential

method, making the decision tree procedure more favorable

than the sequential method as far as optimal use of feature

complexity is concerned.

i

	

	 Looking at the economic aspect of classification of

multispectral data, after they are gathered, cost of

computation is the major expense involved. The problem

then is reducing this cost without trading off (loosing)
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optimal classification results. Since this cannot be

achieved simply by reducing the number of features of an

optimal classifier, the only alternative is to try to

reduce the number of tests.

Two theorems on the lower bound of the number of tests

required for optimal classification results have been de-

rived and they will be given later in this section.

Now for a closer look at the definition of the

term "test". In multiclass classification, a test is defined

as a comparison of the likelihood functions (or discriminant

functions) of a pair of classes. According to this

definition, in a conventional maximum likelihood procedure

for N class classification, the number of tests required

to classify a pattern would be N -1, since N-1 comparisons

are involved. Actnally, with the same amount of classifi-

cation error the number of necessary tests on the average

can be reduced. The lower bound on the number of tests is

given by the following two theorems:

Theorem 2.1 Assuming P 1 is the probability that a

pattern belongs to class w i , and that successive patterns

are statistically independent, for N-class classifica-

tion, the expected number of tests E[U] necessary to

classify an unknown pattern correctly satisfies:

N
E[U] ? - E Pi 1092 

P1	
(2.13)

•	 I^
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Before proving Theorem 2.1, Lemma 2.1 will be stated

first.

Lemma 2.1 If each class designation of a sample can be

uniquely specified by m binary bits, then there exists

a sequence of m tests to classify a sample into one of

those classes.

The proof of this Lemma is as follows: In each test
the outcome can be one of the two possibilities, thus

the result of a test can be represented by a single binary

bit. After a sequence of m properly designed tests per-

formed on a sample of unknown class, the result is a m-bit

word of class designation, so the unknown sample is

classified.

With the above Lemma ? Theorem 2.1 can be proved with

relative ease. Notice the right hand side of Eq. 2.13

is the entropy H [Ref. 37, p. 50] of class information,

which according to Shannon's theorem on source coding

[Ref. 37, p. 54; Ref. 36, p. 43] equals the average

number of bits per source letter (with length of

sequence approaching infinity) required to specify a sequence

of letters efficiently (only one source sequence can be

assigned to each code sequence). With Lemma 2.1 we know

the effective average number of tests to classify a

sample is H, i.e. E[U] = H. Since H is for the most

efficient coding, this leads to the fact that E[U] can not
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l
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be less than h for correct classification. Thus, E[U)

must be greater than or equal to H for correct classifica-

tion, and this proves Theorem 2.1.

If one is willing to sacrifice accuracy to gain

efficiency (by means of reducing the number of tests),

for a given error rate, the theoretical limitation on test

efficiency is provided by the following theorem:

Theorem 2.2 Assuming P i is the probability that a

sample belongs to class wit and that successive

samples are statistically independent, for N-class

classification, the expected number of tests

necessary to classify a sample of unknown class with

expected error rate F_ (S - Max P.) satisfies:

N
H [u] ? Max [-H- - I Pi 1092 Pi]	 (2.14)

P (i 1 j )	 C i= 1

subject to the constraint 'S E

N
with	 H	 - i P(i,j) 109 2 Pj)	 (2.15)

i,j

N
and	 E _ I P(i, j) 	 (2.16)

i,j
i^j

where P(i,j) is the probability of joint occurrence

that sample X belongs to class j but is classified into

class i t and P(i1j) is the conditional probability
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of the joint occurrence stated above.

The proof of this theorem is as follows: Notice the

right hand side of Eq. 2.14 is by definition the rate-

distortion function [Ref. 37, p. 112; Ref. 38, p. 444;

with 0-1 distortion measure. Since this is the minimum

rate for source coding with a given distortion measure

which in our case corresponds to c in Eq. 2.16, the number

of tests which equals to the code rate according to Lemma

2.1 then can not be less than this minimum rate. Thus

Theorem 2.2 is proved.

The theorems stated above are the theoretical limita-

tion of the number of tests for multiclass classification.

In practical problems these lower bounds usually can not

be attained. However, from these theorems it is clear

that the class of decision tree classifiers has the

capability of achieving these limits * . An example is

shown in Fig. 2.1, where the efficiency of a decision

tree procedure is compared with the efficiency of a one

stage conventional procedure. As one may observe in this

ideal case the lower bound on the number of tests is

achieved by the decision tree procedure. For real cases,

besides the fact that some classes can be classified by

*This statement is true if U * , the lower bound of E[U], is
greater than or equal to one. If U * is less than one, a
type of block classification schemes which classify
several samples together will have the possibility of
achieving these lower bounds, but this scheme will not
be discussed in this report.
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w i	W2	 w3

P=.5	 P=.25	 P=.25

E[U]=2>U*

Figure 2.1 A Hypothetical Example Illustrating the
Clas r *'icati^r Efficiency of the Decision
Tree	 aroach.
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using a lower number of features, the reduction of tests

is also expected in a decision tree procedure. This

shows quite clearly ccr.,f of the advantages of the decision

tree classifier.

!	 2.3 A21ication Oriented User's Consideration

3
Using digital computer techniques to analyze remotely

sensed data has been referred to as the "numerically--

;	 oriented systems" approach [39], which together with the
i

"image oriented systems" approach make up the two major

trends in analysing remotely sensed data. Using the image
I

oriented approach, in determining the extent, location

and/or condition of the resources, one tends to follow a

kind of logical hierarchy. An example is cited from the

work by Hoffer [40); it is shown in Fig. 2.2.

Upon applying this concept to the numerically oriented
k

approach, a multistage classifier such as the decision

tree classifier will be more desirable than a one-stage

conventional classifier. Not only is a multistage classifier

more efficient, but it is also more flexible in adapting

the concepts of the image-oriented approach.

Once an objective and nonsupervised design procedure

for a multistage classifier is obtained, some feedback from

the numerically-oriented approach to the image-oriented

approach can be expected. For example information gained
M

in the numerically-oriented approach, such as the separability
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studies in different spectral and temporal circumstances

and the choice of effective decision hierarchy structures,

can be helpful to the image oriented users.

Through the above discussions, it is clear that the

decision tree classifiers provide the users a better

approach to classification than the conventional one stage

approach. It is better in the sense that it can be more
accurate, and/or more efficient.
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CHAPTER 3

THE DECISION TREE CLASSIFIER

Before discussing the details of the decision tree

classifier, !;. is desirable to define the term "tree".

Applying the terminologies of graph theory, a simple definition

of "tree" is stated as 'a connected graph* without cycles`

[41]. Or according to Nilsson [493, a tree is a graph each

of whose node has a unique ascendant node, except for the

starting node which is called the root node. A tree

thus defined has the property that a path from the root

node to any given node is unique. In pattern recognition,

the decision tree procedure corresponds to the partitioning

of the feature space into different regions by a fixed

ordering of the decisions. The property of a tree

mentioned above is desirable because it implies that the

mapping of a decision to its associated region in feature

space is unique and the reverse is also true. Other useful

terms are "terminal node" and "nonterminai node". A

*Strictly speaking, a "graph" G(N,C) is a set of elements N
and a collection C of unordered pairs (a,b) of elements of
N. An elements of N may be called a "node" or "vertex"
of the graph, while the pair (a,b) is called an "arc" or
"edge" of the graph. Other notations like "cycle" and
"path" are also defined in Ref. [413.
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terminal node is one that has only one ascendant node, chile

a nonterminal node has both ascendant and descendant modes.

In the decision tree classifier, a terminal node corres-

ponds to a terminal decision i.e. the decision-making pro-

cedure terminates and the unknown being classified is

assigned to the class of that node. However, a nonterminal

node is an intermediate decision; another stage of decision

will be made and its immediatA descendant nodes represent

the possible outcomes of that decision.

Using these concepts, the classification in a decision

tree procedure follows a path in the tree, which starts

from the root node and ends at a terminal node.

To specify a decision tree uniquely, two sets of

information are necessary. One set tells how the non-

terminal and terminal nodes are linked while the other
specifies the decision functions of all the nonterminal

nodes. For a tree with a simple structure, such as a

binary tree with univariate 'Linear discriminant functions

for nonterminal nodes, a set of n-tuples (which is a combined

description of the above two sets of information) can be used

to specify it uniquely [14]. For cases where the tree

structures are complex, i.e. the number of immediate

descendant nodes of a nonterminal node is not fixed, and

also where the decision functions are complicated, e.g. they

may be multivariate. and quadral'Ac, it is desirable to treat

these two sets of information separately. The method to
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characterize this information will be discussed in the

following section.

3.1 Tree Structure Information

By assigning different symbols to nonterminal and

terminal nodes, the tree structure can be coded into

a string. The rule for encoding is breadth first, from

left to right and then top to bottom. The reason for

following the rule of breadth first is because in describing

each decision function (of each nonterminal node) in a

decision tree, it is convenient to pack the statistics

Parameters (which correspond to probability densities associ-

ated with the immediate descendant nodes) together, and

the rule of breadth first serves this purpose.

Two sets of symbols will be used for coding to

represent the terminal and nonterminal nodes respectively.

They are	 and {Ni}. In the first set, there is only the

Symbols	 all terminal nodes are represented by it. In

the second set, there are many symbols; each symbol "Ni"

is associated with a value i (integer greater than one)

being equal to the number of immediate descendant nodes

that the nonterminal node has.

A simple example is shown in Fig. 3.1, where the symbol

'^i ' (the subscript is used to indicate its relative position in S)

stands for a terminal node, and the numbers stand for the

nonterminal nodes. The string S which is the encoding of
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Figure 3.1 A, Tree with Its String.



31

the tree according to the rule of breadth first is shown

at the bottom of Fig. 3.1.

When a tree structure is given, its associated string

S can be found; from this string S, an identical tree

structure can be reconstructed by a left to right scanning

of the string: Each symbol of the string correspond:_

to a node of the tree. For the first symbol, a root of the

tree is formed, and a number i (i= 3 in the example) of

descending branches are drawn from the root. Place the

next successive i symbols at the ends of those branches.

If there are add:ktional nonterminal nodes in the strina

(represented by nonterminal symbols), corresponding numbers

of descending branches will be drawn from them. This step

repeats, i.e. place symbols at ends of branches (following

the rule_ of breadth first) and draw branches for nonterminal

nodes, until no more symbols are left in the string. For

computer processing, after a left to right scanning of the

string "S", a set of arrays are generated wh-*_ch tell how the

nodes are linked.

It has been found that the set of strings "S" which are

codes of tree structures, with the rule for coding described

earlier, form a context free lauquage (The definitions

of language and grammar can be found in many books dealing

with formal languages and automata theory, e.g. Ref.

(421). Two relevant theorems are stated below:

i

i

i

i

^Y
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Theorem 3.1 The set of strings which are codes of

node structures of trees, and are coded by following

the rule described above with symbol set {^,Ni},

forms a, context free language L (G) . The associated

grammar G is given below:

G = { VN, VT' P' S)

with VN = {S}

VT = {O,Ni}

P:	 S -}N. S^i

S

E;

if

where Ni and i have been introduced earlier, and Si

is a string of i consecutive "S".

Proof: The first production rule implies that when a

nonterminal symbol. N i is generated, i other new symbols

(represented by S) are also generated and are placed

to the right of Ni . This leads to the fact

that in the tree reconstruction as described earlier,

when a nonterminal node (corresponding to N i ) is

constructed, there are i symbols always available as

immediate descendant nodes. Since this is true for

all nonterminal nodes, and the second production

rule does not change length of the string,
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every nonterminal node N  has j immediate descendant

nodes (represented by j symbols in S) and every node

(except tY.e root) has an ascendant node. Thus each

string of L(G) can be used to reconstruct a tree

and is equivalent to the tree. That is, the set of

language L(G) is identical to the set of codes for tree

structures. And according to the production rules, L(G)

is context free. This proves the theorem.

Theorem 3.2 The corresponding pushdown automaton M

which accepts this set of strings L(G) in Theorem 3.1

is

M = [{ q 0 ), {^,Ni ), [Z} ► 6, q 0 , Z, fl

with	 S:	 b (q o ,^,Z) _ { (q O ,e) }

6 (g a,N i , Z) = { ( q o, Zi

where Z  is i consecutive Z's in the pushdown

stack.

Proof: The grammar G I of the language L(GI ) accepted

by M can be derived [Ref. 42, p. 761 to have the

production rules:
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P1 : S -} [g o , Z ' go]

[qo, Z,gO 1 -. ^

[gO ,Z,gp] +Ni[go,Z,ggJi

Equating the symbol [g o ,Z,go ] to S. the above production

rule P 1 is identical to the production rule P of

grammar G in Theorem 3.1, and also V N , VT of Glare

the same as VN , VT of G. This leads to the statement

that Gl is equivalent to G, thus the theorem is proved.

These two theorems also imply the one--one correspondence

of a tree structure and a string. Briefly, this is because

both the grammar G and the automaton M described above are

deterministic.

3.2 Decision Function Information

For classifying remotely sensed data, as mentioned

previously in Chapter 1, the maximum likelihood classifier

with normal density functions will be used. The classi-

fication scheme then is parametric; for each stage the

decision function can be uniquely specified by a set of

statistical parameters. The parameters represent the density

functions of various classes, and they can be estimated

from a set of training samples. In a sequence of decision

stages the original densities of the classes are always

used, in spite of the fact that certain classes have been
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partitioned in earlier stages (and more than one terminal

node refers to each of those classes). The reason for

not updating the original statistics for partitioned

data is to maintain the decision boundaries of the conven-

tional one stage maximum likelihood classifier which is

considered Bayesian optimal for a zero-one loss function.

In case an outcome of a decision corresponds to a collec-

tion of classes, the pooled statistics of some of these

classes may be used in the parametric decision function

of the succeeding stage.

With the decision function for all the nonterminal

nodes described along with the string which gives the

structure of the nodes, the decision tree procedure is

completely and uniquely specified.
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CHAPTER 4

APPROACHES TO THE DESIGN OF THE DECISION TREE CLASSIFIER

Several approaches to the design of an effective deci-

sion tree classifier will be discussed in the following

sections. In the histogram approach and sequential cluster-

ing approach, interaction with the analyst is necessary

to design a good decision tree structure. The optimiza-

tion approach is the most sophisticated but the least

amount of interaction is needed. For the purpose of maxi-

mizing the accuracy (when the dimensionality problem might

occur) or the overall performance, two design procedures

will be introduced in the section on the optimization

approach.

4.1 The Histogram Approach

The strategy of the historgram approach to decision

tree design is very basic and is similar to the method in

the paper of Mattson and Damman [13]. The approach can be

described as follows: The histogram of training data of

all classes is plotted on each feature dimension with the
same scale. By observing the histograms one can find

decision boundaries (or threshold values) to partition those

classes into several groups. If a group contains more than
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one class, the same procedure is repeated until all classes

are uniquely classified. When this state is achieved the

design is complete.

A simple example is illustrated in Fig. 4.1, where a

decision tree classifier is constructed for three classes

with three features. For multispectral data, coincident

spectral plots* too can be another source of information

from which the decision tree classifier can be designed.

In these plots the means and standard deviations of all

classes (assuming each class of data is of normal distri-

bution) are plotted with the same scale, so that the decision

boundaries (or threshold values) can be observed. An

example of the coincident spectral plot is shown ir. Fig.

4.2 where a character indicates the class and locates

the mean of that class with respect to that dimension.

For the five classes shown in this figure, a two stage

decision tree procedure is designed. A single feature

{f 4 } is used for the first stage; class, W and r,p}

are two representative classes for two groups. In the second

stage, since no single feature can separate the classes in

two groups satisfactorily, a maximum likelihood classz`jpr

with all features will be w'd for t erminal classificaticn.

When the maximum likelihood procedure is used at each

*Output of the statistics processor. of LARSYS [4.3J, a
software system for remote sensing pattern recognition.
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Approach to Design a Decision Tree
Classifier.
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stage, a decision rule can be specified by a feature

subset and a class subset, assuming the statistics for all

classes are given. A set up of the classifier designed for

digital computer application is shown in Fig. 4.3.

The performance of the classifier designed by this

approach is subject to the experience of the designer, yet

this approach provides a convenient and basic method for

designing a decision tree classifier.

4.2 The Sequential Clustering Approach

In the sequential clustering approach, a decision

tree is designed through successive stages of clustering.

Actual class information is necessary to determine whether

the training samples have been properly clustered into the

required information classes. The class information of the

multispectral remotely sensed data, usually referred to as

f

i

W.___ er

"ground truth" ir, generally represented by two dimensior

maps (e.g. USGS Topographic Maps! and aerial photograph:

The cluster maps (results) obtained from the computer as

compared with the conventional maps of photographs and

this is where human .interaction is involved.

An example of the procedure for this approach is

illustrated in Fig. 4.4. Here a scene is first clusters

into three classes A. B and C. After this, result (clusi

map) is compared with the ground truth map, class A, C i

further clustered into three and two subclasses
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Figure 4.4 Multistage Clustering of a Geographic Area.
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Figure 4.5 Node Structure of the Decision Tree
Classifier Designed in Fig. 44.
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respectively. Corresponding to this sequence of cluster-

ing, the structure of the decision tree classifier is

shown in Fig. 4.5.
3

It is common for the first cluster map to have some

mixture classes. Further subdivision of these subclasses

allows 47hem to be gLouped together to provide the correct

classes. Through this interactive approach, multistage

clustering of a given area can lead to conformity with the

map or photograph.

