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This report is dedicated to the memory of the crew of
the Space Shuttle Challenger who lost their lives in
January 1986 while pursuing increased knowledge and
understanding of our planet and universe. May we learn
from their sacrifice and continue the utilization of space
for such peaceful purposes as remote sensing of our earth.
The SIR-B data utilized in this study were obtained from

Challenger during Flight 41-G in October 1984.
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ABSTRACT

Mueller, Paul William. M.S.For., Purdue University,
December 1987. Spatial Filtering of Shuttle Imaging
Radar-B Data. Major Professor: Roger M. Hoffer.

In the past few years, interest in assessing and
mapping forest resources with synthetic aperture radar
(SAR) data has been steadily increasing. Many of the
digital analysis techniques and procedures developed and
tested for use with optical (multispectral scanner) data do
not work as well with SAR data, due to the distinctly
different inherent characteristics of SAR data, such as
speckle. Radar speckle increases the variance within SAR
data, and increased variance adversely affects the ability
to discriminate different cover types when using various
pattern recognition techniques. Although spatial filters
have often been used with SAR data for reducing speckle
effects, no study to determine the most effective filter
treatment for improving classification results was found
when conducting the literature search.

The purpose of this study was to determine the most

appropriate low-pass spatial filter treatments for reducing

speckle effects in Shuttle Imaging Radar-B (SIR-B) digital
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data that is to be utilized for assessing forest resources.
The SIR-B data set utilized consisted of a L-band HH
polarized multi-angle data collected during Space Shuttle
Flight 41-G at center incidence angles of 28.40, 45.30, and
58.49. The study site was located in northeastern Florida.
The pixel size of the unfiltered data was 28.5 meters.

Thirty-four filter treatments were applied to the
data. These treatments included the use of square mean,
separable mean, square median, and separable recursive
median algorithms implemented at 1 to 3 iterations with
window sizes ranging from 1 x 3 to 1 x 9 (separable
filters) and 3 x 3 to 7 x 7 (square filters).

Both gquantitative and qualitative evaluation
techniques were utilized. Four specific evaluation studies
were conducted: Cover Type Differentiation Study,
Edge/Boundary Retention Study, Cover Type Classification
Study, and Visual Assessment Study. Distinct differences
resulting from algorithm, window dimension, and iteration
were found. Based on all tests, the 3 x 3 square median
filter implemented twice (2 iterations) provided the best
overall results based on all tests. This study clearly

demonstrated the benefits of filtering SAR data.




CHAPTER 1
INTRODUCTION

Satellite-acquired remote sensor data offers a
synoptic view of earth resources. and through the use of
computer-aided analysis techniques, digital remote sensor
data can be classified according to resource cover types.
The majority of these analysis techniques have been
utilized with optical data obtained by the Landsat
Multispectral Scanner (MSS) sensor and recently the Landsat
Thematic Mapper (TM) sensor. Numerous studies have shown
that MSS and TM data can be utilized effectively to
classify forest cover. The use of MSS data is reviewed by
Cihlar (1986). while studies involving TM data include
those by Lillesand and Lo (1985) and Mueller et al.
(1985a).

There has been increased interest in the utilization
of data acquired beyond the optical portion of the
electromagnetic spectrum (i.e. microwave) and the majority
of this interest has focused on radar data. Although radar
systems produce imagery somewhat similar to that generated

by optical-region sensors. radar imagery must be



interpreted very differently due to the unique
characteristics of radar systems and microwave signal-
target interactions. Radar systems involve active sensors,
and therefore they can acquire image data of the earth’s
surface independent of solar illumination or weather
conditions such as clouds. Radar can penetrate cloud
cover, whereas clouds frequently hinder the acquisition of
timely data with optical systems. The radar backscatter
(portion of signal that is returned to sensor) is
influenced by both system and target parameters. OSystem
factors include the operating wavelength. viewing geometry.
and polarization of both the signal and backscatter.
Characteristics of the target influencing backscatter
include surface slope and roughness, electrical properties,
and the target orientation and structure. Modeling the
complex interactions of these factors is a topic of much
current research.

From an applications standpoint. relatively little
research has been conducted to quantitatively analyze
digital satellite-acquired radar data to evaluate its
usefulness for identifying forest vegetation and
determining forest cover type characteristics. The
potential utility of SAR data for forestry studies is
recognized by researchers and applications scientists., but
its level of effectiveness has yet to be fully determined

(ERIM 19868). Research in the 1960’s was concentrated on



the use of relatively short wavelength Ka-band radars flown
from aircraft altitudes (Morain and Simonett 1967). During
the late 1960’s and early 1870’s, relatively little
research was conducted with imaging radars. However. one
of the most ambitious operational radar mapping projects
ever was conducted in Brazil's Amazon Basin with X-band

(3 cm) aircraft radar to survey and map the natural
resources of the region (van Roessel and de Godoy 1974; de
Azevedo 1971).

During the late 1970’s, interest in forest mapping
with aircraft radar imagery increased (Goodenough et al.
1980: Knowlton and Hoffer 1981). With the launch of Seasat
in 1978, and the Shuttle Imaging Radar-A (SIR-A) and SIR-B
in 1981 and 1984, respectively. satellite radar data became
available. SIR-B was a synthetic aperture radar (SAR) that
had the capability to orient its antenna at various angles
relative to the Earth’s surface--a first from space
altitudes. For land areas that were imaged more than once
at different angles of measurement, the resulting multi-
angle SAR data sets provided unique opportunities to
quantitatively study the advantage of multi-angle data and
differences between the individual angle data sets. In
addition to the multi-angle data obtained by SIR-B, this
radar system provided the first true digital satellite SAR
data (Curlander 1986). ©Since hardware restrictions on

digital recording and processing of SAR have only recently



been overcome (ERIM 1986), all radar data sets used in
forestry studies prior to SIR-B had been optically
recorded. Although such optically recorded output film
products can be digitized by electronic scanning, this
process does not provide the dynamic range nor geometric
fidelity that the recently developed digital correlation
procedures can provide.

The research described in this thesis is part of a
larger study entitled "Microwave and Optical Remote Sensing
of Forest Vegetation" coordinated by Dr. Roger M. Hoffer
who is a SIR-B Investigation Team Member. The purpose of
the larger study, as described by Hoffer (13984). is to
determine the utility of multi-angle SAR data for
identifying forest cover and characterizing forest stand
conditions (e.g. inventory parameters) when used singly and
in combination with Landsat Thematic Mapper data.

