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IMAGE REGISTRATION ERROR VARIANCE AS A MEASURE
OF OVERLAY QUALITY

" Introduction

A model for the variance of the error in the registration
of two different images of the same scene will be developed.
The difference in the images is assumed to be due to additive
noise. The method of solution employed is an adaptation of that
used for the determination of the error in the measured delay
time in a radar system, Several analyses of the radar problem

2,3,4

have been carried out based upon different premises. These
approaches may be categorized as those which use the probability
density function of the noise directly and those which do not.

The first case utilizes maximum a posteriori, maximum 1ikelihood,
or minimum mean square error esfimates. ‘A1l three estimators

are based upon knowledge of the noise probability density function.
The second case is based only upon the output of a filtér which
gives a maximum output at the correct time delay when the input

is noise free.

An analysis of this sort should prove useful in several
respects. The results should give an indication of the best possible
registration of two images given the models of the data and noise.,
Once the models of the parameters involved have been found or
assumed, an optimum receiver to implement the overlaying procedure
may be developed. Comparison of existing registration systems

with the results obtained herein may also be performed. However,

The research described in this report was sponsored by the National
Aeronautics and Space Administration (NASA) under Grant Number

NGL-15-005-112,



one must keep in mind the assumptions the entire analysis will "
be based on, for different assumptions may yield different
results,

It is assumed in the following investigation that the useful
signal is present, reducing the problem to one of estimation
only rather than detection as well as estimation. It is further
assumed that the signal shape is known and nonrandom, although
the parameter that is to be measured is a random variable. Since
- the original signal is known, it does not have a probability
density function. However, the received signal does depénd upon
the noise and its distribution. The problem will be approached
with this in mind.

Thé solution to the problem depends upon a cost function
which is assigned to the error and the a posteriori distribution
of the signal as a function of a parameter, m(t), given the
received signal, pf(m(T)). A minimum mean square error estimate
is the mean of pf(h(r)); an absolute value cost function gives
the median of the probability function; the maximum a posteriori
estimate yields the maximum of pf(m(T)).u The maximum 1ikelihood
estimate may be viewed as the same as the maximum a posteriori
estimate when there is no prior knowledge of the density function
of the parameter, p(m(t)), or p(m(t)) is assumed uniform over a
given range. All four of the above cost functions will yield
the same solution for p(m(t)) uniform, and a symmetric, unimodel
density function, pf(m(r)).h A Gaussian distribution, which

pf(m(T)) has been assumed in several analyses, is a member of this



latter class. The reason for the use of the Gaussian distribution

is the availability of a closed form analytical solution.

Method 1

The following derivation of the variance of the registration
error is a direct adaptation of Zubakov's solution,5 which assumes
Gaussian statistics. The principal modification is adding a
second dimension to the signal, for a two dimensional image. For
this discussion the time domain and spatial domain will be synonymous.

The likelihood function, A(t), is,

where,

pm(T) = conditional density of T given m(t,t)

pm(r)(f) = conditional density of f(t) given m(t,t)

po(f) = conditional density of f(t) given that m(t,T)
is absent

m(t,T) = known signal as a function of time and the
unknown parameter, T

f(t) = m(t,t) + n(t) = received signal

n(t) = additive noise

The case of interest here is one of signal delay in two spatial
directions. The likelihood function may be extended to a dependence

upon two parameters,

pm(rx,T

NG
(2) A(TX’TY) = pm(Tx’Ty) po(f) J




where these quantities are defined similarly to those above.
However, m(t,T) will become m(x,y,rx,ry), a two dimensional signal
with two parameters, the cartesian coordinate system being used.

In working with discrete data the spatial dimensions can be indexed
by a single subscript, thus allowing a further direct extension of
Zubakov's derivation, A two dimensional array mij’ TR PN S

J

jJ=1,00e, q, is converted to a one dimensional data setm ,h=1,...,

h?
pq. This conversion is made for convenience in notation and loses
nothing from the standpoint of the results to be derived. Similarly,
the received signal and noise also will be indexed with only one
subscript.

In the discrete case a continuous function has been sampled

and may be denoted,

m = m(th)
nh = n(th)
fh = f(th) =0 5y

h = ]’ICO, H

H = pqg = total number of samples

To arrive at an analytical result, the probability density
function of the noise must be known. So for this purpose assume a

Gaussian distribution function with zero mean,

1

NOf =

R 1]

where R is the covariance matrix of the noise, Rgh = E[ngnh].