By utilizing the clustering algorithm [43) of LARSYS,

the probability densities of the classes and subclasses can

be approximated by multivariate normal distributions. The

remaining classification problems thus become parametric.

The maximum likelihood decision rule can easily be incor-

porated in the decision tree designed to classify unknown

samples. Consequently, it is required that after each

stage of clustering, the statistics of the clusters be

calculated. These statistics will be necessary to specify

the discriminant functions in the decision tree procedure.

The set up of the decision tree procedure designed by this

approach for digital, computer implementation is shown in

Fig. 4.6. This set up differs slightly from the previous

one Fig. 4.3) in the sense that each decision function is

directly represented by the statistics of the classes (or

clusters) to be classified.

f^

'i



44

If

STATISTICS FOR NTH

DECISION FUNCTION

STATISTICS FOR FIRST
DECISION FUNCTION

CHARACTER STRING
(A DESCRIPTION OF
NODE STRUCTURE:)

-^-	 DATA

CLASSIFIER
PROCESSOR

RESULTS	 0
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Although in the above discussion nonsupervised cluster-

ing is used to obtain the structure of each stave of classi-

fication, the supervised training method can also be used.

For two dimensional imagery data, the spatial properties of

the classes would be a major Cetermining factor as to

which method would be more appropriate.

Another major advantage of this approach is that after

observing the classification results, if there is need for

a certain class to he reclassified, this approach can be

used to construct a multistage classifier which is used to

classify data again; a change in the results will be observed

only in those samples classified in that particular class.

Thus, the advantage of the multistage classifier ..z

the conventional one stage approach, where the classification

results of other classes may also be changed by the addition

i
of unrelated subclass to the classifier, is obvious.

i

4.3 The Decision Tree Optimization

The study in this section is aimed at a systematic

approach to design a good decision tree classifier. The

nature of the design problem would be very similar to that
1

of the histogram approach introduced earlier. With sets

of training samples of known classes being given, the design

procedure will construct a good decision tree to classify

unknown samples into these classes. The method described

in the first section provides the fundamental idea of how to

^i
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solve this design problem. However, what is left unanswered

is the question of how good the designed tree is when com-

pared to other alternatives.

With the generality of the tree structure already

discussed in Chapter 3 0 even for a small number of classes

and features, numerous different tree structures can be

constructed. Suppose there are m nonterminal (or decision)

nodes in a given node structure and n features are available

for c.► assification. For each ­.onterininal node, 2 n - 1 feature

subsets can be used for the decision function. Thus, for

this given nodes structure, (2n-l)m = 2n•m different

arrangements for the decision functions can be found. For

the total number of possible trees N, we shall have:

K
N	 2n-mi

i=l

where K is the number of different nodes structures, and mi

is the numb qr of nonterminal nodes in the i-th nodes struc-

ture. Although N is not explicitly evaluated in an exact

expression (because the values of K and m are not determined),

its value evidently can be very large.

The above consideration generally prevents the practice

of constructing and evaluating all possible structures. For

the purpose of having a systematic approach to design a

"good" decision tree structure, methods of optimization

are considered.
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4.3.1 Objective of the Decision Tree Optimization

The objective of the decision tree optimization, as a

result of the discussion in Chapter 2, would be to improve

either the classification accuracy or the computational

efficiency or both. The simultaneous optimization (maxi-

mizing) of both the accuracy and the efficiency would be

impossible, because according the theorems in Section 2.2,

for any g5 ,.an accuracy a bound on efficiency has to be

satisfied. That is, a solution which maximizes both the

accuracy and the efficiency without constraint simply

does not exist. In trying to achieve the goal of maximiz-

ing just the accuracy, the decision tree procedure will be

useful only if the optimal dimensionality is less than the

feature dimensionality (because of the dimensionality prob-

lem discussed in Section 2.1). However, in many cases a

user is willing to sacrifice some accuracy in order to

gain efficiency, even if the dimensionality problem may not

occur for maximum feature dimensionality. In these cases,

the amount of tradeoff between accuracy and efficiency

would be entirely up to that user.

With the above considerations, difference in the

performance criteria Leads to two different approaches to

optimize the decision trees. One tries to E, •aximize the

accuracy and another the "overall performance".
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4.3.2 The Accuracy Oriented Design Approach

4.3.2.1 A Class of Binary Tree Classifiers

A class of binary trees will be designed for the

purpose of maximizing the classification accuracy. In a

binary decision tree, each nonterminal node has exactly

two immediate descendant nodes. For our special purpose

this corresponds to a test of likelihood for a pair of classes

using the optimal feature subset for that pair of classes.

If the dimensionality problem (described in Section 2.1)

does not occur for maximum dimensionality, the optimal feature

subsets for all class pairs will be the same, i.e. the complete

set. Hence the binary tree procedure is equivalent to the

conventional one stage procedure which also performs series

of tests to make a final decision. If the dimensionality'

problem does occur for maximum dimensionality, the optimal

feature subsets for different class pairs can be different.

In this case, the binary tree procedure is not equivalent

to the conventional procedure.

An illustration of the binary tree procedure is shown

in Fig. 4.7 for classifying an unknown into four classes

{W l ,w 2 ,w 3 ,w 4 }. In this figure the class of a terminal node

is the final decision, and f(i,j) denotes the optimal feature

subset used in the decision function for classifying classes

W  
and wj.

From this example it is clear that for N-class classi-

fication N-1 tests are necessary to reach a terminal
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classification.
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decision. Therefore, the decision rule of the

binary tree procedure for optimal classification can be

formally defined as follows: In a optimal binary tree

procedure, to reach a terminal decision for N-class classi-

fication, a sequence of N-1 tests are performed; in each

test a Baysian decision rule is used to classify a pair

of classes (i.e. to discriminate one class from

another), and the class rejected in the test is

excluded from consideration in further tests.

The mathematical formulation of the binary tree procedure

is also shown below:

Assuming D is the optimal decision function (with equal

a priori probability and 0-1 loss function) for testing class

pair wi and w j , and 9 is the decision of D. we have

	

iZ = D( w i , W j )	 (4.1)

fwj
if	 r ' l

with

	

	 SE = i ij(4.2)
 otherwise

P (XI w.)
where

	

	 ri3 i	 ( 4.3)
P(xIwi)

is the likelihood ratio for two classes w i and wj.

With 9 and D defined above, the binary tree procedure can

be put in the recursive form:
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Q. = Nwi,sai
-1) i = ?, ..., N	 (4.4)

3.

with	 1 = W1

where N is the number of classes. The precursive formula

of 52 i starts with a 2 ; and SN is the final decision which

determines to which class the unknown sample belongs.

A block diagram of the multistage decision procedure

"s described in Eq. 4.1 to Eq. 4.4 is shown in Fig. 4.8.

There is no need to encode and store the entire tree

structure with the method described in Chapter 3. When

probability densities of all classes are estimated, the

necessary information to specify the binary tree decision

procedure uniquely would be the optimal feature subsets

for all class pairs. Thus, the key step in designing

the binary tree decision procedure is to find the optimal

feature subsets for all class pairs based on the estimated

statistics. Maximizing the Shattacharyya distance (45,45)

can be a reliable method for feature section. Some

experimental results will be shown in Chapter 5.

4.3.2.2 Discussion

For the decision procedure described above, the

classification accuracy is maximized since the optimal

feature subsets are used for discriminating pairs of classes.

The efficiency is generally lower than a conventional

procedure using the same feature dimensionality because

more conditional probabilities have to be calculated for Eq.
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SET

	

i-j -i,	 DI=wi

'j= j+I

COMPUTE q OF EQ. 4.3

USING THE OPTIMAL FEATURE
SUBSET FOR wi + wj

	

r ij	 l	 NO Dj = wj
i =j
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NO
'?n
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Figure 4.8 Flow Chart of the Binary Decision
Tree Procedure.
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4.3. If feature subsets for all class pairs are different

the number of conditional probabilities calculated is twice

the number normally calculated using only one feature subset.

If D is in fact the optimal decision function for

classifying two classes, then following the recursive

functional form of Eq. 4.4, it is clear that S. N is the

optimal solution. In other words the procedure of Eq. 4.4

is an optimal procedure for a N-class classification.

This is because the multistage decision process defined by

Eq. 4.4 is in a recursive form; with D being the optimal

decision function, once a true optimal solution wk is

encountered at the k-th stage the decisions at later stages

including the final decision will all be the same, i.e. wk'

And an optimal solution will be achieved regardless the

order of classes in the class sequence. This policy discussed

here is described as well by Sellman's "Principle of Optimal-

ity" [44] for dynamic programming, which states that - "An

optimal policy has the property that whatever the initial

state and initial decision are, the remaining decisions must

constitute an optimal policy with regard to the state re-

sulting from the first decision."

If the true densities are known and if the features

are all independent variables the optimal feature subsets

for all class pairs are the same, i.e. the complete

feature set. As mentioned before, in this case the multi-

stage decision procedure of Eq. 4.4 degenerates to the
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conventional optimal procedure, the maximum likelihood pro-

cedure. However, if the densities are estimated with dif-

ferent optimal feature subsets for different class pairs the

procedure of Eq. 4.4 may not be optimal, for the reason that

the law of transitivity* can not be applied to the ordering of

likelihood ratios measured in different feature subspaces.

With the loss of optimality, contradiction of classification

results might occur, if the sequence of classes used in

tests is different from the sequence {wl,w2,...,mn} used in

Eq. 4.4. Different class sequence in the tests corresponds

to a different tree structure. As an example the sequence

1w4'w3'w21W11 will lead to the structure shown in Fig. 4.9,

which is an alternative to the structure shown in Fig. 4.7.

The different results for alternative structures is also

illustrated by a simple example in Fig. 4.10, where the

region (x < O, y< 0, z> 0) in feature space will be assigned

to two different classes due to two different arrangements

as shown.

In practical cases, if the probability densities are

fairly well represented by the training samples, the popu-

lation of samples in the ambiguous regions in feature

space can be very small. Therefore the difference in

classification results due to different arrangements would

be negligible. From this standpoint, it is clear that the

Linary tree approach as described is not optimal but close

*A binary relation R over a set S is said to be transitive
if for s, t and u in S, sRt and tRu imply sRu.

^_
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enough to an optimal approach to improve the accuracy for

multiclass classification in the presence of the dimension-

ality problem. For an optimal approach, some back up process

in a decision tree procedure would. be necessary, and

thresholds on the likelihood ratio would be used in order

to decide whether to reject a class ur not. Procedures .

similar to the Fano's Algorithm in sequential decoding [20)

can be designed, the details of which are discussed in

Reference [47].

4.3.3 The Search Ap2roach to Optimize the Decision Tree

As mentioned in the end of Section 4.3.1 1 to maximize

the overall performance of a decision tree is one of the

goals of decision tree optimization. For this purpose, the

designed tree structure must be as general as possible.

The essential features for a general and practical tree

structure can be stated as follows:

1) Any feature subset can be used in the decision

function of a nonterminal node.

2) The number of immediate descendant nodes of a non-

terminal node varies from two to the number of classes in that

node.

3) The number of classes in a node is always greater

than the number of classes in each of its immediate descendant

nodes.

4) No two immediate descendant nodes of a nonterminal

node contain the same set of classes.



57

With such generality numerous different structures are

possible. There are basically two problems in optimizing

the performance of a decision tree. One is the complexity

of the tree structure. It has not been possible to describe

the tree structure in terms of a set of variables, and then

form a space in which each point stands for _i unique tree

structure. The second problem is that the overall perfnrrance

of proposed classifier structure can not be predicted exactly

accurately. Because of the f_rst problem, most of the

existing mathematical programming procedures can not. be

applied effectively. Hence, the heuristic search method

will be used. In this method, the structure is constructed

stage by stage, thus reducing the problem of representation.

For the second problem, there is nc exact solution at present.

Attempts have been made to predict the performance as accu-

rately as possible.

Generally speaking, the search method introduced here

can be referred to as "guided search with forward pruning",

a category in the methods of heuristic search [49,5(}]. This

particular search method is also very close to the branch-

and-bound method [51]. The essential concept of the branch-

and-bound method is that it partitions solutions into

subsolutions (branching) and after each branching, only

feasible solutions are retained for further consideration.

4.3.3.1 The Search Procedure

This procedure first selects a set of feature subsets
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to be searched. If m, the total number of features is small,

all 2m - 1 feature combinations can be used. If m is large,

feature selection methods can be used to select a set of

"likely" feature subsets out of the 2 m - 1 possibilities. The

reduction in featu=e subsets increases the search efficiency.

These selected feature subsets are then searched in

order to construct a stage of the decision tree structure.

For each feature subset, with the given classes under con-

sideration, a nonsupervised clustering is performed. With

interclass separability as distance,* P-ch class is treated

as a single point in the space. As a result of clustering,

several groups of classes are found. The candidate sub-

structure (a stage in the tree) for each feature subset is

then constructed, i.e. each group of classes represent a

newly generated descendant node; the associated decision

function has the corresponding feature subset chosen as

features, and the statistical parameters for each outcome

(descendant node) are the pooled statistics of the "repre-

sentative classes"** in each group.

We will assime that a "distance" has some, though not all,
the properties of "metric". A metric is a real valued func-
tion S defined on S x S (x indicates cartesian product)
such that for arbitrary F, G, H in S

(a) d (F, G) 2 0
(b) (1) b (P, F) = 0

(2) If & (F,G) = 0 then F = G
(c) d (F ► G) = d (G,F)
(d) d (F, G) + d (G, H) ' b (F,H)

**The "representative classes" are unique to one class group
only in contrast to some overlapping classes which belong to
more than one class group. Explanation of the clustering
procedure with the associated method of extracting those

x	 "representative" classes will be given later.
i
ri



When a candidate substructure is formed, it is evalu-

ated by a function which reflects the cost of classifica-

tion using that substructure. After all feature subsets

are searched, the candidate substructure with the lowest

cost will be selected as the substructure for that stage.

The above discussion describes the method of constructing

one stage of the decision tree classifier. After this stage

is constructed, some of the newly generated nodes may have

more than one class. The same procedure is used in expanding

those nodes, i.e. constructing the next stage. The search

procedure terminates, indicating that the decision tree

design is completed, when all terminal nodes contain only

one class.

A flow chart and a simple example of the search method

is shown in Fig. 4.11 and 4.12 respectively. In the example,

six classes m i , i= 1, ,.., 6 are to be classified with only

four features fit i= 1, ..., 4 available. The search

procedure searches through all the 2 4 - 1 feature subspaces.

With a given cost criterion the best structure shown in

Fig. 4.12, where the encircled classes are the representa-

tive classes. This structure results from the clustering

of those six classes based on the separabilities

corresponding to feature subset { fl }. Notice that the

search procedure will be applied to the first and second

nodes generated to construct the next stage, since they

contain more than one class.
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A set up of the search approach for digital computer

application is shown in Fig. 4.13. The same diagram is

also valid for the accuracy oriented approach discussed

in Section 4.3.2.

In the search procedure described previously, the

clustering and evaluation are two major steps. Some

introduction to the clustering procedure will be given in

next subsection. The form of the evaluation function

and the discussion of optimality of the decision tree

designed will be given in later subsections.

4.3.3.2 The Clustering Procedure

As mentioned previously, clustering classes

into groups is an important step in the search procedure.

A brief introduction of the clustering procedure will be

given here (while the detailed mathematical verifications

will he given in Appendix B) .

The first step in the clustering procedure is to form a

distance matrix for the points that are to be clustered. The

second step is to find several nonoverlapped point subsets.

These subsets have the property that only points from the

same subset are considered similar, while points from different

subsets can never be similar. Whether two points are

similar or not is determined by a similari f-y criterion

defined on the distance between these two points. After

t.
these distinct subsets are found, the same number of
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clusters are farmed each being obtained by grouping all

the points similar to the points in a subset previously

selected.

The same procedure can be applied to classes, with each

class being treated as a single point and the separability

between two class distributions as a measure to determine

whether tnese two classes are similar or not. By doing so,

we may again form a similarity matrix. Using the cluster-

ing procedure, distinct and mutually dissimilar (for any

two classes belonging to two different class subsets

selected) class subsets can be selected. The classes in

these distinct class subsets will be called the representa-

tive classes. Groups of classes selected later based on the

first selected class subsets will then be clusters which are

the proposed immediate descendant nodes of this stage.

The significance of the representative classes has been

mentioned in the previous section, i.e. the parameters of

the decision functions are pooled sta_istics of those

representative classes.

The idea of the clustering procedure is very simple.

However, to sort out the distinct and mutually dissimilar

point (or class) subsets is not easy, especially if the

number of points (or class) is large. A method to simplify

this cluster sorting procedure, as developed in this study
i

is explained in Appendix B.

J
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4.3.3.3 Form of Evaluation Function

The evaluation function is essential to the method

of guided search as discussed in Section 4.3.3.1. The farm

of the function reflects the objective of optimization (that

is to maximize the overall performance of accuracy and

efficiency). To specify the performance criterion, the

additive form of accuracy and efficiency will be used. This

form is chosen because the additive form of the total cost

has been widely accepted by statisticians (48].

As the overal.1 performance of the decision tree is

evaluated by the weighted sum of accuracy and efficiency,

each stage of the tree will be evaluated by a similar

criterion. The evaluation function E(d i ) for each candidate

structure following node d i will be defined as follows:

C.i
E (di ) = -T (d i - K • e (d i ) + Z F (d p.+i
	

(4.5)
j=1 

where the evaluation of the decision function for node di

is given by the first two terms. The summation quantity

is the predicted evaluation for further stages. The

efficiency and accuracy are represented by the negative of

the computation time T(d i) and negative of the error E(di)

respectively; both quantities are measures for node d i only.

