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FAST PARZEN DENSITY ESTIMATION

USING CLUSTERING-BASED BRANCH AND BOUND1

ABSTRACTS

This correspondence proposes a fast Parzen density estimation algorithm which would be

specially useful in the non-parametric discriminant analysis problems. By pre-clustering the data

and applying a simple branch and bound procedure to the clusters, significant numbers of data

samples which would contribute little to the density estimate can be excluded without detriment

to actual evaluation via the kernel functions. This technique is especially helpful in the

multivariant case, and does not require a uniform sampling grid. The proposed algorithm may

also be used in conjunction with the data reduction technique of Fukunaga and Hayes [4] to

further reduce the computational load. Experimental results are presented to verify the

effectiveness of this algorithm.

Key Words: Parzen density estimation, branch and bound, pre-clustering, non-parametric
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 I. INTRODUCTION

Applying statistical pattern recognition techniques often requires an estimation of

probability density functions of data samples. If the distribution of the data is known to follow a

certain form with a few parameters, such as that of the Gaussian distribution, then the probability

density can be easily evaluated using the estimated parameters of the distribution function.

However, it is not always possible to assume a density function in a parametric form without

causing significant error. In this case, a non-parametric approach must be taken by employing

density estimation techniques [1]. Density estimation is usually very computationally intensive,

and because of that, it may be less attractive in many applications, e.g., especially for an on-line

application. Therefore, it is often desirable to lessen the computation load in estimating densities.

A previous approach to reducing the computational requirement of density estimation is

based on the k -nearest neighbor method [2,3]. It functions by saving the number of distance

evaluations for finding the k nearest neighbors. As for kernel-based density estimates, such as the

Parzen density estimate [1], by noting that the amount of computation is directly related to the

number of training samples, Fukunaga and Hayes [4] extracted a representative subset of the

training samples to achieve computational saving. The reduced subset of training samples was

selected in such a way that the Parzen density estimate with the reduced set matches as closely as

possible with that of the full data set in the sense of an entropy measure of similarity between the

two estimates.

Silverman [5] proposed an efficient algorithm based on the fast Fourier transform (FFT) for

evaluating univariate Parzen density estimates on regular grids. In the case of plotting a density

estimate, for example, the estimate would be evaluated over equally spaced locations. Silverman

noted that the Fourier transform of the density estimate can be considered as a product of the

Fourier transforms of the kernel function and the data. A modified discretization scheme was

employed later by Jones and Lotwick [6] to reduce errors related to the Fourier transform of data.

Notice that this fast algorithm based on FFT can not be applied to the general cases of density
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estimates over irregularly spaced locations. For instance, suppose Parzen density estimates are

used for non-parametric classification [7], then the density values must be estimated for the

samples to be classified, and in general, the samples are not regularly spaced.

In a manner similar to the efficient density estimate based on the k-nearest neighbors [3], in

this correspondence, a simple branch-and-bound procedure is applied to the Parzen density

estimation to reduce the number of kernel evaluations. Note that the contribution of a training (or

design) sample on the density estimate being evaluated rapidly diminishes if it is far away from

the location of evaluation. Therefore, without causing significant error, some of the training

samples could be left out in evaluating kernel functions if the distances from the location of

evaluation to those samples are large enough to result in negligible kernel function values. Once

a kernel function for the Parzen density estimate and the maximum allowable error produced by

leaving out distant samples are determined, a certain critical distance or threshold can be found.

The computation for evaluating the kernel function for training samples (i.e., distances of the

samples to the location of evaluation) is significantly saved by applying the branch-and-bound

procedure to the pre-clustered training data.

Experimental results are presented to show the effectiveness of the proposed approach in

reducing the computation of Parzen density estimation. Notice that to further reduce the

computational burden, this proposed algorithm also can be used in addition to the data reduction

algorithm in [4].

II. FAST PARZEN DENSITY ESTIMATION

Suppose the set Y consists of N q-dimensional (q ≥ 1) samples with which to estimate a

probability density function. The Parzen density estimate fx(x) of the unknown probability

density function at x, x ∈ Rq, may be obtained as a sum of kernel functions placed at each

sample y in Y as [1],
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fx(x)  =  
1

N hq
  ∑

y ∈Y

 
  K 



 

x - y
 h   (1.a)

where K(•) is a selected kernel function and h is the smoothing parameter (or, window size). The

kernel function satisfies the following condition,

∫x ∈ Rq
 

  K(x) dx = 1 (1.b)

Since the estimate fx(x) will inherit properties of the selected kernel function, the kernel

function is often chosen in such a way that it has mathematically tractable properties, such as

continuity or differentiability. Some examples [1] include the Gaussian kernel function, the

Epanechnikov kernel function, or a rectangular kernel function. The value of the kernel function

rapidly decreases as the distance from the origin increases. Therefore, the contribution of a

sample y ∈ Y to the density estimate at x, fx(x), will become negligible if the distance between x

and y becomes large. In many situations, it is possible to select a "critical distance," Dc so that,

without introducing significant error, the contribution of a sample y ∈ Y in eq. (1.a) can be

assumed to be zero if the distance between x and y is more than Dc. This is equivalent to

employing a truncated and rescaled version of the original kernel function for density estimation.

