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THE EFFECT OF UNLABELED SAMPLES IN REDUCING THE SMALL SAMPLE

SIZE PROBLEM AND MITIGATING THE HUGHES PHENOMENON

ABSTRACT

In this paper, we study the use of unlabeled samples in reducing the problem of small training

sample size that can severely affect the recognition rate of classifiers when the dimensionality of

the multispectral data is high. We show that by using additional unlabeled samples that are

available at no extra cost, the performance may be improved, and therefore the Hughes

phenomenon can be mitigated. Furthermore, by experiments, we show that by using additional

unlabeled samples more representative estimates can be obtained. We also propose a semi-

parametric method for incorporating the training (i.e., labeled) and unlabeled samples

simultaneously into the parameter estimation process.

I. Introduction

An important problem in pattern recognition is the effect of small training sample size in

classification performance. It is well known that when the ratio of the number of training samples

to the number of feature measurements is small, the estimates of the discriminant functions are

not accurate, and therefore the classification results may not be satisfactory. This problem is

becoming increasingly significant in remote sensing, as the number of spectral bands in sensors

becomes larger. The new generation of the remote sensing sensors that are proposed for the Earth

Observing System (EOS) can produce data in large number of spectral bands. The MODIS

sensor produces data in about 50 bands [1], whereas the AVIRIS sensor produces as many as 200

spectral bands [2]. One objective of using such high resolution sensors is to discriminate among

more ground cover classes and hence obtain a better understanding about the nature of the

materials that cover the surface of the Earth. Details such as differences among various types or

conditions of the same species that were not possible to observe using the older generations of
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sensors such as Thematic-Mapper of Landsat, should be apparent by using the higher resolution

sensors.

To fully use the information contained in the new feature measurements, training samples are

needed from all the classes of interest. A large number of classes of interest, and a large number

of spectral bands to be used, require a large number of training samples. Such training samples

are usually very expensive and time consuming to acquire. For remote sensing applications,

ground truth information must be gathered by visual inspection of the scene near the same time

that the data is being taken, by using an experienced analyst for identifying the class labels of

data based on their spectral responses, or by other means. In any case, usually only a limited

number of training samples can be obtained. These training samples are often used for deciding

what features in data are useful for discriminating among the classes of interest, and for

designing classifiers based on these derived features. Figure 1 illustrates a typical scenario for

analyzing remote sensing data.

scene feature extraction classification

training data

result

sensor
measurments

features

Figure 1: Typical steps in the analysis of remote sensing data

Usually, both the feature extraction and the classification stages of the analysis are based on

optimizing a criterion that must be estimated using the training samples. If the number of training

samples is small compared to the dimensionality of the data, both of these stages may suffer from
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bad estimates. Therefore, the resulting performance of the whole analysis may be less than

satisfactory.

An additional problem that usually exists in remote sensing applications is the unrepresentative

training samples problem. The training samples that are obtained from spatially adjacent regions

may not be good representatives of the samples of the same class that might exist in other regions

in the scene. This problem further aggravates the difficulties in analyzing remote sensing data.

The purpose of this work is to study some techniques for reducing the small sample size

problems by using unlabeled observations that may be available in large number and with no

extra cost. Including the unlabeled data in the process of designing classifiers can have the

following potential advantages: 1) The large number of unlabeled samples can enhance the

estimates of the parameters and therefore reduce the effect of the small sample size problem. 2)

The estimates of the parameters that are obtained by using the training samples may be updated

by using additional unlabeled samples to obtain statistics that are more representative of the true

sampling distributions. 3) The prior probabilities of the classes that can not be found by training

samples alone may be estimated by using unlabeled samples.

The organization of the paper is as follows. In section II, the Hughes phenomenon, which is the

loss of classifiability that is observed when the dimensionality of the data increases while the

training sample size remains fixed, is briefly discussed. The effect of the classifier type on

classification accuracy is discussed in section III. In section IV, the problem of small training

sets is discussed with the aid of an experiment. The effect of additional unlabeled samples in

improving the performance is studied in section V. Some methods for incorporating the

unlabeled samples into the classifier design process are studied in section VI. In section VII,

some experimental results are presented. In section VIII, the effect of unlabeled samples in
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obtaining more representative estimates is demonstrated by an experiment. Final remarks are

presented in section IX.

