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Abstract

It is well known that high dimensional image data allows for the separation of classes that are
spectrally very similar, i.e., possess nearly equal first order-statistics, provided that their second-
order statistics differ significantly. The aim of this study is to contribute to a better understanding,
from a more geometrically-oriented point of view, of the role played by the second-order statistics
in remote sensing digital image classification of natural scenes when the classes of interest are
spectrally very similar and high dimensional multispectral image data is available. A number of the
investigations that have been developed in this area, deal with the fact that as the data dimensionality
increases, so does the difficulty in obtaining a reasonably accurate estimate of the within-class
covariance matrices from the usually limited number of available labeled samples. Several approaches
have been proposed to deal with this problem. This study aims toward a complementary goal.
Assuming that reasonably accurate estimates for the within-class covariance matrices have been
obtained, we seek to better understand what kind of geometrically-oriented interpretation can be
given to them as the data dimensionality increases and how this knowledge can help the design of a
classifier. In order to achieve this goal, the covariance matrix is decomposed into a number of
parameters that are then analyzed separately with respect to their ability to separate the classes.
Methods for image classification based on these parameters are investigated. Results of tests using
data provided by the sensor system AVIRIS are presented and discussed.

Index terms: AVIRIS sensor, digital image classification, high dimensional data, remote sensing,
second-order statistics.

                                                
1
 Manuscript Received August 12, 1997; revised June 8, 1998. This work was supported in part by the Brazilian National Council

for Scientific and Technological Development (Conselho Nacional para o Desenvolvimento Cientifico e Tecnologico) CNPq, Grant #
200066/96-0 (NV).
V. Haertel is with the Federal University at Rio Grande do Sul, C.P. 15044, Porto Alegre RS, 91501-970 Brazil (e-mail: haertel@if.ufrgs.br).
D. Landgrebe is with the School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907-1285 USA (e-mail:
landgreb@ecn.purdue.edu).



2

I. Introduction

The remote sensing analysis of natural scenes, has been relying mostly on data

collected by sensors that provide a relatively small number of spectral bands. Sensor

systems such as Landsat-TM and Spot have been widely used to gather the

information required in areas such as forestry, agriculture, geology and many others.

In almost all of the cases, the distribution of the individual spectral classes which are

present in the image data, can be approximated by a multivariate normal distribution

and the classification procedure can be performed by the well known quadratic

classifier

Gi (X) = −(X − µ i )
T Σi

−1(X − µi ) − ln Σi + 2ln P(ωi )

where ωι represents a particular class, X an unlabeled pixel, µi the class mean vector,

Σι the class covariance matrix, P(ω ι) the corresponding a priori probability for class

ω ι and Gi(X) the discriminant function associated with class ω ι .

In most of the cases this general approach has proved capable of performing

image data classification in an acceptable way. There are some cases however in

which some or all of the classes involved are very similar spectrally, i.e., their first-

order statistics are nearly identical. In these cases, the more traditional sensor

systems and image classification methods either yield a very low accuracy or fail

completely. The answer to this problem is provided by a new generation of sensors

which allow for a much larger number of spectral bands. The AVIRIS system, which

possess the capability of sensing natural scenes in 220 spectral bands is one example

of these new high dimensional sensor systems. As a consequence, the development

of new methods to analyze this high dimensional image data have become necessary.
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In this context, it is also well known that in a higher dimensional space, samples

drawn from normally distributed data tend to fall towards the tails of the density

function with virtually no samples falling in the central region (where the value of the

density function is largest [1]). The result of this phenomenon is that in a high-

dimensional space, different classes sharing the same expected values can become

separable with very little error, provided that their covariance matrices are sufficiently

distinct [1]. Thus, the second-order statistics can assume a preponderant role in

remote sensing image data classification, possibly allowing for the separation of

classes spectrally close to each other and therefore not separable by the current low-

dimensionality sensor systems nor by analysis methods that do not take into account

second-order statistics.

The classification of high dimensional image data, however, poses some new

problems. One of the most difficult problems in dealing with high dimensional data

resides in the estimation of the classes' covariance matrices. As the dimensionality

increases, so do the number of samples required for a reliable estimation of the

covariance matrix. Unfortunately, the number of samples in remote sensing

applications is, in almost all practical cases, very limited. Methods to solve or to

mitigate this problem have been receiving a considerable attention from the scientific

community. Two main approaches have been pursued:

1) development of methods that allow the reduction of the data dimensionality

with small loss of information;

2) development of new approaches for dealing with the covariance matrix

when the sample size is small.

 Several new approaches have been reported in the literature [2]-[7].

The aim of this study is, however, somewhat different. High dimensional

spaces present a number of geometrical properties that contradict our usual



4

perception of space  [4]. The aim of this study is to contribute to a better

understanding (from a more geometrically-oriented point of view) of data distribution

in high dimensional spaces. This in turn may lead to more adequate classification

algorithms when the classes involved possess nearly equal first-order statistics and

class separation is only possible via the second-order statistics. More specifically, we

seek to take some initial steps that may lead to the development of a classification

algorithm based solely on the within-class second order statistics, in high dimensional

spaces. The first step required to implement such an algorithm consists in the

segmentation of the image into homogeneous areas, each one supposedly belonging

to one of the existing classes. The covariance matrix associated to each image

segment is then decomposed into three parameters, which describe the size, shape

and orientation of the image segment in the multispectral space. These parameters are

then tested for their ability to separate the classes, and a classifier is then proposed

based on these three parameters.

