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preface

Pattern recognition methods have become a common tool for analysis of Earth Observation

multispectral image data. With the coming of the new, more complex sensors of the EOS

system, it will be important to develop new enhancements to these tools in order that the

full information-yielding capabilities of these new data be realized.

It is common in the theoretical derivation of a pattern recognition algorithm to assume

precise knowledge of the parameters of the data. However, it is usually the case in the

application of pattern recognition methods in practice that such precise knowledge is not

available. For example, in order to obtain optimal performance from a Bayesian classifier,

the a priori probabilities, the multivariate distributions, and appropriate loss functions for

each class are needed; rarely is this information available in precise form. The question thus

arises as to how best to model such imprecise knowledge and to modify the analysis

scheme so that algorithms perform optimally under these more realistic circumstances. This

question is what motivated this work.
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Abstracfl

Two essential elements needed in the process of inference and decision-making are prior

probabilities and likelihood functions. When both of these components are known

accurately and precisely, the Bayesian approach provides a consistent and coherent solution

to the problems of inference and decision-making.

In many situations, however, either one or both of the above components may not be

known, or at least may not be known precisely. This problem of partial knowledge about

prior probabilities and likelihood functions is addressed. There are at least two ways to

cope with this lack of precise knowledge: 1)robust methods, and 2): interval-valued

methods.

First, ways of modeling imprecision and indeterminacies in prior probabilities and

likelihood functions are examined; then how imprecision in the above components carries

over to the posterior probabilities is examined. Finally, the problem of decision making

with imprecise posterior probabilities and the consequences of such actions are addressed.

Application areas where the above problems may occur are in statistical pattern recognition

problems, for example, the problem of classification of high-dimensional multispectral

remote sensing image data.

1 Work reported here was supported in part by NSF Grant ECS 8507405 and NASA Grant NAGW-925
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1.1 Introduction

Inference is the process of observing a sample or samples and drawing information about

certain parameters of the underlying process. There are two distinct categories to inference

problems: some utilize prior information and others are based solely on the observation

samples. It is taken as given that prior information should be used whenever available. To

this extent the Bayesian approach provides a sound and coherent way of combining prior

information, represented by prior probabilities and model information, represented by

likelihood functions.

To put these matters in concrete terms, let us define O = {01, 02, .... 0M} as the set of

parameters or the state of nature; n(0j) as the prior probability on O; and {p(xl0i); 0i e O}

as the set of models or likelihood functions. Then after observing x, the inferential

statement about oi is provided by the posterior probability p(xl0 i) defined by the Bayes'

formula

p(xlO i) 7[(0 i)
n(°ilx) = M (1.1)

E p(xloj) n(oj)
j=l

Decision-making problems are specific forms of inference problems. In decision making

problems two other elements are added; namely a set of actions or decisions D =

{151..... _n} and a loss function L(0i,_Sj(x)). In many problems, the set of decisions and the

set of parameters coincide. Then the problem of decision making is one of choosing an

action from the set of actions or decisions D, in such a way that the expected risk or the

maximum risk is minimized.

1.2 Motivation for this research

As mentioned earlier, when all the components in the process of inference or decision

making, namely the likelihood functions and the prior probabilities, are known the



Bayesianapproachprovides a consistentand coherentsolution. In many real world
problems,however,theabovecomponentsmaynotreally beknown,or at leastmaynot be
knowncompletelyandprecisely.For instance,in theearly stagesof outbreakof anynew
disease,with a smallsamplesize,it is difficult if not impossibleto obtainaprecisemodel
for thediseaseepistemology.Anotherexampleis thecaseof high sampledimensionality,
whererarelyif evertheavailabledatais adequatetoleadto aprecisemodel.

Thedifficulty in specifyingaccurateprior probabilitiesis alsoverycommon.Actually the
prior probabilitiesareoftenassignedquitesubjectively.Thedifficulty in assigningaccurate
prior probabilitiesis themainreasonnon-BayesianpartisansattacktheBayesianapproach.
One can, however, go to the other extremeof doing away altogetherwith the prior
probabilities.It seemsself-evidentthatoneshoulduseall the informationavailablewithout
beingeitherunder-or over-committing.

1.3 Statement of the problem

The three interrelated problems to be addressed are: 1) how to describe imprecise prior

probabilities and likelihood functions, 2) how to proceed from imprecise priors and

likelihood functions to imprecise posterior probabilities, and 3) how to make decisions with

imprecise posterior probabilities.

1.4 Useful concepts and terminologies

1.4.1 General remarks

It is important at this point to draw the differences between various sources of uncertainties;

namely, randomness, vagueness, indeterminacies, etc. In this work, the main concern is

with imprecisions resulting from one's inability to specify accurate priors and conditional

densities. Therefore, imprecisions due to "indeterminacies" are the main concern.

An extreme case of indeterminacies is called "total ignorance". Conventional approaches for

handling total ignorance (especially concerning prior probabilities) is to assign probabilities

based on uniform distribution; i.e., if the state of nature is O = {01, 02,..., 0M} and there

is no prior information about the parameters, one may be inclined to assign,

2



1x(Oi) = r-7., i=1.....M.

Thereareatleasttwo criticismsto thismethodof assigningprobabilities:

(1.2)

1) In the case of "total ignorance", intuitively, probabilities should be assigned as

x(Oi) = [0,1], i=l ..... M.

2) When the state of nature 0 is continuous (e.g., 0 = _, this approach gives

improper probabilities; i.e.,

f dn(o) = oo (1.3)
o

It is shown by Berger [3], that decisions based on improper distributions may give rise to

inconsistencies (for definition, see below).

1.4.2 Terminology and Notation

The unknown quantity 0 which affects the decision process is called the state of nature or

the parameter. Prior probabilities for 0i are denoted x(0i). The set of possible outcomes is

the sample space and will be denoted X. (Usually, Xwill be a subset of _). The outcome

of the experiment (i.e., the observation) will be denoted X. Often X will be a vector. The

term "conditional densities", or "model", or "likelihood functions" is used to refer to the

same quantity; i.e., {p(xl0i); 0i e O} or sometimes written as {P0i(x); 0i e O}. E0x[f(x)]

will denote the expectation (over X) of a function g(x), for a given value of 0. L(0i, 8(x))

will represent the losses incurred when upon observing sample x, decision _;(x) is made

and the true state of nature is 0i.

The risk of a decision rule 8(x) is defined as

8)=ExfL(o, = e/L¢o,8(x))dr,(xlo).R( O,

X

(1.4)

This is the expected loss, for each 0, if 8(x) is used repeatedly with varying x in the

problem.
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In orderto decideaboutwhattypeof decisionrule shouldbeused,somesort of ordering

of decision rules is needed. The following definitions (Berger [3]) serve as guide lines.

DEFINITION 1.1: A decision rule 81 is R-better that a decision rule 82 if,

R( 0, 81) _ R( 0, 52) V 0_ O. (1.6)

DEFINITION 1.2: A decision rule is admissible if there exists no R-better

decision rule. A decision rule is inadmissible if there exists an R-better decision

rule.

DEFINITION

distribution n on O, is defined as

r(n,8) = En[ R(o, 8)] = f R(o, 8) n(o) do.
ill

o

Two frequently used decision-making principles are:

1.3: The Bayes risk of a decision rule 5, with respect to a prior

(1.7)

1) The Bayes Risk principle stated as

A decision rule 51is preferred to a rule 52 if,

r(n, 81) < r(n, 82). (1.8)

A decision rule that minimizes r(n,5) is optimal and is called a Bayes rule.