Although digital analysis techniques and procedures
developed and tested for use with multispectral scanner
(optical) data have proven to be very effective. there was
concern that such techniques might not work as well with
SAR data, due to the distinctly different inherent
characteristics of SAR data. including speckle noise and
complex signal-target interactions. Speckle noise, caused
by the radar return randomly fluctuating across extended
targets. increases the variance within SAR imagery which

can adversely affect the ability to discriminate different




cover types with pattern recognition techniques. Although
spatial filters have been used with SAR data in the past
(Brisco et al. 1983: Goodenough et al. 1880: Knowlton and
Hoffer 1983; Sader 1987; Wu 1984), no study to determine
the most effective filter treatment for improving
classification results has been published., to the best of
the author’s knowledge. Theoretical development and
evaluation of several filters are available (Chin and Yeh
1983; Gallagher and Wise 1981; Huang 1981; Nodes and
Gallagher 1982, 1983), but there is a void of practical
results from actual image data sets being filtered as a
preprocessor to classification. The purpose of this study,
therefore. is to evaluate various preprocessing techniques
as an aid to further digital processing of SIR-B digital
data. To achieve ﬁhis goal, several low-pass spatial
filter treatments will be evaluated. As the variance is
reduced with low-pass spatial filters, there is a trade-off
in that image sharpness decreases and narrow linear
features tend to be lost. Therefore, both quantitative and
gualitative evaluation techniques will be necessary to

identify the most appropriate filter treatment(s).

Objectives

The overall objective of this research is to identify

the most appropriate low-pass spatial filter treatment(s)



for reducing speckle effects in SIR-B digital data that is

to be utilized for assessing forest resources.

Specific sub-objectives are:

1) Define methods for evaluation of the filtered images.
2) Compare the relative effectiveness of four spatial
filtering algorithms. namely, square mean, separable

mean, square median, and separable recursive median,

using quantitative and qualitative evaluation methods.

a) Determine the most effective window dimensions.
b) Determine the most appropriate number of

iterations.



CHAPTER 2
LITERATURE REVIEW

Remote Sensing with Imaging Rad

Radar is an acronym for Radio Detection and Ranging
which refers to operation in the microwave portion of the
electromagnetic spectrum and also the inherent capability
to measure distances (range) to targets. To effectively
utilize any type of remote sensing data, the analyst must
understand fundamentals of the sensor system, energy-matter
interactions. and appropriate analysis techniques. These

will be discussed for imaging radar systems.

Imaging Radar

Imaging radar sensors are active systems, meaning that
the energy measured is also provided by the radar
instrumentation. Figure 2:1 illustrates a highly
simplified radar s&stem consisting of transmitter,
receiver, transmit-receive (T-R) switch, antenna,
electromagnetic wave, and target. A radar transmits a

pulsed microwave signal at a specific frequency and




RECEIVER
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Simplified imaging radar system.

Figure 2.1



measures both the time for the signal to return and the
quantity of the backscattered (returned) signal. Other
active microwave sensors used in remote sensing include
scatterometers, and altimeters (Ulaby et al. 1981). Both
of these sensors are non-imaging instruments. The former
quantitatively records the radar signal returned from
terrain as a function of the viewing geometry, while the
latter is used to determine altitude.

The T-R switch is needed when the same antenna is used
for both transmitting and receiving microwave signals, as
is commonly the case for imaging radars used for remote
sensing purposes. The transmitter generates the pulsed
microwave signal which generally has a specific wavelength
ranging approximately between 1 mm and 1 m (Lillesand and
Kiefer 1987). Letter designations, which were assigned by
the military to specific wavelength regions during the
period when radar systems were classified for security
reasons, are still used today by civilians. The actual
ranges of wavelengths or associated frequencies are not
absolute; several different schemes are listed in the
literature. Table 2.1 lists the radar band designations
according to Long (1875).

Imaging radar systems utilized for remote sensing of
the earth’s surface are side-looking sensors which have an
antenna oriented perpendicular to the line of flight of the

aircraft or satellite platform. The signal beam is wide
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Table 2.1 Radar band designations. Adapted from Long

(1975).
Band Frequency (f)1 Wavelength (X )
GHz cm
P 0.3 - 1.0 30 - 100
L 1.0 - 2.0 15 - 30
S 2.0 - 4.0 7.5 - 15
C 4.0 - 8.0 3.75 - 7.5
X 8.0 - 12.5 2.4 - 3.75
Ku 12.5 - 18.0 1.67 - 2.4
K 18.0 - 26.5 1.1 - 1.867
Ka 26.5 - 40.0 0.75 - 1.1
1. Frequency: f = ¢ A1
Where: ¢ = Velocity of light (3 x 102 m sec-1)
A = Wavelength
GHz = Gigahertz (10% cycles sec-1)
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vertically and narrow horizontally (Ulaby et al. 1981).

The vertical angle of the beam determines the swath width
and thus the range dimension (across-track) of the
resulting imagery, while the forward motion of the platform
accounts for the azimuth (along-track) dimension.

Figure 2.2 illustrates the viewing geometry of a side-
looking radar system. The distance from the sensor to the
object can be measured in two ways -- slant range and
ground range. The former is the line of sight distance
from the sensor to the target, while the ground range is
the ground distance measured from nadir to the target. The
vertical component of the radar beam can be described by
the incidence angle, depression angle, or look angle.
Incidence angle is measured on the ground between the
incident radar beam and vertical at the target. The
depression angle and look angle are complementary angles
with the latter being measured relative to vertical.

Figure 2;3 from Lillesand and Kiefer (1987) illustrates the
concept of how a radar measures distance. The radar signal
energy propagates in air at approximately the speed of
light (c). Therefore, the slant range, R, to any target is
given by (Lillesand and Kiefer 1987):

R= °F (2.1)
= .
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Figure 2.2 Viewing geometry of a side-loocking radar
system. (From Avery and Berlin 1985.)
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Radar puise sent from aircraft

{a) Propagation of one radar puise {indicating the wavefront location at time intervals 1-17)

High energy Return from house
output puise /

Return from tree

Pulse strength

L L 1 M MR T N 1 1 T
0
(b) Resulting antenna return

Figure 2.3 Operating principle of side-looking radar.
(From Lillesand and Kiefer 1887.)
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Where:

Slant range (m),

o)
"

¢ = BSpeed of light (3 x 108 m/sec).
t = Time between pulse transmission and return

reception (s).

Radar System Types

Side-looking radars can be divided into two
categories: real aperture systems and synthetic aperture
systems (Lillesand and Kiefer 1987; Long 1875. Moore 1983:
Ulaby et al. 1981). The principal difference between these
two systems is their resolving power and the means whereby
this is achieved. The beamwidth (azimuth direction) of a
real aperture system is defined by the physical size of the
antenna, while synthetic aperture systems depend on complex
signal processing techniques in which a coherent phase
history of the pulsed return signal is used to obtain a
much narrower beamwidth in the azimuth direction than is
possible with the real antenna (Tomiyasu 13978:. Ulaby et al.
1981). The pixel resolution for a real aperture radar is
determined by the antenna beamwidth according to (Moore

1983; Tomiyasu 1978; Ulaby et al. 1981):

Bn = A/1 (2.2)
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Where:
Bh = Beamwidth (rad),
A = Wavelength (m),
1 = Horizontal length of antenna (m).