II. The Covariance Matrix

In multispectral image data, each class can be seen as a cluster of points in a

multidimensional space. The position of the cluster can be measured by its central

point, as defined by the class mean vector (first-order statistic). The cluster size,

shape and orientation are measured by its covariance matrix (second-order statistics).

In order to better understand the meaning of the class covariance matrix in this

context, we break it down into components that lend themselves to a more

geometrical meaning. This can be accomplished by the spectral decomposition of the

covariance matrix [8], [9].

Σ = λDADT  (1)

where λ is the largest eigenvalue of Σ, A is a diagonal matrix whose elements are the
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ratio of eigenvalues of Σ with respect to λ and D is a matrix whose columns are the

eigenvectors of Σ.

This particular form for the spectral decomposition is particularly useful for

the purpose of this study, i.e., to understand the geometry of clusters representing

different classes with nearly equal first-order statistics and further, to understand

their separability in high dimensional spaces. A clear geometrical interpretation can

be assigned to three components in (1). The largest eigenvalue λ represents the size

of the cluster, the diagonal matrix A defines the shape of the cluster and the matrix

D the orientation of the cluster in the multidimensional space.

Assuming that the original image data is multivariate normally distributed, then

the same data measured along the rotated axis also presents a multivariate normal

distribution [10]. The eigenvalues represent the variances along the rotated axis. In

practice, we work with the sample estimate (S) of the covariance matrix Σ. Thus all

eigenvalues of S (including the largest one λ) are random variables with Gamma

distribution [11]. The Gamma density function parameters can be estimated from the

available samples for later use in image data classification. A more difficult situation

is presented by matrix A. Since here we are dealing with a matrix, a statistical

approach to its implementation in image data classification is more complex. In this

study we propose to estimate the information carried by A, by its trace. The cluster

orientation can be estimated from the eigenvectors. In this study the eigenvector

associated with the largest eigenvalue is used to characterize each cluster orientation.

It is also assumed that the sample-estimated eigenvectors are random variables whose

components are normally distributed.



6

III. Design of a Statistically Based Classifier

In order to understand better the importance of each component of the

covariance matrix in multispectral image classification, the probability density

function for each one of the three components must be derived.

A. Cluster size

Since it is basically a sample variance, the parameter size has a Gamma density

fX (x) =
1

bcΓ(c)
xc−1 exp −

x
b

 
  

 
  (2)

Parameters b and c are associated, respectively, with the scale and shape of the

density function (2) and can be estimated by the method of the moments. The first

and second order-moments of the Gamma density are given by:

µ(1) = E X1[ ] = bc

µ(2) = E X2[ ] = b2c(c + 1)

B. Cluster Shape

The shape of the cluster can be defined by the relative length of its axes. The

diagonal elements in A provide this data. One remaining question is how to make use

of A in a classifier. One possible approach is by using the trace of A

T = trace (A) =
λ1

λ p
+

λ2

λp
+ . . .+

λ p−1

λ p
+1

The eigenvalues of S can be understood as the variances along the orthogonal

directions defined by the eigenvectors, i.e., after rotating the original coordinate

system in order to eliminate the correlation among them. Therefore, the sample

eigenvalues are independent random variables. The elements in A are the eigenvalues

normalized with respect to the largest one, and they also form a set of independent
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random variables. Therefore, the trace of A lies within the interval [1,p], p being the

dimensionality of S. A perfectly spherical cluster, i.e., the one with equal eigenvalues

along all p axes will result in the trace of A being equal to p. As the cluster becomes

increasingly ellipsoidal, the trace of A starts decreasing, becoming equal to the unit

in the extreme case of only one eigenvalue being nonzero. The actual use of the trace

of A requires the knowledge of its density function.

Representing by λp the largest eigenvalue of Σ and by λι the remaining (p-1)

eigenvalues (i = 1, 2, . . . , p-1), it can be proved that the density function for the

ratio Z = λi/ λp is given by

Zf (z) =  k 
ic -1z

(z pb + ib ic + pc)
 ci+ pc( ib pb )  Γ( ic + pc )        z> 0 (3)

with

k =  
1

i
icb  ppcb  Γ( ic ) Γ( pc )

The density function for the sum

R =  1λ
pλ

 +  2λ
pλ

 +  . . . . . +  
p-1λ
pλ

is then given by the convolution of the (p-1) densities [12]

Rf (r) =  Zf ( 1λ
pλ
) * Zf ( 2λ

pλ
) *  . . . . . . * Zf (

p-1λ
pλ

) (4)

where each individual density function is given by (3). Finally, the density function

fT (t) for the trace T of matrix A can be obtained from (4) by a simple transformation

of variables

fT (t) = fR(t −1)  (5)

The full derivation of the density function for the trace of matrix A (5) is presented

in the Appendix.
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C. Cluster Orientation

The third parameter, orientation, can be characterized by the eigenvectors of

Σ. Since the eigenvectors are orthogonal, one will suffice to describe the orientation

of the cluster. In this study, the eigenvector associated with the largest eigenvalue is

selected, and the normal distribution is assumed for the length of its components.