Suppose the truncation level is denoted by β, 0 ≤ β ≤ 1, then, the critical distance Dc for the

window size h = 1, can be found by solving,

β = K(x)
xTx ≤ Dc

2

 dx (2.a)

The truncated kernel function with truncation level β is denoted by K'(x; β) and defined as,
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K'(x; β) = 
K(x)

β
         xTx  ≤  Dc

2 (2.b)

= 0              otherwise

Note that even though there is no truncation (i.e., with β = 1), due to the finite numerical

precision of computation, there is always an implicit truncation determined by the degree of

precision of the computer being used. Depending on the specific application and the degree of

permissible trade-off between accuracy and speed, an appropriate value for β, 0 ≤ β ≤ 1, in eq.

(2.a) can be selected. Some kernel functions such as the Epanechnikov kernel function [1] or the

rectangular kernel function have finite support only where the kernel functions have non-zero

values. In these cases, it is straightforward to select a value Dc without losing any accuracy, and

there is no need for truncation and normalization. The critical distance with window size h is

then obtained by multiplying h with the Dc calculated in eq. (2.a).

Note that kernel functions can be written as functions of an appropriate distance measure,

and the evaluation of the distances are often time-consuming since they are usually quadratic.

Denote the distance between two samples, x and y as L(x,y) where L(•) is an appropriate distance

measure, e.g., the Euclidean distance measure, defined as,

L(x, y)  =   (x-y)T(x-y)  (3.a)

If different smoothing parameters should be used in different coordinate directions, then, the

following distance measure can be used with the kernel covariance matrix Σ,

L(x, y)  =   (x-y)T Σ -1 (x-y) (3.b)

Note that this distance measure in eq. (3.b) is equivalent to using the Euclidean distance

measure in eq. (3.a) after an linear transformation with Σ -0.5 applied to the samples x's and y's

[7]. Assume an appropriate linear transformation has been already been applied to the set Y and
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sample x's as required to deal with the different smoothing parameters. For simplicity, only the

Euclidean distance measure will be used in the subsequent discussion, without loss of generality.

Suppose the Parzen density estimate is evaluated at x with the truncated kernel function in

eq. (2.b). Then the sample y's in Y which do not satisfy,

L(x, y)  <  Dc (4)

can be excluded in the summation of eq. (1.a). The number of evaluations of distance L(x, y) in

eq. (4) could be significantly reduced if the branch and bound procedure [3] is applied to the pre-

clustered samples in Y; i.e., after grouping y samples which are adjacent in Rq space into

clusters, the distances from x to the clusters can be checked as described below to find any

clusters whose members are all distant from x by more than Dc. The samples grouped to those

distant clusters can be omitted entirely from the summation in eq. (1.a).

To pre-cluster the samples in Y into groups, unsupervised clustering [7] is performed with

the Euclidean distance measure in eq. (3.a). Note that an appropriate linear transformation with Σ
-0.5 is assumed to have been performed as necessary to the data in the set Y. Employing the

Euclidean distance measure after the linear transformation is equivalent to using the Mahalanobis

distance measure [9] with the same covariance matrix Σ for all clusters.
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Figure 1. Efficient computation of Parzen density estimation using clustering. Samples
grouped into clusters other than C1 and Cj in this figure need not be
considered in the computation of the Parzen density estimate.
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To each cluster, for example, to the jth cluster, Cj, three variables, {Ij, Mj, Dmax(j)} are

associated. Mj is the cluster mean and Ij is the index set of cluster Cj where i ∈ Ij only if yi

belongs to the cluster Cj, yi ∈ Y. Dmax(j) denotes the maximum distance from the cluster mean,

Mj to the samples in cluster Cj as,

Dmax(j) ≡  max
i ∈ Ij   { }L(xi, Mj)

Since the distance from x to any sample in Cj should be larger than L(x, Mj) - Dmax(j), all

the samples belonging to cluster Cj which do not satisfy the inequality,

L(x, Mj)  -  Dmax(j)   <  Dc (5)

can be excluded in evaluating the density estimate at x as shown in Figure 1. Thus, the

calculation of distances from x to each sample in Y can be significantly reduced by checking the

inequality in eq. (5) and deleting clusters as a whole appropriately. This same idea can also be

applied to reduce the number of clusters which should be checked for the inequality in eq. (5) by

creating a hierarchical grouping of the clusters, but we will not elaborate on this here.