The resulting azimuth (along-track) resolution is:

ra = BnR (2.3)
Where:
ra = Azimuth resolution (m).
R = Slant range.

However. the range (across-track) resolution is dependent
on the pulse length which can be thought of in units of
time or distance. The range resolution is given (in terms

of time) by:

rR =  —-—-=-=-= (2.4)
2 sinbd
Where:
rR = Range resolution (m),
¢ = Velocity of light (m s-1),
T = Pulse duration (s),
8 = Angle of incidence (rad).

If two targets in the same range direction are to be
detected separately (resolved). it is necessary for their
returned signals to be received at separate times by the
antenna (Henderson 1985; Jenson et al. 1977). One can
think of the pulse length in terms of distance L and then

it can be seen intuitively that for two objects in the same
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range direction to be resolved., the slant range distance
Separating them must be at least L/2. If there is no
difference in time between the two returns or the slant
range distance separating them is less than L/2, then the
two objects will be recorded as one entity in the data.
Figures 2.3 and 2.4 from Lillesand and Kiefer (1987)
illustrate this concept.

It can be seen from the above discussion that with a
real aperture radar (RAR) system, the ground resolution
element dimensions increase in both the range and azimuth
directions as the distance from sensor increases.
Fortunately, this problem of geometric distortion can be

avoided by using a synthetic aperture radar (SAR) system.

SAR Techniques

As was discussed previously, SAR sensors have higher
resolution capabilities than RAR systems. The high-
resolution capability of SAR is independent of the platform
altitude because the doppler history and differential time
delays of the returning signal are utilized. none of which
is a function of the slant range from the radar to the
target (Elachi et al. 1982b). Thus, SAR can be utilized
from either satellite or aircraft platforms.

Consider the case of a satellite platform several

hundred kilometers from the target. To achieve fine
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Front of return wave from A

(overiaps return from A)

\
A
Front of return wave from 8 / /\/ / B
<L

Figure 2.4 Dependence of range resolution on pulse length.

(From Lillesand and Kiefer 1987.)
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azimuth resolution with a real aperture radar system. a
very short wavelength or very long (several kilometers)
physical antenna would have to be utilized according to
Equation 2.2. With synthetic aperture techniques, a long
antenna array is simulated. According to Tomiyasu (1878):
the array need not necessarily be

continuous, but can be composed of numerous small

elemental radiators . . . [also] it is not

necessary for all elements to radiate

simultaneously since each of the elements can be

excited in sequence provided an orderly coherent

phase relationship is maintained.
Therefore. a physically small antenna can be carried aboard
a platform moving at a constant velocity with the radar
transmitting pulses of microwave energy at regular
intervals as the antenna is laterally displaced. The
length of this long antenna array is synthesized from a
number of pulses transmitted and integrated coherently
(Tomiyasu 1978).

The synthesized effective length of the antenna array
(or aperture) is the ground distance over which the target
is illuminated by the radar beam (Moore 1983). This length
is analogous to the azimuth resolution of a real aperture
radar with the same beamwidth according to Equation 2.2,
such that:

Lsa = gn R (2.5)
Where:

Lsa = Length of synthesized antenna (m).
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This concept is illustrated according to Ulaby et al.
(1981) in Figure 2.5. Thus, the length Lsa varies linearly
as the slant range distance varies, while the azimuth
resolution remains constant. The length Lsa is also
related to the time the target is illuminated., the dwell
time Tp, and the velocity V of the platform as follows

(Tomiyasu 1978):

Lsa = VTp (2.86)
Where:
To = Dwell time (s),
V = Velocity of platform (m s-1).

It can be shown (Elachi et al. 1982b: Moore 1983:. Tomiyasu
1978; Ulaby et al. 1981) that for a SAR, the one-look
azimuth resolution ra can theoretically be as small as

ra = D/2 (2.7)
where D is the true along-track (azimuth) length of the
physical SAR antenna, in meters. In direct opposition to
the case of real aperture radar, Equation 2.7 indicates
that for a SAR, the azimuth resolution ra can actually be
improved when the length of the physical antenna is
reduced. It would seem that an infinitesimally fine
resolution could be achieved. However., the above
explanation is highly simplified and in reality other
factors come into play such as pulse repetition frequency,
signal to noise ratio, antenna area, and power

requirements. For instance, the pulse repetition frequency
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Differences in resolution between real aperture
radar and synthetic aperture radar systems.
This illustration is an example of a 4 cm
wavelength spaceborne radar. (From Knowlton
1982, after Ulaby et al. 1981.)
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must be sufficiently high so that the transmitter is pulsed
again by the time the antenna moves one half of its length
(Tomiyasu 1978). To illustrate the complexities of the
situation, Moore (1983) states:

Although ra [azimuth resolution] is independent

of range R, the complexity and accuracy

requirements imposed on the radar, the storage

element, and the processor increase with range

for fixed values of ra and wavelength; likewise.

the complexity and accuracy requirements increase

with wavelength for fixed values of ra and range;

and furthermore, the radiated RF power

requirement grows sharply as D [physical antenna

length] is decreased, thereby leading to a

tradeoff between resolution and image S/N at long

operating ranges.

More detailed and comprehensive discussions of these
aspects of SAR systems are included in Elachi et al.
(1982b) and Tomiyasu (1978).

‘The range resolution for all radars (RAR and SAR)
depends on an effective transmitted pulse length or
alternatively, on signal bandwidth (Tomiyasu 1978). The
latter is utilized with a SAR system, where high resolution
in the range direction is usually achieved through pulse
compression techniques (Kovaly 1977). Usually a frequency-
modulated pulse with bandwidth B is utilized to achieve

fine resolution in the range direction. Therefore, the

system range resolution, rrR, is (Ulaby et al. 1981):

rR = -o-----= (2.8)
2B sin®

Where:
B = Bandwidth (Hz),
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Velocity of light (3 x 108 m/sec),

0
1]

@D
n"n

Incidence angle (rad).

Radar Egquation

The radar equation describes the performance of a
radar by relating the power of the returning signal
received by the sensor to the target and radar sensor
parameters (Fung and Ulaby 1983; Long 1975). The
generalized radar equation, using conceptual terms, is

given in Figure 2.86.

Power Target Space Antenna
Pawer z Density 1 Backscatter X Attenuation X Collecting
Received at a Cross on Return frea
Oistance R Section Path

Figure 2.6 Generalized radar equation depicted in
conceptual terms. (Based on Considine, 1983).