IV. Evaluating the Adequacy of the Parameters

As stated earlier, the aim of this study is to investigate the geometrical behavior

of the second order statistics in remote sensing image data classification as a function

of the data dimensionality. Primarily, we seek to investigate the importance of the

three components (size, shape and orientation) for the classes that most often appear

in satellite image data of natural scenes, particularly the ones that show equal or

nearly equal first-order statistics and therefore are not separable by these alone.

Several approaches to measure the separability among classes are described in

the literature. In this study, the Bhattacharyya distance is applied. The general

expression for this distance is given by [13]

B =  - ln
-∞

∞

∫ 1f (Z) 2f (Z)  dZ
 

 
 
 

 

 
 
 

(6)

Bhattacharyya distance must be implemented to the three density functions and

to the pairs of classes to be used in the test procedure to determine the efficiency of

each of the three proposed random variables as the data dimensionality increases.

Size is a one-dimensional random variable (irrespective of the number of

spectral bands in use) and has a Gamma density. In this case, the Bhattacharyya

distance (6) between two classes, characterized by the Gamma parameters b1, c1 and

b2, c2, respectively, becomes
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B =  - ln  
-∞

∞

∫  
1

b1
c1 Γ( 1c )

 xc1 −1 exp -
x

1b

 
  

 
    

1

2
2cb  Γ( 2c )

 2c -1x  exp -
x

2b

 
  

 
   

 

 
 
 

 

 
 
 

1

2
 dx

Performing the above integration, we obtain

B =  - ln
Γ( 1c + 2c

2
) 1

2c /2b  2
1c /2b  ( 1c + 2c )/22

[Γ( 1c ) Γ( 2c ) 1/2]  ( 1c + 2c )/2( 1b + 2b )

 

 

 
 
 

 

 

 
 
 

(7)

The estimation of Bhattacharyya distance for the random variable shape is a far

more difficult problem. The general form for the density function [as in (4)], which

involves the convolution among the component density functions, renders extremely

difficult or even precludes a closed-form expression for this density function, even

when one tries to perform this operation in the Fourier domain. In this study, we tried

to estimate the Bhattacharyya distance by implementing (4) into (6) in a numerical

fashion. This approach, however, presented the drawbacks that are inherent in many

numerical procedures, namely, a large computational time and numerical instability

at points where the density functions vary rapidly. Due to these problems, this

approach proved to be unsatisfactory in the experiments performed in this study. A

more convenient approach to this problem remains a topic for future research.

The Bhattacharyya distance for the cluster orientation parameter presents the

well-known form for multivariate normal data

B =  
1

8
 ( 1M − 2M T)  ( 1S  +  2S

2
-1)  ( 1M − 2M ) +  

1

2
 ln

|( 1S  +  2S )/2 |

| 1S 1/2|  | 2S 1/2|

 
  

 
  (8)

where M and S represent respectively the mean vector and the covariance matrix for

parameter orientation, for each pair of classes.
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V. Testing the Parameters Size, Shape and Orientation

In order to investigate how the parameters size, shape and orientation perform

in remote sensing image data classification, tests were carried out using multispectral

image data obtained by the sensor AVIRIS. A 30 channel subset of an image obtained

in June 1992 and covering an agricultural area in Indiana was used. The 30 channels

were selected from the original 220 channels in a uniformly spaced fashion, in order

to cover the entire range of wavelengths sensed by the AVIRIS system. The area

covered by this image shows agricultural fields with corn and soybeans. Different

agricultural techniques are present across these fields, allowing for the following user

defined classes:

1) corn no till;

2) corn minimum-till (corn minimum);

3) corn clean (corn);

4) soybeans no till;

5) soybeans minimum-till (soybean minimum);

6) soybeans clean (soybean).

As the AVIRIS image was collected at the beginning of the growing season, only a

small fraction (≈5%) of the ground was actually covered by the crop. The largest

contribution to the spectral response comes from the background, i.e., exposed soil

plus debris. This situation results in first-order statistics that are nearly equal for all

six classes. Under these circumstances, the traditional data classification algorithms

based on low dimensionality data such as Landsat-TM, either yield very inaccurate

results or fail completely. A successful procedure must be based on the class second-

order statistics, employing higher dimensional data. Thus, the AVIRIS data provides

ideal conditions to test image classification methods based on second-order statistics.



11

Also, it provides the right conditions to investigate the contribution of the three

parameters originating from the spectral decomposition of the covariance matrix.

To test the ability of each of the three parameters in discriminating between the

data classes as a function of the data dimensionality, the 30 channel AVIRIS image

data were divided into six sub-sets of 5, 10, 15, 20, 25 and 30 channels, respectively.

The Bhattacharyya distances for the 15 pairs of classes were then computed. Figs.