K is a weight constant which determines the relative

importance of efficiency and accuracy, and its value will be

assigned by the user. c i is the number of immediate

descendant nodes of di , and d ,+j are those nodes, with E(de+j)

as their associated evaluations. To be more specific, we have
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c.

E(di) - T (m,n {P i •T(mi ,ci ) + 
^ 1 PQ+ ^•T(m,nQ+j)

-K • e(di ) +K • C
	

(4.6)

where T (a,b) stands for the computation time of a maximum

likelihood procedure for an a-feature b-class classification.

m,n are the number of features and classes used in the con-

ventional one stage procedure. P k is the probability that

a path of classification will pass through node dk . m  and

c  are the number of features and decisions, respectively, of

the decision function proposed for node d i . n R+ ^ is the

number of classes contained in the descendant node d,,+j.

And C is a constant to be explained in the next paragraph.

The meanings of some of the notations appearing in Eq. 4.6

ar g also illustrated in Fig. 4.14.

The term T(di ) in Eq. 4.5 is expressed by Pi•T (mi,ci)

in Eq. 4.6. K• E (di ) in Eq. 4.5 is not changed in Eq. 4.6.

E(dQ+j ) in Eq. 4.5 is expressed by P Z+j • T(m,n Z+j ) which is

the computation time of the one stage procedure (with m

features and n .+j classes) being designed for node dQ+j'

and e(dR+j ), the expression for error is not included in

Eq. 4.6. The reason that this simplified form for E(djz+i)

is used is because structures for further stages have not

yet been determined, and efficiency and accuracy are diffi-

cult to predict; thus the conservative single stage procedure

evaluations are proposed for each of the immediate descendant

nodes dR+j of node d i . And the sum of error quantity
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i	 F. (dI+j) is expressed by a bias constant C. The terms

associated with efficiencv are normalized by the computation

'	 time of one stage conventional procedure, i.e. T(m,n), so

that they can be compared to the terms associated with

accuracy which are expressed in terms of error rate.

To improve the performance of the designed classifier,

a constraint on E(d i ) is applied, which is the evaluation of

a conventional procedure to be used for node d i such that

the evaluation of a selected substructure can not be less

than this constraint. In other words, a conventional pro-

cedure will be used for node d i , if the evaluation., of all

candidate structures are no greater than this constraint.

Another interpretation of the constraint is that a conven-

tional one stage structure is also added as a candidate sub-

structure to be evaluated. The constraint F 0 (d i ) for node

di is given by Eq. 4.7

Eo (d i ) -- T 1	 [Pi'T (m,n i ) ] - K x F o (d i }	 (4.7)

where n i is the number of classes in node di.

Since Fo (d i ) is a constant term for all E(d i ), it is

conv%nient to substract F 0 (di ) from the expression for E(di).

The constraint for this modified E(d i ) will be zero for all

d i . The modified form of evaluation is then given by Eq. 4.8.

E' (di ) - T rr.,nl {P i • T(m,n i ) - [Pi•T(mi,ci)

c.
a

+	 PQ+j•T(m,nt+j)]} +Kx [C`- E(di )]	 ( 4.8)
j=l

,a
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Since E 0 (di ) is a constant, it is absorbed in the bias

constant C'.

In Eq. 4.8 all the quantities of T( • , • ) are known

quantities, since the computation lime of classification

for a given number of classes and features can be measured.

The remaining quantities can not be calculated precisely.

In Eq. 4.8, they are P i , P R+j and a(di ). However, with a

good separability measure, these probabilities can be

estimated reasonably well. The empirical method of

estimating probabilities is given in Appendix C.

4.3.3.4 Discussion of the Optimality of the Design

Equation 4.8 is used to optimize a stage of the

structure. Hoar this relates to the optimization of the

overall performance of the decision tree is explained as

follows:

In a designed tree structure, assume there are

totally N nonterminal nodes. The summation of the evaluations

of these N nonterminal nodes, d i , i = 1, ..., N is given below

N
W	 E' ( d i }

i=1

	

N	 c 
[P.•T(m,n.) - I P	 •T {m,n	 )]T (m, n) i=1	 1 R+j	 R+j

j^

1	 N	 N
P 'T(m ,c ) +K • NC' - K	 E(d }	 (4,9)
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In Eq. 4.9, terms in the first underlined summation

will cancel each other except for the first tern, P 1 •T (m,n l)

of the root node, which is equivalent to T(m,n). The

second summation is the expression of computational time of

the decision tree procedure. And the last summation is the

total error rate. Let To , E  and T, E be the computation

time, and error rate of the conventional procedure and the

tree procedure respectively, as defined below:

To = T (m ► n)

N
T - E Pi•T (mi,ni)

N
E _ ^ 1 e (di)

With these expressions, Eq. 4.9 is rewritten as

E W T [Ta-•T ]- K x E + K x NC '	 (4. 1 0)
0

Eq. 4.10 can be viewed as the difference in performances

of the tree procedure and the conventional procedure. i.e.

T
E _ {- T - K x e) - {- T^ - K x e o ) + C"	 (4.11)

0	 0

where	 C" = K x NC` - K x c  is a constant.	 (4.12)
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Through the above derivations, the consistency of the

evaluation E(di ) and the overall evaluation is evident.

In other words maximizing E(d i ) individually increases the

value E as expected. The value of constant C' in Eq. 4.8

is difficult to determine. Ideally, C' should be set

close to the value of e 0IN such that C" vanishes in Eq.

4.11, but N is unknown before a tree is designed. Indeed,

one can simply set C' as zero; this is equivalent to

raising the constraint of E(d i ) by a positive amount

(because the value for which C' stands is positive).

This solution to the design is suboptimal to the

objective of optimization. The reasons are summarized

as follows:

1) Not all possible tree structures are evaluated.

2) The evaluation is an approximated quantity.

3) Maximizing each E (d i) does not imply that the overall

evaluation - T - K x F_ is maximized.
0

Although the search is suboptimal, with a carefully

formulated evaluation function--Eq. 4.8--, net improvemEnt

in classifier performance is achieved. The search

procedure itself is very efficient, thus its practical

usefulness is enhanced. some experimental results

related to the search method for decision tree optimization

will be shown in Chapter S.
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CHAPTER S

EXPERIMENTAL RESULTS

5.1 Introduction

Several eAperimental results related to the dimensionality

problem will be presented first. Experiments were performed

on both real and simulated data sets. Next presented are

results of decision tree classifiers based upon various

design approaches. Emphasis has been placed on than

optimization approach. The reason is twofold: One is to

verify the validity of the optimization procedure

since several empirical methods are involved; the other is

to gain confidence in the performance of a design which is

the result of an "automatic" design approach.

The Bayesian decision rule with assumptions of 0-1 loss

function, equal a priori probabilities and multivariate

normal distributigns is used as the decision rule in all

experiments when classification is involved.

Two separability m-asures, the transformed divergence

DT [53] and the transformed Bhattacharyya distance B T [54],

are also introduced here, for they will be used frequently

in later experiments as criteria for feature selection.

r  - D^gDT = 2000 x (1 - e)	 (5.1a)

I:

f
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where D has been defined in Eq. 2.9, the divergence of two

normal distributions.

	

BT = 2000 x [1 -- etf4 V _2B) ]	 (5. lb)

where	 B = S (M2
-M1 ) T( 1 2 2 ) 	 {M2

-Ml }

+ 2 log ^E1 
+ E2}/2 r	 (5.2)

1E_11/21E211/2

and

fX 	

2

erfc W W  Co 1 e  	dx	 (5.3)
 J^

5.2 Dimensionalitv Probleir in Multispectral Pattern Recognition

In this section, the dimensionality problem will be ex-

perimentally studied. There are two major objectives of con-

ducting these experiments. One is to further demonstrate the

existence of this problem in multi.spectral pattern recogni-

tion; and the other is to verify the hypothetical explana-

tion of this problem, which is disc _ sed in Section

2.1.

5.2.1 Experiments  on Real Data

The following two experiments are mainly for the purpose

of observing the dimensionality problem in multispectral

pattern recognition. The first experiment is a repetition
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of the one shown in the end of [1], except that the training

and test data sets are different. The specific purpose of

repeating this experiment is to confirm the previous results

which demonstrated that in classifying multispectral remotely

sensed data the optimal dimensionality can be rather low.

Experiment 5.1 Five classes of crops, oats, soybeans,

corn, red clover and wheat are selected from multispectral

scanner (hereafter referred to as MSS) data of the 1966 C-1

Flight Line*. Part of the selected data is used for training

and a much larger portion is used for testing (detailed field

descriptions are listed in Appendix D.1). The number of

features used for classification varies from one to twelve.

And the feature subsets were selected based on the averaged

pairwise transfcY'.ned divergence D T (Eq. 5.1a) in conjunction

k_° the condition that a feature subset % ,.-ith lower dimension-

ality is always a subset of another with higher dimensionality.

With feature subsets selected in this manner, although each

one may not be the optimal with respect to each dimensionality

(but is close to optimal), however the effect of additional

features can clearly be observed as classification dimension-

ality increases. The classification results in terms of

overall error rates (averaging by the total number of test

samples) are plotted in Fig. 5.1 and also tabulated in

Table 5.1. Notice the error rate of the complete feature

*An experimental flight line over west central Tippecanoe
County, Indiana. Also described in Ref. (1).
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Table 5.1 Feature Subsets and Associated Error Rates for the Five Class
Test in Experiment 5.1. ^---^-

FEATURE SUBSET OVERALL
ERROR	

^^?

a.

1 53.4

i t 10 26.4

j r 10, 12 18,1

j r 9, 10, 12 18.5	 -^rn

1 1 6, 9, 10, 12 20.3

I, 6, 9, 10 0 11, 12 20.1

1 1 6, $, 9, 10, ll, 12 20.4

1 1 5, E, O f	9, 10, 11, 12 20.0

1 1 5, 5, 7,	 O f	9, 10, 11, 12 20.4

1, 4, 5, 5,	 7r	 8,	 9, 19 7 11, 12 20.5

I t 2r 4, 5,	 6,	 7,	 8, 9, 10, 11, 12 20.9

1, 2, 3, 4,	 5 8	6,	 7, 8 1	9, 10, 11, 12 2009	 -

,.L-A
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set is about three percent higher than the best result

which is obtained by using three features.

i
The above experiment is for five-class classification.

For a closer look at the problem, an experiment on two--

k	 class classification was conducted.
r

Experiment 5.2 For a two-class classification, crops

of corn and soybeans are selected and classified (detailed

description of data and results are listed in Appendix D.2).

The results are plotted in Fig. 5.2, together with an upper

bound F o (Ref. [5], p. 70) on error probability, which is

calculated by using Eq. 5.4 based on the estimated densities.

c o = [P ( w l ) -P ( w 2 ) ) 1/2 exp (-B)	 (5.4)

where B is the Bhattacharyya distance defined by Eq. 5.2; and

P(W l ) are the a priori probabilities estimated by the numbers r

of test samples for two classes.

From the results of these two experiments, the dimension-

ality problem in multispectral pattern recognition is clearly

observed. It is also noticed that the trend of calculated

error bounds based on estimated statistics does not fit the

trend of real error rates in this case, i.e. the former goes
i

downward and the latter goes upwL.'d. in principle, the error

j'
bound c o given by Eq. 5.4 will never increase with additional

features. Contradiction in the above example occurs because

^,	 r
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the densities used to calculate c  are not the true

densities.

5.2.2 Experiments on Simulated Data

As mentioned in Section 2.1, the dimensionality problem

is closely related to the number of training samples in

probability density estimation. The following experiments

were conducted mainly for the purpose of observing this

relationship. Simulated multispectral remotely sensed data

have been used for the reason that it is possible to select

an arbitrary number of independent samples (real data are

more or less .spatially correlated). In the simulation,

multivariate normally distributed data were generated based

on the second order statistics of real remotely sensed data.

And the Hasting Formula (55) were used to approximate the

inverse of the error function (Eq. 2.12) to transform a

random tariable from a uniform distribution into a normal

distribution.

Experiment 5.3 10,000 samples for each class were

randomly generated according to the normal distribution with

means and cnvari.ances calculated in Experiment 5.2 (Appendix

D.2). Totally there were 20,000 samples generated for two

classes. Four sets of classifications were performed on

all 20,000 samples, using successively 20, 40, 100 and

10,000 training samples per class respectively. In each

set the dimensionality varied from one to its upper limit
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which is twelve. For each dimensionality the same feature

subset was used for all four sets; and the feature subsets

were the same as those which were used in Experiment 5.2.

Four sets of results are shown in Fig. 5.3 (Results

for 400 training samples were made but are not plotted in

Fig. 5.3, because they are very close to the results for

10,000 training samples). The dimensionality problem

and its relationship to the number of training samples is

apparent. That is, the optimal dimensionality decreases

as the numb,. of training samples decreases.

Attempts at theoretically relating the number of train-

ing samples to the amount of degradation in accuracy have

not been successful, due to the difficulties mentioned

in Section 2.1.2. One of the difficulties, the lack of

analytical means to estimate errors, can be eased (such

that Eq. 2.11 can be used) if both classes are known to

have approximately equal covariance matrices. To demon-

strate this theoretical result, the following experiment

is made on simulated data of two normal distributions with

equal covariances.

Experiment 5.4 Two multivariate normal distributions

N(MI ,E), N(M2 rE) are assumed for two classes of data, where

M11 M2 , are the same as the means of the two classes in

Experiment 5.3, and E is the covariance of the firs: class
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in that experiment. 10,000 samples were generated for each

class according to the above defined distributions. Again,

statistics calculated from 20, 40, 100 and 10,000 samples

were used to classify these two classes. The fact of

equal covariance in these two distributions was not

explicitly used during the experiment, so the procedure of

this experiment was the same as Experiment 5.3, except

that the feature subsets selected were based on N(MI,E)

and N(M2 , E). The classification results are plotted in

Fig. 5.4. The theoretical error rates, calculated accord-

ing to Eq. 2.11 (and Eq. 2.8) with given numbers of samples

n, dimensionality m and divergence D (calculated from

the true distributi.o ,:^)r are also included and are

connected by dotted lines in Fig. 5.4.

it is noticed in Fig. 5.4, that the experimental and

theoretical results match best, as expected, for the case

with n= 10,000. Discrepancies between experimental and
a

theoretical results for other cases, in general, occur

within three percent. For n= 20, the underestimation

is probably because small quantities with variances of the

order 1/n2 are neglected in deriving Eq. 2.8. Despite

these discrepancies, the trend of the theoretical results

corresponds well with that of the experimental results.

One must also recall that Eq. 248 is a problem averaged

expression for the error in likelihood ratio estimation,
,Xi
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thus random deviation of the results of a single experiment

is to be expected, especially when n is small.

For practically predicting the optimal dimensionality,

besides the difficulty of lacking analytic means to

predict error accurately, another is that the value of D

calculated with a small number of training samples is not

accurate enough to be used to estimate the degradation,

e.g. Eq. 2.8. An example is shown in Fig. 5.5 where the

values of divergence calculated based on statistics used

in the classifications in Experiment 5.4 are plotted. For

a given dimensionality, there is a general tendency that

as the number of samples decreases the divergence increases

from its true value. For the equal covariance case

such phenomenon can be explained as follows: first, any

error in estimating the covariance will lead to the cal-

culated D being greater than its true value (the first

term in Eq. 2.9 is never negative for positive definite

E 1 and E 2 , but it is zero for the original case of equal

covariances); second, there are m (dimensionality) degrees

of freedom for the error in estimating the mean vectors,

but there is only one possibility (out of m) that D

will decrease, which corresponds to the distance between

two estimated means decreasing along its true direction

(the direction of . a vector joining two true means in

feature space). For cases with unequal covariances, the

second argument still holds and the phenomenon mentioned

is expected.
3

i
i
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A similar phenomenon is also observed in the

Bhattacharyya distance measure. In Fig. 5.6a, estimated

upper bounds on error rate for Experiment 5.3 are plotted.

The bound is calculated according to Eq. 5.4 by using

the Bhattacharyya distance based on the estimated statisti-
cal parameters used in Experiment 5.3. It appears as though

when n decreases one may expect lower error rate. However,

this is only because B tends to be overestimated more for

small samples than for larger ones. The true situation is

suggested by the real classification results shown in

Fig. 5.6b (which is the same as Fig. 5.3 except that the

vertical scale is reduced in order to be comparable

to Fig. 5.6a), where the performance associated with

small n is worse than that with large n. In fact, some

of the real results actually exceed the estimated bounds

in Fig. 5.6a.

5.::.3 summary

From the results of the above experiments, it in

evident that the optimal dimensionality for classification

may be smaller than the dimensionality of the complete

feature set, when there are a limited number of training

samples for estimating the probability densities. Because

the practical method of predicting optimal dimensionality

has not been achieved, and because the distance measure

may be misleading in case of too few training samples,
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to achieve reliable classification results one has to

have enough training samples. The results reported

in Experiment 5.2 and 5.3 also suggest that any prediction

on classifier performance based on a limited number

of training samples can be erroneous. One must be aware

of this fact and therefore be cautious in selecting features

as well as numbers of training and test samples.

5.3 Classification Results of Decision Tree Classifiers

The following are results obtained by utilizing the

various approaches to the design of a decision tree

classifier discussed in Chapter 4.