The density functions in the likelihood equation then become,

Pm(Tx,Ty)”) Too S Eoudliiu Ty
p(f) = p, (f)

£ - (;],...,fH)

n' = e smy)

The likelihood function can be reduced to

H H HH
i S
(4) A(Tx,ry) = pm(Tx,Ty) exp { 2L Qghfgmh(rx,Ty) 5 LI Qgh
g h gh
m(t ,t)m (t ,7)}; Q, = ghth eleﬁent of R-]
g0 W iyl Tah i

Since it is only the maximum of A(Tx,Ty) which is desired, the
problem can be reduced even further, Let pm(Tx,Ty) be a uniform
distribution over a given area. This is a reasonable assumption
since there is no a priori knowledge about the actual distribution.
The question in point here is concerned only with a spatial delay,
so that the summation term,

H

i Qghmg(Tx,Ty)mh(rx,ry)

(5) wu =

Q. .t xE

will also be a constant function of Ty and Ty. The only factor

which is not a constant with respect to T and Ty is,
HH
= T

Therefore the maximum of A(Tx,ry) is determined solely by the

maximum of ¢. The optimum receiver is then the one which finds



the maximum of ¢. This type of receiver may be viewed as a
correlator which is weighted according to the inverse noise
covariance function, Qgh' For the case in which the noise is

white with spectrum NO/Z, the covariation matrix becomes %_L

o
(1 = identity matrix), and the optimum receiver is simply a
correlator.
9 H
(7) g = = §Fom (T )
No h 5 S

Given that the maximum point (denoted by %x’%y) of the
likelihood function has been found, a measure of the accuracy
of the estimates is necessary so that the results of the estimator
may be evaluated.  One such measure is the variance of the
estimate about the maximum point of A(Tx,Ty). For this analysis
use the ln[A(Tx,Ty)] since it is a monotonic function of A(Tx,Ty).
In the once dimensional case the derivation continues by taking
the Taylor series expansion of en[A(t)] around T. The two
dimensional case necessitates a further evaluation of exactly what
is wanted. A two dimensional Taylor series of a function f(x,y)

about (§,§) which is truncated at the second order is,

B fooy T ) ¢ EEI) (g + LB ()

2 A A 2 A A A

v ZEGI R ) + g 9-2:‘(-;&&)- s
2 N A 3 A A

b L ZEGD) (p? 4 3 BEY (P y-h)

3y 37 xoy

3.,2 & L 2~ 5 e
v L ZEGI) o5y (-2 4 2EE (R 2D
axoy X Ay



7.

Utilization of this formulation will present an intractable problem.
An interpretation of the problem which will simplify the solution

is needed. Once such viewpoint is to consider the variance only
along the x-axis direction and y-axis directions, instead of a

total variance in all directions. Expand %n[A(Tx,Ty)] in a Taylor
series about (%x’%y) first in the x—axis direction and then in the
y-axis direction. Assume that the zn[A(rx,Ty)] can be approximated
by a second order polynomial in both directions,

x-axis direction,
aznA(Tx,r )

(9) 2HA(TX,TY) = lnA(rx,Ty) + T (jx-rx)
2 A
ant? d QnA(Tx,Ty) e )2
2 2 55Ty
9T
X
y-axis direction,
aenA (T ,T )
A A : A A X _a
(10) ZnA(Tx,Ty) QnA(TX,ry) & -__?;:7__JL_ (Ty Ty)
lenA(% sT. )
1 X a2
+ 'i' ) (T"T)
3T Y ¥

A necessary condition for the maximum point of znA(Tx,Ty) is that,

aLnA(T ,T ) awnA (T ,T )

(]]) _————X—-L- = 0 = ____l(.__\[_.
3T T
X Y

The Taylor series expansion may then be reduced to,

x-direction,

2 51 2 X
X

4 - azznA(%x,%y) 1 g
(12) ZnA(TX,Ty) = RnA(Tx,Ty) + = (x -rx)

y-direction,
BzinA(? 47 )
dhtels i) X (t -7
x’y 2 5t 2 Yy
Y

(13) 2nA(?x,ry) )2



Rearranging the equations,

x=direction,

g2
(e =k )
2 - e iokes ix g
(14) A(Tx,Ty) = A(Tx,Ty) exp { 77 }
X
y-direction,
2
(2,57 )
g Lol el plgnt s
(15) A(Tx,Ty) = A(Tx,Ty) exp { 272
' Yy
where, b >
vt 5 5) "
2 %X’y
(16) B, == 5 = variance in the x-direction
i BTX 4
2 lenA(Q ,T) -1
(17) Ay = - zx Y = variance in the y-direction
9T