1 and 2 illustrate typical behavior of Bhattacharyya distance for parameters size (7)

and orientation (8), respectively, as a function of the data dimensionality. As for the

parameter shape, only a few values for Bhattacharyya distance were actually

computed. Due to the reasons reported in Section IV, we did not succeed in obtaining

a closed-form for Bhattacharyya distance for this parameter, and the numerical

approach tested proved to be unsatisfactory. Therefore, Bhattacharyya distance for

the parameter shape was not fully estimated in the experiments involving AVIRIS

data. However, the histograms for this parameter, involving the six classes and the

six sub-sets of channels, tend to suggest a comparatively low capability of

discriminating the image classes under consideration (Figs. 3 and 4).

The analysis of the data depicted in Figs. 1-4 allows one to draw the following

conclusions.

1) The parameter orientation presents a very consistent pattern of increasing

Bhattacharyya distance as the dimensionality of the data increases.

2) The parameter size provides smaller values for Bhattacharyya distance.

3) The histograms for parameter shape tend to suggest a lower discriminant

power in separating the image classes involved.

The analysis of these experiments suggests that the parameter orientation is the most

promising one to successfully classify the image data being tested. The Bhattacharyya

distance among the pairs of classes increases consistently as the number of channels
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increases. The other two parameters show a less promising behavior.

Fig. 1.
Bhattacharyya Distance (b) for parameter size as a function of the number of spectral bands (p), for four different

 pairs of classes
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Fig. 2.
Bhattacharyya Distance (b) for parameter orientation as a function of the number of spectral bands (p), for four

different pairs of classes



14

Fig. 3.
Histogram for parameter shape, for four different classes. Experiment using 5 spectral bands. Parameter shape is

represented along the horizontal axis and the corresponding number of occurrences along the vertical axis.
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 Fig. 4.
Histogram for parameter shape, for four different classes. Experiment using 30 spectral bands. Parameter shape is

represented along the horizontal axis and the corresponding number of occurrences along the vertical axis.
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VI. Use of the Parameters Size, Shape and Orientation as a basis for an

image classification algorithm

In this section we investigate the development of an algorithm based on the

parameters size, shape, and orientation for image classification purposes. In this case,

the classification procedure would be based on the second-order statistics only.

Thus, the unit elements to be classified are unlabeled clusters of pixels, not individual

pixels.

At this point, we have to deal with three problems:

1) how to segment a given multispectral image into homogeneous areas

(each segmented area would then be treated as an individual cluster

and would be assumed to belong to one of the existing classes);

2) which parameter(s) is (are) more efficient for classification purposes;

3) which method is the most adequate for this particular approach to

image classification.

This study deals basically with problems 2 and 3. As for problem 1, some initial tests

were performed making use of the first part of the ECHO algorithm as proposed by

Kettig and Landgrebe [14], [15]. Encouraging results were obtained, but additional

work is needed on this topic when high dimensional data is involved. In the

experiments performed, the number and particularly the size of the resulting fields

showed a tendency to decrease as the data dimensionality increased, leaving many

blanks across the image. This item is therefore left as a topic for future investigation.

In order to make possible the investigation into problems 2 and 3, clusters are

needed for both training and testing purposes for every class. In order to obtain these

clusters, the entire data set available for each class was uniformly divided into a

training set and a test set. A number of clusters were then drawn randomly from both
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the training and the test sets. Therefore, a number of labeled clusters were obtained,

allowing for the estimation of parameters and for the testing of the methods for

classification. The results obtained in section V suggest the idea of carrying out image

data classification based on parameter orientation. In this case, each homogeneous

image region or cluster can be represented by a point defined by the eigenvector

associated with its largest eigenvalue, in the p-dimensional multispectral space. The

space defined is this way, is herewith designated by "eigenvector-orientation" space.   

As for the classification method in the eigenvector-orientation space, a

conventional minimum distance approach was initially tested. The mean value for

each class in the eigenvector-orientation space was then estimated from the

corresponding training set. Next, the eigenvectors were calculated for all individual

test clusters, and in the eigenvector-orientation space each test cluster was assigned

to the class presenting the closest mean. Different sizes for the test clusters were

used: 1.2, 1.3, 2.0, 4.0 and 6.0 times the number of spectral bands. This approach

however, did not provide accurate results. The reason can be better understood by

examining the two terms of Bhattacharyya distance between the classes in the

eigenvector-orientation space as shown in Table I. As is well known, the first term

of Bhattacharyya distance estimates the separability caused by the first-order

statistics whereas the second term estimates the contribution due to the second-order

statistics. At a low dimensionality, both terms are small. As the dimensionality

increases, the first term in Bhattacharyya distance shows a small increase, whereas

the second one shows a much larger increase (Table I). Thus, the separability among

classes in the eigenvector-orientation space is caused primarily by the second-order

variation on the orientation of the eigenvectors, not by the first-order variation. This

fact explains the failure of a minimum distance algorithm approach in yielding

accurate results in image classification.
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To overcome this problem, two different approaches were pursued and later

combined into a single one. First, additional information was added to each cluster,

i.e., the number of parameters as defined in the aforementioned problem 2 was

increased from one (orientation) to all the three parameters. The rationale for this

approach is provided by the experiments reported in section V. The parameter

orientation proved to be the most promising one for classification purposes (larger