II. The Hughes Phenomenon

In a typical classification problem, the objective is to assign a class label, from a set of such

labels, to an incoming observation. The minimum expected error that can be achieved in

performing the classification process is referred to as the Bayes' error. A decision rule that

assigns a sample to the class with highest a posteriori probability (the MAP classifier), achieves

the Bayes' error [3]. To design such a classifier, knowledge of the a posteriori probabilities and

thus, the class conditional probability density functions is required. If such knowledge is

available then by increasing the dimensionality of data one would expect to enhance the

performance. In other words, the Bayes error is a decreasing function of the dimensionality of the

data. After all, a new feature can only add information about a sample and thus, one would

expect to do at least as well as if such information was not available.

In practice, however, class conditional probability density functions (pdf's) need to be estimated

from a set of training samples. When these estimates are used in place of the true values of the

pdf's, the resulting decision rule is sub-optimal and hence has a higher probability of error. The

expected value of the probability of error taken over all training sample sets of a particular size

is, therefore, larger than the Bayes error. When a new feature is added to the data the Bayes error

decreases, but at the same time the bias of the classification error increases. This increase is due

to the fact that more parameters need to be estimated from the same number of samples. If the

increase in the bias of the classification error is more than the decrease in the Bayes error, then

the use of the additional feature degrades the performance of the decision rule. This phenomenon

is called the Hughes effect [4]. The larger the number of the parameters that need to be

estimated, the more severe the Hughes phenomenon can become. Therefore, when the
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dimensionality of data and the complexity of the decision rule increase, the Hughes effect can

become more severe.

III. Classification Performance Versus Classifier Type

The functional form of a classifier determines the shape of the decision boundaries that it can

produce. Linear classifiers, such as the Minimum Euclidean Distance (MED classifier) classifier,

which is optimal when classes are Gaussian with identity covariance matrices, can produce

hyper-plane boundaries, whereas quadratic classifiers, such as the Gaussian Maximum

Likelihood (GML classifier) classifier, which is optimal when the classes are Gaussian with

different covariance matrices, can produce quadratic boundaries. More complex classifiers can

create even more complex boundaries. Obviously, the more complex the classifier is, the more

powerful it is in terms of its ability to discriminate among various classes of different shapes. In

remote sensing, it has been observed that quadratic classifiers that take advantage of the second

order statistics of the classes, e.g., GML classifiers, are very powerful for discrimination [5]. The

value of the second order statistics is evidently more prominent when the dimensionality of the

data is high. In high dimensions it seems that the second order variations of the classes contain

more information than the first order variations [5]. To demonstrate this fact, the following

experiments were performed (additional similar experiments are reported in [5]):

Experiment 1 (AVIRIS data):

A portion of an AVIRIS frame (consisting of 210 bands) taken over Tippecanoe

county in Indiana was used in this experiment. Four ground cover classes were

determined by consulting the ground truth map. The classes were bare soil (380

pixels), wheat (513 pixels), soybean (741 pixels), and corn (836 pixels). The average

pair-wise Bhattacharyya distance between the classes was computed for every fifth

band of the AVIRIS data. The bands were then ranked according to the average

Bhattacharyya distance. The dimensionality of the data was incremented from 1 to 18

IEEE Geos. & Remote Sensing Trans. -   6   - September 1994



Shahshahani & Landgrebe: Effect of Unlabeled Samples

by sequentially adding more bands, i.e., for dimension 1 the first ranked band was

used, for dimension two the first two ranked bands were used and so on. In this way

at each dimension all the information in the previous dimensions was present. One

hundred training samples were drawn randomly from each class. The statistics of each

class (mean vector and covariance matrix) were estimated by the maximum likelihood

(ML) estimators. The rest of the samples were classified using the MED and GML

classifiers, and the total classification accuracy (the ratio of the number of correctly

classified samples to the total number of samples) was computed. Each experiment

was repeated ten times independently and the average of the ten trials was obtained.