5.3.1 Classifier Designed by Utilizing the Histogram A22roach

Experiment 5.5 In this experiment, the objective of the

classification was to map wate •+ bodies in strip mined areas

by using aircraft MSS data. Thirteen meaningful spectral

classes* were selected, including subcategories of water

and other representative coverage types. By examining the

coincident spectral plot (in a form similar to the one

shown in Fig. 4.3), a decision tree was designed as

shown in Fig. 5.7 1 where the sets labeled by "CH"

are sets of spectral channels used in that stage of

classification, and the symbol in the parenthesis is the

*Data sets were provided by courtesy of Luis A. Hartolucci.
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SAMPLE
POINT

CH. {9,10}

WATER AND DUMPED	 OTHER	 DISPLAYED BY BLANK
COAL MINE SOIL 	 IN FIG. 5.6

CH. {12)

DISPLAY SYMBCL IN
WATER COAL SOILH- FIG. 5.6

C H. {4, 5,6)

{=) (1) (H) (M) (W)
FIVE DIFFERENT CLASSES

OF WATER

Figure 5.7 A Decision Tree Classifier for Water
Mapping.
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symbol used to display that particular class in the printed

output.

Fig. 5.8a shows the classification results for an area

by using the classifier shown in Fig. 5.7. Some of the

scattered points classified as water are tree shadows

according to aerial photographs; these data points have

spectral response similar to water and hence are misclassi-

fied.

With the same set of statistics and symbols, Fig. 5.8b

shows the classification results by using the conventional

one stage procedure with five of the six features* that were

used in the decision tree shown in Fig. 5.7. In this

set of results another type of error occurs, some areas

of water are classified as nonwater. It is difficult

to draw conclusions as to which classifier provides more

accurate results, however the decision tree procedure is

about six times faster in computation than the conventional

procedure.

5.3.2 Classifiers Designed by Utilizing the Sequential
Clustering  Approach

ExReriment 5.6 In this experiment, the objective of

z classification was to detect the change in size of a lake.

MSS data gathered from the same area in two different season:

were overlayed The data gathered on one date which was

associated with high water level were first clustered into

*One of the three features CH.{4,5,61 of Fig. 5.7, for
water subclass classification was not used.

r

I

S	 '.

I

g'	 k



^rra4p	 ae ea,,.1	 1	 rn 1
41.1.1 lll^ll^rar	

]]EE
	 PP

^?{^ g ^?' 1i'	 ^°CEO . i.°:liii n+.	 .c4

IlI	
^ l	 1	 u 'L

•	 '	 11! ♦ 	 ,	 {'' 1 1 .1 ' '	 !+	 ^.rl' . u:'!
`	 ^!llNef'f	 +fire'	 I!	 +1"

^I^' -
	 -_ .. ^lilil^l	 nrl;^''	 rll iEix1E

RE

lll+r	 -.	 I,	 !1E	
111

tS fill. 	 it	 ri

'	 e	 ..Ir'^1fu!! li' 	
rlt',t,	 e

... 11 •!::	 Ill	 / i i.
	 ^	 !	 -E

- 
^ 1 i^ -. II_ 1	 •`	 • ^jl3j;y 

^^^ 1	 1 ^EiE e1	 r	 +.	 +	 e
.. _	 1^' ••••	 _ + +`- Cull.'.+	 1	 .

(i-.

I^,I	 rfE! ll	 '' 4 1
	

lore, n

^11.^- -	
I ^ lrl1-^	 " ..11`rl,^+ ^ri—

rrtl^,^^t
	 r	

. +	 r

I ts / I^i 111 lltll 	 —_ __..^_— f/Ml^t'! -

, ..

'^1: 111. III	 _,-.«..-.;1- ^;!	 t ^++ ^

	
' At,

4 -^
1 :Ir	

1'	
I!	

'	 - •' IT'} i'i 	
^i111t-

.rdl.d	 as t!b r	 1	 111 l
,!•1.4 Ill.11.rla

«::i 1: Mn
an

qf+ is	 R'^ ^^ ^ t

Slit.

SigI.NSafMw.

It

."	 ^ fee'	
^ ! r

=	 wi.t	 —	 4	 .'	 ^ 1
!

rrr^r	 _

-r	 +.. rwi w	 ..

-	 -	 Wit! ,E	 ^............

•	 ""'^'Itlleele !

W
I-+

Figure 5.8a Classification Results
Using the Classifier
Shown in Fig. 5.7.

Figure 5.8b Classifier Results Using
a Conventional Classifier
(5 Features).



i

92

three spectral classes. Through the clustering map,

one of the cluster classes was observed to correspond

accurately to the lake area. Next, a part of the area

identified as lake was further clustered into three spectral

classes using data gathered on another date; the area

selected for clustering was known to have been partially

covered by water at that time. After these two steps, a

two level decision tree classifier was designed. The re-

sults of classification are shown in Fig. 5.9a, where the

three classes displayed are water, wet soil and bare soil;

the other categories are displayed as blank. The same

results are displayed in Fig. 5.9b, where the changed area

of water (bare soil) is displayed by dots, the unchanged

(includes water and wet land) is displayed by character "W",

and the other unrelated areas are displayed as blank. This

experiment shows one of the applications of the decision

tree classification approach.

As mentioned in Chapter 4, instead of clustering, a

supervised learning scheme can also be used to obtain the
I

statistics of spectral classes and so to construct the

}	 decision tree in a sequential manner. Results similar to

those shown in Fig. 5.9 can be obtained by using this st

vised design approach.

5.3.3 Classifiers Designed by Utilizing the Optimizatic
Approach

As a result of the discussion in Section 4.3.1, wit
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given set of classes to be classified, there are two design

approaches to optimize the performance of a decision tree

classifier. The usefulness of these two approaches was

experimentally studied and the results are reported in the

following subsections.

5.3.3.1 Binary Decision Trees to Improve the Accuracy

The decision making procedure and the structure

of the binary decision tree have been discussed in Section

4.3. The key step to the classifier design then is to find

the optimal feature subset for each pair of classes. In

the following two experiments, a "without replacement

search procedure" [ 56,571 has been used to select feature

subsets for class pairs. The procedure first selects

the best single feature from the total set of M features

in accordance with a given criterion. Then the remaining

(M-1) features are scanned for the next best sing le feature

which results in the best pair when combined with the

previously chosen best single feature, and so on. The per-

formance criterion used is to maximize the separability of

two probability densities. The reason for using

this "without, replacement search" approach for feature

selection is to test the effectiveness of this suboptimal

approach which uses considerably less amount of computation

time than the exhaustive search method.
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Experiment 5.7 The data set of Experiment 5.1 was used

in this experiment. Classification results din terms of u

error) associated with the binary decision tree classifiers

designed with different feature selection methods are listed

in the last three columns of Table 5.2. Classifiers with

three, four and five features to classify a pair of classes

were constructed. This number is listed as the "Dim." (an

abbreviation of Dimensionality) in the table. The first

two columns under the "Binary Decision tree procedure" are

results associated with the "without replacement search"

method for feature selection, and the effectiveness of both

the divergence D and the Bhattacharyya distance B as

separability criteria have been tested. The last column

lists the results associated with the exhaustive search

method for feature selection*, with the Bhattacharyya distance

as a separability criterion.

Also li.sted.in Table 5.2 are results obtained by using

the conventional maximum likelihood decision rule. For

dimensionality three, four and V.ve, results associated with

Features selected according to maximum average transformed

divergence DT (Eq. 5.1a) and maximum average transformed

Bhattacharyya distance B T (Eq. 5.2a) are listed in the first

and seconO columns under the item "Maximum Likelihood

Procedure" respectively. Results listed in the third column

*Por a given dimensionality and a pair of classes, the method
searches through all possible feature subsets, and finds the
one with the highest separability measure.



i

96

Table 5.2 Results (% Error) of Five Class Classifica-
tion by Using Conventional, Maximum Likelihood
Procedures and Binary Decision Tree
Procedures.

DIM.

MAXIMU'4 LrY.T'LIIIODD

PROCEDUREE

DIVARX DBCISION TREE

PROCl1OUM

MAXIMUM

A%rZMGE

DT

MA]{TI4U!4

AVDRAG£

BT

BEST

RESULTS

SEARCII WITHOUT

AEPLACMENT

£XIIAUSTM

SEAUCII

BD B

3 22.8 18.1 18.1 21.4 21.1 17.7

4 20.2 18.5 1805 20.0 17.B 18.3

5 20.3 20.3 18.7 19.9 19.2 20.6

6 19.7

7 20.4

9 •20.0

9 20.4

10 20.5

11 20.9

12 20.9
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of the DIL Procedure are the }west results ever found by using

the conventional procedure, which were obtained by testing

several other feature subsets associated with close to maxi-

mum transformed distance values.

'

	

	 The best results of dimensionality 3, 4 and 5 using the

binary decision tree method are 17 . 7, 17.8 and 18.2; they are
e	

plotted in Fig. 5.10 as three circles. The dots in Fig. 5.10

are results using conventional classifiers. The three dots

jointed by solid curves are results in the third column (the

column of dimensionality is not counted) of Table 5.2, and

the others (except the result with Dim.=2) are from the

lower portion of the first column.

The results plotted in Fig. 5.10 clearly indicate that

for this case the optimal feature dimensionality for the con-

ventional classification procedure is three. A binary tree

classifier with this dimensionality for each test does achieve

the highest accuracy.

Experiment 5.8 A commonly used data set [58, pp. 6-71

described in Appendix D . 3, which is also selected from C-1

Flight Line, is used in this experiment. There are nine

spectral classes, two of which are subclasses of wheat.

The misclassifications between these two classes are not

counted as errors. The procedure of the experiment is

simpler than that of Experiment 5.7, i.e. classifications

associated with the third and the sixth columns of Table
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Figuro 5.10 Classification Results of Conventional ML
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Procedures for the Five Class Test in
Experiment 5,7.
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5.2 are not performed. The classification results of this

experiment are summarized in Table 5.3, and the values of

column 1 and column A are plotted in Fig. 5.11.

The net improvement in classification accuracy by

utilizing some binary decision tree classifiers is demon-

strated in both experiments. Especially in Experiment 5.8,

the binary tree classifier achieves the accuracy which can

not be achieved by any conventional means. As far as the

method of feature selection is concerned, these results sug-

gest that Bhattacharyya distance is better than divergence

as a separability criterion for a pair of classes, an inference

which can also be drawn from the report by Whitsitt and

Landgrebe [541. For many classes, the performances of

average BT and DT are comparable, probably because the vari-

ance of error rate, which is larger for a given D T than a BT

in the corresponding range, for an average D T value is reduced

by the averaging process.

5.3.3.2 Classifiers Designed Through the Search Approach
z

The search approach as described in Section 4.3.3

is for the purpose of designing decision tree classifiers with

better overall performances as compared to the conventional.

classifier. The following experiments are designed to verify
!	 whether this objective can be achieved. Experiments on air-
f

craft MSS data will be reported first. Simulated aircraft MSS

data are then used to test the validity of the search proce-

dure. Experiments on satellite MSS data are also reported.

i

F
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Table 5.3 Results (% Error) of Nine Class Classification
by Using Conventional Maximum Likelihood
Procedures and Binary Decision Free
Procedures.

DIM.

MAXIMUM LIMLI1I00D

PROCEDURE
BINARY DECISION

PROCEDURE

MMIMU14

AVERAGE

DT

I4AXII-JUI-I

AVERAGE

BT

SEARCH WITHOUT

REPLACEMENT

D n

3' 18.0 22.8 8.2 6.7

4 8.0 8.1 7.2 7.0.

5 7.6 7.5 5.7 6.7

6 7.7

7 -7.2

8 7.2

9 7.0

10 7.2

11 7.2

12 7.1
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Figure 5.11 Classification Results of Conventional ML
Procedures and Binary Decision Tree
Procedures for the Nine Class Test in
Experiment 5.8.
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In each experiment different classifier structures are

constructed by varying the design cptions. These options

are listed as follows:

1) The maximum number of features m used in each

stage of decision.

2) Distance criterion used in the clustering procedure

described in section 4.3.3.2. Two distance

measures have been used: the transformed divergence

DT and the transformed Bhattacharyya distance BT.

3) Threshold value Th to determine class similarity

(see Appendix B).

4) Tradeoff constant K of Eq. 4.5, which determines

the relative importance of accuracy to efficiency.

Experiment 5.9 The data sets of Experiment 5.8 were

used in this experiment. Feature subsets for the search were

selected using two approaches: one approach was to find a.

good feature subset first, then form all possible combina-

tions of features from this subset. in this experiment, the

criterion of maximizing average D T used to select a good

feature subset. The dimensionality was chosen as four, and

features {1,6,10,11} were selected. This resulted in a

total of 24_ 1=  15 feature subsets formed for search. The

other approach uses the "without replacement search" method,

seeking good feature subsets with dimensionality from one to

four for all class pairs. With a total of twelve features,

i
	 approximately six times as many feature subsets {78 and 79.

1



in Table 5.2) were formed by using the second approach as

compared to the first one.
Several different threshold values were used. T= 1)00

was the starting value for the threshold applied to B T or DT

This value was chosen from the past experience that goad

classifiers can be constructed with thresholds equal to or

higher than 1900. Therefore this starting value was used

throughout these experiments.

The classification results of the classifiers designed

are tabulated in Table 5.4, where columns labeled by "E(v)"

are classification results in terms of overall error rate;

T/To indicates the ratio of the classification.time (of
central processing unit) associated with the decision tree

classifier to that of the conventional classifier with m= 4.

And m, BT (or DT), T  and K are the four options described

previously. The second column labeled "Feature Subsets" are

the number of feature subsets searched in designiag a decision

tree classifier, and the numbers in the fifth column labeled

"ID" are to distinguish different classifier structures;

classifiers having the same "ID" have the same node structure.

An example of how the tradeoff constant K effects the

classifier structure is shown in Fig. 5.12 (only the

node structures are shown). With K the only variable

option, it is observed that as K increases the structure

approaches the one stage conventional classifier.

This is expected because using a larger value of K accuracy

is emphasized more than efficiency; if the dimensionality

1
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Table 5.4 Decision Tree Design Parameters and Associated
Classification Results of Experiment 5.9.

=SMIPTION CLASSIVICATION IMSULTs

UISTANCC MATUM P71RI1I IMIM 1 S m	 4 n	 3
In

I: T/To E 0 } T/To C (8 }CRITEMON 3UDSM5
10.0

1 0.72 10.3 0.53 17.0
20.0

1903
40.0 2 0.05 7.0 0.62 10.0

3.5 + 103.0 3* 100 0.0 0.89 10,0

20.0
1950 4 0.06 7.0 0.62 10.0

40.0

2000 - 3 1.0 8.0 0.69 10.0
BT,

10.0 5 0.60 13.7 0.47 1610

20.0 6 0.79 7.0 0.Se 16.7
1903

40.0 7 0.01 0.9 0.50 17.5

-1 100.0 0 110 8.1 0.69 10.0

• 2040
1950 9 0.72 10.4 0.53 11.2

40.4

2000 -** 8 110 8.1 0.69 10.0

10.0

20.0 1 0.72 10.3 0.54 19.6
1900

40.0

L+ 100.0 3 1.0 0.0 0.69 1010

2D.D
1950 1 0.72 10.3 0.54 19.6

40.4

2000 - 10 0.93 8.1 0.67 18.2

UT 10.4

20.0 11 0.77 11.0 0.53 20.0
• 1900

40.0

79++ 10010 0 1.0 O.i 4.69 11300

20.0
1950 11 0.77 1160 0453 20.0

40.0

2D pp - 12 0193 002 0.67 1002

,t

* Classifiers with T/To - 1 axa came as the conventional
IM classifier.

** when 'Th - 2000, any positive N will result in the oama

classifier structure (because ctdi) = to see Appendix C).

+ Feature subsets are combinations o€ four features L1, 6,
10, 11}

++ Feature nubreta are selected from all twelve available
features with the "without replacement search" re thad.
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problem does not arise, the conventional procedure with the
complete feature set is optimal in accuracy.. The performance

of the decision tree classifiers are plotted as dots and

circles in Fig. 5.13 (Triangles are results of next

experiment). The performance of conventional classifiers

with m= 3,A are also plotted for comparison purpose: they

are the two squares as indicated.

Polynomial curve fitting has not been used for the

results plotted in Fig. 5.13 (nor for later experiments),

because experiments at this stage are mainly

for the purpose of observing which set of parameter

values give desirable results; thus it is not very mean-

ingful to discuss the results in terms of "mean"

performance of error rate versus the efficiency. it is

observed from Table 5,4, that ST as a separability measure is 	
1

more effective than n
T	 T; and with B as the distance, Th = 1950

can be better than Th = 1900. Another observation is that

for a fixed level of accuracy, the classification time can
F

be reduced by using properly designed decision trees, i.e,
j	

the efficiency is improved relative to that of the conven-

tional classifier.

It is also important to verify the validity of the

search procedure, especially when empirical methods,

such as calculation of classification probabilities through
r

I	 statistical distances (Appendix C), are involved. Simulated
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0
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Figure 5.13 Performance of Decision Free Classifiers
in Classifying Real and Simulated Data
Sets.
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?	 data sets of multivariate normal distributions have been

used for an "accurate" evaluation, because real data of each

class (after unimodal refinement) are not exactly normally

distributed.

l
Experiment 5.10 Nine classes of data with 1 1 000 samples

for each class were generated according to multivariate nor-

mal distributions with means and variances the same as those

calculated for the classes in Experiments 5.8 and 5.9. Clas-

sifiers designed in Experiments 5.9 were used to classify

this simulated data set. The results in terms of efficiency

and accuracy are plotted as triangles in the lower portion

of Fig. 5.13,

i

	

	 The probability Pi that a classification path will pass

through node di has been estimated during the design (Eq.

j	 4.6). As a result . the total amount of computation time for

j	 a given design per sample can be estimated by summing up the

products of probabilities and computation time of all stages.