Bhattacharyya distance between classes). However, the contribution of the remaining

two parameters (size and shape of the cluster), although smaller, is not entirely

negligible. Thus, adding parameter size and shape might improve the accuracy. One

way of implementing this idea is by taking into consideration all p eigenvectors

associated with each cluster, instead of the single one associated with the largest

cluster's eigenvalue. One possible way of achieving this intent is by weighting the p

eigenvectors by their associated eigenvalues and calculating their sum. The resulting

vector, herewith called "weighted-eigenvector", defines a point that is then supposed

to represent a cluster in a p-dimensional space called the "weighted-eigenvector

space".

A minimum distance classifier, similar to the one previously applied to the

orientation-eigenvector space, was tested on the weighted-eigenvector space. Tables

II-VII depict the accuracies achieved for the six classes involved. The lines on these

tables show the resulting accuracies as a function of the number of spectral bands

used (5, 10, 15, 20, 25 and 30), and the columns display the accuracies as a function

of the size of the test clusters, here expressed as a multiple of the data dimensionality

(1.2, 1.5, 2.0, 4.0 and 6.0 times the number of spectral bands used).

The results conform with the theoretical predictions. The accuracy increases

both with the data dimensionality and with the size of the cluster. Higher

dimensionality enhances the separability based on the second-order statistics, whereas
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a larger sample size allows for a more reliable estimation of the covariance matrix. It

also shows that a reasonably high accuracy can be achieved even for classes that

possess mean values that are nearly equal. Some variations on the accuracy can be

seen across these tables and in the case of smaller clusters, are most likely caused by

inaccuracies in the estimation of covariance matrix in the multispectral space.

However promising, the minimum distance classifier as applied to the

weighted-eigenvector space presents some drawbacks. The results shown in Tables

II-VII were obtained for clusters formed by drawing pixels randomly from the entire

test set. These clusters are therefore formed by pixels spread across the entire test

set. Thus, they are likely to yield more accurate estimates for the second-order

statistics, unaffected by local variations in the image data. Subsequent tests were

performed on clusters formed by pixels drawn sequentially from the test set. Thus,

these clusters correspond approximately to segmented image regions. In this case,

the minimum distance classifier on the weighted-eigenvector space yielded a much

lower accuracy. These poorer results can be explained by the local variations across

the image, which in turn cause larger variations on the second-order statistics in

clusters belonging to the same class.

This set of experiments demonstrate the necessity of introducing the

contribution of the second-order statistics in the weighted-eigenvector space, as

made clear by the experiments summarized in Table I. One simple way of introducing

this contribution, is by replacing, in the weighted-eigenvector space, the conventional

minimum distance classifier which makes use of the Euclidean distance, by a

classifier based on the Mahalanobis distance

Gi (X) =− (X − µi )T Σi
−1(X − µ i ) (9)   

where X represents the cluster-weighted eigenvector, µ i represents the mean-

weighted eigenvector for class ω i and Σi represents the weighted-eigenvector
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covariance matrix for class ωi. Estimates for both µι  and Σi were obtained from each

class training-clusters. It must be emphasized that the classification approach

implementing the Mahalanobis distance implies two distinct natures in the estimation

of the covariance matrices: 1) the covariance matrix for every segmented image area

or cluster, in the multispectral space, to estimate the corresponding weighted-

eigenvector; 2) the covariance matrix associated with each class in the weighted-

eigenvector space, as required by the Mahalanobis distance classifier (9). The

reliability of the former basically depends upon the size of the cluster (the number of

pixels) whereas the latter depends upon the number of training clusters (each cluster

provides one sample). Experiments were then carried out by creating clusters from

contiguous pixels in the test set rather than from pixels drawn on a random fashion

as done in the previous experiment. These clusters are then likely to be formed by

pixels that are spatially close to each other in the image. Two experiments were

carried out, using 30 spectral bands. In the first case, the size of each test cluster

was taken equal to 180 pixels, and in the second case it was taken as equal to 100

pixels. In both cases, a sufficiently large number of training clusters were provided

in order to allow a reasonably accurate estimation of the class covariance matrices

in the weighted-eigenvector space. Four classes were tested and the results are

shown in Table VIII. As one might have expected, the experiment involving a larger

number of pixels per cluster allowed a more accurate estimation of the initial

covariance matrices, resulting in a more accurate estimation of the parameters

orientation, size, and shape, and therefore, in more accurate final classification

results. However, in digital image classification, smaller clusters are quite often

present and a method must be found to deal with them accurately. Here, we come

to the well-known and extensively-discussed problem of parameter estimation from

a sample of limited size. This problem becomes of crucial importance in the present
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case where the following applies.

1) The algorithm is based solely on the second order statistics;

2) We are dealing with high dimensional data;

3) As in most remote sensing applications, the number of available labeled 

samples is limited.