The results are shown in Figure 2.
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Figure 2: Classification accuracies of the MED and GML classifiers versus
dimensionality for the AVIRIS data set based on 100 training samples per class.
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From Figure 2 it is seen that the GML classifier, that takes advantage of the second order

statistics of the classes and creates quadratic boundaries, is more powerful in discriminating

among the classes, especially when the dimensionality of the data increases. However, the

number of the parameters in the GML classifier is more than that in the MED classifier. As the

dimensionality grows, the number of entries in the covariance matrices of the classes increases

rapidly. Therefore, when the dimensionality of the data begins to approach the number of

training samples, one would expect the Hughes phenomenon to affect the GML classifier more

severely. This point will be discussed in more detail in the next section.

IV. Effect of Small Training Sample Size

Consider a classification problem involving m classes with prior probabilities αi and probability

density functions fi(x). By e* we denote the Bayes' error achieved by using the MAP classifier

when αi and fi(x) are known. Let θ denote the vector of parameters of the MAP classifier. If the

pdf's are parametric (such as multivariate Gaussian), θ usually includes the parameters of each

class (e.g., mean vectors and covariance matrices) and the associated prior probabilities. On the

other hand, if fi(x) is not considered to be parametric, θ is assumed to contain the value of fi(x) at

each particular sample x under consideration. Let θ* denote the true value of θ. The error

achieved by using θ∗ in the decision rule is e*, the Bayes error. Now, assume that ˆ θ  is an

estimate of θ*. If the deviation of ˆ θ  from θ∗ is not large, one can approximate the error

corresponding to the decision rule obtained using ˆ θ  by using a Taylor series expansion of up to

the second term:

ˆ e = e( ˆ θ ) ≈ e* +
∂eT (θ)

∂θ θ=θ*

(ˆ θ −θ*) +
1

2
tr{

∂2e(θ)

∂θ2
θ=θ*

(ˆ θ −θ* )(ˆ θ −θ *)T} (1)

where tr(A) denotes the trace of matrix A. The term 
∂eT (θ)

∂θ θ=θ*

 is zero since θ* is an extreme

point of e(θ). If the bias of ˆ θ  is zero or negligible (E{ ˆ θ } ≈ θ*), then the expected value of ˆ e  can

be approximated as follows:

IEEE Geos. & Remote Sensing Trans. -   8   - September 1994



Shahshahani & Landgrebe: Effect of Unlabeled Samples

E{ˆ e } ≈ e* +
1

2
tr{

∂2e(θ)

∂θ2
θ=θ*

cov(ˆ θ )} (2)

Notice that the bias term on the right hand of equation (2) is non-negative, because it is the trace

of the product of two positive semi-definite matrices [6]. As the number of the parameters (θ)

increases, the number of terms in the bias increases and hence the expected value of the error

increases, too. If this increase is not canceled by the decrease in the Bayes' error that the

additional parameters may provide, then the Hughes phenomenon occurs. To demonstrate this

fact, experiment 1 is repeated here, but  instead of 100 training samples, 20 training samples per

class are used. The effect of small training sample size is evident in the results shown in Figure 3.
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Figure 3: Effect of small sample size in the performance of the MED and GML Classifiers for
experiment 1 (AVIRIS data).
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From Figure 3,  it can be seen that when the number of training samples is small the GML

classifier is more severely affected by the Hughes phenomenon than the MED classifier. The

behavior of the MED classifier was not significantly changed when the numbers of training

samples was reduced but the accuracy of the GML classifier started to decrease after the

dimensionality passed beyond a certain point. Therefore, although the second order statistics can

be invaluable for discrimination in high dimensional spaces, if not properly estimated they can

also significantly reduce the performance. As can be seen from equation 2, what causes the

increase in the expected error is the covariance of the estimates of the parameters. Since, the

sample average and sample covariance are the minimum variance unbiased estimators for the

mean and covariance matrix, it appears that not much improvement can be hoped for if only

training samples are used in the estimation process. However, if by using additional information,

such as the information contained in unlabeled samples, estimates with lower covariance

matrices can be found, then the bias in the classification error may be reduced and therefore the

Hughes phenomenon may be mitigated.