Assuming p_(t ,7 ) to be uniformly distributed,

m' x’y
onr . o P b S
18 — = 220 Im (1t ,1)~-Ff
sz % b gh™ g x’y g -
H H am (T ,7) am (T ,T)
¥R LY h gr = gr
g h g X
; H H i+ : 8°m, (T,»7,)
(19) —= = z2:Q [m (vt ,t)~-Ff
A 2 gH gh™ g’ x 8% 2
Y Y
+ ZIQ ) )
g h gh Ty Ty

If one further assumes a large signal=to-noise ratio, then

HH am (t.,7.) om (T ,7)
(Bg) wdas = T 5B adl h X ¥
2 gh ot aT
A g h X X
x
TR H H Bmg(Tx,ry) Bmh(rx,ty)
(21) i i Qgh oT ot
A g h y y



since [mg(?x,%y) - fg] is dependent only upon the noise and is
small compared to mg(;x’%y)' An alternative way of expressing

the variance, which will be derived, is,

(22) sz = '2
wa U
i Ayz i Awlzu
Y
where,
HH L 18
(24) wu= g a Qghmg(Tx’Ty) mh(rx,ry), signal-to-noise ratio

or equivalently,

Pq 2
(25) u=2z1 2(”"’)

uv g
Pq 2
b 33 uS Mﬁuvv)
9
(26) AW 2 NN = effective bandwidth in the
X P g M( ) 2 st B %
TS u,Vv X=axis direction
uv SR Mig¥
2P 9 v M (u,v) 2
1 B e
8§
(27) W i Y el 5 = effective bandwidth in the
Y g g IM(uzv)! y-axis direction
Solu,Vv
uv R

M(u,v) = Fourier transform of the known signal

S, (u,v) = noise spectrum

R(
The variance can be reduced to a function of the effective
bandwidth and signal-to-noise ratio. A result such as this

may yvield easily obtainable first approximations to the error

that can be expected.
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Conversion of —%-to the frequency domain.,
A

For the purpose of this proof subscript notation will be
changed. The signals will be represented as a two dimensional
array instead of the one dimension as used above.

% i mlq
M=

m m

pl Pq

Where pq = H, the total number of samples. The elements of

the inverse covariance matrix, Q, will be denoted by chab'

Elements of the covariance matrix, R, will be R 3
- cdab

(29 'R

S H 8,165 [jeessp
cdab Nab"ed

by d = lyee0s9

Define an array K such that,

(30) ch g chab mab

L O
O MO

This may be equivalently expressed as,

P
(31) M ="y E R
Cc

ab

o ™M.aQ

cdab Kﬁd

or, assuming stationarity in the x-axis and y-axis directions,

P g
(32) Mab ¥ E g Ra--c, b-d ch
With this notation,

PaPpPg

(33) o idp =e8 /02 3 Qb Mcd Mab’ from equation (24)
cdab
P g

(3h)  u=1% % ch, Mcd’ substitution from equation (30)
c d
Pqgpq .

(35) p=3rrIcx ch Ra-c b Kab’ from equation (31)
cdab :



1.

SR(u,v) ch Kab exp [j2m(a=c)u+(b=d)v]

=

1]
c ™Mo
< ™Mo
0O ™M
oMo
O ™Mo
o ™Mo

1
™Mo

J 2
(36) u Z SR(U’V) 'K(U’V) |

uv

Find K(u,v) in terms of M(u,v).