Assuming that the transmitter and receiver are in the same
location, the radar equation, disregarding atmospheric path
losses, can be written as follows (Fung and Ulaby 1983;

Long 1975; Skolnik 1980):

Pr = -=-=-- Crt ---=-= (2.9)

Pr = Received power at polarization r (W),

Pr = Transmitted power at polarization t (m),
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Gt = Gain of transmitting antenna in the direction
of the target at polarization t,
R = Distance between radar and target (m).
ort = Radar cross-section: the area intercepting
that amount of incident power of polarization
t which, when scattered isotropically.
produces an echo at polarization r equal to
that observed from the target (m2),
Ar = Effective area of the receiving antenna
aperture at polarization r (m2).

According to Fung and Ulaby (1883), most geoscience
applications involve extended targets, meaning that the
actual target is larger than the resolution cell of the
radar system. They consider a corn field to be an extended
target. Therefore, one might consider a forest stand which
has much more spatial variation than an agricultural field,
to be an extended target. especially since stand inventory
parameters are averaged over stand areas. For an extended
target, it is more convenient to deal with an average
return power (PAR) and define a radar cross-section per
unit area known as the scattering coefficient rt. The
effective size of the antenna aperture is related to the

antenna gain by:
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Ar = -=---- (2.10)
4
Where:
Gr = Gain of the receiving antenna in the direction
of the target at polarization r,
A = Radar operating wavelength (m).

Therefore, the radar equation in terms of average power

received can be rewritten (Fung and Ulaby 1983) as:

2 {PeGeGe o
PAR =  =---- f-o=—o= e dS (2.11)
(4m)3 . R4
Where: ¢
S = Surface:; the surface integral is taken over
the irradiated area Ao,
Gt = Scattering coefficient (m2 m-2).

Since Pt, Gt, Gr, and X are radar system parameters
that are constant, for a given range, the factor affecting
the average power returned is the scattering coefficent
T re. Fung and Ulaby (1983) state that the scattering
coefficient &t is generally a function of wavelength,
polarization, look angle, and interaction properties of the
target which include geometric, dielectric, and conductive

properties. These parameters are discussed below.

Influences on Radar Backscatter

The signal transmitted by a radar is scattered by the

target and only a portion will return and be received by
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the radar. The strength of the radar return (i.e.
backscatter) is influenced by the properties of both the
target and the system. Target parameters affecting radar
backscatter are surface slope and roughness, target
orientation, and complex dielectric constant, while system
parameters include operating wavelength, antenna depression
angle, polarization, and antenna look direction (Avery and

Berlin 13885).

Target Parameters. The surface slope., sometimes referred
to as macrorelief, is due to local topography. It affects
the angle of incidence of the incoming radar signal. As
the surface slope approaches normality to the radar signal
path (i.e.. incidence angle is 00), independent of wave-
length and surface roughness, the radar return increases
(Avery and Berlin 1985; Jenson et al. 1877). The return
due to macrorelief may be so strong that it dwarfs any
contribution due to the surface roughness or other
characteristics of the target.

Radar backscatter (return) is also greatly affected by
the surface roughness, sometimes referred to as micro-
relief, of the target. Based on the surface roughness
there are two major categories of radar signal reflection--
specular and diffuse. The former occurs when the target is
smooth relative to the radar operating wavelength while the

latter occurs when the surface is rough relative to the
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wavelength. According to Avery and Berlin (1985), a smooth
surface reflects the incident radar signal in a single
direction away from the antenna (as long as the angle of
incidence is not approaching zero). According to Snell’s
Law, the pulse will be reflected at an angle equal to and
in the direction opposite that at which it strikes the
surface (i.e. the Fresnel-reflection direction). However.
a rough surface scatters the radar signal in many
directions and thus some is reflected back (backscattered)
toward the radar antenna. An isotropic scatterer. or
Lambertian surface. represents maximum surface roughness
and will provide strong backscatter regardless of the angle
of incidence. It has microrelief several times the
wavelength of the radar signal (Avery and Berlin 1985).
Surface roughness is related to the wavelength and
depression angle of the radar system. If a height
difference h exists between two points on a surface, then
the waves reflected at these two points will be shifted in
phase with respect to each other. Lord Rayleigh developed
a criterion which gives a qualitative indication as to the
roughness of a surface in the electromagnetic sense (Long
1975). According to the Rayleigh criterion, a surface is

smooth if (Avery and Berlin 1985; Long 1975; Sabins 18987):
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ho o< ---2e. (2.12)
, 8 siny
Where:
h = Average vertical height (4 h) of microrelief
(m),
A = Operating wavelength (m),
Y = Grazing angle between the terrain and incident

radar signal (rad).

The Rayleigh criterion considers a surface to be
either smooth or rough as if there were no gradient between
the two textures. Peake and Oliver (1971) modified the
Rayleigh criterion to define the upper and lower bounds of
h for a surface of intermediate roughness. The smooth

criterion considers a surface to be smooth if:

A
hs {  =—me——————- (2-13)
25 sinY
The rough criterion considers a surface to be rough if:
A
hr > —mm—mmm—=- (2.14)
4.4 sinY

Smooth surfaces will cause the radar signal to be
specularly reflected away from the radar sensor and
therefore the return will be minimal. The low return means
a low digital number (DN) for that pixel and is represented
in radar imagery by a dark tone. Rough surfaces cause the
radar signal to be diffusely scattered, therefore causing
some of the radar signal to be backscattered (returned) to

the radar sensor. In this case, the DN value for the
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corresponding pixel will be relatively high and the image
tone will be relatively bright. Surfaces of intermediate
roughness would fall between these two categories and would
have gray tone in radar imagery.

Smooth surfaces can produce a high amount of
backscatter when the surface is oriented perpendicular to
the incident radar signal or when the smooth surface is
part of a corner. When planar surfaces intersect at right
angles (called a corner), the radar signal can be reflected
back toward the sensor., thus causing a high return
(backscatter) which is often anomalous. The prevalence of
corner reflectors in urban settings often causes urban
scenes to be represented by a bright tone on radar imagery.

The electrical properties of target materials can have
a strong influence on the intensity of radar backscatter.
The complex dielectric constant is a measure of an object’s
electrical characteristics and is an indication of its
reflectivity and conductivity. At microwave wavelengths,
most natural materials have a dielectric constant ranging
from 3 to 8 when dry. Since water has a dielectric
constant of approximately 80, the presence of moisture in
soil or vegetation can significéntly increase radar
reflectivity (Lillesand and Kiefer 1987).