2) The minimax principle stated as

A decision rule 51 is preferred to a decision rule 52 if,

sup R(0, 51) < sup R(0, 52). (1.9)
0 0

A decision rule is a minimax decision rule if it minimizes sup R(0,5) among all the rules in
0
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DEFINITION 1.4: coherency and coherent inference

The concept of coherency can be best explained in terms of betting, so let us define betting

first.

DEFINITION 1.5 : A bet [46] concerning an event E is an arrangement

whereby a sum of tx13 is exchanged for a sum of ct if E occurs or 0 if it does

not. The bet is said to be on or against E according 0_> 0 or o_ < 0. 13is called

the betting rate and tx the stake. Let e be the indicator of the event E and 1 the

indicator of the sure event _. Then a bet concerning E is a random quantity of

the form o_(e - 131).

Let (f_, A) be a measurable space with events Ei e & i =l,2,...,n. And let a real-valued set

function P(Ei) represent the betting rate. Then De Finetti [7] shows that only when P(Ei) is

a probability, i.e. satisfies the axioms of probability, can one avoid the "sure loss" case.

Only when P is a probability function, would it not be possible to select El, E2 ..... En and

the stakes tXl, 0_2 ..... (x n so that a combination of bets relative to these events, at the rates
n

P(Ei) for event Ei, i.e., _ (txi(ei- P(Ei)I)), will assure a positive gain. (of course, it
i=l

would be the same thing to require that no such quantity should be uniformly negative).

Decisions and inference based on coherent real-valued set functions, P, are called coherent

decisions and inferences (Regazzini [33]).



VARIOUS APPROACHES FOR HANDLING IMPRECISION

2.1 Introduction

The Bayesian approach offers an elegant way of combining prior information (i.e., prior

probability _ over O) and model information (i.e., { p(xl 0) ; e e O }), to construct a

distribution p over O x X; where p is the unique probability distribution over O x X that

has _ as its marginal for e and the p(xl 0) as its conditionals given 0. After observing x, the

Bayesian conditions p on x to obtain posterior probabilities for 0. Decisions based on the

Bayes decision rule can be shown to be coherent.

The major criticisms to the Bayesian approach, however, are its requirements for precise

knowledge of probability values and the subjectiveness of prior probabilities. The issue of

prior probabilities being subjective is a philosophical one which will not be addressed here.

One approach to make prior probabilities more objective (frequentist) is to obtain prior

probabilities from n experts and use the weighted average of those.

In an attempt to relax the requirement for precise probability values, several methods have

been proposed in the literature.

2.2 Minimum cross-entropy method

Many people [8,14,19,31,34,35,39-41,47] have tried to quantify available prior

information and data without being over committing. One possible approach is the

minimum cross-entropy method. Here, the prior information about an underlying

distribution, p, and the available information I, which is usually in the form of constraints

on the moments, is combined via operator o to obtain the posterior probability q; that is [39]

q=poI (2.1)

Specifically, let q* be the unknown underlying probability density function and the

available information, I, be given as

6



f gk(X) q*(x) dx = C k
(2.2)

where gk(') are some known functions and Ck are known constants. Further, let the cross-

entropy (also known as discrimination information, directed divergence, or I - divergence)

between two probability density functions q and p be defined as

H[q,p] = f q(x) log[ q(x)/p(x) ] dx (2.3)

Then a posterior probability q(.), whenever it exists, which minimizes the above quantity

and satisfies the obvious restriction of

fq(x)dx = 1 (2.4)

is the one given by [39-41]

q(x) = p(x)exp {-Z,- k_13k gk(x) } (2.5)

where 13kand _, are the Lagrangian multipliers for equations (2.2) and (2.4).

Remarks:

1) It has been shown [40], that the only operator o that satisfies uniqueness,

invariance, and some other axioms of consistent inference and is implemented

by means of functional analysis is the one given by the principle of minimum

cross-entropy.

2) The maximum entropy method is a special case of the minimum cross-entropy

method where there is no prior information or prior information is uniformly
distributed.

3) Intuitively, the minimum cross-entropy method provides a posterior probability

q(x) that is the closest distribution, in the sense of H[q,p], to the prior

distribution p, yet satisfying the new information provided.

4) Even though H[q,p} is not a metric (does not satisfy the triangle inequality) it is

a good information theoretic measure of closeness.

5) q is closer to the unknown underlying distribution q* than is p.

The main difficulties with the minimum cross-entropy methods are [3]



1) In manycasesasolutionmaynotexist.
2) The requirementthatinformation I bespecifiedasvariousmomentscould be

veryrestrictive.
3)A solution,whenit exists,is usuallyin manysensesnon-robust.

2.3 "Sup" and "inf" approach

Let f_ be the sample space and A the appropriate o-algebra on ft. The most natural way to

incorporate imprecision (i.e., indeterminacies) in probabilities is to define a family of

probability measures P, instead of a single probability measure p, over (f_,A). This

naturally leads to upper and lower probabilities

P*(A) = sup P(A) 'v'Ac A (2.6)
Pc p

and

P.(A) = inf P(A) VAcA (2.7)
Pc p

True probabilities, P(A), are upper and lower bounded as

P,(A) < P(A) < P*(A) ,'v'AcA. (2.8)

Note that, even though every Pc Pis a regular probability measure, P* and P. themselves

need not be additive probabilities. Depending on the structure of P, P* and P.may be

measures that instead of being additive, are super- and sub-additive known as Choquet

capacities ; capacities will be defined rigorously in the sequel.

2.4 Robust methods

The term "robust" was first used by Box in 1953. It usually refers to the situation where

the performance does not degrade much as the parameters (here prior probabilities and

likelihood functions) vary from their nominal values. There are two aspects to robustness;

i.e. robustness analysis (also known as sensitivity analysis) and robustness design. The

terms robust and stable are used sometimes to mean the same thing.



2.4.1Distributionallyrobustapproaches:

Here, first a setof nominal likelihood functions(or models)and a setof nominal prior
probabilitiesis specified.Onecoulddothisevenwhenthesamplesizeis smallandthereis
notmuchconfidencein thesample.Thendefineaneighborhoodfor thenominalmodeland
a neighborhoodfor the nominal priors.Theseneighborhoodsreflect our confidence(or
lack of it) in the nominal values. Finally, design the inferenceor decision-making
procedurewith thefactin mind thattheactualmodelandtheactualpriorscouldvarywithin
theirrespectiveneighborhoods.Onecoulddefinetheseneighborhoodsatleastin twoways:

I) theneighborhoodof agivenmodel,
H) neighborhoodscomposedof amixtureof models.

I) The neighborhood of a given model M 0 :

Let M be the class of all models (e.g., the class of all prior probabilities, or the class of all

likelihood functions). Let M o be the nominal model and M: be a wider class of models

including Mo. This idea is easily depicted in the following figure

Fig. 1

II) The neighborhood composed of a mixture of models:

When it is difficult to justify a single neighborhood of a model, one defines neighborhoods

that are composed of a mixture of models. Graphically this is illustrated in the following

fig. 2
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M

Fig. 2

Specific examples of these neighborhoods for prior probabilities and likelihood functions

follow.

2.4.2 Example of neighborhoods for prior probability

Let us assume that x, the true prior probability, belongs to class F of the prior probabilities,

where F is defined as follows:

l) l].ll]l.l[_m._].02 [1 l]

F= { o_x: L<x<U} (2.9)

where L and U are lower and upper nonnegative bounding functions and ct is just a

normalizing factor to make x a probability measure.