Methods for the estimation of the covariance matrix when the number of available

samples is small, have been extensively studied, and many approaches to mitigate this

problem have been reported in the literature. In his paper, Friedman [5] discusses

methods of regularization to improve the estimates of the covariance matrices.

Hoffback and Landgrebe [7], among several others, also proposed methods for the

estimation of the covariance matrix when the sample size is small.

Therefore, in order to make the weighted-eigenvector space concept fully

operational, further investigation is still required into two main topics:

1) Incorporation into the algorithm of more adequate methods to estimate the

class covariance matrices when small clusters are involved;

2) The development of methods for image segmentation in high dimensional

spaces, i.e., methods to form the initial clusters.
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Pair of Classes Bhattacharyya distance terms
5 spectral bands

Bhattacharyya distance terms
30 spectral bands

corn_notill and
corn_minimum

0.1079
0.3562

 2.2183
 69.0899

corn_notill and
corn

0.1251
0.4727

 1.8476
 65.5503

corn_notill and
soybean_notill

0.0564
0.6545

 7.0056
137.8793

corn_notill and
soybean_minimum

0.0199
0.3124

 0.7894
 65.4253

corn_notill and
soy_clean

0.0298
0.3665

 1.9428
 65.1725

corn_minimum and
corn

0.0483
0.1774

 0.8256
 9.8284

corn_minimum and
soybean_notill

0.0325
0.3803

 1.2763
 83.3849

corn_minimum and
soybean_minimum

0.1067
0.1257

 0.8116
 8.3095

corn_minimum and
soybean_clean

0.0909
0.2200

 0.8941
 9.2650

corn and
soybean_notill

0.0565
0.5304

 2.9888
 79.2144

corn and
soybean_minimum

0.0745
0.3090

 0.7033
 6.7028

corn and
soybean_clean

0.0832
0.2763

 0.6025
 6.5457

soybean_notill and
soybean_minimum

0.0461
0.1752

 1.5873
 79.5270

soybean_notill and
soybean_clean

0.0519
0.4746

 2.3716
 79.7257

soybean_minimum and
soybean_clean

0.0357
0.2938

 0.4289
 6.5080

Table I

First and second term of Bhattacharyya distance for parameter Orientation, for different pairs of classes and for two
sets of spectral bands. The first term (upper entry on every box) measures the contribution due to the classes mean
vectors whereas the second term (lower entry on every box) measures the contribution due to the classes covariance

matrices.
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 Cluster Size
Dimension

1.2 1.5 2.0 4.0 6.0

5 21% 20% 39% 36% 46%

10 32% 41% 58% 73% 82%

15 43% 52% 61% 85% 87%

20 51% 63% 64% 86% 94%

25 70% 67% 78% 91% 95%

30 68% 67% 88% 94% 97%

Table II
Class Corn No Till

Classification accuracy, yielded by the Minimum Distance Classifier based on parameter "orientation"
The results are shown for different numbers of spectral bands (5,10,15,20,25 and 30) and for different cluster sizes,

i.e., number of pixels per cluster (1.2, 1.5, 2.0, 4.0 and 6.0 times the number of spectral bands).

 Cluster Size
Dimension

1.2 1.5 2.0 4.0 6.0

5 26% 24% 27% 40% 48%

10 38% 44% 41% 63% 70%

15 50% 50% 54% 73% 82%

20 54% 61% 66% 82% 92%

25 60% 63% 68% 90% 91%

30 59% 64% 74% 93% 96%

Table III
Class Corn Minimum

Classification accuracy, yielded by the Minimum Distance Classifier based on parameter "orientation"
The results are shown for different numbers of spectral bands (5,10,15,20,25 and 30) and for different cluster sizes,

i.e., number of pixels per cluster (1.2, 1.5, 2.0, 4.0 and 6.0 times the number of spectral bands).
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 Cluster Size
Dimension

1.2 1.5 2.0 4.0 6.0

5 53% 63% 52% 60% 56%

10 58% 65% 62% 72% 75%

15 71% 62% 60% 72% 75%

20 64% 64% 63% 72% 80%

25 66% 70% 70% 71% 82%

30 70% 73% 73% 79% 86%

Table IV
Class Corn

Classification accuracy, yielded by the Minimum Distance Classifier based on parameter "orientation"
The results are shown for different numbers of spectral bands (5,10,15,20,25 and 30) and for different cluster sizes,

i.e., number of pixels per cluster (1.2, 1.5, 2.0, 4.0 and 6.0 times the number of spectral bands).