P q

(37)  M(u,v) K , exp [~j2w(au+bv)]

i
QO ™M
o ™MO
]

Ra-c, b-d “cd

X
ab
a

P T Y RXY ch exp {=j2n[(A+c)u + (y+d)v]}
Ay ab

™M O
0
©

(38) M(u,v)

The conversion from equation (37) to (38) is true because the
discrete Fourier transform assumes periodicity of the time

function. Therefore,

M{u,v) = SR(u,v) K(u,v) ; from equation (38)
or, ,
_ Mu,v)
(39)  K(u,v) = g;%ﬁ%;)

Substituting equation (39) into (36),

P9 IM(u,v) |2
wo) ez x EGaL

v

Similarly, it can be shown that,

P9Ppq am_,  Am T 2
Y T TE.0 cd _ab_ ;.25 E_iﬂ%HL!}L.
cdab 97 9T S (u,v
cdab X X e A R
PaPpg
o). PEEEA Bl MMy e v2IM(u,v) |2
cdab ary QTy < (u$V}

uv R
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Method 2

A second method for estimating the variance of the
registration error will now be developed. For this case,
the only assumption about the processdr is that in the absence
of noise, the output of the filter will be a maximum at the
correct time délay.3 The only a priori knowledge of the noise
that is necessary here is its correlation function. This is
shown in the derivation. No assumptions about the probability
distribution of the noise are needed. This derivation is
carried out for the continuous signal case, but it may be
extended directly to the discrete situation in which a continuous
function has been sampled.

The received signal is made up of two components, f(x,y),
the useful signal, and m(x,y) the additive noise. This signal
is passed through a filter with impulse response h(x,y), yielding
an output, g(x,y) + n(x,y) [g(x,y) = h(x,y) * f(x,y); n(x,y) =
h(x,y) * m(x,y)]. The position at which the maximum of the
output signal occurs is taken to be the correct registration
position. However, the filter is designed to give the maximum
of g(x,y) only at the correct delay. The difference between
these two positions is the error. A measure of the variance of

this error is derived below.

”"d—ii—q) £ R B,y )
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(43)  z(x,y) = g(x,y) + n(x,y)

(44)  g(x,y) = Jf h(x=a,y=B) f(c,B)dads

45)  nlx,y) = [f hix-a,y-B) m(a,B)dads

Let the maximum point of g(x,y) occur at (x,y). Expand g(x,y)

about (X,y) using a two dimensional Taylor series.
(46)  glx,y) = glx,5) + g () (%) + g (x,¥) (v-¥)

+g, (F) xX) 4-9) + 3o (LF) (xR

] o o ~ 2
+ = -
2 gyy(XQY) (Y Y) +ooc
where,
~ 3g (x,y) this subscript notation is
gx(x,y) = X X = ;, y = ; ; used for the remainder of

this section

Assume that (x-x) and (y-y) are small enough so that all higher
order terms may be neglected.

A necessary condition for a maximum at (x,y)is that
gx(;,;) =0 1= gy(i,?). The Taylor series expansion may then

be simplified.

(47)  glx,y) = glx,y) + e (x,y) (x=x) (y=y)

] ™ A o~ Z ] ~ o~ -~ 2
+ 59, 06Y) (x=X)" + 59 (,y) (y-¥)

Substitute equation (47) back into equation (43).

(48)  z(x,y) = glx,y) + gxy(§.§) (x-x) (y=y)

)2

+

i il ” 1 - s B
E'QXX(X’Y) (x=x)“ + E-gyy(x,v) (y-y)

4

n(x,y)
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The maximum output of the filter may occur at a different
position than (X,¥). Denote this new position as (§,;).
A necessary condition at (x,y) = (x,y) is that Zx(;’;) ey o

Zy(;’;)' Use these conditions on equation (48).

(h9) ZX(;’;) = 0 = gxy(;’;)(§-;) + gxx(;,;)(;';)
+ nx(;p;)
(50) zy(i,?) e gxy(§,§)(§-§) * gyy(§-§)(§'9)

+ ny(;’;)

Equations (49) and (50) may be set up in matrix form,

(5]) B Ty X =X - 'nx(x,y)
9%y  yy ik = b

where the arguments, (i,;), have been 1eft out for ease in
notation.

Solve for (x-x) and (y-y).