One way to obtain lower and upper bounds is to estimate the prior probabilities and then

find a confidence interval (limit) for the estimates; thus creating a band for priors.

Remark:

Strictly speaking, prior probabilities should be independent of data and should

be provided without looking at the data.

2) I_- contamination model: [34]

F = { x : x = (l-e) Xo + e xl } (2.10)

where 7t0 is the nominal prior probability, e is the degree of uncertainty in the nominal

priors, 0 < e < 1, and Xl is any unknown and completely arbitrary probability measure.

10



Therationalefor thismodel [18] is asfollows. Considera Bayesiandecision-makerwho
afterlooking at theobservationx realizesthathisprior belief7rwasvery far off themark.
Shouldhe stick to it and obtain a posteriordistribution nobody,even he himself will
believein?Or shouldhecheatandchangetheprior?e-contamination allows one to keep an

e of the prior mass in "reserve for emergencies" to cope with situations like above.

3) Prior probabilities specified bv linear inequalities: [31]

In many cases one may only be able to make statements such as: 01 is ten times more likely

than 02, or 01 is less likely to occur than 02 and 03, etc. Such partial prior information could

be specified by set of linear inequalities of the form

17={/1:' ¢x___ O, 1T_ = 1 ,_: > 0 1
(2.11)

2.4.3 Uncertainty models for likelihood functions

In many cases, a precise model for the phenomena under observation may not be available.

For instance, in the early stages of a new disease a precise model may not be available.

Obviously, it would not be very appropriate to use a very precise model since

consequences of error in the assumed model may be very serious both financially and in

terms of human factor. Two extreme case approaches here are either adapting parametric

approaches or distribution-free approaches. Something between these two extreme cases

will be raised, however.

1) Elaborated model: [15]

Let f(xl0) be the nominal model for data x and parameter 0. Then an elaborated model (EM)

can be represented as a family of densities {f(xl0, Z.), Z. e A} with f(xl0) = f(xl0,_.o) for

some Xoe A. Examples of this type of model are:

1.1) The exponential power family

I+X

f(xl la,o,k)o_ o -1 exp -c(X)

(2.12)

11



with _._ (-1,+1). Here X---_-Icorrespondsto a uniform density, _.=0 to the normal
density, and_,=+1 to thedoubleexponentialdensity._.could beconsidered,here,asa
measureof kurtosis.

1.2)TheHuberfamily

where
(2.13)

1 2 IM<_.g(x) = < _lxl _ 1 _.2 lX[> _.
(2.14)

Notice that as _.---_0, this becomes a double exponential density and as _.---_, it tends to the

normal density. For other values of k, one obtains a normal center and exponential tails.

Notice that to proceed with the above model to the posterior probabilities one would require

the knowledge of the joint prior probabilities, _(0,_.). This point will be returned to latter.

2)llltn.d__iKq.._ [20]

Conceptually, band models for likelihood functions (or conditional densities) are similar to

the band models for prior probabilities. Suppose f0(x) (or f0(xl0)) is the density function,

with respect to some measure I.t (e.g., Lebesgue measure) on the measurable space (X,A),

of a probability measure P0(x) (or P0(xl0)) Consider the neighborhood defined as,

f,f,,fed,:,)
(2.15)

where fL, fU are nonnegative bounding functions with fL being bounded. This model may be

useful, for instance, when the density function f estimated from training data are expressed

as lying within pairs of confidence limits.

3) e - contamination model: [22]

.,_ii={fi ] fi--(l-gi)f°+(_i_ '_ Hi I. (2.16)

12



This is also similar to the model introduced above for prior probabilities, except here f, fo,

and h are conditional densities. This model was first introduced by Tukey and has the

following intuitive interpretation in statistical classification problems.

The class 0i of observations consists of two classes: the well known frequently observable

class that has the known density fo and the non-studied, rarely observable class with an

unknown density h/; h/; _ H/. If 0i is observed, then an observation from the first part

appears with probability (1- ei) and from the second part with probability ei The e-

contamination model is a special case of the band model where fie = (1-ei)fi and fiu---) oo.

4) Total variational model: [34]

This is another useful neighborhood defined as

p={P" IP(A)-Po(A)I __<_ } , k/A_ A (2.17)

where (fl,A) is the measurable space on which the probability measures are defined. In

terms of densities, it can be written as

j f,x,fo,x,
(2.18)

Once the neighborhoods are defined, then the problem of decision making is to choose an

action, from the set of possible actions (or decisions) that minimizes the maximum risk;

i.e., a minimax approach. Let us use the notation introduced earlier; except to make things

more explicit, the risk function will be written as

r (/c, 8 ) = r (re(0), {f0(x) ], fi(x) ) (2.19)

Then the minimax decision rule 5*, (or actually, F- minimax decision-rule, since the priors

are allowed to vary too) is given by

_i*(x)= arg min ( max r(_(o), {fo},_(x))) (2.20)
8_ D rc_ F

13



Theprior probability7rand {fo}0eo for which 8* is attained are called the least favorable

distributions and would be denoted (_L(0), {f0}L). Note that 8" and (_L(0), {f0} L) satisfy

r (_(o), {re}' 8*(x) ) =< r (nL(e), {re} L, _i*(x) ) < r (nL(o), {fo} t', _5(x) ) (2.21)

It is important to note here that, even though it is conceptually simple to model above

minimax approach, obtaining solutions (i.e., _L(0), {f0}L,_ *) may not be so simple.

Solutions for minimax (but not F-minimax) problems have already been found for certain

type of neighborhoods such as e-contamination, band models and total variational

neighborhoods. These neighborhoods all have one thing in common: They all could be

specified as P, where P is a family of distributions defined over measurable space (f_,A)

as

p={Pe M: P(A) < v(A) , VAeA } (2.22)

where Mis the set of all probability measures defined over measurable space (F2,A). P is

said to be the set of probabilities majorized by v.

For an e-contamination neighborhood, v(A) is defined as

v(A) = (l-e) Po(A) + e , A¢: O (2.23)

For a total-variational neighborhood, v(A) is defined as

v(A) = min ( Po(A) + e, 1 ) ,A,O (2.24)

v(A)s defined above have an interesting property; namely, they are set functions that satisfy

the following properties [5]

and

pl) v(o) = O, v(f_) =1

p2) AcB :=_ _A) < _B)

p3) A n 1"A _ v(An) 1" v(A)

p4) Fn $ F, F n closed, _ r.,(F n) ,_ v(F)

p5) v(AuB) < v(A)+ v(B)-v(Ac_B).

14



Any setfunctionthat satisfiespl)-p4) iscalledaChoquetcapacityor capacity for short. If

it also satisfies p5), then it is called alternating of order 2, or for short, 2-alternating

capacity. A set function u that satisfies pl)-p4), and instead of p5) satisfies

p6) u(AuB) __>u(A) + u(B). u(AnB)

is called a 2-monotone capacity. More generally, consider the successive differences

defined [29] as

VI(B;B1) v = v(B)- v(BuB1)
(2.25)

Vn+ 1 (B; B 1...... Bn+l) v = V n (B; B 1...... Bn) v Vn(BUBn+I; B 1...... Bn) v (2.26)

If Vk_<0 for k=l ..... n, then v is called an n-alternating capacity; if Vn<0 for all n, it is

called and infinite alternating capacity. Similarly, let

Al(B; B1) u = u(B)- u(Bc'_B1)
(2.27)

An+I(B; B 1...... Bn+l) u = An( B; B1,. .... Bn)u - An(BnBn+l ; B1 ...... Bn)u" (2.28)

If Ak > 0 for k=l ..... n, then u is called an n-monotone capacity; if An > 0 for all n, u is

said to be an infinite monotone capacity. Note that alternating and monotone capacities v

and u, satisfy

v(A) + u(A e) = 1
(2.29)

and are said to be conjugates.