V. Effect of Additional Unlabeled Samples

Let's consider the bias term in the right hand side of equation 2. Consider two different

estimators, ˜ θ  and ˆ θ , which both have negligible bias, and assume that cov( ˜ θ ) ≤ cov( ˆ θ ) (i.e.,

cov( ˆ θ ) - cov( ˜ θ ) is positive semi-definite). Then one can show that:

tr{
∂2e(θ)

∂θ2
θ=θ*

cov( ˜ θ )}≤ tr{
∂2e(θ)

∂θ2
θ=θ*

cov( ˆ θ )}

The above inequality is true because both the covariance matrix and the Hessian matrix at θ* are

positive semi-definite (the Hessian is positive semi-definite at θ* since θ* is a minimum of e(θ),

so e(θ) is convex around θ*). Therefore one can write:
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tr{
∂2e(θ)

∂θ2
θ=θ*

cov( ˆ θ )}− tr{
∂2e(θ)

∂θ2
θ=θ*

cov(˜ θ )}

= tr{
∂2e(θ)

∂θ2
θ=θ*

[cov( ˆ θ ) − cov(˜ θ )]}≥ 0

where the last inequality is obtained because the trace of the product of two positive semi-

definite matrices is non-negative [6]. Therefore, the expected error due to using ˜ θ  in the decision

rule is less than the expected error due to using ˆ θ :

E{ ˜ e } ≤ E{ ˆ e }

It is possible to show that, by using additional unlabeled samples, estimates with smaller

covariance matrices can be found. Therefore, better performance can be obtained without the

additional cost of obtaining more training samples.

Let us assume that ˆ θ  is an estimate of θ* obtained by using the training samples. Furthermore,

assume that ˆ θ  is asymptotically unbiased and efficient (for example, maximum likelihood

estimates always posses these properties [7]). In other words, for moderately large sample sizes

E{ ˆ θ } ≈ θ* and cov( ˆ θ ) ≈ Is
−1, where Is is the Fisher information matrix [7]. The subscript "s"

denotes that the Fisher information matrix corresponds to an estimate obtained by using training

samples that are drawn from each class separately. The Fisher information matrix is positive

semi-definite and is defined as follows:

I = E{[
∂

∂θ
logf(x)][

∂
∂θ

logf(x)]T}
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Now, let us assume that ˜ θ  is another estimate of θ* obtained by using some unlabeled samples in

addition to the training samples. The unlabeled samples are drawn randomly from the mixture of

the m classes. If ˜ θ  possesses the same properties of asymptotic unbiasedness and efficiency, one

can approximate cov( ˜ θ ) by Ic
−1 where Ic is the Fisher information matrix corresponding to the

estimate that is obtained by combining training and unlabeled samples. Provided that the

unlabeled and training samples are independent, one can write:

Ic = Is + Iu

where Iu is another information matrix corresponding to the information contained in the

unlabeled samples for estimating θ*. Since all the information matrices are positive semi-definite

one can write Ic ≥ Is. Therefore, cov( ˜ θ ) ≤ cov( ˆ θ ). Thus, one can conclude that the expected error

of the decision rule that uses ˜ θ  is less than the one that is obtained by using ˆ θ .

The implication of the above statement is that, if reasonable estimates for the required parameters

can be found that use both the training and unlabeled samples, then they should be used in the

decision rule. In particular, the benefit of using such estimates over the ones obtained by training

samples alone is that the Hughes phenomenon will occur at a higher dimension because the

estimates obtained using both training and unlabeled samples provide lower expected

classification error. Therefore, more features can be used without sacrificing the performance and

in fact, the additional information in the new features may cause an improvement in the

classification accuracy. In the next section some methods for estimating the probability density

functions using both training and unlabeled samples are studied.
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VI. Methods of Incorporating Unlabeled Samples

A. Parametric Case

A particular case of interest is when individual classes are multivariate Gaussian. In this case, the

ML estimates of the parameters of the mixture density consisting of the m normal classes can be

found by the Expectation-Maximization (EM) algorithm [8]. Assume that there are m Gaussian

classes and from the ith class N i training samples are available. Denote these training samples by

zik where i indicates the class (i=1,...,m), and k is the index of each particular sample. In addition,

assume that N unlabeled samples denoted by xk are available from the mixture density

f(x|θ) = αi
i=1

m

∑ f i (x) . The EM equations for approximating the ML estimates of the parameters of

the mixture density are the following3 [9]:

αi
+ =

αi
cf i (xk |µ i

c, Σ i
c)

f(x k |θc )k=1

N

∑
N

(3)

µ i
+ =

αi
cf i(x k|µ i

c ,Σ i
c)

f(xk |θc)
xk + zik

k =1

Ni

∑
k=1

N

∑
αi

cf i(x k|µ i
c ,Σ i

c )

f(xk |θc)
+ Ni

k=1

N

∑
(4)

Σ i
+ =

αi
cf i (xk |µ i

c ,Σ i
c)

f(x k |θc )
(xk − µi

+ )(xk −µ i
+)T + (zik

k =1

Ni

∑ −µ i
+)(zik −µ i

+)T

k=1

N

∑
α i

cf i (xk |µ i
c ,Σ i

c)

f(x k |θc)
+ Ni

k=1

N

∑
(5)

3Here we assume that the training samples are drawn separately from each class and therefore contain no
information regarding the prior probabilities of the classes. If training samples are randomly drawn from the data set,
equation (3) must be modified [9].
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where µi and Σi are the mean vector and the covariance matrix of class i, and superscripts "c" and

"+" denote the current and next values of the parameters respectively. The parameter set θ

contains all the prior probabilities, mean vectors and covariance matrices. The ML estimates are

obtained by starting from an initial point in the parameter space and iterating through the above

equations. A reasonable starting point is the estimates obtained by using the training samples

alone.

B. Nonparametric Case

The form of the EM equations usually resembles the regular ML estimates with the distinction

that to each unlabeled sample a set of weights is attached that shows the "degree of membership"

of that sample to each component of the mixture. These weights are equal to the posterior

probability of each component given the unlabeled sample and the current values of the

parameters. Based on this, in [10] a nonparametric approach to mixture density identification is

proposed that uses both training and unlabeled samples. First training samples are used to obtain

"weights" for the unlabeled samples, and then these weights are used with the unlabeled samples

to obtain better estimates of the component densities of the mixture. It is shown that the estimates

obtained in this way have smaller variance than the nonparametric estimates that are based on

training samples alone.

C. Semi-Parametric Case

The assumption of normality is often prohibitive in practice. Usually, variations in soil type and

moisture, plantation time, etc., cause the class conditional pdf's to be multimodal. On the other

hand, nonparametric methods are usually too sensitive to the shape and size of the kernels that

are used for approximating the density functions. Here, we consider a semi-parametric approach

for density estimation. The individual classes are allowed to have multiple normal components.

The pdf of each class is therefore modeled by a normal mixture density. By varying the number

of components, various models for each class can be obtained. Theoretically, every smooth
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density function can be approximated to within any accuracy by a mixture of normals. Therefore,

the presented method is justified. We use the EM algorithm to find the ML estimates of the

parameters when both training and unlabeled samples are present.

Let us assume that there are J classes in the feature space denoted by S1...,SJ. Each class can have

several Gaussian components. Let m denote the total number of the Gaussian components. We

write i ∈ Sj to indicate that component i belongs to class Sj. The pdf of the feature can then be

written as a mixture of m Gaussian components where the set of components can be partitioned

into m classes:

                                                      f(x|θ) = αif i (x|φi )
i=1

m

∑

where                       φi = (µ i, Σ i ), θ = (α1,..., αm ,µ1,..., µm ,Σ1,..., Σm) .

From each class Sj, Nj training samples are assumed to be available. We denote these samples by

zjk where j=1,...,J indicates the class of origin and k=1,...,Nj is the index of each particular

sample. The training samples here are known to come from a particular class without any

reference to the exact component within that class. In addition to the training samples, N

unlabeled samples denoted by xk, k=1,...,N, are also assumed to be available from the mixture.