 Cluster Size
Dimension

1.2 1.5 2.0 4.0 6.0

5 80% 86% 87% 97% 99%

10 87% 91% 96% 99% 100%

15 92% 95% 98% 99% 100%

20 93% 96% 99% 100% 100%

25 98% 97% 99% 100% 100%

30 97% 100% 100% 100% 100%

Table V
Class Soybean No Till

Classification accuracy, yielded by the Minimum Distance Classifier based on parameter "orientation"
The results are shown for different numbers of spectral bands (5,10,15,20,25 and 30) and for different cluster sizes,

i.e., number of pixels per cluster (1.2, 1.5, 2.0, 4.0 and 6.0 times the number of spectral bands).
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 Cluster Size
Dimension

1.2 1.5 2.0 4.0 6.0

5 22% 37% 38% 54% 68%

10 48% 63% 57% 73% 83%

15 55% 57% 70% 83% 93%

20 73% 77% 79% 94% 96%

25 69% 75% 82% 95% 99%

30 84% 83% 83% 98% 99%

Table VI
Class Soybean Minimum

Classification accuracy, yielded by the Minimum Distance Classifier based on parameter "orientation"
The results are shown for different numbers of spectral bands (5,10,15,20,25 and 30) and for different cluster sizes,

i.e., number of pixels per cluster (1.2, 1.5, 2.0, 4.0 and 6.0 times the number of spectral bands).

 Cluster Size
Dimension

1.2 1.4 2.0 4.0 6.0

5 35% 30% 29% 42% 59%

10 44% 46% 48% 68% 70%

15 49% 52% 55% 68% 84%

20 54% 59% 71% 81% 89%

25 56% 63% 76% 89% 90%

30 73% 65% 76% 90% 95%

Table VII
Class Soybean Clean

Classification accuracy, yielded by the Minimum Distance Classifier based on parameter "orientation"
The results are shown for different numbers of spectral bands (5,10,15,20,25 and 30) and for different cluster sizes,

i.e., number of pixels per cluster (1.2, 1.5, 2.0, 4.0 and 6.0 times the number of spectral bands).
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Cluster Size
Class

180 pixels 100 pixels

corn_notill 100% 93.4%

corn_minimum 100% 100%

soy_notill 100% 100%

soy_minimum 93% 72%

Table VIII
Classification Accuracy, Obtained by Applying the Mahalanobis Distance on the Weighted-eigenvector Space

Results are Shown for 30 Spectral Bands and Two Cluster Sizes (180 and 100 pixels)

VII. Conclusions

This study deals with some aspects of the problem of classifying remote

sensing image data in which classes with equal or nearly equal first-order statistics

are present. In this case, the conventionally-used multispectral image data with a

small number of spectral bands, as provided by systems such as Landsat-TM and

Spot, either yield low accuracy results or fail completely. The way to deal with this

problem involves the use of classification procedures relying solely on the second-

order statistics estimated from high-dimensional image data as provided by

hyperspectral sensors.

In order to better understand the role played by the second-order statistics in

a higher dimensional space, the technique known as the spectral decomposition of the

covariance matrix was used. This decomposition allows for an easier, more

geometrically-oriented interpretation of the covariance matrix components and thus

for a better insight into the way it separates classes in a higher dimensional space.

These components represent the size, shape and orientation of clusters of pixels in

the multispectral space. As these three component parameters are estimated from the

sample covariance matrix, they are random variables themselves. Except for the
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parameter shape, which presents a rather complex form for its density function, the

ability of each parameter to separate the image classes under consideration was

estimated by the Bhattacharyya distance. For the parameter shape, only a few values

for the Bhattacharyya distance were actually computed. Histograms were then used

to provide some insight into its behavior.

Based on this idea, classification methods were proposed and tested. Tests

were carried out on a 30 channel sub-set of an AVIRIS image, displaying a number

of classes having first-order statistics that were nearly equal. The results suggested

the orientation parameter as the most promising one to separate the classes involved,

and to a lesser degree, they suggest the other two parameters.

Based on these initial findings, an attempt was made to perform the

classification based only on the parameter orientation. Following this approach, each

image segment or cluster is represented by a single point, defined by the eigenvector

associated with its largest eigenvalue. The mean value for every class is represented

exactly in the same way, the eigenvectors being estimated from the corresponding

training sets. These points lie on the surface of an hypersphere of unit radius. The

minimum Euclidean distance classifier was then applied. The resulting classification

accuracy was low, however. Experiments have shown that this low performance is

caused by the fact that it is the second-order variation of the parameter orientation,

not the first-order variation that carries the discriminant power among the classes.

When the euclidean distance was replaced by the Mahalanobis distance, and the

contribution of the other two parameters (size and shape) were introduced, a very

significant improvement in the accuracy was obtained.

The experiments performed in this study proved that the weighted-eigenvector

space based on the parameters size, shape and orientation provide a promising

approach for image data classification, based solely on the second order statistics.
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This approach also provides a more geometrically-oriented insight into the separability

of classes possessing equal or nearly equal first-order statistics.

Crucial to this image data classification approach is the estimation of the class

covariance matrix in high dimensional spaces from a limited number of training

samples. Some approaches proposed in the literature must be introduced here.

Also, the problem related to the initial image segmentation still remains to be

solved. As this proposed image data classification method is solely based on the

second-order statistics, the basic unit to be classified has to be a cluster of pixels, not

individual pixels as in more traditional data classification methods. Thus, the first step

needs to be an image segmentation procedure to segment the image into

homogeneous regions, each of which is assumed to belong to a given class. In other

words, we need to start by forming clusters. The proposed classification method can

then be applied, taking these clusters as basic units. Some tests were performed,

implementing the first part of the ECHO algorithm as proposed by Kettig and

Landgrebe [14]. Additional work on this topic, however, is still needed when dealing

with high dimensional image data.