Let us consider the simplest form of decision-making; that is testing a null hypothesis Ho

versus an alternative hypothesis H1. And suppose the prior probability of Ho (and HI) is

t 1),known and is given by _ (and t+l te [0,oo]. Furthermore, suppose the hypotheses

correspond to two imprecisely known likelihood functions; and they can be modeled as sets

majorized by 2-alternating capacities Vo and _. That is,

15



Po = { P'P < v° } (2.30)

and

P1 = { p: p < vl } (2.31)

Recall that this includes such models as the e-contamination and the total-variational model,

etc. Thus one is testing composite hypotheses

"" Po
VS.

H 1 : X N P1 (2.32)

Let A be the critical region of test; i.e. reject Po if x_ A is observed. Then the upper Bayes

risk of the critical region A is (Huber & Strass[17])

t vo(A ) + t (1-Ul(A))
Gt(A) = _ _ (2.33)

To minimize Gt(A), it is enough to minimize the 2-alternating function

Wt(A) = t vo(A) - u_(A). (2.34)

Huber and Starssen [17] state and prove the following lemma

Lemnm 1: For each t_ [0,oo] (i.e., any given priors), there is an At such that,

Wt(A t) = inf Wt(A)
A (2.35)

Note that At minimizes the maximum Bayes risk.

Another approach, other than this minimax approach, could be one based on translating the

imprecision in priors and likelihood functions onto posterior probabilities obtaining a

family of lower and upper posteriors. For the sake of simplicity, let us examine the cases of

imprecision in priors and likelihood functions separately.
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First, let us assume that likelihood functions, p(xlo), are known precisely and the only

source of imprecision is due to priors which can also be modeled by the e-contamination

neighborhood

1-"= { n' n = (l-e) no + e itI } (2.36)

Let n(0ilx) denote posterior probability given by the Bayes rule as

p(xl0 i) n(0 i)
(2.37)X(0il x) = V

p(xlo i) /t(0 i)/..._a
0._O

1

and let no(0ilx) denote the posterior probability corresponding to the nominal prior no. Then

Huber [ 18] shows that
no(0il x) + S(0 i)

sup n(oil x)
x_ F 1+ S(0i) (2.38)

and

where

/1;o(0il X)
inf n(0ilx) =
7r_r 1+ s(o_) (2.39)

1 p(xl0i)

S(0i) = I---E" T.
p(xl0 i) go(O i)

O.aO
1 (2.40)

NOW suppose that both the likelihood functions and the prior probabilities are given by the

e-contamination models. Following Huber [18], one says upon observing x, the

"information" about e is increased by the (possibly negative) amount

Z x(0il x) log n(oil x) - 2,,t n(0i) log x(0 i)
0._ {9 0.e O

l 1 (2.41)

Then a family {p(. 10i)} of conditional densities and a prior probability 7r will be least

informative if they minimizes

H(p, x) = E x [ { _./l:(0i I x) log X(0i I x ) } - _. n(0i) log n(0i) ] (2.42)
1 1
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I p(xlOi)n(Oi) 1

log

-E 0_. p(x[Oi)_(Oi) _p(x]O i)_(O I) -O_ " _(Oi) log_(Oi)
X 1 1 l

subject to the side conditions that

(2.43)

and

Z p(xl oi) = 1
X (2.44)

n(0i) = 1. (2.45)
0.

1

Note that it was assumed that Xis finite. Solution for this problem, except perhaps for very

trivial cases, is difficult to obtain.

2.5 Interval-valued probabilities

Bayesian frame of inference and decision-making requires precise probabilities and has no

provisions for imprecise knowledge. There has been many attempts [2,8,11,24,42,43,

45,46,47] to generalize classical "point-valued" probabilities to "interval-valued"

probabilities. Dempster [8-10], and later Shafer [35-38], in an attempt to generalize the

Bayesian framework, have come up with what is known as the Dempster-Shafer (D-S)

theory of evidence [35]. We will start with an example first, then proceed to point out the

major problems with the D-S theory, and finally describe a more natural extension of usual

probability measures and Bayes theorem cast in this new framework.

2.5.1 Dempster-Shafer theory

The basic idea can become clear with the following (desk) example. Suppose there is a

desk with two drawers on the right side: the right top drawer (RT) and the right bottom

drawer (RB). There are three drawers on the left side: the left top drawer (LT), the left

middle drawer (LM), and the left bottom drawer (LB). Suppose a file is placed, at random,

in one of the drawers. Further suppose that the available information (evidence in the D-S

language) is given as
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Prob( file is in theleft sidedrawers)= m1= 0.5

prob ( " .... " (RT) " ) = m 2 = 0.2
(2.47)

and there is no more information.

Note that the total evidence, ml+ m2 = 0.7 < 1. Shafer calls the difference (1- 0.7 --0.3),

the global ignorance. The global ignorance can be assigned to any of the drawers, and yet

none in particular. Then given the above scenario, one would like to answer questions like

what is the probability that the file is in the CLM) drawer? etc.Obviously, the answer to this

question can not be given by a single number. George Boole [4] was the f'trst to realize this

point and he suggested the idea of inner and outer measures, p. and p*, such that

probability of any event, p, is bounded by p. and p* as

P, <p _<p* .
(2.49)

Then how does one compute p. and p*? Shafer calls m's the basic probability assignments

or (bpa)'s. m(A) represents the measure of belief that is committed exactly to set A and not

to any of its proper subsets. Moreover, let us denote the sample space by _, and assume it

is finite. Let 2 fi represent the power set of f/. Then

DEFINITION 2.1: (Shafer [35])

A function m: 211---_ [0,1] is called a basic probability assignment (bpa) whenever

and

Note that

(1) m(_) = 0
(2.50)

(2) _ m(A) = 1.
Ac_ (2.51)

i) It is not required that m(f_) = 1;

ii) It is not required that m(A) < m(B) when A _ B ;

iii) There is no obvious relationship between m(A) and m(AC).

Recall that m(A) reflects the measure of belief that is committed exactly to A, not the total

belief that is committed to A. To obtain the total belief committed to A, Shafer argues, that

one must add to m(A), the bpa of all the proper subsets B of A. He calls this "BELIEF" or

Bel for short. That is
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Bel(A) = 2.1 re(B).

ar,.A (2.52)

Dempster in his original work called these Bers, lower probabilities. More formally, a

function Bel: 2t'l---_[0,1] is called a belief function over f_ if it is given by (2.52), for some

bpa m: 2t'L-_[0,1]. For our earlier "desk" example :

It is important to note that

Bel (file is in (ML) drawer) = 0.

Bel(file is in (RT) drawer) = 0.2.

Bel (A) + Bel (A c) < 1. (2.53)

To see the implication of this relationship, suppose there is no evidence at all to support A,

or BeI(A) = 0. Then, (2.53) says that, in D-S theory, it is not automatically implied that

Bel(A c) = 1; i.e., lack of belief in something does not necessitate its compliment.