The log likelihood to be maximized for obtaining the ML estimates can be written in the

following form:

L(θ) = logf(x k |θ)
k =1

N

∑ + log
1

αt
t∈S j

∑ αl f l (z jk |φl )
l∈S j

∑
 

 

 
 

 

 

 
 k =1

N j

∑
j=1

J

∑

The first term in the above log likelihood function is the likelihood of the unlabeled samples with

respect to the mixture density, and the second term indicates the likelihood of the training
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samples with respect to their corresponding classes of origin. The EM equations for obtaining the

ML estimates are the following [11] (see [12] for the details):

αi
+ =

P c

k=1

N

∑ (i|x k ) + P j
c(i|z jk )

k=1

N j

∑

N(1+
N j

Pc

k=1

N

∑ (r|x k )
r∈S j

∑
)

(6)

µ i
+ =

Pc(i|x k )xk + P j
c(i|z jk)z jk

k=1

Nj

∑
k=1

N

∑

P c(i|x k ) + P j
c(i|z jk )

k=1

N j

∑
k=1

N

∑
(7)

Σ i
+ =

Pc(i|x k )(xk −µ i
+)(xk −µ i

+)T + P j
c(i|z jk)(z jk

k=1

Nj

∑ −µ i
+)(z jk −µ i

+ )T

k=1

N

∑

Pc(i|x k ) + P j
c(i|z jk )

k=1

N j

∑
k=1

N

∑
(8)

where i ∈ Sj, and Pc(.|.) and Pc
j(.|.) are the current values of the posterior probabilities:

P c(i|x k ) =
αi

cf i (xk |µi
c , Σ i

c)

f(x k| θc)
       P j

c (i |z jk ) =
αi

cf i (z jk | µi
c , Σ i

c )

αt
cft (z jk |µt

c , Σ t
c )

t ∈S
j

∑

VII. Experimental Results

The equation 3, 4, and 5 were used with the data and training set of experiment 1 to demonstrate

the effect of unlabeled samples in enhancing the performance. Experiment 1 was repeated but

with 20 training samples and an additional number of unlabeled samples used via the above

equations for estimating the parameters. Subsequently the rest of the samples were classified

according to the MAP decision rule (which also incorporates the second order statistics). The

experiment was performed once with 500 unlabeled samples and once with 1000 unlabeled

samples.
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Notice also that an additional benefit of using unlabeled samples is that since the prior

probabilities of the classes can be obtained, instead of the ML classifier, the MAP classifier can

be constructed. Without the unlabeled samples, generally the prior probabilities can not be

estimated, because the training samples are usually obtained separately from each class. Figure 4

shows the results. In this figure, the curve for the case where only training samples are used is

also shown for comparison and is labeled "supervised." 4
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Figure 4: Effect of additional unlabeled samples in the classification performance for
experiment 1 (AVIRIS data) with 20 training samples/class.

4The graphs published in the proceedings of IGARSS'93 paper are corrected here. In the former paper, the tails of
the curves were shown incorrectly to decay too rapidly, hence the Hughes phenomenon was exaggerated.
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From Figure 4 it can be seen that the use of additional unlabeled samples in the learning process

can enhance the classification performance when the dimensionality of data begins to approach

the number of training samples. In experiment 1, the Hughes phenomenon that began around

dimension 8 when supervised learning is used, is delayed to dimension 16 when 500 or 1000

additional unlabeled samples are incorporated. Meanwhile, the minimum error for the supervised

learning case was 5.42% and was achieved at dimension 7. For the cases with additional 500 and

1000 unlabeled samples, the minimum errors were 3.11% and 3.78% at dimensions 13, and 16

respectively. Therefore, the use of additional unlabeled samples not only delayed the occurrence

of the Hughes phenomenon but also made the information in the new features usable for

decreasing the error further.

VIII. Effect Of Unlabeled Samples In Reducing The Unrepresentative Training Samples

Problem

In remote sensing, the training samples are usually selected from spatially adjacent regions.

Often, the spatial correlation among the neighboring pixels is high. This correlation is usually

reduced rapidly as the distance between the pixels increases. This phenomenon, causes a problem

when training samples are used alone for estimating the class parameters. Usually, the

parameters estimated in this way are only  representative of the training fields and their nearby

area. The rest of the multi-spectral data is, therefore, not represented well. Thus, the

classification results that are based on such training fields are not robust in the sense that by

changing the training fields, the results might change significantly. Consequently, the selection

of "good" training fields becomes a burden on the user's shoulders. Often, training fields are

added and eliminated empirically. It is, therefore, desirable to be able to update the parameter

estimates in a way to make them more representative of the whole image. When the unlabeled

samples are added to the learning process, the parameter estimates get updated and become more

representative of the whole data.
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In Figure 5, the part of the AVIRIS data set that is used in experiments 1 is shown. Here,

experiments 1 is repeated with the distinction that 20 adjacent training samples from each class

are selected. The training fields are high lighted in Figure 5. We classify the data once by using

only the training samples for estimating the parameters of the GML classifier, and once by

adding 500 and 1000 randomly drawn unlabeled samples from the scene.