X - x - -n_(x,y
o J ; ks e = ,Y)
y -y ot g -g 9 -n_(x,Y)
XXTYy  OXy Xy XX %ot
Therefore,
e g Y =g h
(53) (x-x) = XX W ;
gXXgYY 3 gXY
R AL WL
(58) G(-¥) = ~Afeing
IxxIyy ~ Oxy

where the arguments, (2,;), have also been left out for notational

convenience.
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Next find the variance of (x-x) and (y-y), assuming the mean

=0, i.e., E[x~x] = E[y=y] = 0
Then,
-~ - ~2 = ~. 7
(55) Var[x-x] = E[(x-x)“] = (x=x)
; -~ -~ 2 =R
(56) Var[y-y] = E[(y=y)“] = (y=-y)
g z;—_ <29 9 WA '*g 2;—7
(57) (x)? = XY WY S WX
[gxxgyy et 1
g 2;—7 = 29 g + 2n e
(58) (7-y)? = LAY Y
[gxxgyy g " ]

where,

(59) ny2<§,§) = [[ff hy(§-a,§-8)hy(Q-Y,§-x)m(a,6)m(Y,x)dadsdvdk

Letting,

(60) Rm(a-Y,B-X) = m(a,B)m(Y,A)

by assuming stationarity,

(61) ny2(§,9) = JJJJ b Gema,y-B)h (=, y=MIR, (-, 1) dadBdyd)
Similarly,

(62) ny(§,§)mx(§,§) = [[[] hy(§-a,§~8)hx(§-?,§-A)Rm(a-y,B-A)daddedA

63) 0 9 = JIff h (oo y-B)h (e-v,-A)R (a=v,6-1)dadsdydd

(64) gxx(;,§) {f hxx(i-a,§-8) f(o,B)dadB

(65) gyy(x,§) = ff hyy(x-u.y-B) f(a,B)éadB

(66) gxy(;“;') = ff hxy(g"%;"B) f(a,B)dadB



16.

Convert equations (61) through (66) into their equivalent

form in the frequency domain.

(67) nyz(;-Q) e ff v2|H(u,v)|25m(u,v)du dv
(68) nx(;,;)ny(;,;) = hﬂz ff uvIH(u,v)|ZSm(u,v)du dv
(69) nxz(;,;) = be? [f ule(u,v)IZSm(u,v)du dv

(70) gxx(x,y) = wlr? [ qu(u,v) F(u,v) ejZn(; u+y v)du dv

(71) gyy(;’;) =lw? ff vzH(u,v) F(u,v) ejZ“(x u k) du dv

(72) gxy(§’§) sl J[ uv H(u,v) F(u,v) ej2n(§ uty v)du dv

The filter impulse response, h(x,y), is assumed to be a real
function. In order to arrive at a closed form solution as a
function of the effective bandwidth and signal-to-noise ratio,

a specific form for the filter will be chosen; viz.,the so called

""matched filter'" which maximizes the output signal-to-noise ratio.

Let,,
(73)  Hlu,v) F*(u’v)se;if:;i u+y v
m
where,
Sm(u,v) = {Rm(x’Y)}
Flv,u) = {f(x,y)}
H(u,v) =  {h(x,y)}



{68

Equations (67) through (72) then become,

2
hwz ff v2 lgi%ﬁ!%}“ du dv
m 9

2
) Gin Go¥) =t Jf w £l gy dv

m
hwzdff u? lfi%i!l}i du dv
Sm u,v

- n 2 (x,¥)

(74) ny2<§,§)

(76) 0 2(x,9)

(77) g, (x,¥)

(78) g, (x.9) ny2<§.§>

(79) gxy(;s?) nx(;c.:/)ny(;,;')

Equations (77) through (79) give an important relationship.

The equations for (§-§)2 and (;-;)2 may now be greatly simplified.
The arguments (;,;) and (x,y) will be dropped for notational

convenience in the following derivation.

g 2n B 2 g . nn + Qn 2
s TRy Y Iy Iyy"y"x Iyy
(x=x) 5

L 2]
XX7yy Xy

X_, from equation (57)

Substituting in equations (74), (75) and (76) yields,

= 2 ..-]
S g
Bo) Gt e [ - g
g XX
Yy ]
Similarly,
iy TR L el -
e ) Iyy
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These are the two basic equations for computing the variance
of the estimate in the x-axis and y-axis directions. At first
glance, equations (80) and (81) do not seem to resemble the analogous
discrete signal bandwidth equations as derived in the previous
section, equations (22) and (23). However, one must examine the
terms more closely., The variables, g and -gyy’ as in equations

(74) and (78), contain the signal bandwidths.