Furthermore, the bpa that produces a given belief function can be uniquely recovered from

the belief function. This inverse relation is called mobius inverse. For any belief function

Bel, a dual function plausibility (or "Pr' for short) is defined as

P1 (A) = 1- Bel (AC). (2.54)

In terms of bpa, m, plausibility could be written as

P1 (A)-- Z m(B) .
I

Br'xA_ O (2.55)

Dempster called these Prs, upper probabilities. Note

Pl (A) + Pl (A e) > 1

and
P1 (A) > Bel (A).

(2.56)

(2.57)

From our earlier "desk" example:
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PI (file is in (ML) drawer)= 0.3
P1(file is in (RT) drawer)= 0.5.

Tomaketheideaof "Bel" and"PI" clearer,let usconsiderthefollowing example.Suppose
we aregiven:m(B1) = 0.3,m(B2)= 0.4,m(B3)= 0.1,m(f2) = 0.2, andwant to find the
lowerandupperprobability (orBelandP1)of a setA givenin thefollowingdiagram.

Then

131

./"" _z

f i( ,.f

i"" \ '_C_3i-- .1

\',,.,.._j

Fig. 3

Bel (A) = Z m(Bi) = re(B2) = .4

Bi_A

PI (A) = E m(Bi) = m(Bl) + m(B2) + m(E_)
B.r-,A_O
I

=.3 +.4 +.2 =.9.

Shafer, further argues that the class of belief functions can be characterized without

reference to basic probability assignments. That is:

THEOREM 2.1: Shafer [35]

A function Bel: 2fa---_[0,1 ] is a belief function if and only if it satisfies the following:

(1)
(2)
(3)

Bel (0) = 0.
Bel (f2) = 1.

for every positive integer n and every collection A 1, A 2..... , A n of
subsets of

Bel (ALL) .... LgAn) > Z Bel (Ai) - Z Bel (Air_Aj) + .... + (-1)n+lBel (Aln ...,nAn).
i i<j
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Remark: Note that Bel functions are infinite monotone capacities.

Similarly, one can define plausibility functions as

THEOREM 2.2:

A function PI: 2_[0,1] is a plausibility function if and only if it satisfies the

following conditions:
(1) P1 (0) = 0.
(2) P1 (_) = 1
(3) For every positive integer n and every collection A 1,..... A n of

subsets of

Pl (A1F"J .... ¢'_An) _ E Pl (Ai)- E Pl (mik.dmj) + .... + (-l) n+l Pl (mlk..) .... k..)mn ).

i i<j

Remark :

1) Note that P1 functions are infinite alternating capacities.

2) When Bel(AuB) = Bel(A) + Bel(B), A_B = O belief function becomes the

usual classical probability measures. Furthermore, one can show that (Klir

[23]) a belief function, Bel, on a finite power set 2 fi is a probability measure if

and only if its basic probability assignment, m, is given by m({W})=Bel({w})

and m({A}) = 0 for all subsets of fl that are not singletons.

3) A Bel function that satisfies Bel (A) = 0 for every proper subset A of fl is called

a vacuous belief function. In terms of basic probability assignments, this means

re(t) = 1 and re(A) = 0 for every proper subset A of f_. Furthermore

plausibility of every such A is one, That is

Bel (A) = 0 S pr (A) <_ PI (A) =1 V A c _.

Now that we are equipped with the basic notions of D-S theory, let us see how this theory

address two major issues: 1) combination of various sources of information (evidence),

and 2) the rule of conditioning.

2.5.2 Combination of various sources of information

First of all D-S theory requires that sources of evidence be independent (or non-

interacting). Sources of evidence in remote sensing could be for instance, multispectral

data, elevation data, slope data,etc. Or in medical diagnosis, sources could be the opinion
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of severaldoctors(experts)aboutthesamepatient.D-S theoryproceedsto attainthebpa's
from each source and then combines the bpa'swith what is known as Dempster's
orthogonal sum. More specifically, let f_ be the sample space and let ml and m2 be two

bpa's obtained from information sources S 1 and $2 respectively. Then the total information

obtained about f2 from the sources S1 and $2 is given by the new bpa m(c), given as

m(c) = (ml _ m2 ) (c) =

Z ml(Ai).m2(B j
A.nB .=e

l j

1 - Z ml(Ai) m2(Bj )
A.c_B.= O

! j

(2.58)

Note that order of combination is not important. That is

ml_ rn 2 = m2_ m 1 (2.59)

i.e., Dempster's orthogonal sum is commutative. Also, if there are three independent

sources specified by their bpa'sml, m2, and m3, they can be combined by the successive

application of above rule. That is

m = (ml_ m2) _ m3 = ml _) (rn2_ m3 )
(2.60)

and the order of aggregation is not important; i.e., _ is an associative operator.

Intuitively, Dempster's orthogonal sum says that, to find the joint bpa for a set c, take all

the sets from source S1, i.e., Ai's, and all the sets from source $2, i.e., Bj's, multiply their

bpa's and add over all such sets. The denominator is a normalizing constant; it is required

since one of the requirements for a valid bpa function is that it must sum to one.

Dempster's orthogonal sum is the heart of D-S theory and also the major source of

controversy and criticism. The following example, originally due to Zadeh [48-50],

highlights this issue. Suppose O={01,02, 03} is the sample space of outcomes, and the

information available from two independent sources lead to two sets of bpa's given below
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m 1

nh

0 t O2 O3

.9 0.1 0

0 0.1 .9

Then upon applying Dempster's rule of combination, one obtains,

Ol 02 03

m = ml_ m 2 0 1 0

That is, even though both sources individually reflect low beliefs on {02}, after

combination, they collectively confirm {02}! This is highly counter-intuitive; and again

results from the normalization needed in the Dempster's rule.

Walley [44], Krantz and Miyamoto [25], and Shafer [36] have tried to apply the D-S theory

to the problem of statistical inference. For the sake of simplicity, suppose that the state of

nature O is finite; i.e., O={01 ..... 0n} and we have k statistically independent

observations, each specified by a standard parametric model {p_i); 0_ O }, for i=l ..... k.

The p0)'s are probability mass functions on a sample space x. Each p(i) describes a

different statistical experiment, but all are governed by the same parameter O. For the

remote sensing problem, p_0""could be the model for multispectral scanner (MSS) data, and

(2) could be the model for the elevation data, etc. Each observation x(i), i= 1,...,k givesP0

rise ton belief function, Bel_i)(0), i=l ..... k, over O. Bel0_i)(0), i=l ..... k are constructed

depending only on the observation x(i) and the model values pol(x(i)) ..... P0n(x(i)) Prior

information also gives rise to a belief function, Belo(0), over O Then the overall belief

function is constructed as

Bel (0)= Bel o (0)_ Bel (_(_)(0)_ Bel (x_)2)(0) _ .... _ Bel x(k'(k'(0) ,0_®. (2.61)

The main conclusions are (Krantz and Miyamoto [25] and Walley [44]) that Dempster's

rule is not generally suitable for combining evidence from independent statistical

observations (or otherwise, statistically related observations) nor is it suitable for

combining prior belief with observational evidence. Stated differently, if the Bel function is
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interpretedaslower bettingrates,then the useof Dempster'srule to combineprior and
likelihood functions can lead to a sure loss or " Dutch book". That is, Bel cannot

coherently be interpreted as lower betting rates when Dempster's rule is used to combine

priors and likelihood functions.