In this study, we have investigated a more geometrically-oriented view of the

behavior of the second-order statistics for the case of image data in high dimensional

spaces, and we have seen how this approach can be used for classification purposes

when the classes involved possess an equal or nearly equal first order-statistics. The

concept of weighted-eigenvector space was proposed, and tests were performed.

This approach can be used to develop a method for image data classification when

the classes involved are spectrally very similar and therefore not separable by the

more traditional methods based on low dimensional data. In order to fully attain this

objective, two additional topics need to be further investigated and added to the

procedure:
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1) methods to deal with the estimation of the covariance matrix when the

number of training samples is small;

2) methods for image segmentation in high dimensional multispectral spaces,

to form the clusters required by the approach proposed in this study.

It is also possible that the weighted-eigenvector space may prove to be adequate to

implement clustering methods based solely on the second-order statistics. These

items, however, remain as topics for future research.

 Appendix

In this appendix we provide the full derivation of the density function for the

trace of matrix A.

Since the elements in A are given by ratios (Z) among two independent

random variables (X,Y), i.e., Z=X/Y, and also recalling that Z≥0, we have

P(Z< z) =  
0

∞

∫  dy 
0

yz

∫  XYf (x,y) dx          x,y ≥ 0

and

P(Z< z) =  
-∞

0

∫  dy 
0

yz

∫  XYf (x,y) dx          x,y ≤ 0

The distribution function can thus be calculated by

ZF (z) =  P(Z < z) =  
0

∞

∫  dy 
0

yz

∫  XYf (x,y) dx −  
-∞

0

∫  dy 
0

yz

∫  XYf (x,y) dx     z≥ 0

The density function can be obtained by

Zf (z) =  
∂
∂z

( ZF (z))
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Recalling that in a general case we have

∂
∂q

 
p

q

∫ f(x) dx =  f(q)          (p =  constant )

and

∂ XYf (x,y)

∂z
 =  

∂ XYf (x,y)

∂(yz)
 
∂(yz)

∂z
 =  y 

∂ XYf (x,y)

∂(yz)

we can obtain the general expression for the density function of the ratio of two

independent random variables, Z = X/Y

Zf (z) =  
0

∞

∫ y XYf (yz,y) dy - 
-∞

0

∫ y XYf (yz,y) dy (A1)

For the specific case under consideration the densities are given by the Gamma

density function

X ~  γ ( 1b , 1c ) =  
1

1
1cb  Γ( 1c )

 1c -1x  exp -
x

1b

 
  

 
  

Y ~  γ ( 2b , 2c ) =  
1

2
2cb  Γ( 2c )

 2c -1y  exp -
y

2b

 
  

 
  

Since X and Y are independent

fXY(x, y) = fX(x) fY (y) = kxc1 −1xc2 −1 exp −
x

b1

 

 
 

 

 
 exp −

y

b2

 

 
 

 

 
 (A2)

with

k =  
1

1
1cb  2

2cb  Γ( 1c ) Γ( 2c )

Making use of this result in (A1) and recalling that Y being an eigenvalue of S cannot

take negative values
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Zf (z) =  k 
0

∞

∫ y (zy 1c -1)  2c -1y  exp -
zy

1b

 
  

 
   exp -

y

2b

 
  

 
  dy

Performing the above integration, we obtain

Zf (z) =  k 
1c -1z

(z 2b + 1b 1c + 2c)
 1c + 2c( 1b  2b )  Γ( 1c + 2c )           z> 0 (A3)

Equation (A3) represents the density function for the ratio of two eigenvalues of S.

To test if (A3) fulfills the condition of normality as any density function, standard

tables of integrals can be used to show that

0

∞

∫ Zf (z) dz =  1

Once the density function for the ratio of eigenvalues has been defined, the

next step consists in defining the density function for the summation of the ratios of

eigenvalues that compose the diagonal matrix A, i.e., the shape of the cluster

R =  1λ
pλ

 +  2λ
pλ

 +  . . . . . +  
p-1λ

λ p
(A4)

The derivation of the density function for a sum of random variables is a

somewhat more complex problem. It can be proved [7] that it is given by the

convolution of the densities (A3) of the elements in (A4)

Rf (r) =  Zf ( 1λ
pλ
) * Zf ( 2λ

pλ
) *  . . . . . . * Zf (

p-1λ
pλ

) (A5)

where the eigenvalues of S are sorted in an ascending order. Finally, to obtain the

density function of the trace of A, i.e., of the cluster shape, the constant term 1 must

be added to the sum in (A4)

T =  trace ( A) =  1λ
pλ

 +  2λ
pλ

 +  . . . . . +  
p-1λ
pλ

 + 1
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A theorem in mathematical statistics proves that given a relation involving two

random variables X and Y, such that

Y =  a X +  b
then

Yf (y) =  
1

| a |
 Xf

(y - b)

a
 
 
  

 
 

Here, a,b=1. Thus, the density function for the shape of the cluster can be obtained

from (A5) by a simple transformation of variables.
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