-gxx = L}'n' If 2 -l—g—(zF e V) du dv

This may be written as:

(BB} <y, = B~ SNR

where, 1/2

b [f u? lfi%;§%+_ Ry dv

effective bandwidth

B il ) of input signal in the
ff l—-ﬁflL4—- du dv x-axis direction
U,V
and,
2
i :(”uvz du dv = output signal-to-noise
m Y ratio
Similarly,
2
S o 2 |F(u,v)
-gyy = L}'ﬂ' f[ Vv -LS_mT-u’;V}_ du dV
(B3 =g = B oM
YY b4
where,
1/2
2 (F(u,v)
br? [ v l—-11:;4- du dv '
B = = effective bandwidth

4 ff lF(uzv)! ol of input signal in the
: UyV y-axis direction
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Substituting equations (82) and (83) into (80) and (81), one

obtains, 2 -1
) g
@) G2 = - —— +B W
B._“SNR
y
g 2 -1
=~ 2
(85) G-»2 = - -—%1—— + B_“SNR
B, SNR

The variances are again seen to be functions of the signal bandwidths,
however, the relationships are not as simple as in the case considered

earlier.
Now consider the the specific case where the ratio in the

integrand is a constant and the signal spectrum is bandlimited.

2
(86) l%fiﬁ%%}— = ¢, a constant

This situation would be encountered if the noise spectrum has

a similar shape to the signal spectrum within the bandlimits.

In such a case it might be advantageous to model the two spectra

as differing only by a constant factor for simplicity in estimating

the variance to be expected. First look at gxy'
2
uv lfi%z¥l§_ du dv
Sm U,V

b
] uv du dv
b

s @
G 07 =hr 'i

O ——U

{87z s agyr =0
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In this case, equations (84) and (85) reduce to,

(88) (xx)? = e
Bx SNR

(89) (-y)? = ——
By SNR

which are analogous to the results in the first section.

The variance of the error again has been found to be a
function of the effective bandwidth and signal=-to-noise ratio.
This time, however, there is no consideration of the probability
density function of the noise. The correlation function of the
noise is the only function that need be known.

Both the methods yield similar results, and therefore
indicate that a measure of the error to be expected is available.
A measure of this sort should‘be useful in evaluating the registration
of one image upon another. The filters chosen in both cases are
similar., The second case also provides for a measure of the error
variance when the filter chosen in the derivation is not used:
refer to equations (57) and (58). However, in this case, a simple
analogy to the effective bandwidth and signal-to-noise ratio is not
obtained. In the frequency domain, each of the chosen filters is
the complex conjugate of the useful signal spectrum divided by the
noise spectral density, times a phase shift factor, i.e. a matched
filter. In the white noise case, the processors are correlators.
This point should be of significance since one method of registration
is to use a correlator, which is not an optimum processor in non-

white noise. This is one aspect to be considered when designing

the processor. A second aspect that must be dealt with, is how to

obtain the noise covariance function, and if it is to be estimated,

what is a good measure of the error in this estimate.



21,

Sample Calculation of the Registration Error for Discrete Data

_An expression for the registration error between two images
was derived previously. The error was found to be a function
of the signal=to-noise ratio and equivalent bandwidths in the
x~axis and y-axis directions. For the analysis which follows,
assume that the signal spectrum, |F(u,v)|2, and noise spectrum,
Sn(u,v), are separable in u and v. This simplifies the expression

for error to the one dimensional case,

W 2
1 2 2 4F
(90) — sl SNRy ifroa lgi%%+— du

E =W n
%
|F(u,v) B
in this example '?F’GTTA" is chosen a constant., Therefore
m’
g . = 0, as was shown earlier.
xy
Ex = error in the x-axis direction
SNRy = signal=to=noise ratio in the y-axis direction
W 2
SNR_ = fY-LF—(‘('l;— dv
Y W S (u
n
Y
W = bandwidth in the x-axis direction
wy = bandwidth in the y-axis direction

This problem is explained as an adaptation of the continuous

case to the discrete case, where equation (90) may be approximated

by,

) 2

F,2kW
1 2 ow M2 g2 ! (”Z"N"' |

(91) = . 2 4" SNR ~ E N S OkW
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Refer to the figure below,

W 2kW
N N
Figure 10
N = total number of samples
N
k = 0,],0..,-2-
Ax = sampling interval
Woos E%;; cutoff (maximum) signal frequency
W 5
Af = R frequency interval

Equation (91) yields a weighted sum of the shaded area in
the figure and is a good approximation to the error expression
for N large. In using equation (91) it is necessary that the
frequency scales of the signal and noise spectrums be the same.