For all classifiers designed in Experiment 5.10, the esti-

mated units of computation time are plotted versus the
i

measured units in Fig. 5.14. The estimated values are

generally a few percent lower than measured values; this as

because in a real case P i is a sum of the probabilities of

correct and misclassifications, but in the empirical method
described in Appendix C the probability of misclassification

is not included in P.3.
 for the reason of simplicity and this

leads to the underestimation..
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The accuracy of classifying simulated data being

higher than that of real data is expected because real

data are not exactly normally distributed. For a given

dimensionality, it is noticed that with increasing efficiency

the error rate is essentially kept at the same level. This

suggests that the sequential partitioning of the feature

space by the designed decision trees is very effective. The

results plotted in Fig. 5.14, which demonstrate the closeness

of the predicted and the measured results, reflect the

validity of the method in approximating the classification

probability, which is an important step in the search approach.

Because the error rates do not change much, the effects of

the tradeoff constant K can hardly be observed; this will be

studied in later experiments.

The following two experiments are performed on ERTS-1

Satellite MSS data. The spectral dimensionality of this

data is four, and all fifteen feature combinations have

been selected for search.

Experiment 5.11 Twenty six spectral classes were ob-

tained in a forest area by means of an Eucl,edean Distance

clustering algorithm 143]. These classes were then grouped

into five groups: conifer, deciduous, agricultural area,

water and bare rock, which represent the basic coverage

types in that forestry area.. The statistics* of these

twenty six classes were used to classify an area of 12,467

*Data sets were provided by courtesy of Michael Fleming.

P_
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samples. one hundred and twenty four test fields with a total

of 773 samples were selected from available ground truth

information for testing purposes.

The input to the search procedure are options and the

class group information which modifies the zero-one error

matrix and also helps to determine whether further

classification of a set of classes in a node is necessary.

The assumption of equal a priori probabilities for all

spectral classes was also used in the design.

By utilizing the search procedure, a number of decision

tree classifiers were designed. A typical tree structure

is shown in Fig. 5.15. In the upper figure, the numbers

in brackets are features, and the others are class designa-

tions. For the nonterminal nodes, the classes in the

upper row are the representative classes, their pooled

statistics are used to represent that mode they are in.

In the lower portion of Fig. 5.15, the tree structure shown

above is drawn in terms of symbols, each of which indicates

a subgroup of classes. The mapping of classes, symbols

and groups is indicated in Table 5.5.

Classification results of the classifiers designed along

with their options are listed in Table 5.6. The form of tb.s

table is similar to that of Table 5.4 1 except items labeled

by 6N are added. The number 6N for each classifier

was determined by counting the points classified differently

by using the designed classifier with respect to the results

—0
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Table 5.5 Class Group Information of the Twenty Six Spectral Classes in
Experiment 5.11.

GROUP SUBGROUP SY14BOL SPECTRAL CLASSES COMPRISED 	 -

CONIFER PINE T lr 2f	 3r	 4 1	 23
I

SPRUCE, FIR S 5, 6, 25	 ----

DE CIDROUS ASPEN A 7r	 21 t	22	 ^.
Y	 -

OAK O 8r 9r 10r 24, 26	
w

AGRICULTURAL 11 r 12r 13, 14, 15, 16

BARE 17

MTER W 18r 19, 20

11^,



Table 5.6 Decision Tree Design Parameters and Associated
Classification Results of Experiment 5.9.

DESCRIPTIONS CLASSIVICATION MSULTS

DISTANCE

CRITBRION

P71MMITBRS

ID

M- 4 m M 3

TI, K T/To E (S) EDT T/TA E (8) 6N

BT

1900

5.0 1 0.33 6.3 245 0.23 5.8 532

10.0 2 0.26 5.3 191 0.20 5.4 382

20.0 3 0.42 5.2 99 0.30 5.4 346

4060 4 0.46 5.2 78 0.32 4.9 370

100.0

200.0
5 0.61 502 13 0.41 4.9 371

1000.0 6 1.0 5.2 0 ' 0.64 6.6 412

1950

5.0 7 0.42 5.0 110 0.30 6.0 367

10.0

20.0
8 0.35 5.0 104 04.26 6.0 353

40.0 9 0.43 5.2 91 0.31 6.0 353

100.0

200.0
5 0.61 5.2 13 0.41 5,5 371

1000.0 10 0.07 5.2 2 0.57 6.6 416

1.999 - 11 0.57 5,0 .11 0.40 '	 4 1 8 369

CONVENTIONAL 6 1.0 5.2 0 0.64 6.6 412

OT

1900

5.0 12 0.35 5.4 76 0.26 5.7 359

10.0

20.0
13 0.34 5.0 33 0.27 4.5 379

40.0

100.0

200.0

14 0.46 5.0 31 0.32 4.5 393

L60-	 0 15 0.S4 5.2 21 0.36 6.6 423

1950

5.0

10,0
16 0.36 5.0 34 0.26 4.5 379

20.0 17 0.37 5.0 33 0.27 4.5 379

40.0 18 0.39 5.0 35 0.28 X5..5 372

100 x0

200.0
19 0.44 5.0 31 0.31 4.5 394

1000.0 20 0.53 5.3 29 0,37 6.9 423

1799 .. 21 0.59 5.2 9 0,41 4.9 375

CONVENTIOtNAL G 1.0 5.2 0 O.G4 6.6 412

4w, 

7TEl-1'w^ 

a
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of using a conventional procedure with all four features.

The accuracies and efficiencies (measured by ratios T/To)

of Table 5.6 are plotted in Fig. 5.16a and 5.16b for BT

and DT respectively. Various values of the change of

classification dN versus tradeoff constant K are plotted

in Fig. 5.17. And finally the efficiencies T/T0 with

respect to the tradeoff constant K are plotted in Fig. 5.18a

and Fig. 5.18b according to the values in Table 5.6

for BT and DT respectively.

Comparing Fig. 5.16a and Fig. 5.16b, there does not

appear to be any significant difference in the performance of

classifiers designed by using D T or BT as the separability

criterion. Some of the results in Fig. 5.16b are better than

those of Fig. 5.16a. And this observation is contradictory

to the results shown in Experiment 5.7, there BT is shown to

be better than DT as separability criterion in finding optimal

feature subsets for a pair of classes. This contradiction can

be explained by the nearly equal effectness of average BT and

DT , which has been mentioned in the end of Section 5.3.3.1,

because in this experiment the numbers of classes in terminal

decisions are often much greater than two. It is also noted

from Table 5.6 that results of decision tree classifiers

with a maximum of three features in terminal decisions are

better than the results using a conventional classifier with

all four features, or the results using decision tree

classifiers with four features in terminal decisions.
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.This fact is probably due to the presence of the dimension-

ality problem. The slight improvement (within orie percent)

in the accuracy is not considered significant because only

773 samples have been tested. Nevertheless, the fact that

the overall performance of the classifiers designed by the

search method can be better than the overall performance of

conventional classifiers is again demonstrated.

Another way -1;o evaluate the performance of designed

classifiers is by checking the classification results point

by point (as connpared to the results made by a conventional

classifier). Here we actually assume that the decision boun-

daries of a conventional procedure using all features are

optimal. The purpose of the check is to observe whether the

boundaries of a decision tree classifier coincide with the

optimal boundaries. Since the class group information is

part of the input in designing a decision tree classifier,

only misclassification between different groups are counted.

These results are lasted in Table 5.6, and are plotted in

percentage quantity in Fig. 5.17(only results of m= 4 are

plotted for comparison) with respect to the tradeoff constant

K. The percentages of change are all very small, as shown.

It is also observed that the different 6N for design with

BT as a separability criterion is relatively more sensitive

to the change of K than those designed with bT.

The effic'.encies with respect to the input tradeoff con-

start K are also plotted (Fig. 5,18a and Fig. 5.18b). Again.

1
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those designed using BT appear to be relatively more sensi-

tive to the change of K.

Experiment 5.12 Twenty eight spectral classes are found

in the satellite MSS data in the San Jose urban area. These

classes are then grouped into eight meaningful groups as shown

in Table 5.7 according to ground truth information. The pro--

ceOure for this experiment is same as in Experiment 5.111

except that no test samples are available, so that only the

,resulting changes (SN) can be determined. In all 10,040

samples are classified. The classification results of

classifiers designed by the search procedure are listed in

Table 5.8. (The notations in this figure are same as

those used in Table 5.6.)

The fact that the performance of the decision tree

classifiers can be better than that of the conventional

classifiers is again demonstrated in this experiment. That

is for a negligible change in classification results, the com-

putation time can be greatly reduced; or for the same amount

of SN (or less than 37 0 of the conventional classifier with

m = 3) the computation time measures for decision trees are

in most cases le . than tiaat of the conventional classifier

(m=3).

5.3.3.3 Discussion

For the class of binary decision trees, feature

selection using the thattacharyya distance has been found



Table 5.7 Class Group Information of the Spectral Classes In Experiment 5.12.

FUNCTIONAL LAND USE	 SYMBOL	 SPECTRAL CLASSES COMPRISED*

COMERCIAL -- INDUSTRAL 1 1 r 2r 3v 14

210BILE I1MMS V 5

RESIDENTIAL M 6, 9 1 lOr 13, l5r 16r 17
18y 19, 20r 21

PARKING LOTS 8r 22

UNII4PROVED OPEN SPACE (BARE) -- ll

UNIMPROVED OPEN SPACE (TREES) / 23r 24r 25r 25r 28r 29r 30

IMPROVED OPEN SPACE (IRRIGATED) + 12

WATER 0 27

w

r+

*CLASSES 4r 7 are deleted.
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Table 5.8 Decision Tree Design Parameters and Associated
Classification Results of Experiment 5.12.

DR5C12IPTIONS	 CLASSIFICATION RESULTS

i
DISTAITCE	 PARAMETERS m = 3

Th	 K
to

T/To	 SN T/TO	 1511

1900 5.0 1	 0.34	 136 0.25 453

10,0

2	 0.40	 85 0.29 410

20.0

40.0 3	 0.44	 77 0.32, 446

100.0
4	 0453	 77 0.36 446

200.0
BT

1950 5.0

5049 5	 0.39	 32 0.28 374

20.0

40.0
6	 0.45	 24 0.32 389

10060

200.0 ^7	 0.52	 24 0.36 389

0.0 8	 0.80	 0 0+54 2031999

C04VSNTIONAL 9	 1600	 0 0165 370

1900 5.0 10	 0.39	 89 0.28 413.

10.0 11	 - 0.42	 Be 0.30 412

. - 20.0..

___

40.0 12	 0.59	 56 4.40 409

100.0

0.52 458
-
200.0 13	 0.79	 130

nT	
1950 5.0

10.0 14	 0085	 119 0.28 435

20.0

0-29. 41540.0  15^	 4.40	 112
 

u ^ 0635 366.100.0
.^.....^..

16	 ..-0641	 6

200.0

1999 0.4 17 0.50	 1	 37 0.57 390

CONMITIORAL 18 1000	 0 10a65 42D

Nag Ig
`^F Pa4.H QUALITY



to be more effective than using the Divergence. For decision

tree classifiers designed by the search method, the two

transformed separability criteria BT and DT seem to be
i	

of comparable effectiveness for feature selection. Since

less computation is required in calculating Divergence (for

normal distributions), this makes the transformed Divergence

DT preferable to the transformed Bhattacharyya distance BT.

By observing the results of previous experiments, for

general classification the recommended threshold value T
i

for the search can be set as 1950, and the tradeoff crnstant
i

X can be set at 20.0. If T is set as 1999 or its maximum

value (i.e., 2000), the classification results of the designed

decision trees d e almost the same as the results of conven-

tional classifiers; net improvement in efficiency is also

observed in these cases.

The cost of search is another important factor in

determining the usefulness of the search procedure. It is

roughly proportional to the number of feature subsets

searched and the number of classes. In Experiment 5.9

using-nine classes, to design a tree the average computation

time using a large computer (IBM 360/67) is about ten

seconds for fifteen feature subsets, In Experiment 5.11 and

5.12, the average computation time to design a tree is about

forty seconds.
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CHAPTER 6

CONCLUSION
7

1

6.1 summary of Results

The dimensionality problem in multiclass and multi-

variate classification has been studied both theoretically
f

}	 and experimentally. The results confirm the existence of

this phenomenon; thus one must come to the conclusion that one

must be cautious in choosing the feature dimensionality

for classification when there are only a limited number of

I	 training samples available to estimate data distributions,
f

Although reliable methods which enable one to predict the
I

optimal dimensionality have not been found, the basic

study presented in this report provides additional

knowledge to pattern recognition researchers and users

k	 concerning the effect of insufficient number of training

samples on classification accuracy.

The major objective of the entire work is to develop

multistage decision tree classifiers. The above study is one

of the efforts in understanding the utility of such

classifiers. Another meaningful result from these efforts

is the derivation of the upper bounds on logic efficiency

in multiclass classification * in a practical problem these
i^

bounds usually can not be attained, but they imply that



f7

i

k

4

	

125

some type of classification procedure can be more efficient

than the conventional procedure, i,e., the usual point-wise

maximum likelihood decision rule; and one of the suggested

procedures is the decision tree procedure. The study of

logic efficiency and the dimensionality problem actually reads

to some necessary conditions on efficient classification.

To design decision tree classifiers, several design

approaches have been prcpcsed in Chapter 4. In the first two

approaches, human interaction is heavily involved in many

aspects. The performance of the designed classifier thus will

depend heavily on the experience of the person who designs

the classifier. In the optimization approach the decision

tree classifiers are designed by a preprogrammed process.

Man-machine interactions are mini.mfi zed, so that the need for

a highly trained analyst iz reduced, although the analyst is

still required to supply certain parameters and training sets.

There are two separate design procedures in the optimiza-

tion approach. one is aimed specifically at classifiers with

higher accuracy. The design procedure is very straightfortyard.

The other design procedure uses a heuristic search strategy.

Due to the difficulty in representing the tree structure and

the lack of theoretically verified method to predict the

classifier performance, several, empirical methods have been

incorporated in the search strategy. And the strategy as

can be noticed involves many different procedures. Both

of these facts raise difficulty in verifying the validity

of the search strategy. The basic point is that when both
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a practical solution and theoretical perfection can not be

achieved simultaneously ? then one tends to choose the former.

Through the experimental results, the fact that the

performance of classifiers designed by the search procedure

are better in most cases than that of the conventional

procedure is demonstrated. Also one can observe the fact

that performance does change with respect to different

input parameters in a predictable manner.

6.2 Suggestions for Further Research

Predicting the optimal feature dimensionality is an

important step for optimal classification. Other approaches

which have not been investigated in this workr such as

analyzing the principle components, can be pursued.

The bound on logic efficiency suggests another type of

efficient procedure. That is the block or sample classifier.

At Purdue University, several kinds of sample classifiers for

remote sensing classification have beer, studied E59--611

or are currently under investigation. Generally, they classi-

fy many resolution elements at a time, and in general the

classification accuracy is improved because sample statis-

tics provide more information than a single data vector. A

systematic approach to design block classifiers which focus

on higher classification efficiency also can be proposed

for further investigation.

Several approaches towards the design of decision

tree classifiers have been studied in this report. All of
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the designed classifiers are point classifiers, and con-

text information has been ignored in classifying unknown

samples. Since the class designations of successive samples

in multispectral remotely sensed data generally are not

independent, context information is certainly very helpful

in further improving the classification accuracy. Thus,

how to extract the context information and then utilize

it in point classifiers (one-stage or multistage)

can really be a very . interesting and rewarding research

project.
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APPENDIX A

A DERIVATION ON DIMENSIONALITY PROBLEM

A.1 Derivation of the Mean Square Error of the Likelihood
Ratio

if the probability densities are estimated quantities,

the likelihood ratio which is a random variable of the random

sample X does not equal to its true value. The mean square

error of the ratios calculated based on the estimated densi-

ties will be approximated in the folluwi.ng derivation.