It should be noted that it is the synergistic effects
of all these target characteristics combined with radar

system parameters that determine the radar backscatter from
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an object. As an example, water has a high dielectric
constant. Despite this, if a body of water has a calm
surface, the smooth surface will cause most of the incident

signal to be specularly reflected away from the sensor.

System Parameters. As mentioned earlier, system

parameters that influence radar backscatter include
operating wavelength, polarization, antenna depression
angle, and antenna look direction. The antenna look
direction determines the target orientation which was
discussed previously. The operating wavelength and antenna
depression angle (or’the related local incidence angle)
influence the backscatter greatly. Table 2.2 illustrates
the relationships between incidence angle, operating
wavelength and target roughness characteristics.

Imaging radars transmit pulsed energy with a defined
polarization and also receive the returned energy at a
specific polarization. The electric field vector (E
vector) for a uniform plane wave must lie in the plane
perpendicular to the forward motion of the plane wave
(Ulaby et al. 1981). Polarized microwave energy has the
entire E vector oriented in a particular direction.
Standard transmit/receive combinations of polarizations for
remote sensing purposes are: HH (horizontal send-
horizontal receive), HV (horizontal send-vertical receive),

VH, and VV. Like-polarized radar systems have a HH or VV
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Table 2.2 Definition of radar surface roughness categories
for three local incidence angles at three
different wavelengths. This table is based on a
modified Rayleigh criterion. From Lillesand and

Kiefer (1987).

Roat-sean-square surface height variation (ca)

Raughness Ko Band X Band L Band
Category {As 0.86 ca) A= 3.2l { Az 23.5 el

{a} Local Incidence Angle of 20°

Savath ¢ 0.04 (014 { 1.00
Interandiate 0.04 - 0.21 0.14 - 0.77 1.00 - 3.48
Rough > 0.2 > om >y 5.68

(b) Local Incidence Angle of 43°

Ssooth < 0,08 ¢ 0.18 ¢ 1.33
Intlrﬂiitl 0-05 - 0028 0.18 e 1003 1033 - 7-55
Rough » 0.28 > 1,03 y 1,55

{c) Local Incidence Angle of 70°
Saocth ¢ 0.10 <037 C2.78
Intersadiate 0.10 - 0.57 0.37 - 2.13 2.7 - 15,8

Rough > 0.57 > .13 ) 156
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configuration, while cross-polarized radar systems operate
with HV or VH polarizations.

From the above discussion, it can be seen that the
interactions between system and target parameters are
complex. When interpreting radar imagery, these various
influences should be considered. Modeling the complex
interactions of these factors is a topic of much current
and ongoing research (see Lang et al. 1987:. Murata et al.

1987; Richards 1986; Ulaby and Dobson 13986).

Speckle

An inherent characteristic of SAR imagery is speckle.
It is caused by the instantaneous radar return randomly
fluctuating (or fading) widely as the radar beam passes
over an extended target (Fung and Ulaby 1883; Ulaby ef al.
1982). Target features normally consist of a large number
of randomly distributed scatterers and it is this
randomness that is responsible for image speckle (JPL
1986). Skolnik (1980) states that constructive and
destructive interference result in a breakup of distributed
scatterers causing the speckled appearance of radar
imagery, i.e. random variability in image tone among
pixels corresponding to different pixels of a uniform
target. The randomly distributed scatterers of the target

cause the transmitted coherent radar signal to become a
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non-coherent return, and the resulting random constructive
and destructive interference patterns create relatively
high and low returns (i.e., high variability). Thus,
speckle is caused by the coherent imaging process of SAR
systems and is not a result of spatial variability in the
physical or electromagnetic properties of the the target
feature (JPL 1986).

Speckle noise inhibits interpretation and digital
analysis of SAR data. Therefore, techniques are utilized
to reduce the speckle present in SAR imagery. One method
to reduce speckle is to use multiple looks at the same
ground pixel by not using the entire synthesized antenna
length L to achieve an azimuth resolution ra, but to break
up the synthesized length into n subsections and look at
the scene from slightly different aspects each with range
resolution rr (Skolnik 1980). These independent samples
are then combined incoherently into a single image. The
speckle noise is reduced by a factor of the square root of
n, where n is the number of images used, or the "looks"
(Keyte and Pearson 1383). Based on previous discussion,
however, one sees that as the number of looks is increased.
the portion of the synthesized antenna used becomes smaller
and the azimuth resolution becomes larger. Skolnik (1980)
reports: "It has been suggested that the noncoherent
combining of images of lesser resolution produces a better

image with less speckle than a single image of greater
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resolution." Figure 2.7, adapted from Moore (13983),
illustrates how the resolution is degraded as the number of
independent looks increases. Although the spatial
resolution is reduced through such an operation, the
apparent resolution may be improved due to the speckle
reduction. Using this method, the reduction of speckle by
a factor of the square root of n reduces the resolution by
a factor of n. Multi-look averaging is conducted during
the digital correlation process of the SAR data.

A second method of speckle reduction that has been
commonly employed is digital spatial filtering. Multi-look
processing smoothes in the azimuth direction, only, whereas
spatial filters can be chosen to filter in both the azimuth
and range dimensions. Digital filtering will be discussed

in detail in a later section.

Signal Correlation

The conversion of the original radar signal returns
(Doppler phase histories) to image data is known as
correlation. Both optical and digital correlation
techniques are utilized. Most correlation has been
accomplished optically by initially recording the radar
signal returns on photographic film. This signal film is
then optically processed with a Precision Optical Processor

which passes a collimated coherent light beam through the



34

Antenna Aperture
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{adependent
Looks

Figure 2.7 Example of a 4 meter SAR antenna showing
potential number of independent looks and the
effect on resolution. (Adapted from Moore

1983.)
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signal film and through a series of lenses, the resultant
collimated beam of light then being recorded on
photographic image film (Jenson et al. 1977; Moore 1983).
To obtain a digital format of optically processed signal
film, the image film is replaced with a photosensitive
detector (Moore 1983) or the image film can be digitized
with a microdensitometer. Although this produces a digital
product, this process does not yield the dynamic range nor
geometric fidelity that digital correlation precedures can
provide.

Digital correlation of SAR data involves a large
number of complex calculations for each output pixel. Due
to the high volume of calculations necessary to generate
SAR imagery, high-speed digital processors for airborne SAR
sensors became possible only after computing systems began
utilization of integrated circuits in the early- to mid-
1970’s (Elachi 1982b). This was two decades after the
development of optical SAR processors. Therefore., more of
the optically correlated images have been available for
interpretation. More detailed discussions of optical
processing techniques are given by Curtis (1977), Moore
(1983), and Tomiyasu (1978). Digital processing is
discussed in several papers including those by Bennett et
al. (1981); Curlander (1986); Elachi et al. (1982b);
English (1984); Guignard (1981); Kirk (1875); Liu (1982);

and Raney (1982).
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Spaceborne Imaging Radar

On three occasions to date, L-band radar data of the
Earth’s surface has been obtained from a space platform.