Finally, it is also interesting to note (Shafer [36]) that in the Bayesian frame of inference,

for a given prior probability distribution r_o over O and a given statistical model {P0; 0e 19}

over X, one can construct a unique distribution p over OxX, unique in the sense that p is

the only distribution that has _o as its marginal for 0 and Pa as its conditional given 0. In the

D-S theory, there may be many belief functions over OxX having a given marginal Belo

and given the conditional P0.

2.5.3 Conditioning rules

An important issue in decision-making and inference is how to change our belief

concerning a particular event in light of new evidence. Of course, when the available

information is in the form of classical point-valued probabilities Bayes rule provides a

natural and sound way of accomplishing this task. In the following section other

possibilities are examined.

2.5.3.a Conditional Bel and P1

Suppose the available information can be represented by a Shaferian belief function, Bel,

and plausibility function, PI, on the frame of discernment O. Suppose, further, that

somehow one learns that O is restricted to B, B c O. Then Shafer [35] suggests the

following:

1) Represent this new information as a new belief function

1 ifBcABel (A) = 0 otherwise.
(2.62)

2) Combine this belief function with the belief function available prior to the new

information by the Dempster's rule of combination to get
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Since

Oneobtains,

Bel ( A IB) = Bel (AwBe) - Bel (B e)

1- Bel (B e)

Pl (A) = I-Bel (Ac)

P1 (Ac_B)
PI(AIB)= PI(B)

(2.63)

(2.64)

(2.65)

2.5.3.b Conditional "sup" and "inf"

Referring to section 2.3, suppose imprecision about the available information is represented

by a family of additive probability distributions P; and

P*(A)= sup P(A)
Pe P (2.66)

and
P,(A)= inf P(A)

Pe P (2.67)

Suppose the new information implies that O is restricted to B, B c @. Then one natural

way of revising our earlier beliefs (probabilities) is to say

P*(AI B) = Sup

Pe P

P(A n B)

P(B)

(2.68)

and

P,(AI B) = inf

Pe P

P(A n B)

P(B)

(2.69)

The following theorem is due to Huber [18] (also see Kyburg [26])

THEOREM 2.3: (REPRESENTATION THEOREM)

Given a belief function, there exists a closed convex set of classical probability

function Pc defined over atoms of O such that for every subset A of O
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Bel (A) - inf P(A) (2.70)

V Pc
And conversely,ifPc isa closedconvex setofclassicalprobabilityfunctiondefinedover

atoms of O, and forevery At, A2 ....., A n C O,

n

inf P( A1uA 2 u ...u A n) > Z inf P(Ai) - Z inf P(AinAj) + ....
i=l l<.l

+ (-l)n inf P(AIc_A2n ..... n A n).

Then there exists a belief function, Bel, such that

(2.71)

BeI(A)= inf

P Pc

P(A)

Using the above representation theorems, it can be easily shown that

inf P(AIB) < Bel(AIB) < PI(AIB) < sup P(AIB)

(2.72)

(2.73)

That is, Shafer's rule of conditioning provides a tighter bound on the conditional values.

It is also interesting to note that Bel (A I B) and PI (A I B) obtained from Shafer's rule of

conditioning are still *o-monotone and **-alternating capacities. Shafer's results are

questionable, however, since they are directly based on Dempster's rule of combination.

Diaconis and Zabell [12,13] recommend the following rule"

and

P,(A I B) -
P,(A n B)

P,(B)

P*(A I B) = 1 - P,(A I B).

(2.75)

(2.76)

Again, P,(. IB) and P*(. IB) would still be *o-monotone and *o-alternating capacities.
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2.5.4.c. Proposed conditioning role

Both Dempster's rule of conditioning (eq.2.65) and Diaconis and Zabelrs rule (eq.2.75)

are counter-intuitive. For instance, let us consider Dempster's rule. Applying the

representation theorem (Theorem 3.2) to the left hand side of the equation one can write

P,(A I B) = infP(A IB) = inf

P P

P(A n B)

P(B)

Applying Theorem 3.2 to the right hand side of eq. 2.75 one obtains

(2.77)

But obviously, in general,

P,(A n B) inf P(A n B)

P,(B) inf P(B)
P

inf P(AnB) _ inf P(AnB)
p P(B) inf P(B)

P

Considering this discrepancy, the following conditioning rule is suggested.

(2.78)

(2.79)

and

P,( A IB) -
P,(A n B)

P*(B)

P*( A I B) = 1 - P,(A c I B)

(2.80)

(2.81)

Notice that our definition (eq. 2.80) differs from, for instance, eq. 2.75 in that lower

conditional probabilities are computed as ratio of lower joint probabilities and upper

marginals; that is, the normalizing factor in the denominator is P*(B) instead of P,(B).

It may be shown (proof omitted here) that P,(AIB) and P*(AIB) obtained above by our rule

of conditioning are also *,,-monotone and _-altemating capacities, respectively.
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2.6 Problems to be solved

It is important to realize that the representation theorem, Theorem 3.2, states only the

existence of a family of probability distributions P. It does not, however, suggest a

method of constructing P, nor does it imply the uniqueness of P..

Our attempt here is in two directions" 1) Try to remedy the problems, mentioned earlier,

with the Dempster's rule; that is, the main effort here is to construct a Bayes-like rule for

capacities. Suggestions for a new rule were made above. Properties of this new rule need

further investigation. 2) Try to come up with computationally simple methods of

consU'ucting P so that the powerful tools of Bayesian methods could be applied, even with

the imprecise probabilities.
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SET-VALUED MEASURES

3.1 Introduction

One of the major criticisms to the Bayesian approach for inference and decision-making is

its requirement of precise probability values. It has been argued by many people that prior

probabilities are subjective and thus it would be unrealistic to assign crisp and precise

values.

Two possible solutions to this problem were distributionally robust approach and the

Dempster-Shafer theory. Even though, robust approaches are conceptually easy and

appealing, obtaining closed form solutions is usually very difficult, except perhaps for

certain type of neighborhoods. Also, the solution is really a" worst-case" type solution.

The belief (and plausibility) functions of the D-S theory being monotone (and alternating)

capacities of infinite order, are generalization of "classical" measure; but the theory is

mainly constructed around Dempster's rule of combination. In our opinion any theory of

statistical inference which is based on Dempster's rule of combination would have serious

problems and should be abandoned.

A more natural solution would be to generalize classical measure theory, so that measures

instead of taking values in Ror R_a, take values in subsets of Ror _, i.e., P (_or P(Rn).

3.2 Set-valued measures

A set-valued measure was introduced by Artstein [1].(Actually, earlier related work was

done by Debru and Schmeidler [6]). A set-valued measure (SVM) is a o-additive set-

function which takes on values in the nonempty subsets of a Euclidean space. Let (fl,A) be

a measurable space, and K(R n) be the nonempty compact subsets of R n Then a SVM is

defined as,

DEFINITION : A set-valued measure is a set function,
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(3.1)

with the following properties:

(1) _t(_) = 0

(2) _t( uj_**_Aj ) = Z _(ij), for every disjoint family {A}j , A._A.j
j=l

where the summation above, is a series of compact subsets of R n. The sum Z I_(Aj) of
j=l

the subsets i.t(Aj), consists of all the vectors a=j=Zla j where the series is absolutely

convergent, and aj_ _t(Aj) for j=l,2 ....

The interval-valued probability measure 0VPM) (I) (see Negoiwta and Ralescu [28]) is a

special type of SVM defined as

and satisfying the properties
(1)

(I). A--) K ( [0,1] )

1_ _(f2) ;

(:) )-- ¢ %)
j=l

(3.2)

where uAj is disjoint collection of events in A and the summation is as defined earlier.