Assuming Xi , i=l,...,n are independent identically dis-

tributed (i,i,d) random vectors from an unknown multivariate

normal distribution N(M,E), the unknown density function N

can be estimated through the statistics A and 2. They are

1 n
A = xa
	

Xi	 (2.1a)
^.=1

Cn	 ,. T

n^i G (Xi,-M) (Xi-M)
i=1

(2. lb)

where Xi is a (mxl) vector

and n is the number of samples from a known category,

assuming

n > m	 (A.1)

The probability density function f(M) of A is;

f(M) = N (M,nE)	 (A.2)

t:
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A
The distribution of E can be derived from the Wishart

Distribution [All by writing

= nl A

n	 A T
then the density of A =	 (X. -M) (Xi s-M) is

i =l

I 

A I 1/2(n-m- 1) e- 1/2 trAE-1
f (A)	

2 l/2nm ^m (m- l)/4 
I 
r 

I 

nit n r [l/2 (n+l^i})	
{A. 2}

i=l

for A positive definite and o otherwise	 y

For two classes with equal a priori probability, the

estimated log likelihood ratio is:

F(XIW1)
rl2 (X) = log ^

F(XIw2)
A A

where P(Xlw i }	 N(Mi,Zi) is the estimated probability density

function of class w i , with i=1,2. The true value of r l2 (X)	 1

is
P (XI W1)

r l2 (X)	 log

P (XI to

where P (XI w i ) = N ( Mi , E i ) are the true densities. The mean
^

square error of rl2(X) is written as

2	 2E [ (©r) ] = E [ (rl2 (X) --rl2 (X)) 1	 (A. 4)

ti
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The integral expression of Eq. A.5 is given by

2	 P1 (X)	 Pl (X)
E [ (Ar) ] = 112f P (M, Z) [P 1 (X) { logp2̂̂ ^ ) - loge- -

^Z

2(x)	 (m.)
+ P 2 W{10 .10 . 	-- log 	 ] d :dO

..	 P W	 P	 2(X) 	 ,.
1/2fP (M, Z) 

X 
[ Pl (X) +P2 (X) ] [log- 1-^^ logy- 2 (^) ] dxc3s2

si

(A.5)
h

where SZ indicates the estimated parameters, M and E denote

the estimated mean and covariance respectively. And Pi(^.)

stands for P (Xlwi ). The factor one half is included because

of an assumption:

P ( w1 ) = P (w2 ) = 1/2	 (A. 6)

Eq. A.5 can also be written as Eq. A.7, in terms of

the cross product and the square of the logarithmic quanti-

ties, i.e.

E[ (Ar)2]
	

Ec + Es	 (A.7)

where
P W	 P (X)

cE W E [-^2 • (logp^^-) • (loge) ]	 (A, $a.)
n i x x	 2

P (X) 
2	 P (X) 2

E  = "EX [ (log 	 ^-) + (log 2 )C ) l	 (A. Bbl

and ,E indicates the expectation which is averaged
Q ,X

over the space of X and R; the integral expression of nE
n,X

has been given in Eq. A.5.



_  2
EC	

m -- 
2n2

(A.9)
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With a1 being independent of a2 , Eq. A. 8a can be

written as the product of two expectations. Further with

E  being independent of Mi (because the distribution of Ei

is independent of Mi ) and with Ei1 being approximated by
E la^ iE il (S i £ i - E i ) , the expectation of log

(pi(X) /Pi (X)) yields the approximated value m/2n. Thus E 

is derived as:

where n,m are the number of samples and features re-

spectively.

However, the evaluation of Es given by Eq. A.Bb is more

difficult. Theoretically, a closed form solution of E5 can

be obtained because the density functions of Mi and Ei are

known (Eq. A.2 and Eq. A.3 1 and the density function of

ii i I 
can also be derived from Eq. A.3), and the average over

[P1(X)+p2(X)] can be calculated by first factorizing the co-

variance matrices and then using the moment generating func-

tions of Pl (X) and P 2 (X). it can be seen that the final solu-

tion of this integration is very complicated. Instead of

carrying out this exact derivation, an approximation (error

quantities with variances lower than the order of 1/n are

a

^l

dropped)of Es is calculated. First, we have

P l (X)
log

	
= log P 1 (Xl n)	 log P1 (Xl nA)

= 1/2 log E l J + 1/2 (X-MI) -El1 (X--Nil)

1/2 lag E1 1/2 (X-Ml) T 
E -1 (X Ml} (A. 10)
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Rewrite Mil Ei , with i=1,2, as

M 
	

Mi + am 	
(A811a)

A

E i ^ E i + SEi 	 (A. 1lb)

R
Wi ►:h M,E being unbiased estimators as defined by

Eq. 2.1, the delta"quantities in Eq. A.11 have the following

properties (suffix i in Eq. A.11 has been dropped)

E[6M] L 0	 (A.12a)

E [ SMSMT ]	 1/n E	 (A.12b )

E[60 i j ]	 0	 (A.13a)

E [ (SQii) 2] = 2/n aii	 (A.13b)

where Sa i, are elements of the matrix SE

With approximation on E-I givezi below

(E+SE) .l = E -^' -- E-1 SEE-1 	 (A.14)

Eq. A.10 can be expanded as follows',

P1(X}	 T	
-
Iloge c- = 1/2 (X-Ml-SMi) ( E l +SE1} M-1,11-6111)l

..1/2 (X-M1 ) T E l- 1 (X-Ml) -=1/2 log

IE1+o^l^

1/2 (X-Mi-SM1) (E l-1- z l- SE 1E ir l } (x-M1--SMi)

-1/2 (X-M ) T  - (X^-M ) -1/2 lag
1	 ^.	 1	

IE1+6Z1l
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(X--M1) TE1_1SM1 +1/2 SM1E1r1SM1

"1/2 (X--M1--SM1; El-1SE1E1^1(X--rs1--$Ml)

E
1/2 log --- l	 (A. 15)

^E1+SE1)

Assuming n is large, in approximating the expectation

of the square of Eq. A.15, only products of the lowest orders

j	 of the delta--quantities are retained. Thus we have

^	 P (X) 2

SEX [ 
(logy, t^-1 ] = E1 + 1/4E2 + 1/4E3 + 0(n_2 	 (A. 16)

I
where

I E1 = ^E [ (X--M1 ) TE 1_1 SM1 SM1 El (X~M1 ) ]
S3,X

2
E 2 r ^E ^{ (X^Ml ) T E 1_1 SE 1 E 1_ 1 (X_My) } }

S^, X

1E +SE ( 2
E3 = „E [ ( log--E—	 )

St,X	 1

'Notice the cross products of terms in Eq. A.15 are not

included because they have zero expectations. The quantities

El , E2 and E3 are then evaluated in the following manner:

E1	
A  

E (X"Ml) 
TE1-1SM1SM1TE1 --1 (X" M1 ) ]

P,X

EL (X"M1) TE1-1{E (SMZ SMIT
j }E lrl (X-M1 ) ]

1/n E ((X-M1 ) TE 1r1 (X^Ml ) ]
X

1/n x 1/2 !X {P1 (X) +P 2 (X) ] C (X-Ml) TEl-1 (X Mx) I dx

W _
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For Xew1 , the quadrat i c tern, in parenthesis is of chi-

square distribution with m degrees of freedom.

So we have

fpl (X) f (X-Dll) T E 1-1 (X-M1 ) Idx=m	 (21,17)

For XeW2 , the result of integration will be

XP2 (X) [ (X-M1 ) T E 1
-1

(X-M1 ) Idx

2 log I Z21 + tr E2 zI-1 + (DIl-V72) TE1-1(M1-M2)

which is derived through the use of moment generating

function. The method is described in Ref [51, pp. 63-65.

Combining Eq. A.17 and Eq. A.18 1 we have

E1 = Lnjm+2log E 2I +'trE 2 E 1-1+(m -14 )TE1-1(1.11--1.1.
(A.19)

The quantity E2 will be calculated by first introducing

the orthonormal matrix 0 which satisfies:

01TEi(Di = h 1 and 01T01 I (A.20)

where Al is a diagonal matrix. Using 0 as the matrix for

linear transformation, let

(X'-Ml ') = '41(X-M1)
	

(A. 21a)

6A 1 = ()ITSEo1	 (A.2lb)

Inserting the unit matrix of Eq. A.20 into E 2 , with the newly

defined terms of Eck. A.21, E2 can be written as
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2
E2 = "E [ { (X' --MI I ) A1_16A1A-I (X' -Ml ') ) j

arx

	

- E I 	 J
^ (xi ' -mli ' ) 

(xZmlj `) SAlij}2]
AI Xi =1 =l 	 Ali?Nlj

Eq. A.13a implies E[SAlij I = 0. With each 6 ^ij being inde-

pendent with another, the above equation is simplifed as

shown below

	

E [	 tXi'_mli)2(x.'-mlj')2SA2Iii	 (A,22)2 Z,X i-^, j=1	 ^ 	
Ali

The expectation of 02 is derived [Ref. 5 1 pp. 250-2511

as

E[ (SAij ) 2l = n ( Ai2Si j + AiA j )

where S ij is the Kronecker delta-function which equals

1 if i-j, and 0 otherwise. The suffix 1 of SA and A as used

in Eq. A.22 is dropped in the above expression. Substitute

the above expression into Eq. A.22, we get

	

E - 1 E [	 ^ (Xi ; ~ml .
^) 2 (xj ' -mij ') 2 

+ M 
(xi mli TO

2 n X 
i=1 j=l	 Ii Alj	 i=l Ali2

m (x. r--m 13.')z 2	 m (x. T-m l)41 E [ ( 
X	

z	 ) + 1	 z	 li	 ]	 (A.23)
n X i=1	 Aij	 i=1	 Ali

When quantities in the bracket of Eq. A.23 are averaged

with respect to P1 M), the integration can easily be evalu-

ated. This is because the first summation is of chi--square

distribution with m degrees of freedom; and in the second

summation each term is the square of a random variable of

chi-square distribution with one degree of freedom (for Xewlr

i^



with the orthonormal transformation, %.' is now uncorrelated

wi th x j^ for i^ j) • Thus
I

E2	 2n [ (M +2m) + m (1+2) + E 2 r

2n (m2+5m) + E2 '	 (A. 24)

where

X '	 iwl	 li	 i=1	 X2i

(A. 25)

The integration of Eq. A.25 is rather difficult to

carry out; to simply the calculation the assumption of

approximately equal covariances has been made, i.e..

	

E 1
 n F. 	 (A. 26)

Eq. A.25 when solved with E l = E 2 , gives

E2	2n[(m2+2m+4D'+D'2+2mD')
e

M (mii-m2i )'	+ (3m+6D'+	 }]
i=l	 7► 2

M (mr m^ } 2

	

-- 2n [m2+5m+10D' +2mD' +D,2+	 li 221 ]	 (A.27)
i

where Ai are the eigenvalues of the common covariance E
r

mki , 2=1 1 2, are the components of mean

vectors in the transformed space.

and D' = (M1_M2
) TZ-1 011-M2} is the divergence of two

normal distributions with equal covariance.



With the assumption of Eq. A.26 1 an approximation can
I

be made for E 2  of Eq. A.25 1 i.e.

N
E2^ -- 2n (m2+5m+10D+2mD+D^) 	(A.28)

where D is the Divergence of two multivariate normal
1

distributions as defined in Eq. 2.9. Notice the last term

of Eq. A.27 has been dropped because the summation is less

than D2 and most of the other terms of Eq. A.28.

Substituting E2 into Eq. A.24, E 2 is now expressed

as follows

E2 = 1n(2m 2+10m+2mD+l0D+D 2 )	 (A.29)

Finally, for E3 assuming the delta-quantit y. iX are

small compared with A, we have m

1E1+SZ11	
i111(XIi+S^1z)

log	 -2i_ og mI	 1 ^ A
i=1 li

log
a.^l	 li

M 8^1i

i^ 7li

Substituting above into E3,

E = E (( 
18h^i)2]

3	 ni x 	 i=l
m SA 2

= E	 £ (^
^ i=1 Ali

m 2

i=1 n

2mn

(A.30)



Eq. A.30 is obtained because 6A  and VL i are uncorrelated

for ip63 , and with E [ d X j ] = 0 r E[601=
2 _  according to Eq. A.22.

With El , E2 and E3 approximated, Eq. A.16 can now be

expressed in terms of n,m and statistics parameters. An

pression similar to Eq. A.16 can be obtained for the ex-

pected value of the square of log[P 2 (X) /p 2 (X)). By adding

them together, we get

P (X) 2	 P (X) 2	 2
E [ (Ar) 2 W ,E [(log e	 ) + (loge , 	) I
X2n

2n (3m+2D)+ •n(2m2+10m+2mD+10D+D2)

+ L•4n + 0 ( 1)
n

(2m2 +20m+2mD+14D+D 2 ) + 0( 2)	 (A.31)
n

Eq. A.31 is the approximate averaged mean square

error of the estimated likelihood ratio r 12 . Several as-

sumptions on which the approximation of Eq. A.31 is based

are summarized as below:

.1) P(XIwi ) - N(Mir£i)

2) P (ca l )	 P (m2)	 2

3) nl = n2 = n and n> m

4) El = E2

In case the covariances are known, i.e. E i=E i , better

approximate solutions can be derived. The derivations are

given as follows:
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With SE i=O, Eq. A.15 can be written as
ii

P. (X)
I	 log	 = (X-M	 i)E ^l$M	 i+ l SM E 

	
SM.

i
i,	

i{X)	 1	 2	 1	 z

Substituting the above expression into Eq. A.S., the

}	 value of E equals -- 2M2
	

The expression for E is now
c	 n	 $

evaluated as

P (X) 2	 P (X) 2	 2
Es	 [ {log P̂ ^) + (log 	 2m2

.^,X	 1	 2	 n

2 rp
2F (3m+2D) +	 E [ WK. E il ami } 2I

i=1 ^

Since SMi has the density function N(O,nE i ), the ex-

pected values of above equation can be evaluated. So we

get

1	 1 m2+2m

Es = 2n (3m+2D) + 2 (	 Z )n
Substituting Es and Ec into. Eq. A.7 we have

E [ (or) 2 ] A	 3m+2D + M2 +2m 	 m2
E_E	

2n	 2n2	 2n2

= 3m+2D + 2	 (A. 32)
2n	 n

Eq. A.32 is the exact expression for EC(or) 2 I with known

covariances.

A,.2 Two Class Classification With Equa l Covariance

With equal a priori probability, the logarithmic value

of the likelihood ratio of two normal distributions with

equal covariance is given by;

.I
i^
it
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P(X w1)

r12 (X)	
log

P(X W2)
i
i

(M1-M2 ) TE" 1X - I(M1+M2 ) TE-1 (M1-M2 ?	 (A.33)

f	
The maximum likelihood decision rule is set to be

0	 Xswl

r12 (X)	 (A.34)< 0	 Xsw2

Since X of a given class is of multivariate normal dis-

tribution, from the expression of Eq. A.33 it is clear that

r12 (X) is also normally distributed. The mean and variance

of r12 (X) are calculated as below;

EIr12 (X) I Wl] - ^EIrl2 (X) I w 2 ] - D/2	 (A. 35a)

v (r l2 (X) l wlI a VIr l2 (X) I w 2 ]	 D	 (A.35b )

where D W (M1-M2 ) TE 1 (M
1-M2 )

In this special casep the probability of misclassifi -

cation e can be predicted according to

e - ere (- ^z )

x
a2

where erf(x) = I l e- 2 da

When density estimation is involved, the estimated value

of rl2 (x) becomes

n	 n w n.,1 1n n ^, n n
rl2 W. = (M1-M2 ) E X-Z {Ml+M2E- ( M1 -»M2 )	 (A.37)

where the estimated parameters Ni i and Zi are computed accord-

ing to Eq. 2.1. The mean of Eq. A.37 can be calculated as
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E[r12 (x) m 1 ] - --E [r ig (X) w 2 ]	 D/2	 (A. 38)
ii

i^^ 	 A	 A

Assumption that Zi is independent of Mi is made to obtain

the above expression. The variance of Eq. A.37 with the

mean given by Eq. A.38 can be calculated as
i

j	 Vjr12 (x) wi l	 [rl2 (x) wi ] + E{ ( Ar) 2 iwi ]	 (A• 39)
x
7

u

For equal covariance, we have

E[(Ar) 2 1w ] = E  (Ar) 2 !w ]^.	 2

With the above expression being written as E[(Ar )2]r

substituting Eq. A. 36b into Eq. A.39, we have

v{rl2 (X) j w 1 ] 	 V [r12 (X) , w2 ] W D+E j (Ar) 2]

So finally we arrive at

D,/2.
s = erf { -- -	 )

{D+EIAr ]}

That is

'	 1 1	 E [Qr2] r2s	 erg (- 2 { D + ---------} )
D

Reference	 %

[All T. W. Anderson, An Introduction to Multivaria
Statistical Anal 	 John Wi .->.y, X X.; 195 9.

(2.11)



APPENDIX B

A NONSUPERVISED CLUSTERING PROCEDURE

B.1 Clustering Procedure

The nonsupervised clustering procedure which was used in

the search method to design a decision tree classifier belongs

to the class of graph theoretical methods for cluster

analysis [Bl]-[B4]. in the graph theoretical method,

starting with a similarity graph which is in the form of

a binary matrix B = [b ij ] (such that b ij =1 means elements

i and j are similar), a sort strategy generally is incor-

porated to find sets of subgraphs which satisfy certain

given criterion. If matrix elements b ij =l are scattered

in the binary symmetric matrix B in a random fashione the

procedure for sorting will be very complicated. Boweverr

if elements of value 1 are all condensed along the diagonal

of matrix Be the cluster sorting procedure can be simplified;

that is, one can simply locate the "bottlenecks" along the

belt of 1's and thereby extract cluster information.

Assuming the binary matrix B is obtained by applying a

threshold to distances, to transform the original matrix into

the one with elements l's condensed along the diagonal is the

same as rearranging the points into a new sequence such that

points within a cluster and neighbors in the sequence. To
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achieve that objective, the procedure for rearranging the

point sequence is described below:

Step 1. For n points, one may form an (nxn) distance

matrix D=[dij ] with a prespecified distance function.

Step 2. Set i=l. Initialize an n-vector u(i)=[ul(i).

u  Wl such that

u  (1)=0	 for all j=1r... ,n 	 (B.l)

and define Q=(g l , ... rgn) as the initial index sequence, with

qj~j	 for all j=l,...,n

Step 3. Find index K out of 1, ... ,n such that the

k-th rowsum of matrix D is a maximum. After K is found ex-

change the values of q l and qk r so one will have ql=k and

qk=l for later steps.