Figure 5: The AVIRIS site with training fields high lighted.

The classification accuracy is shown in Figure 6. To show how representative the estimated

parameters were, the probability map [13] associated with the classification was obtained. The

probability map is obtained by gray coding the Mahalanobis distance of each pixel for the class

to which it was classified. Dark pixels are the ones that are classified with low conditional

probabilities. Light pixels are the ones that are classified with high conditional probabilities.

Figure 7 shows the probability map for the experiment. It is seen from this figure that when

supervised learning was used the only bright spots were near the training fields. In order words,

the rest of the data were not represented well. By adding unlabeled samples to the estimation

process, more representative estimates are obtained, and thus the probability maps are brighter.
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Figure 6: Classification results based on adjacent training samples.
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Figure 7: Probability maps for AVIRIS data set. (a) supervised learning, (b) combined with 500
unlabeled samples, (c) combined with 1000 unlabeled samples.

IX. Discussion and Concluding Remarks

In this paper, the effect of additional unlabeled samples in enhancing the classification

performance was studied. It was observed that by incorporating unlabeled samples into the

estimation process the Hughes phenomenon might be mitigated and the peak performance can be

increased and shifted to a higher dimension. This phenomenon has several advantages. First, as it
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was shown in section VII, when unlabeled samples are used, the peak performance was

enhanced. In other words, the information in the new feature measurements can be used to

further reduce the error. Without the unlabeled samples, the peak performance might occur at a

lower dimension after which no further improvement can be obtained, and hence the new feature

measurements are useless.

Second, the mitigation of the Hughes phenomenon is important in the feature extraction process.

The feature extraction process is usually based on finding features that optimize a particular

criterion. For example, in discriminant analysis within class and between class scatter matrices

are estimated by using the training samples, and then features that optimize a function of these

matrices are obtained. The purpose is, of course, to eliminate the less informative features and

thereby speed up the classification process. However, if the estimates of the within and between

class scatter matrices are not reliable (due to limited numbers of training samples), then the

features obtained are not suitable. Using additional unlabeled samples can help obtaining better

estimates of these matrices. Similarly, in the Decision Boundary Feature Extraction method [14],

training samples are used to obtain a decision boundary in the original high dimensional space

and then features that are relevant to this boundary are kept. Again, if training samples are

limited, then the decision boundary in the original space is not suitable. Third, when the training

samples are not good representatives of the true sampling distributions of the classes, the

additional unlabeled samples may help update the class statistics and make them more

representative.

An important practical point that needs to be kept in mind is that although in theory the

additional unlabeled samples should always improve the performance, in practice this might not

always be the case. For example, in Figures 4 it can be seen that when the dimensionality is

small compared to the number of training samples the supervised learning process showed a

slightly better performance than when unlabeled samples are added. The reason for this behavior

is the deviation of the real world situations from the models that are assumed. For example, the
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unlabeled samples that are drawn from the scene might contain outliers, boundary pixels, mixels,

or samples of unknown classes. Such samples can hurt the performance. Therefore, care must be

taken when combined supervised-unsupervised learning is used in practice5. Based on these

issues the following steps for designing classifiers are suggested:

1) Estimate the Bayes error in order to have an understanding of the difficulty of the

problem. Unlabeled samples can also be used for Bayes error estimation [15].

2) Design a classifier using the training samples alone.

3) Test the performance of the designed classifier (test samples, resubstitution, leave-one-

out, etc.). Unlabeled samples can also be used for estimating the classification error of a

classifier [16].

4) If the performance of the classifier was not satisfactory, draw a set of unlabeled samples

and design a new classifier using both training and unlabeled samples. Test the classifier

again and if necessary use more unlabeled samples.
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