Example 1: Suppose 12 = {0)1, 0)2, 0)3} and the (objectively, or subjectively) following

values are obtained for

(I)({0)1}) = [0.6, 0.7]

_,({_}) = [o.1, o. 15]

Then one necessarily gets (I)({0)3}) = [a,0.15], where a < .15. Note that,

3

(_ (_'2) = (l) (0)lk.) 0)2 k.) 0)3 ) = Z (I) ( 0)i )

= [ .7+a, 1 ]

and for a =.15, (1)(f_) = [0.85,1].

31



Remark : Note thatO(f2) = [0.85,1] _ { 1 }(or[I,1]). This is also counter-intuitive; we

will return to this point shortly.

Negoiwta and Ralescu [28] have shown the following results.

Result 1 : The conditionalprobability, given Me A of an event Ae A is given by

O(AIM)- 1 O(AnM).
sup • (M) (3.3)

Result 2: O(MIA) and O(AIM) are related by,

O(MiA)_sup O(M) O(AIM)
sup • (A) (3.4)

and most importantly, the Bayes formula for the interval-valued probability measures

(IVPM) is given by

THEOREM :

Let A1,A2 ..... An form a partition of the sample space f2, and let Be A be an event.

Then

sup • ( A i )
O(AiIB)= n O(BIAi) , i=1,2,. .... n. (3.5)

sup • (Aj) sup • ( B IAj )
j=l

Returning to the problem of statistical inference and decision-making, let Xbe the sample

space of outcomes (or data), and O be a finite parameter space, i.e. O={01 ..... On}. Let 7to

be an interval-valued prior probability measure on O and {O0(x); 0e O} be a family of

conditional interval-valued probability measures on Z Then the Bayes theorem above can

be restated as

sup _ro(0j)
(0il x ) - n t_(x I 0i) . (3.6)

sup rro(0j) sup • (x I 0j )
j=l
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Then upon observing x, the inference or decision-making could be based on the interval-

valued posterior probability measure x(0ilx).

Example 2 :

0_ O} are as

Suppose X = { x r x 2 }, and O = { o1, 02 } and the values of _ and {Oo,

Xo( 01 ) = [ .5, .6 ]

Xo(O 2) = [ .2, .4 ]

and

Then,

and
fO(xllo2)=[.8, .9]

L• ( x21 02) = [ 0 ,.1 ]

.6 [.1 ,.3]
x( oll x1) - (.6)(.3) + (.4)(.9)

= [.11, .33 ]

.6 [ .6, .7 ]x( °11x2) = (.6)(.7) + (.4)(.1)
= [.78, .92 ]

.4 [.8, .9 ]x( °21Xl) = (.6)(.3) + (.4)(.9)
= [.59, .67 ]

.4 [O, .1 ]/t( o21x2) = (.6)(.7) + (.4)(.1)
= [ o, .08 ].

The following definitions and theorem are due to Artstein [1] and Purl and Ralescu [32]

and will be used in the sequel.

DEFINITION:

An atom of the interval-valued probability measure x is an event Ae A with x(A) ;_

{0} and such that A1c A implies x(A1) = {0} or x{AX,A1) = {0}. An interval-

valued probability with no atoms is called nonatomic.

DEFINITION:

A selection p of an interval-valued probability measure x is a vector-valued measure

/9: A-->_, such that p(A)_ x(A) for every Ae .,q.
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THEOREM:

(i) If _ is a bounded, nonatomic set-valued measure, then _x(A) is convex for every

ACA.

(ii) If _ is a bounded set-valued measure, then for every A_ A and sE x(A), there

exists a selection p of x such that p (A) = s.

Note that clearly interval-valued probability measures are bounded.

Remark: For nonatomic interval-valued probability measures, let us denote pl(A)=inf

x(A) and p2(A)=sup x(A).

COLLORARY:

For a nonatomic interval-valued probability measure, P2 is a regular probability

measure.

proof: This follows from the convexity of _ and the requirement of 1 _ x(f2).

A point mentioned earlier and delayed for here is that the above definition of interval-valued

probability measure requires 1_ x(f2), instead of x(f2) = {1}; n(f_)=[a,1] where a < 1.

This seems counter-intuitive because one expects that f2 should happen almost surely.

There are perhaps two ways this point may be addressed:

1) Allow the possibility of n(f2)=[a,1] a < 1, and interpret the quantity (l-a) as the

"degree of uncertainty" about the space of outcomes, _.

2) Add the extra requirement that x(f2)=l. But from this requirement, plus the

requirement of additivity, under Minkowski set additions, it immediately

follows that one may come up with the interval-valued probability of an event

A, such that, x(A)=[p,q] and p > q ; i.e., the set of values x takes on may be

possibly not an ordered set.

If one should insist that x take on values from an ordered set, plus the requirement

x(f_)={ 1 } and the additivity property, then one should replace Minkowski addition with a

different type of set addition operation.

Since the main subjects under consideration are inference and decision-making, these

issues are addressed next.
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gldAE.ZSB. 

INFERENCE AND DECISION-MAKING WITH IMPRECISE

POSTERIOR PROBABILITIES

4.1 Introduction

Regardless of the method used to model imprecise prior probabilities and the conditional

probabilities, and how they are combined to obtain posterior probabilities, the next issue is

how does one proceed with these imprecise posteriors to make inferences and decisions.

In statistical inference the goal is not to make an immediate decision, but instead to provide

a "summary" of the statistical evidence which a wide variety of future "users" of this

evidence can easily incorporate into their own decision-making process. Posterior

probabilities carry the required information. So as far as the statistical inference is

concerned, once the posterior probabilities are obtained the task is completed.

In a decision-making process, however, given an observation, prior information and the

models (or conditional densities), rationality dictates that an action a i, from the set of

possible actions, should be chosen that has minimum expected loss (risk).

To be more specific, let us assume a countable parameter set O, an action set a={al,

a2 ..... am }, an observation set Xp and a loss function

L: a x O ---_ _( (4.1)

such that L(ai,0j) is the loss incurred when action a i is selected and the state of nature

(parameter) is aj ; and the set D = {_il,52 .... } of nonrandomized decision functions

8 : X-._ a. (4.2)

Note that in many applications (e.g., estimation problems) a = O. Furthermore, let us

represent the "posterior" upper and lower "probabilities" obtained from combination of

imprecise priors and imprecise model by { P*x(0i) and P*x(0i); 0i_ O, xE X}. We put
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"posterior" and "probabilities" in quotation marks, becausetheseupper and lower
quantitiesmay not be posteriorsin the Bayesiansense,andmost likely would not be
probabilitiesin theclassicalprobabilitysense;at best,theymaybe**-alternatingand**-
monotonecapacities.Thequestionis:
Given { P*x(0i) andP*x(0i); 0i_O, x_ X} how does one compute expected losses?

4.2 How should upper and lower expectations be defined?

Without loss of generality, assume the loss function is a positive function. Then a natural

way to define upper and lower expected loss is to define them (analogous to classical

probability) as

E* L(ai,o) = '_ k. P* { e': L(ai,o') = k } (4.3)
{ k :(30) & k= L(ai,e) I

and

E, L(ai,o) = _ k.P. { e'- L(ai,o') = k } (4.4)
X

{k :(30) & k= L(ai,0) I

Note that E* [ and E, ] would be 2 (or higher order) altemating [and monotone] capacities if

P* [and P.] are 2 (or higher order) capacities.