Step 4. Increase i by one. Set

u  W - a u  (i-1) + dga_lq j =i, . , . ,n	 (B.2)

where a is a constant 0<a<l.

Step 5. Find index K, such that

uk (i) = Min uj (i)	 (B.3)
i<j<n

Exchange the values of q  and q i as step 3 did for ql and

{	 gk`

Step 6. If i is less than n, repeat step 4, otherwise

I proceed to next step.

Step 7. Rewrite D=[dij ] according to the newly ar-

ranged index sequence Q. That is

Df = Id
ij

f
with	 di j	 d  g 	 (B.4)
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Step 8. Apply threshold to d! to obtain a binary

matrix BW[bij3 such that

fl if d. j < Tn
b.. 

=1.	
(B.5)

^'^	 0 otherwise

where T is the threshold value.

The resulted binary matrix B has the property that

elements with the value of 1 tend to cluster along the

diagonal, thus simplifying the sorting procedure. An example.

of such a binary matrix B is shown in Fig. B. lb while the

original distance matrix is shown in Fig. B.1a. The method of

extracting clusters may differ for different cluster cri--

teria, for our purpose to partition the feature space,

the scheme will be explained as follows:

Suppose the binary matrix B of Eq. B.5 is "condensed",

i.e.

if birl then bkt=l for all i<k<j, i<OeA

Then pairs of distinct vertices (i,j) (i<j) are selected

for each occurance of

b. =0
I	 ^j

and	 b,	 b	 b.	 ^i	 (B. 7)
1 r^-

1.... i
'" l r j -1^ s.+lr3

E

After m such pairs (ai ,b i ), i=1,... ,m are selected, order
r

those pairs such that a  > a  for all i>j. Examine those

pairs with i from 2 to m, delete some pairs to make the

remaining pairs (a j ,bj }, j^1,...,R ( k<m) satisfy:

E

j

+I
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ISO

i 1 2 3 4 5 6 7	 8	 9	 10

j	 1 0
2 160. 0
3 829 1446 0

F

`	 4 175 1010 322 0

5 1723 40 645 1253 0

6 1880 126 970 1583 42 0

7 2000 1287 1938 1993 1342 1219 0

8 1486 336 222 961 276 489 1830	 0

9 817 2000 1943 1547 2000 2000 2000 1995	 0

10 89 1187 434 14 1402 1689 1997 1109 1351	 0

Figure B.la	 A Distance Matrix for Ten Objects.

THRESHOLD = 1700
CONSTANT ALPHA = 0.6

9 1 10	 4	 3	 8 5	 2 6 7

9 1 1	 1	 1	 0	 0 0	 0 0 0

1 1 1	 1	 1	 ]. 1	 1 0 0

10 1	 1	 3.	 1	 1 1	 1 1 0

4 1 1 0

3 o 1	 1	 1	 1	 1 1	 1 1 0

8 0 1	 1	 1	 1	 1 1	 1 1 0

5 0 1	 1	 1	 1	 1 1	 1 1 1

2 0 1	 1	 1	 1	 1 1	 1 1 1

i	 S 0 0	 1	 1	 1	 1 1	 1 1 1

7 0 0	 0	 0	 0	 0 L	 1 1 1
a

Figure B.lb The Binary Matrix (Similarity Graph)
Obtained by Rearranging the order of
Objects and Applying Threshold on

`i Distances.

k

AL

it
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1aj < b	 for all j-1, ... ,R

and	 b7	 aj+l
	 for all =^., ... , Rm^

By adding two numbars 1 and m, we may form new 24 1 pairs

from the old 9 pairs. These newly formed pairs are

(1,a!) I (b' a s ) I ... (b "Pm

each pair given above form a set of core points, e.g. a pair

(i,j) gives the set gi ,g i+l , ... ,qj where chi is an element

of the index sequence Q mentioned previously. Finally, for

each core a cluster is formed by grouping points similar to

at least one of the points in the core.

Referring back to the example in Fig. B.lb pair of

indices (1, S) , (2. S) , (6,10) satisfy the condition in Eq.

B.7. And according to Eq. B.8, the selected pairs* (1,5)

and (6,10) give a new set of pairs (1, 1), (5,6) and (10,10).

The corresponding points for each pair can be found in the

sequence Q (on top of the matrix in Fig. B.1b) as (9),

(3.8) and (7). So, essentially three cores can be found

from the binary matrix shown in Fig. B.1b. For each core,

a cluster can be formed by having all the points associated

with the core elements. The three clusters formed are

( 9 , 1 , 10 , 4 ), (1,10 1 4,3, 8,5,2,6) and (5,2,6,7).

A flowchart of the clustering procedure follows in

Figure B.2.

*The pair (2,9) has been omitted because the rote number 2 is
less than the column number 5 in the proceeding coordinate;
but (2,9) itself gives the set of cores (1,2) and (9,10)
which correspond to the points (9,1) and (6,7) as previously
stated.
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RT

FORM ( n x n)
DISTANCE MATRIX

D-Edii7

INITIALIZE
SET I: I, AND
qj=j	 uj(i)=0

FAR ALL j= I,.. n

FIND THE (FURTHEST)
POINT K, SUCH THAT
THE KTH RAWSUM IS
A MAXIMUM EXCHANGE
VALUES OF q  I qK

I	 i=1+1  I

FIND q•, , SUCH THAT
qj IS 260SEST TO qI-I
ACCORDING TO u j (I) aL
uj (1-1) + dq i-1 qj

EXCHANGE q, ,q, VALUES

YES

NO

FORM B-[ b1j a WITH
I IF dqi qi <T

0 OTHERWISE

DETECT CLUSTERS FROM B

STOP

Figure B.2 A nowchart of the Clustering Procedure.
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In some cases if the binary matri.s does not sati.efy

the condition given by Eq. B.B, i.e. there are 9's within

the belt of 1 1 s. Some modification has to be made. The

simplest would be to fill in those undesired O's with 1's

such that Eq. B.8 can be satisfied. Actually the first

seven steps to transform the distance matri., is designed to

reduce such possibility of modification.

B.2 Theoretical Explanation

The procedure for extracting clusters from the rearranged

matrix B which satisfies Eq. B.8 is much simpler than the

procedure (Step 1 through Step G) to rearrange the sequence

of points. The steps involved in the former procedure in
I

fact are logic operations. It is seen that the final L+l

pairs selected which satisfy the condition of Eq. B.8 give

the nonoverlapped and mutually disassociated point subsots.

In order to obtain such a "condensed" matrix as described by	
j

Eq. B.8 for cluster extracting, after the first seven steps

of the point rearrangement procedure, the resultant distance

matrix D' of Eq. B.9 must have the property that the small
i

values of di, will be located closer to the matri lz diagonal

than those large values. Explanations will be given in the 	
11

following paragraphs as how this property can be achieved by l

these steps of operation, and the rationale of these steps is.

Eq. B.2 is in the form of a first order autoregressi.ve

process $B5]. it is a weighted sum of the distance from

point qj to all points (gl,g2,...,q„l) previously arranged.

i'
^,1
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This statement becomes clear by expanding Eq. B.2 through a

backward substitution of Eq. B.2 itself. i.e.

u  (i) = aui ( i--1)+dgi_lg7

7	 gi.,2qi 
I+dqi_lgj

= (Xi-2dq 1 
q 

7 +ai-3dq 2
q j	 ^,

+...+dq.^l 
qj	

(B.9)

where the index i refers to the fact that the i-th position of

the sequence is to be determined and index j denotes a cand-4

-date point for the i--th position in sequence Q. According

to Eq. B.3, we observe that the i--th point in sequence Q is

chosen to be j such that the value of u,(i) is a minimum.

This means that j is the point closest to the previously

arranged points (gl,•••,gi--1), where closeness is measured

by the weighted distance given by Eq. B.9. After all points

have been rearranged, the final sequence Q has the property

that for each point qi the value

i	 ^.= uq. M= air2dq 
1 ^

	

q•
+....+d q

i_ lqi	
(B.10)

is a minimum with respect to all q j , with j=i, i+1, ... ,n.

Before explaining how to determine the value of a (which is

discussed in next section), the reason why minimizing u(i)

will lead to the "condensed" binary matrix (a band of one's

along the diagonal) will be explained in the following.

Referring back to Eq. B.10 1 the quantity auq i , can be

written as following



au
q
	cx^^ldq q +...-^ dqi_^
^.	 1 i	 qi

--	 a
r I: =l	 gl:gi

Let	 d'..	 d	 define u^ = u
gygj	

i
	 qi

^-1	
1

j	 ui W	 i- ]^dki	 (B. 11 )
k=l

With D'=[d. 1, also dai=0, it is clear the u. in Eg.

B.7 is a weighted sum of elements of the i-th column of.D'
i	 1	 f

from the topmost d ii to the diagonal :'ement dii . From Eq.

B.11 the weighting constants for elements of D' are illus-

trated as following

2	 a m- ^
la a

l a	 a
 m-2

1	 am_3

	

.	 •	 .	 .	 .

r	 a	 e	 .	 .

With 0<a<l, from the above expression we observe that the

weight decreases as the element of D' is further away from

the diagonal. Thus minimizing Eq. B.11 will lead to the

desired matrix D' in which the larger elements are placed

further away from the diagonal than those smaller elements,

w=

^i

y



156

because the weights are smaller away from the diagonal.

B.3 Correlation Property of the Series u(i) (=Yq (i) )
z

The correlation coefficient of u(i) and u(i-j) is

defined as following,.,,

Cov[u(i) ,u u -j )]
Yj Viu(i) ]	 V[u(i-j) ]

{E[ {uu(1 )2]EC(u(i-j)_ ( j"'^")z]11 2

i > or i-j > 0
	

(B.12)

Assuming the number of points is larger and the dis-

tances are uniformly distributed, we may approximately model

the series u(i) as an asymptotically weak stationary process

i.e. F [ u(i) ] =U	 for large values of i

and	 Elu(i) u(j)] = S(ji-J I)	 (B.13)

Substituting these expressions into Eq. B.8. We have

S (j 
i-j j) 

-U2

Y	 -	 (B.,14)
^i-3 I	 S(0)^U2

Let k= ji-jj, the above equation can be written in the

following form
S (k} 2

yk =	 (B.15)
s (o) -LT2

The three unknown quantities U, S(K)r S(0) will be

obtained by the following derivation;

Let	 A [di 
j I=d
	

(B.16a)

V [dij ]=cr2
	

(A.16b)
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i

Then

U = Eiu(i)]

i-1 i
E[ E aQ^ldi^^^i^

_

	

	 aQ lE^dir^/1)

Q^l

I	 =	 d

d
1--a

	

U = d,/(1--a)	 (B.37)

for sufficient large i and 0<a<l

To obtain the value of S(0), we may square both sides

of Eq, B.2 and take the expectation; then

S(0) = a2 S ( 0) + 2aUd •+ a2 + d2
i

The above expression is arrived at by substituting Eq.
1^2

B.16 into the term of ECd. 	
i) 

and using the assumption that
r	 ^

u(i-1) is independent of the distance dq q.=d. Re-
-1 i

i
arranging the terms, and substituting the expression in

Eq. B.17 for U, we have
2

(1-a2 )S(0) = 2ida + a2 + d2

d2	cs2
! So	 S(0) M	 2 +	 2	 (8,18)

i	 ( l^-a)	 1-- a

Finally for the value of S(K), we have
i

S(K) = Eju (i)uLi-k)]

as (K.-1) +
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lab

By an iterative back substitution, we get

2 K
S (K) = aKS (0) + 1 a	 aQ- 1

^,=1

2	 x
= aKS () +1 a 11_a

aKd2	 JCF2	 d2 (1-'' a K

~ (1-(X) 2 1- a	 (1-a) 2

(8.19 )

Substitute B.17, B.18 and B.19 into B.15

aKQ2	d2	 d2

1-a2 	(1-a)2 - (1-a)2
K	 a2	 c2	 d2

(1-a) 2 	1-a 2 	(1-a)2

i.e.	 YK	 aK	 (B.20)

This expression is arrived at by the assumption as pre-

viously stated that the number of points is large and dis-

tances are uniformly distributed, such that the series u(i)

in Eq. B.10 can be approximately described by an asymptotic

weekly stationary process. But if this assumption is not

valid, that is, clusters exist in that set of points, we

shall expect that the true value of Yk will not be a mono-

tonically decreasing function of K as Eq. B.20 shows. This

is because for a proper value of a, points belonging to same

cluster will gather as neighbors in the sequence Q, When the

point qi and its previous neighbors (with index less than 1)

are in the same cluster, u(i) will be a relative small value;
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conversely when qi and its previous neighbors are not in the

same cluster, u(i) will be relatively large. That is if

several clusters exist in the sequence and points belonging

to the same cluster are neighbors, we might expect a periodic

change in the values of u(i), and this periodic change of

u(i) will result in the nonstationarity of both SW and the

correlation coefficient yK'

From this discussion, it is clear that we might expect

the value'yK to drop below a certain significance let•el when

two points with indexes which differ by K do not belong to

the same cluster. if we model this decreasing of YK by Eq.

B.24, then the value of a is determined in the following

manner.

Assume T  is the threshold value, such that two points

with distance less than T  will be considered as belonging to

the same cluster. The probability that an arbitrary pair of

distinct points are in the same cluster is given by

	

p = P(dij <Tji0j)	 	 n(I	 (.	 bij]
	 (B.21)

i=l j=1

1 ifd..<T
where b	 ij	 n	 (B.2)ij 

5 otherwise

and n is the total number of points

The averaged number of points a point is associated to

(with distance less than threshold) is

M = n x	 p	 (B.22)

Because of the symmetric property, for a point in the
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sequence the expected number of associated points on either

side of that point will be half the value of n in Eq. B.22.

Set N equal to that number i.e.

N = 2 = n ^-'	 (B.23)

With the previous discussion, we know the correlation

coefficient yK aK should decrease to some insignificant level

as K approaches the number N. This is because as previously

discussed N is considered to be the expected limit that two

points belong to the same cluster. As a consequence, the

value of a can be determined by empirically setting the value

for insignificance as 0.1. This gives

aN - 0.1

i.e.	 a = (0. 1)
11N
	 (8.24)

with N being determined from Eck. B..

As the threshold constant T  appeared in B.22, two

approaches can be used to determine its value. One is sub-

jective and another is objective, depending upon the purpose
f

of the clustering.

For the objective approach, the threshold can be deter-

mined from the historgram of the distance distribution,

because if clusters exists, the distance distribution will

be multimodal.

.t	 For the subjective approach, the threshold is determined

f
j such that it is equal to the maximum distance that two points

are mutually associated. The maximum distance is usually de-

fined as a desired property of the result clusters,

'I
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APPENLIx C

METHODS OF APPROXIMATING THE CLASSIFICATION PROBABILITIES

Transformed Divergence D, '.Eq. 5.1a) and transformed

Bhattacharyya Distance BT (Eq. 5.1b) are used as seper-

ability criteria to cluster the classes into groups. The

theoretical aspects of these types of transform have been

discussed in Ref. 53 and 54. Empirical methods are used

to approximate the classification probabilities from those

distances, for the reasons mentioned in Section 2.1.2 that

there is no exact method to predict these probabilities.

Experimental results which relate the probability of correct

classification to the seperability measures DT and BT are

also reported 153] [54]. Some of these results are shown

here in Fig. C.l(a) and C.l(b). They are superimposed classi-

fication results of 2790 and 40,000 data sets respectively.

For each data set 2000 samples are classified, and the esti-

mated probability of correct classification i q then plotted

against the seperability measure. Also shown in Fig. C.l(a)

are the least--squares polynomial. approximation (of degree 3) ,

and the theoretically derived bound [46] on performance as

function of separability.

Clearly, there is no one--to-one relationship between

. probability of correct classification and the measure of

separability in both figures. But for the range of
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classification accuracy likely to be encountered in real

problems---say, 00 percent to 100 percent--the mean of per-

formance has an approximate linear relationship to the

seperability measures. Hence, approximations based on

this observation are made to predict the misclassification

rate, i.e.

C12 _ K1 (1 -DT /2000)	 (C. la)

or	 s12 = K2 (l -DT /2000)	 (C. lb)

where constants K 1 ,K2 are adjusted to be 0.32 and 0.5 re-

spectively, for the seperability measures in the range from

1000 to 2000.

These approximations are valid for two-class classifi-

cation. For more than two classes, the misclassification

rate is approximated by;
n n

Y	
. E j	 (C.2)^	 ill ^^^ 

p 
Z 3.

where s ij is given by Eq. C.1, and sii = 0.

pi is the probability that a sample is from

class w 

Y is a constant

The factor y (0<y<l) is included since the summation of

pairwise errors (of two class classification) is always

greater than or equal to the true error for multiclass

classification [33). It has been observed that in order for

s to be close to its true value, y should decrease as n (the

number of classes) increases. For this reason, Y is



i

165

approximated by:

Y = (n) 0	 R > 0	 (C.3)

This form is chosen such that y decreases as n increases,

and y is one in case with two classes. When the number of

classes is about 10, 0 is experimentally set as 0.7. For

other va l.u►as of n the same value of a is used for a rough

approximation.