In 1978, the free-flying Seasat satellite operated for just
over three months. The L-band (23.5 cm) HH-polarized SAR
onboard Seasat provided optically correlated data (Ford et
al. 1980). In November 1981, aboard the Space Shuttle
orbiter Columbia, the Shuttle Imaging Radar-A (SIR-A)
acquired optical L-band (23.5 cm) HH-polarized SAR data
(Elachi et al. 1982a: Ford et al. 1983). In October 1884,
SIR-B, also a 23.5 cm HH-polarized L-band SAR, was operated
aboard the Space Shuttle orbiter Challenger, acquiring both
digital wnd a limited amount of optical data (Ford et al.
1986; NOAA 1984). The SIR-B experiment enabled the
acquisition of multiple-incidence angle data for the first
time from space altitudes. The nominal ground resolution
for both the Seasat SAR and SIR-B was 25 meters, while SIR-
A had a ground resolution of 40 meters.

Many additional spaceborne SAR systems are being
planned (Elachi 1986). NASA is planning for the SIR-C and
SIR-D missions (each will have L-band, C-band, and X-band,
multi-polarization. multi-angle capabilities; to be
launched in the early 1990’s. These experiments will
culminate in the deployment of a SAR sensor aboard the

Earth Observation System (EOS) polar platform scheduled for
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launch in 1994. Satellite SAR’s scheduled for deployment
by other countries in the early 1990’s include the L-band
JERS-1 SAR (Japan). the C-band ERS-1 (ESA). and the C-band

Radarsat SAR (Canada).

Digital Fil .

Introduction

A digital filter is an arithmetic procedure that
operates on a digital data set to eliminate irrelevent data
or noise (Swain and Davis 1978). Filtering can be done in
one of two domains, the frequency-transform domain or the
spatial domain (Gonzalez 1986). The spatial domain is used
when removing speckle noise from SAR image data. The
spatial domain refers to the aggregate of pixels
constituting an image. Spatial filters utilize digital
values of many adjacent image pixels to derive a new value
for a particular pixel (usually central to the group).
Terminology associated with digital filters follows.

A window is the image area (sub-array) considered in a
single filtering (i.e. arithmetic) operation. The window
shape can be one-dimensional (1 x n, n x 1), square (n x
n), rectangular (m x n), circular, cross, or virtually any
other shape. The first three shapes are the most common.

Normally, the dimensions of the window are such that an odd
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number of pixels are involved in the operation. The window
location is shifted (incremented) between each filtering
operation. The window is incremented until the entire
image has been filtered.

A recursive filter utilizes output feedback. After a
filtering operation is completed on a particular window
area, the output value replaces the original value in the
image. Then the window is incremented and the next
filtering operation is implemented, utilizing the
previously calculated (filter output) values. The normal
(non-recursive) procedure is that each new calculated value
is placed in a separate image file and only the original
image pixel values are considered in each filtering
calculation.

A geparable filter utilizes successive applications of
a one-dimensional window, first along the rows and then
along the columns (or vice versa) of an image array to
simulate a two-dimensional window (Narendra 1981).

There are basically four types of spatial filters:
low pass, high pass, directional. and textural (Holdermann
et al. 1978). Each has a different function as illustrated
in Table 2.3.

It is the low pass filter that is of use in reducing
the effects of speckle noise. A low pass filter enhances
(or passes) low spatial frequencies -- features that are

larger than the window size, at the expense of high spatial
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Table 2.3 Types of digital spatial filters and their

functions.
Type Function
Low-Pass Smoothing
High-Pass Edge-enhancement
Directional Smoothing or edge enhancement

in a particular direction

Textural Assigns a texture measure
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frequencies (which are attenuated) that are smaller than
the window size (Curran 1985; Duda and Hart 1873). Spatial
frequency refers to the changes in digital number values
over a given distance (Lillesand and Kiefer 1987). When
the digital numbers change abruptly over a relatively small
number of pixels, the spatial frequency is considered to be
high. Edges and impulse noise are high frequency features.
Low spatial frequency areas have digital numbers that vary
gradually over a relatively large number of pixels. The
data of a typical image is concentrated primarily in the
low frequency component due to the high spatial correlation
among neighboring pixels (Lim 1984).

High pass filters enhance high spatial frequencies
(features that are smaller than the window used), while low
spatial frequencies (features larger than the window) are
attenuated. This type of filter is used for edge
enhancement. Directional filters utilize either high or
low ﬁass operations that enhance particular spatial
frequencies in their direction of travel. Textural filters
are used to assign a value to a point that is indicative of
the texture of the surrounding area based on some measure
of variance such as range, kurtosis, or standard deviation

(Curran 1985).
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Low Pass Arithmetic Operations

As stated previously, it is the low pass filter that
is of use in smoothing or reducing the effects of speckle
in SAR image data. The most common arithmetic operations
utilized for smoothing are mean and median. The mean
filter is a neighborhood averaging operation where the
digital numbers within the window are averaged. This
linear operation is easy to implement using convolution
techniques. One of the main difficulties is that it blurs
edges and other sharp details (Gonzalez 1986; Chin and Yeh
1983).

The median filter is a non-linear operation in which
the digital numbers within the window are ranked and the
median or mid-value is selected. This type of filtering
was first suggested by Tukey (1971) in time series
analysis. Gonzalez (1986) reports: “The principal
function of median filtering is to force points with very
distinct intensities to be more like their neighbors, thus
actually eliminating intensity spikes that appear isolated
in the area of the filter mask [i.e. window]."

The major advantage of the median filter over a mean
filter is that smoothing is accomplished with much less
blurring; edges are retained (Chin and Yeh 1983; Gonzalez
1986; Heygster 1982; Rosenfeld and Kak 1982). This

property allows for the filter to be iterated without
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compounded blurring. Median filters are effective in
removing salt and pepper (high and low intensities) and
spike noise (Huang 1981: Justusson 1981). It is important
t0 note that the edges that are retained may not be
analogous to cover type boundaries or edges found in actual
images. To better understand the properties of these
filters, some signal processing terminology will be defined
(Gallagher and Wise 1981):

A constant neighborhood is a region of at least

N + 1 consecutive pixels, all of which are
identically valued (where window width = 2N + 1).

An edge is a monotonically rising or falling set

of pixels surrounded on both sides by constant
neighborhoods.

An impulse is a set of N or less pixels whose
values are different frum the surrounding regions
and whose surrounding regions are identically
valued constant neighborhoods.

A root is a signal which is not modified by
filtering.