Wolfeson and Fine [47], following Dempster, define the upper and lower expectation as

and

E* L(ai,e ) a= L (ai) = k. [ P.x({ o': L(ai,o' ) <_k })-
{k :(30) & k=L(ai,O) }

P, (1 e': L(ai,e') < k 1) ]
X

(4.5)

E. L(ai,e) a__ L (a i) = k.[ Px({O':L(arO')_<kl)-
{k :(3O)& k= L(ai,e) }

P_ ({ o': L(arO') < k }) ]

(4.6)
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WhenP* [and P,] are 2-alternating [ and monotone] capacities, E* [ and E, ] have, among

others, the following properties:

1) (V Z) E*Z>E,Z

2) E* (-Z) = - E, (-Z) ; i.e E ° and E, are conjugates.

Also if one obtains P* and P, from

P*(A) = sup P(A)
P_ p

'v'Ac A (4.7)

then

P.(A)= inf P(A)
Pc p

VAc A (4.8)

E*(Z) = sup Ep(Z)

Pc P

(4.9)

E,(Z) = inf Ep(Z) (4.10)

Pc P

Note that the above upper probabilities are used to compute the lower expectations and

vice-versa. Note also that upper and lower expectations given by

E* L(arO) = __E k. P,x ( {o': L(ai,o') = k } )
{k :(30) & k= L(ai,O) ]

(4.11)

E, L(ai,o)= E k P* ( {o': L(ai,o')= k } )

{k :(30) & k= L(ai,0) }

are different than the ones given in (4.3) and (4.4). Furthermore, since in general

(4.12)

P*( {o: L(arO) = k 1)¢: [P*( {o: L(ai,o) < k })- P*( {o: L(arO) <k}) ] (4.13)

P,( {o: L(ai,o) = k })g[ P,( {0: L(ai,o) < k })- P,( {o: L(arO) <k}) ] (4.14)
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using the right hand side of (4.13) and (4.14) in (4.3) and (4.4) would result in yet

different values. Which one of the upper and lower pair of values is correct ? One may have

to experimentally justify one pair over the other. Thus given an observation, regardless of

which method is used to get the expected values, one obtain a pair of upper and lower

expected losses. Then decisions are based on the values of these pairs.

With the usual point-value probabilities, expected losses are also point-valued; and we

choose an action that has minimum expected loss (risk). For upper and lower expected

losses, however, the problem is a little more complicated.

When the upper and lower expected loss (U&L EL) intervals are non-intersecting, the

choice of an action is easy. That is, we order acts by dominance: a: > a2 (read a I is

preferred to a2) if and only if

L (a 1) > L (a2) (4.1.5)

And for more than two actions, we choose action ai* such that

a*, = arg ( max L (aft) (4.16)
J

When the (U&L EL) intervals overlap, however, we face the problem of indecisiveness.

When L (aft > L (a i) but L (aft < L (ai) (i.e., [ L (aft, L, (aft ] c [ L, (ai), L (ai) ]), that is

intervals are nested, and it is not clear which action should be preferred and why.

What can be done, however, is to eliminate from the set of possible actions, those that are

not preferable. That is, suppose for ak, k#i, k#j, k=l,2 ..... m,

L (ak) < L, (a i)

and

L (al,) < L (aj).

Then eliminate ak, k#i, k#j, k=l,2 ..... m from further considerations. And try to resolve

the remaining indecision between ai and aj. Note also that one may face indecisiveness

between a i and aj when,
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and

L(aj) > L(a i)

L (aj)

There are two possibilities at this point:

> L (ai)

1) Claim indecisiveness and require more

information (e.g., in the form of more sample data for the frequentist approach), 2) Use

some ad hoc but "reasonable" approach to resolve the problem. Let us show the above

situation graphically (see fig. 4.1).

I:(aj)

I:(.,)IT L(.,) [.(.0 i I [(.j)
L-(ai) L(ai) L(_j)

(a) (b)

u

L(aj) I
E(a,) ] __.(_j) [(_,)
L(ai ) __.(ai ) I n_(aj)

(c) (d)
Fig. 4.1 - Four possibilities for actions a i and aj with overlapping expected

utilities : a) _aj)much larger than I_ai) but L(aj) slightly larger

than L(ai). b), c), d) etc.

In fig. 4.1 above the following is recommended:

For a) aj > ai That is aj is preferred over a i.

For b) aj and aj are about equally preferable; this situation can happen in point-

valued expected loss problems too when the expected loss of two actions are
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equal.We saythatweareindifferent about aj and aj ; and use a "tie-breaking"

rule to decide.

For c) aj > ai.

For d) Again aj > ai.
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5.1 Summary

This work examined the following three issues. First, how best to describe the imprecise

knowledge about prior probabilities and conditional densities. Second, how best to

combine these imprecise values to get the so called posterior probabilities. And finally how

to make decisions with imprecise posteriors.

Various methods in the literature such as distributionally robust approaches, Dempster-

Shafer theory and set-valued measures were examined. It was noted that even though

distributionally robust approaches offer intuitively simple ways of expressing imprecision

in the available knowledge, in general obtaining closed form solutions for the minimax

decision rules except for some special families of distributions, namely classes of

distributions majorized with Choquet capacities, are very difficult. Also robust methods

really treat only the problem of designing against the worst case situations.

In examining the Dempster-Shafer (D-S) theory, it was noted that even though D-S theory

provides a reasonable method for modeling imprecision, there are at least two major

problems with the theory: 1) The theory is mainly built around the Dempster's rule of

combination of evidences; this rule, however, has been under major criticisms. Recalling

that Dempster-Shafer's upper and lower probabilities (or in D-S language, the plausibility

and belief) are *o- alternating and **-monotone capacities, respectively, then the main thrust

here should be an attempt to find a Bayes-like rule for capacities. 2) The computational

complexity of the Dempster's rule is shown to be #P-complete [30]. That is, even given as

input a set of tables representing basic probability assignments ml, m2 ..... rn, over a

frame of discernment O, and a set A _ O, the problem of computing the basic probability

value (ml_ m 2 • ... • m n )(A) is #P-complete.

Interval-valued probabilities (or set-valued measures in general) start from the very

beginning by assigning intervals (or sets) to each event. That is, if one is not able to assign

single values to the probabilities of events, one will assign intervals (or sets) of values for
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theprobabilities.Thereal-valuednessaxiomof conventional probability theory is relaxed.

Then, in an attempt to preserve the (countable) additivity axiom, the additivity is defined in

terms of set additions. The main problem here, at least with the current definition of set

additions, is that one cannot simultaneously enforce the requirements that: 1) measure of

null even has to be zero; 2) keep the additivity axiom; and 3) have the measure of the sure

event equal to one. Therefore, the third requirement is relaxed. This is, however, quite

counter-intuitive since then one could define a new event and assign the remaining

probability mass to this event.

Finally, we looked at the issue of decision making with imprecise posterior probabilities.

This rises from the fact that if one starts with imprecise models and/or imprecise priors one

is bound to arrive at imprecise posteriors. The specific form of the set of the posteriors at

this point is irrelevant. Even though some specific situations were considered, the problem

basically still remains as an open problem. This is because the conventional decision theory

(based on the utility theory) assumes point-valued probabilities. Preferences on the set of

actions or decisions are ordered using their expected utilities. It is this ordering property

that is lost when we consider sets of imprecise probabilities.
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