The unsupervised grouping of the samples in Y, is not sensitive to the particular clustering

algorithm chosen; basically any available clustering algorithm [7], such as the well-known

ISODATA procedure [8], can be used. In selecting a clustering method, however, it is important

to remember that clustering itself can be time-consuming unless carefully applied, and its

objective is to group samples in Y into distinct clusters to apply the branch-and-bound method.

There is not a strict requirement to come up with clusters which are optimal or near optimal in

any sense, and only a few iterations should satisfy the need for grouping samples.

In  clustering, the creation (and/or deletion), or merging of clusters can be cumbersome. A

very simple algorithm is considered in this correspondence as follows. A new cluster is created
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whenever the minimum distance to the existing clusters exceeds a certain user-defined value,

denoted by qTcreate, otherwise the sample under consideration is assigned to the nearest cluster.

After one or two iterations, the creation option can be disabled so that every sample is assigned

to one of the existing clusters. For computational reasons, the merging of clusters is not allowed.

The computation required for the pre-clustering may not be trivial, but it is required only

once for the (training) data set Y. If the number of location’s x on which the probability density

fx(x) is to be computed is large, then this one-time extra computation for clustering should be

worthwhile. When the probability density in eq. (1.a) is evaluated, there exists another extra

computation required for the distances from x to each cluster center. However, considering the

savings due to skipping a subset of distant samples in Y, this will be quite negligible unless the

number of clusters is comparable to the number of total samples in Y. Suppose there are M

clusters for Y, and each cluster has n samples on the average (therefore, N = n M). Through the

branch-and-bound procedure with eq. (5), suppose only the sample y's in m, 1 ≤ m ≤ M, clusters

are selected on the average, to be included in the summation in eq. (1.a); then, one needs M (for

distances to the clusters) plus n m (for distances to the samples in the m selected clusters)

distance computation. Therefore, the ratio of saving in computing distances over the regular

Parzen density estimate is,

M + n m
  N    =  

1
n  +  

m
M

The variable n and M are dependent on Tcreate, and m is dependent on both Tcreate and Dc. To

achieve a maximal efficiency in reducing the computational load of clustering and speeding the

Parzen density estimate, care must be exercised in selecting a proper value of Tcreate. Too small a

value of Tcreate would result in a large number of small clusters with only a few members in

each; in this case the overhead of clustering and checking the inequality in eq. (5) could surpass

the savings obtained by skipping the samples grouped to distant clusters. On the other hand, a

few clusters with large number of samples in each of them due to using too large a value of
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Tcreate might not result in much deletion of clusters in evaluating the density estimate. The value

of Tcreate thus must be selected in relation to the critical distance Dc.

III. EXPERIMENTS AND DISCUSSION

To explore the effectiveness of the proposed fast Parzen density estimation algorithm, an

experiment with simulated data was performed. For the (training) data set Y, 1000 samples of

bivariate (q = 2) Gaussian data were generated. The mean and covariance matrix were set to [0,

0]T and to the identity matrix, respectively. The Parzen density estimate was evaluated at four

different groups of locations. That is, 4 sets of bivariate Gaussian samples, each containing 100

samples, were generated with the means at [±1.5, 0]T and [0, ±1.5]T. All covariance matrices

were set to the identity matrix.

 In pre-clustering the data samples in Y, if the squared distance to the nearest cluster was

more than qTcreate
2 , then, a new cluster was generated, otherwise the sample under consideration

was assigned to the nearest cluster. Therefore, the maximum distance Dmax(•) in eq. (5) was

qTcreate. To see the effect on the efficiency of this algorithm, the parameter for a new cluster

generation, Tcreate, was selected as,

Tcreate = α Dc (6)

and the value α was varied to see its effect on the effectiveness of the proposed algorithm. The

effectiveness of this algorithm can be measured in terms of the percent of distance computations

actually evaluated during density estimation, i.e.,

R  ≡  100  x  
average number of distance computation

 number of training samples (7)

In the numerator in eq. (7), the number of distance computations to the cluster centers was also

included even though it might be negligible in most of the cases. The average was calculated by
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dividing the total number of distance computations with that of the density estimate evaluations.

In the case of conventional Parzen density estimation, R in eq. (7) is 100. If the overhead of

computing distances to the cluster centers surpasses the savings acquired by deleting some of the

distant clusters, R can be greater than 100.