Figure 2.8 illustrates the differences in performance
of the one-dimensional mean and median filters. In (a) the
distinct edge (or step) is preserved by the median filter
while it is converted to a ramp function (gradual edge) by
the mean filter. Both the mean and median filters
effectively preserve ramp functions. When impulses are
present, the mean filter does not retain the value of the
surrounding constant neighborhoods as is seen in (c¢), (d),
and (e). Rather the neighborhood value is raised due to

the impulse. In the case of the median filter, pulse



(a) STEP

(b) RAMP

(¢) SINGLE
PULSE

(d) DOUBLE
PULSE

(e) TRIPLE
PULSE

Figure 2.8 Examples of mean and median filtering on siaple
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data streams with a window size of 1 x 5.
(From Pratt 1978.)
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functions (impulses) are suppressed if the period is less
than one-half the window width (i.e., less than or equal
to N).

At first glance, the median filter looks far superior
to the mean filter. However, when the definitions of edge
and constant neighborhoods are carefully examined, it will

be seen that 8-bit SAR data rarely will contain true edges

due to the high amount of variation within the data. Thus,

median filtering of SAR data most likely will cause some
blurring of cover type boundaries, (but probably not as
much as will be the case with mean filtering). Rosenfeld

and Kak (1982) report that a problem with two-dimensional

(window) median filtering is that it destroys thin lines as

wall as isolated points. It also clips (or rounds) sharp
corners. The use of a separable filter will reduce these
effects if the corner is a right angle oriented along the

rows and columns (Narendra 1981).

Filter Examples

This section will provide a brief tutorial on the
operation of mean and median filters. Additionally,
several filter properties will be illustrated including.
separable and non-separable operation, recursive and non-

recursive operation, and padding.




45

Mean filters are an application of a general image
processing technique know as convolution. In convolution,
a moving window is established which contains an array of
coefficients. Such an array is referred to as a kernel
which consists of an odd number of pixels. For a mean
filter, each coefficient in the kernel is the same and the
sum of the coefficients is equal to one. Thus, an
arithmetic average of the digital numbers is calculated.
Kernels for window sizes of three and five are given in
Figure 2.9 for both separable and non-separable mean
filters. The kernel is moved throughout the original image
and the digital number at the center of the kernel (pixel
location highlighted in Figure 2.9) is calculated. This
involves multiplying each coefficient in the kernel by the
corresponding digital number in the original image and then
summing all the resultant products (Lillesand and Kiefer
1987). This sum represents the mean of the digital numbers
in the window and it becomes the new value for that pixel
location in the output image. This procedure is performed
for each pixel in the original image.

To prepare the original image for filtering, the image
array must be padded along its edges. Padding normally
involves repeating the first (or last) pixel value N times,
where the window size is 2N + 1. Figure 2.10 illustrates
the padding of an image array in preparation for using a

3 x 3 mean filter kernel. Since the window size is three,




46

SEPARABLE NON-SEPARABLE
1 X3 3X3
NEAN NEAN
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Tigure 2.9 Separable and non-separable kernels for th
mean filter at window sizes of three and five.
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3 x3 MEAN PADDING CALCULATIONS
KERNEL
Window size = 2 (padding factor) + 1

1/9|1/9]1/9 Where: L = Window size

N = Padding factor
1/9)1/9 ] 1/9

I 22N+ 1
1/9 1 t/9|1/9 N = 1

Therefore, padding factor is 1
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Figure 2.10 Example of padding an image array in
preparation for filtering with a non-separable
3 x 3 mean filter.
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the padding factor N is calculated to be one. Thus, the
perimeter (edge) digital numbers in the original array are
repeated once along the boundaries of the image.

Figure 2.11 demonstrates the operation of a 3 x 3
square (non-separable) mean filter. First, the new digital
number for the center of the active window is calculated.
As was described above, each of the digital numbers in the
active window is multiplied by the coefficient in the
corresponding position in the filter kernel. These
products are summed and this value becomes the digital
number in the output image (same position as the center of
the active window in the input image). Digital numbers are
always integers, so the sum is rounded to the nearest
integer. The window is then shifted and the procedure
repeated. In subsequent operations, the window is moved
across (and down) the image until all ocutput digital
numbers have been calculated.

The operation of a 1 x 3 separable mean filter is
illustrated in Figure 2.12. As was discussed earlier, a
separable filter uses two one-dimensional kernels to filter
the columns and rows separately. Thus, a two dimensional
window (kernel) is simulated. First, the image array is
prepared for filtering of the columns by padding at the top
and bottom of the image. Then the column kernel is passed
down the columns to create the column output array. This

array is then padded at the sides in preparation for the
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NON-SEPARABLE 3 X3 SQUARE MEDIAN

9 |9 ! 717
INPUT 9 ]38 1 717
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3|3 |6 ]|616
ACTIVE WINDOW
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999877711
+
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7
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Figure 2.11 Operation of a non-separable 3 x 3 mnean
filter.
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SEPARABLE 1 X3 MEAN
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OUTPUT s|5|S
ARRAY
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Figure 2.12 Operation of a separable 1 x 3 mean fil-=x
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filtering of the rows. The row kernel is passed along the
rows of the column output array. This constitutes the
first iteration of this filter treatment.

The median filter procedure differs from the process
utilized with mean filters. The diqital numbers within the
active window are ranked and the center value (median) is
selected as the new digital number for the output image.

As with convolution. the middle digital number within the
window is replaced by the new value. This process 1is
illustrated in Figure 2.13 for a 3 x 3 non-separable median
filter.

As was mentioned previously, a recursive filter
utilizes output feedback. All the filter examples given in
the previous figures have been non-recursive. That is,
only the digital numbers from the original image array were
considered when calculating the new value. Figures 2.14
and 2.15 demonstrate the difference in operation between a
non-recursive and recursive 1 x 5 median filter. For
simplicity. a one-dimensional window is shown operating on
a one-dimensional data stream. The active window shows the
five digital numbers that are considered for each
operation. The median value of the five digital numbers is
selected and it becomes the output digital number indicated
at the bottom of the figure. The non-recursive filter in
Figure 2.14 operates similar to the filters in the previous

Figures. Figure 2.15 illustrates a recursive 1 x 5 median
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NON-SEPARABLE 3 X 3 SQUARE MEAN

1 | 1 919
INPUT 211 | g9
IMAGE 2 2 1 o} o)
212121217
313121217

ACTIVE WINDOW Ix3 MEAN

KERNEL

1 1 1 1/911/911/9

2 1 1 1/9 1179 11/9

2 2 1 t79 | 1/9 ] 1/9

(179)(1) + (1/9)(1) + (1/9) (1) +
(179)(2) + (1/79)(1) + (1/9)(1) +
(1/79)(2) + (179)(2) + (1/9)(1) =