This point is extremely important since equation (91) is meaningless

otherwise.
Example | (ka)'z
o s le
Let: ZEW = (C, a constant for all k.
“n (S
SNRx = signal-to-noise ratio in x-axis direction
SNRy = signal-to-noise ratio in y-axis direction
Ax = 80 meters (approximately the sampling interval

for ERTS data)



Find the expected error, Ex’ in the x-axis direction,

Solution: 2
fig'2 IF('ZEW')' 2w |F(0)|?
BE =2 & 3 et e R
x 0 5 5 2k N TS0
k=0 n(T n
N/2
SNR = %¥ z C - %%-C
" k=0
X 2.\
SNRX = 2WC [1 + N N]
SNRx = 2WC, for N large
Therefore, ;
SNRx
C = =7

From equation (91).

y -8 2 ow M2 5w 2 SNR
ten, 2 4r°SNR = 3 (T =
E. Y k=0

A N/2
_‘_2. - -1113‘— 8 WE(SNR )(SNR ) 3 K2
E N % Y k=0
X

2

I 2 NN+ 2)(N+ 1)
= = ;3- 8 W (SNRX)(SNRy) 5%

X
g hn” W2(SNR_) (SNR ), for large N
£ 2 3 X ¥y hes

X
B 3 T e
x 21w (SNRX)(STNRy) MRt se0g

= 3 H
Ex Ax-vngRx)(SNRy) unit length

23.



Substituting in the value for Ax.
i =1/2
g hl[(SNRx)(SNRy)] " meters
For,
SNR = 1
X
SNR = ]
4

the error is,

E = L1 meters
X
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Error in the Estimation of Discrete Spectral Densities for

the One~Dimensional Case

The variance of the registration error about the true point
of overlay has been determined as a function of the Fourier
transform of the signal and spectral density of the noise in
section one. To proceed further to the analysis of a real
problem it is necessary to obtain an estimate of the noise
spectral density. Two approaches have bgen used for the
estimation of this function in the one~dimensional case (this
analysis is taken directly from Bendat]). The first is the
calculation of the spectrum by finding the autocorrelation
function and then taking its Fourier transform, The correlation

function may be approximated by,

R = s N;r X X r=20,1 m
r MR gy D d i el
where,
X = x(nh), the value of the function at the time, t=nh
h =  time sampling'interval
N =  total number of data values
m =  maximum lag in r
E[X] = 0, by assumption
R = R

- r
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The spectral density is then found by computing the Fourier
transform of Rr from its samples as determined above. Using the

discrete Fourier transform, the one-sided spectral density is

given by, .
G e wrk k
G, = 2h]R +2 z] R, eosl—) + (-1} Rm] , k=0, 1,000 m=1
r=
where,
'ﬁk = G(f), the estimate of the spectrum G(f) at f = EEF

The two sided spectral density, Sk’ is

N e
8 TeotbsgerSaorgaly

The error for the spectral density estimation as given in

Bendat] is,
; &L 1
E, Jﬁ' g \‘B T
e
where,
Be = ;%-, resolution bandwidth of spectrum

T = Nh, total rgcord length in time

Where Er is defined as,

varl&(F) 1372

Er G(f

which is the ratio of the standard deviation of the spectral
estimate at a frequency, f, to the true spectral density at that
same frequency. It is seen that the error decreases as the

sample size, N, grows large with respect to the maximum lag, m.

The second method for estimating the spectrum is to use

the modulus squared of the Fourier transform of the data directly.

A o _2_'1 2
G = G e
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N-] °
X = T X exp [ - -’-1—2-1-1:&1- ]
k i3 N
n=0

This method yields an error,

i et |

E = 1, since Be T

In this case, the variance of the estimate is equal to the
actual spectral density at a given frequency. One way to reduce
the error is to average the spectrum over a number of adjacent

frequenciesz. For "¢ equal to the number of points to be

averaged,

This averaging is in a sense a reduction of the bandwidth
resolution,

This gives an indication of the quality of the spectral
density estimate. For the purposes of determining the registration
error, it may be desired to further approximate the spectrum
by a general functional form. The justification for this step
would lie in the ability to find a general functional model for

the noise spectrum over different types of imagery.
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