The Epanechnikov kernel function [1] was considered in the first experiment since it is

straightforward to choose the critical distance Dc, which is equal to the window size h. As

suggested in ([1] p.86), the window size h was set to 0.56. Under this setting, only 4.24 % of the

training samples on average actually contributed non-zero kernel function values in the density

estimation. The value of α in eq. (6) was varied from 0.01 to 8 to see its effect on deleting the

distant clusters. Only one iteration of clustering was performed since a crude grouping of the

samples was sufficient.
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Figure 2. R, the average percent of distance computations, as in eq. (7), using the
Epanechnikov kernel function with cluster creation conditions as in eq. (6),
where α is varied from 0.01 to 8.; window size h = 0.56, critical distance Dc =
0.56.

As α in eq. (6) decreased (i.e., as the number of clusters increases), the savings in distance

computation increased up to a certain point, after which the overhead of distance computation to

the cluster centers overwhelmed the savings attained by skipping some of training samples as

seen in Figure 2. Unless α is extremely small (unless α < 0.02 in this experiment), the overhead
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was negligible. A savings of about 80 % was observed in distance computation with 0.5 < α <

1.0.

The same experiment was performed with the Gaussian kernel function, which had non-

zero values over the entire feature space. The window size was set to h=0.304 as suggested in

([1] p.86). Truncation was performed as in eq. (2.a,b) with a truncation level β which was varied

from 0.8 to 0.999. Note that even if there is no truncation, there are some training samples which

would not make any contribution to the density estimate because of the numerically finite

precision. That is, the value of the exponential function in the Gaussian kernel becomes

(numerical) zero when its argument is too small. In this correspondence, the implicit truncation

due to the numerical finite precision is considered as the case with β = 1.0.

There must be error introduced due to the truncation of the kernel function, and the amount

of error can be measured by the average percent difference between the two density estimates

obtained with and without truncation as,

Average percent difference = 100 x Ex 
  fx(x; β) - fx(x)  

fx(x)
(8)

where fx(x) denotes the density estimate without truncation and fx(x; β) denotes the density

estimate with the truncation level β. The expectation in eq. (8) is obtained by computing the

average over the given 400 density estimate evaluation locations.
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Figure 3. Percent average effective number of training samples which have non-zero
contribution to the density estimate and the corresponding average percent
difference between density estimates obtained with and without truncation.. A
truncated Gaussian kernel function is used with different truncation level β's.; the
window size is set to h = 0.304.

Figure 3 shows the average number of effective training samples which give non-zero

values for the exponential function when the truncated Gaussian kernel function when truncation

level β is used. As described before, the number without truncation was considered to be β = 1.0.

As seen in Figure 3, even when β = 1.0, only about 38% of the training samples contributed non-

zero kernel function values to the density estimate due to the numerical finite precision. When β

= 0.999, the effective number of training samples dropped to 16%, but there was only 0.19 % of

a percent difference on the average between fx(x) and fx(x; β). If β = 0.99, the percent difference

was 1.47% with 11% of effective training samples. Whether or not this error due to the

truncation is acceptable depends on the particular application of the estimated density in mind.
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Figure 4. R, the average percent of distance computations, as in eq. (7), with a truncated
Gaussian kernel function and truncation level β. The parameter α in the
cluster creation condition of eq. (6) is varied from 0.01 to 8.; window size h =
0.304.

As before, when the parameter α in eq. (6) is varied from 0.01 to 8, the average number of

actual distance computations is presented in Figure 4. As expected from Figure 3, as the

truncation level β became larger, the amount of savings in distance computation increases. Note

that, with b=0.99, which results in only about 1.47% change of the density estimate from the case

without truncation, as much as about 70% of the distance computations can be saved, as seen in

Figure 4. As seen before with the Epanechnikov kernel function, extremely small or large values

of α were not acceptable since they produced too many small clusters or just only a few large

clusters. With α in the range of 0.2 ~ 1.0, it was observed that about 40 ~ 80 % savings in

distance computation could be achieved.

IV. CONCLUSION

In this correspondence, a computationally efficient Parzen density estimation algorithm is

developed by utilizing a simple branch and bound procedure applied to the pre-clustered

(training) data samples. Not only those kernel functions having finite support for non-zero
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values, such as the Epanechnikov kernel function, but also those kernel functions having non-

zero values over the entire feature space were applicable to this algorithm through truncation. By

choosing the proper parameter value for cluster generation, substantial savings in computation

could be realized. Values which were found to be satisfactory were those close to the critical

distance Dc. Experimental results verified that savings were significant. To further enhance the

computational efficiency, this proposed algorithm can be used in conjunction with the data

reduction technique [4].
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