In the case there are n classes in a nonterminal node

which has only m (zn) immediate descendant nodes, an (n:cm)

associativity matrix A = [ai,] can be formed according to

1 if class w. belongs to the 3-th immediate
descendant^'node

aid 0 otherwise	 (C.4)

The probability Qij of a point from class wi being

classified into the y-th immediate descendant node is

approximated in the following manner:

eij	
if a ij = 0	 (C.5a)

pi-ei if there is only one j such
Qij =	 that airl	 (C.5b)

a.
^^ a (pi-ei ) if aij=l and a iQ'1	 (C.5c)

n	
h

with	 eii = k£l	 E	ypiik(1-akj)	 (C.6)

M
ei =	 ei . 	 (C. 7)

j
1
l ^

and	 diz is the mean of the separabilities from class

w i to the "core" classes (Appendix m) of CF
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By using the clustering procedure explained in Appendix

B, a class can belong to one or at most two clusters. Thus

Eq. C.5 approximates all the possible values of Qij . Notice

that only the probability of correct classification is

approximated in Eq. C . 5b. The probability pi of a sample

from class w  in the a--th immediate descendant node di

(cluster C ] ) then is given the value of 0 i for the a priori

probability of a further stage. The probability P j appeared

in Eq. 4 . 6, that a classification path will pass through a

particular node d  is

n
P i 	 ,	 Q.	 (C.8)

^	

a
_ i=1 a.^ ^-7

And error rate E(dk) (dk denotes the nonterminal node under

consideration, i.e. the immediate: ascendant node which

generates m descendant nodes as previously mentioned) is now

given by:
n m

s (d k) = I	 X e	 (C.9)
i=l j=l
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APPENDIX D

DESCRIPTION OF DATA SETS FOR EXPERIMENTS

D.1 Training and Test Fields for Experiment 5.1

TRAINING FIELDS

CLASS RC
66000652 88N
66000652 120P
66000652 12B'P
66000652 13D RC
CLASS CORN1
66000652 118CN1
66000652 BA*CON1
66000652 CORN2
66000652 C
66000652 C
CLASS OATS1
66000652 OATSI
A6000652 0
CLASS SOY61
66000652 SB
66000652 SYB3
66000652 SYB3
66000652 SYB1
66000652 SB
66000652 SYB3
CLASS WHEAT
66000652 NHT
66000652 WHT2
66000652 N
66000652 W

357 399	 8
521 '573	 8
561 581	 8
613 635	 8
489 525	 8
361 399	 8
261 287	 8

753701 8
417 457	 8
581. 543	 8

125 149	 8
225 275	 8
645 699	 8
709 785	 8
761, 785	 8

585 693	 8
447 513	 8

173 217	 8
121 193	 8

5 5 8437
1 7 37	 8
205 217	 8

133 193 8
125 201 8

41 83	 8
53 g 8855
121 197	 6

205 213	 8
129 205	 8
165 217	 8

AREA CLASSIFIED

66000652
	

1	 850 4	 1	 220 4
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D.1, cont.

TEST FIELDS

TEST 1
66000652 8BH 357 399 61 97	 1
66000652 120P 521 573 173 217	 1
66000652 128P 561 581 1 29 C5	 1
66000652 13D RC 613 635 1 121 93	 1
66000652 SA 221 261 l 1 35	 1
660OU652 90 433 447 l 125 199	 1
66000652 138P 593 635 1 53 91	 1
66000652 A 705 725 1 125 197	 1
TEST 2
66000652 118CN1 489 525 1 65 lc7	 1
66000652 SA*CONl 361 399 1 5 43	 1
66000652 CORN2 261 267 1 37 69	 I
66000652 C 309 345 1 1 37	 1
66000652 C 701 753 1 205 217	 1
66000652 CORN2 401 419 1 119 187
66000652 CORN2 161 211 1 29 79
66000652 C 469 481 1 13 101
66000652 CORN2 589 641 1 5 41	 1
TEST 3
66000652 OATS1 417 457 1 7 89	 1
66000652 0 365 377 1 33 193	 1
66000652 0 581 593 1 125 201	 1
66000652 OATSI 329 339 1 129 193	 1
66000652 OATS2 537 553 1 25 107	 1
66000652 0 597 609 1 125 201	 1
TEST 4
66000652 58 61 89 1 41 97	 1
66000652 SY03 125 149 1 41 83	 1
66000652 SYB3 225 275 1 109 185	 1
66000652 SYB1 645 699 1 53 85	 1
66000652 SO 709 785 1 41 61	 1
66000652 SYB3 761 785 1 121 197	 1
66000652 SO 65 89 1 117 157	 i
66000652 SYB3 293 341 1 43 97	 1
66000652 SYB3 489 515 1 117 161	 1
66000652 SYB1 645 667 1 125 193	 1
66000652 SYB2 709 781 1 69 105	 1
TEST 5
66000652 NHT 285 319 1 109 193	 1
66000652 WHT2 585 693 1 205 213	 1
66000652 W 345 357 1 129 205	 1
66000652 W 497 513 1 165 217
66000652 WNT 349 397 1 109 123
66000632 M 457 493 1 165 217
66000652 MHT2 649 701 1 1 45

aw



65	 107 8
S37 69
s205 217

41 83	 8
129 165	 8
41 61	 8
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D.2 Details of Experiment 5.2

D.2.1 Field Descriptions

TRAINING FIELDS

CLASS C
66000652 11BCN1 489 525	 8
660OC652 8A*CON1 361 399	 8
66000652 CORN2 261 287	 8
66000652 C 309 345	 8
66000652 C 701 753	 8
CLASS S
66000652 SB 61 89	 8
66000652 SYB3 125 149	 8
66000652 SY83 235 265	 8
66000652 SYB1 645 670	 8
66000652 SB 709 785	 8

AREA CLASSIFIED

66040652	 1	 850 4	 1	 220 4

TEST FIELDS

T EST 1
66000652 CORN2 161 211 1 29 79 1
66000652 CORN 221 255 1 39 55 1
66000652 CORN2 261 287 1 37 69 1
66000652 C 309 345 1 1 37 IBA*CON1 361. 66000652 399 1 5
66000652 CORN2 401 419 1 119 387 1
66000 652 C 469 481 1 13 101 1
66000652 11BCNI 489 525 1 65 107 1
66000652 CORN2 589 641 1 5 41 1
66000652 C 701 753 1 205 217 1
TEST 2
66000652 SB 61 89 .1 41 83 1
66000652 SB 65 89 1 117 157 1
66000652 SYB3 125 149 1 41 83 1
66000652 SY83 235 265 1 129 165 1
66000652 SYB3 293 341 1 43 97 1
66000652 SYB3 489 515 1 117 161 1
66000652 SYB1 645 667 1 125 193 1
66000652 SYB1 645 670 1 53 85 1
66000652 SYB2 709 781 1 79 95 1
66000652 SB 709 785 1 41 61 1



CLASS C

CHANNEL 1 2 3 4 5 6 T 8 9 10 11 12
SPECTRAL 0.40.- 0.44 - 0.46 - 0.48 - 0.50 - 0.52 - 0.55 - 0.58 - 0.62 - 0.66 - 0.80 -
BAND 0.44 0.46 0.48 0.50 a.52 0.55 0.58 0.62 0.66 0.72

0.728;
0.8q 1.00

NEAW 04 .89 79.71 60.77 61.68 85.57 88 .14 63 .46 82.31 67.96 78 .26 98.95 78.10
STD. DEV. 5.53 5.31 3428 3.37 7.02 5096 3.94 8.10 7.5B 8.29 9.37 6.07

CORRELATION MATRIX
SPECTRAL 0.40 - 0.44 - 0.46 - 0.48 - 0.50 - 0.52- 0.5S - 0.58 - 0.62 - 0.66 - 0.72 - C.80 -
BAND 0.44 0.46 0.48 0.50 0.52 0.55 0.58 0.62 0.66 0.72 0 .80 1.00

0.40-
0.44 1.00

0.44-
0.46 0.90 1.00

O^46-
0.48 0485 0.87 1.00

h! 0.48-
0.50 0.82 0.87 0.88 1000.

O0.52O^f
0.80 0.88 0.92 0.90 1.00

00.55 0.68 0180 0.83 0.86 0.93 1.00

0-55-
0.58 0.62 0.75 0.82 0.87 0.91 0.96 1.00

to 0_58-
0.152 0.55 0.7L 0080 0.84 0089 0.88 0.92 1.00

0.62-
0.66 0.4B 0.64 0.75 0.82 0.83 0.84 0.90 0.97 1.00

0.66-
0.72 0.41 0.57 0.70 0.73 0.81 0.84 0.90_ 0.96 0.95 1.00

n.72-
0.80 0.02 0.02 0.00 -0.08 0607 0022 0.15 -0008 -0.17 -0001 1000

0.80-
1.00 -0.01 0.04 -0.01 -0008 0.07 0021 0.14 -0.09 -0.15 ^.02 0.82 1.00

W
V
O

II.2.2 Statistics of Training Sets



CLASS S

CHANUM	 1	 2	 3	 4	 5	 6	 7	 B	 9	 10	 11	 12
WC RAL 0.40 - 0.44 - 0.46 - 0.480050 - 0.52 - 0.55 - 0.58 - 0.62 - 0.66 - 0.72 - 0.80 -
BAND	 0.44	 0.46	 0.48	 0.50	 0.52	 0.55	 0.58	 0.62	 0.66	 0.72	 O. AO	 1.00
tREAN	 87.56	 82.6:	 62.74	 64.21	 89.86	 ga..31	 66.50	 88.14	 73.36	 85.53	 96.29	 75058

	

570. AEV. 5.05	 4.92	 3640	 3.24	 6.58	 0.35	 3.31	 5.93	 4.73	 5.50	 6.97	 4.$2

CORRELATION MATRIX

SPECTRAL 0.40 - 0.44 - 0.46 - 0.48 - 0.50 - 0.52 - 0.55 - 0.58- 0.62 - 0.66 - 0.72 - 0.80 -BAND	 0.44	 0.46	 0048	 0050	 0.52	 0.55	 0.558	 0.62	 O.bS	 Q.72	 0.80	 140
0.40-

	

0.44	 1.00
0.44-

	

0..46	 0.90	 1.00
0.46-

	

0.48	 0.93	 0.90	 1.00

	

00.50	 0.90	 0689	 0.92	 1.00
0.50-

	

0.52	 0.92	 0.91	 0.93	 0.93	 1.00

	

0.52-	 i

	

0055	 0.88	 0.89	 0.89	 0.93	 0.94	 1.00
0.55-

	

0.58	 0.83	 0686	 0.88	 0091	 0.9.:	 0.93	 1000
0.58-

	

0.62	 0088	 0.89	 0.92	 0.93	 0.94	 0.92	 0.93	 1.00
0.62-

	

0.66	 0.83	 0.85	 0.86	 0.92	 0.90	 0.89	 0.92	 0.95	 1.00
0.66-

	

0.72	 0.79	 0.82	 0.83	 0.90	 0.90	 0.90	 0.91	 0092	 0.93	 1.00
0,7z-

	

0.80	 0.37	 0.40	 0.41	 0.42	 0.47	 0.55	 0.49	 0.39	 0.35	 0.46	 1.00
O.ea-

	

1.00	 0.12	 0.16	 0.19	 0.20	 0.26	 0.30	 0.30	 0.17	 0.13	 0.31	 0.77	 1.00

D.2.2, cont.



D.2.3 Classification Results and Estimated Error Bounds

•

	

	 FEATURE SUBSETS
a

10
1

4, 10

4r 10, 12

4, 9, 10, 12

1, 4, 9, 10r 12

1 1 4, 8, 9, 10, 12

1, 4, 8, 9, 10, 11, 12

It 4r 7, 81 9, 10, 11, 12

I t 4, 6, 7, i, 9 1 10, 1l , 12

1 1 4, 5, 6, 7, 8, 9, 10, 11, 12

It 3, 4, 5, 6, 7, 8, 9, 10.,	 11, 12

I t

V

21 3, 4r 5r 6 1 7, 8r 9, 10, 11, 12

MEASURED UPPER BOUND
ERROR RATE ON ERROR RATE

(%) M
?".8 42.0

18.8 37.2

17.9 33.2

17.8 28.9

18.5 27.7

17.7 26.4

18.4 25.3

19.5 23.9

20.0 22.9

20.3 22.0

21.1 21.0

20.6 20.4
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Y:

D.3 Training and Test Fields for Experiment 5.7

TRAINING FIELDS

CLASS SOYBEANS
66000600	 25-6 65 81 4 69 89 4 3 SOYBEANSI
66000600	 31-13 237 253 4 141 167 4 3 SOYBEANS2
66000600	 36-7 307 327 4 59 81 4 3 SOYBEANS3
66000600	 7-23 773 777 4 135 179 4 3 S©YBEANS4
CLASS CORN
66000600	 36-4 167 177 4 33 77 4 1 CORK
66000600	 36-9 267 283 4 45 61 4 1 CORN2
66000600	 36-8 319 341 4 21 31 4 1 CORNS
66000600	 12-9 603 625 4 13 33 4 1 CORN4
CLASS	 OATS
66000600	 6-2 365 373 4 145 185 4 3 OATS1
66000600	 1-11 421 455 4 63 83 4 3 OA` F,
66000600	 7-1 591 599 4 135 181 4 3 OAT S3
CLASS	 WHEAT I 295 303 4 1.34 175 4 4 WHEATI66000600	 3111266000600	 6--14 471 495 4 177 201 4 4 WHEAT2
664006007^-2 607 665 4 203 211 4 4 WHEAT3
CLASS	 RED GLVR
66000600	 6--10 439 447 4 139 183 4 6 RED CLi
66000600	 1-1 539 565 4 175 195 4 6 RED CL2
66000600 599` ^j 19 4 69 95 4 6 RED CL3
CLASS ALFALFA
66000600	 7-24 731 737 4 129 177 4 6 ALFALFAI
66000600	 7-24 749 755 4 131 171 4 6 ALFALFA2
66000600	 7 22 809 $17 4 155 183 4 6 ALFALFA3
CLASS	 RYE66000600	 6-»8 527 569 4 127 155 4 7 RYE1
CLASS OR SOIL
66000600	 36-1 97 115 4 49 85 4 5 ER 00 -
CLASS	 WHEAT 11
66000600	 12-10 655 695 4 17 41 4 9 W&E&T4

AREA CLASSIFIED

66000600	 1 850	 4	 1 220	 4
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D.3r cont.

TEST FIELDS

GROUP SOYBEANS(1/1/)rCORN(2/2/),OATS(3/3/) WHEAT(4/4,9/),RED CLVR(5/5/),
GROUP ALFALFA(6/6/Tv YE[7/7/)lBR SOIL(BS/

TEST 1
66000600
66000600
66004600
66000600
66000600
6600Db00
66000600
66000600
66000600
66000600
66000600
66000600
66000600
66000600
TEST 2
66000600
66000600
66000600
66000600
66000600
66000600
66000600
TEST 3
66000600
66000600
66000600
660006UO
TEST 4
66000600
66000600
66000600
66000600
66000600
66000600
TEST 5
66000600
66000600
66000600
66000600

6
T
6

0600
8

6
	

0600
6 0000

25-6 57 89 1 47 103 1 SOYBEANS
30-4 63 79 1 115 169 1 SOYBN COVERS W
31-1 93 101 1 113 163 1 SOYBN COVERS W
36-2 123 133 1 43 101 1 SOYBEANS
36-2 133 149 1 43 83 1 SOYBEANS
31-13 217 273 1 109 201 1 SOYBEANS
12-3 705 797 1 69 111 1 SOYBN E PRT PR
36-7 291 341 1 43 97 1 SOYBN VOLUNTR
6-9 489 519 1 115 161 1 SOYBEANS
7-27 643 663 1 125 197 1 SOYBEANS
12-7 647 699 1 51 87 1 SOYBEANS
12-2 647 675 1 93 Ill 1 SOYBEANS
12-3 705 797 1 33 63 1 SO`lBNW. PRT P
7--23 759 785 1 121 197 1 SCYBN PLT CI RC

36-4 157 187 1 17 101 1 CORN
36-4 189 215 1 17 79 1 CORN
36-ID 221 255 1 39 55 1 CORN
36-9 261 287 1 39 65 1 CORN
36--8 307 349 1 19 35 1 CORN
6-17. 401 421 1 111 199 1 CORN
12-9 589 643 1 3 43 1 CORN OIFF VARI

31-11 327 335 1 109 197 1 OATS
6-2 365 377 1 131 183 1 OATS DITCH W F
1-11 413 467 1 45 93 1 OATS
7-1 583 605 1 121 193 1 OATS

31-12 285 317 1 109 199 1 WHEAT
6-1 347 353 1 107 205 1 WHEAT
6-1 385 393 1 109 203 1 WHEAT
6-14 459 509 1 167 213 1 WHT 2 VARIETIF
7-2 581 689 1 203 211 1 WHEAT
12-10 649 699 1 3 43 1 WHEAT 2 VAR LO

31-23 129 133 1 113 199 1 RD CL DIVRT SO
1-1 357 399 1 61 95 1 RED CL HAY
6-10 433 453 1 113 197 1 RED CL HAY
6--7 521 561 1 173 215 1 RED CL PASTURE
1-6 559 581 1 49 109 1 RED CL PASTURE
12-8 5139 633 1 49 109 RED CL PASTURF
7-29 613 619 1 121 183 1 RD CL DIVERTED
7-28 629 637 1 123 191 1 RED CL HAY

675 695 1 127 195 1 RED CL

7-24 729 737 1 121 195 1 ALFALFA HAY
7-24 745 757 1 121 195 1 ALFALFA HAY
7-22 793 815 1 121 195 1 ALFA. HAY GRAS

6-8 525 577 1 119 163 1 RYE

36-3 237 149 1 87 101 1 BARE SOIL
36-1 95 117 1 45 89 1 BARE SOIL