SINCE MUST BE INTEGER, OUTPUT VALUE

QUTPUT

IMAGE

12/9

Figure Z2.13 Operation of a non-separable 3 x

filter.
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NON-RECURSIVE MEDIAN FILTER
(Window Size of 1 x 5)

PADDING 55 55
INPUT 598545943358 89¢6¢5
5559 8
55985
A 5985 4
C W 98545
T I 8 54589
I N 545 9 4
v D 4 59 43
E 0 59 433
W 94335
4 33538
3356839
35896
58965
8 98655
96555

OUTPUT 5555554444586¢86865
INPUT 598545943358 89¢67H5

Figure 2.14 Example of a non-recursive median filter with
a window size of 1 x 5. The active window
shows the data values that are considered for
each calculation. The highlighted location in
the active window indicates the position for
the calculated median value in the output data
stream.
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RECURSIVE MEDIAN FILTER

(Window Size of 1 x 5)

55 56
5985459433589¢86F5

55598
55985
5585 4
55545
554539
5559 4
55843
55433
54335
4 4358
4 45889
4 5896
56965
6 6 8 55
6 6 5§55

555555544456¢6¢65

59854593433589¢6F5

Example of a recursive median filter with a
window size of 1 x 5. The active window shows
the data values that are considered for each
calculation. The highlighted location in the
active window indicates the position for the
calculated median value in the output data
stream. In each active window, numbers to the
left of the highlighted position are ocutput
feedback, while those to the right are from
the input data stream.
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filter operating on the same data stream as in the previous
figure. Once agéin, the digital numbers in the active
window are ranked and the median value selected for the
output. It should be noted, though, that not all digital
numbers in the window are directly from the input data
stream. The numbers that are underlined are output
feedback -- that is, they were previously determined to be
the median value of a previously active window and they
were then utilized in subsequent calculations (retained).
An underlined number (output feedback) is only retained as
long as the window is positioned over it. When Figures
2.14 and 2.15 are compared, it can be seen that the output

differs slightly.

Evaluation

When using digital filtering for smoothing image
noise, some method must be utilized for monitoring the
filtering process and evaluating the results. Pratt (1978)
warns that, "It [median filtering] should not be used
blindly, but rather its performance should be monitored to
determine if its application is beneficial.” Huang (1981)
gives additional advice regarding the use of filtering as a
preprocessing procedure:

Although median filtering, or for that matter

linear smoothing, often improves the subjective

quality of an image, it is by no means clear that
they would facilitate further machine analysis of
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the image, such as pattern recognition or metric
measurements.

Thus, it is important to use not only qualitative, but also
quantitative measures when evaluating the results. The
quantitative assessment will be indicative of the
classification performance and the qualitative assessment
will identify distortions and other major changes. A
statistical classification using pattern recognition

techniques would be a highly desirable test.

I . | Analvsi ¢ L-Band SAR D

Introduction

The end product of remote sensing is information.
According to Lillesand and Kiefer (1987):

Remote sensing is the science and art of

obtaining information about an object, area, or

phenomena through the analysis of data acquired

by a device that is not in contact with the

object, area, or phenomenon under investigation.
Information extraction from remotely sensed data can be
accomplished in two ways. The first is an image oriented
approach which utilizes qualitative techniques to visually
interpret pictorial representations of the data, while a
second approach is the quantitative analysis of digital
data treating the data as a set of measurements (Landgrebe

1978; Lillesand and Kiefer 1987). Most remote sensing data

types., including imaging radar data, can be analyzed by
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both techniques. This section describes some of the
qualitative studies of radar imagery and then covers some
of the quantitative analyses documented in the unclassified
published literature.

For vegetation analysis with imaging radar data,
mostly qualitative studies have been conducted due to the
complex nature of radar data processing since, in the past,
more optically correlated images have been available for
interpretation. With the development of digital
correlation techniques, quantitative analysis of SAR data

is increasing.

Image Interpretation

The interpretation of radar imagery is similar to
photo interpretation using tone, texture, shape, pattern,
size, shadow, and association as interpretive clues (Barr
and Miles 1970; Henderson 1985). Three types of
information regarding vegetation can be obtained from the
analysis of radar data: (1)geographic pattern; (2) gross
structure and physiognomy; and (3) type identification
(Morain 1980). Regarding the interpretation of radar
imagery, Morain (1980) states:

In all instances interpretations rely on

converging evidence derived from principles of

geography, biology and ecology; the interpreter’s

understanding of the principles of radar

reflection from vegetation as well as his

experience with the local environment; and
inference.
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Tone and texture are the major factors to consider
when developing interpretation keys for forest typing
(Knowlton and Hoffer 1981; Morain 1880). Tone on radar
imagery refers to the brightness of the gray scale
representation of the radar return. The brightness is
directly related to the intensity of the return. Texture
refers to the degree of homogeneity in tone over an area
and degree of speckling.

When interpreting radar data utilizing the principles
mentioned above, the analyst should understand the energy-
matter (i.e. signal-target) interactions that occur at
microwave wavelengths. Such an understanding will assist
him in analyzing the data. Energy-matter interactions
depend on the operating wavelength and various other radar
and target characteristics as discussed earlier. Since the
proposed research project will deal with L-band radar data,
the following discussion of visual interpretation of SAR
imagery is limited to L-band radar imagery. L-band radars
operate in the wavelength region of the electromagnetic
spectrum between 15 and 30 cm. The three spaceborne SAR’'s
to date have operated at a wavelength of 23.5 cm.

A limited number of studies have been conducted to
develop guidelines for interpretation of L-band radar data
acquired from space platforms (i.e. Seasat. SIR-A, and SIR-

B). Seasat data was primarily utilized for terrain
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analysis or oceanographic studies. Terrain analysis was
the major emphasis for interpretation of SIR-A &ata (Elachi
et al. 1982a), but some vegetation interpretation
observations have been documented. The following
discussion will be concentrated on high L-band radar
returns from lowland vegetation (including forest) and also
L-band returns from other forest conditions and types.
Analysis of spaceborne L-band SAR imagery have shown
anomalously high returns (bright tone) from three different
cover types: urban, agricultural, and swamp (Waite et al.
1981). Several investigations have noted that spaceborne
L-band SAR data can be used to detect standing water under
a forest canopy (Hoffer et al. 1985; Krohn et al. 1983;
MacDonald et al. 1980; Mueller and Hoffer 1985. Mueller et
al. 1985b; Ormsby et al. 1985; Waite et al. 1981).
Anomalous returns were observed in Seasat-A SAR imagery for
flooded forest stands of pure cypress: mixed stands of
white oak, live oak, and hickory; and also mixed stands of
cypress and willow with occasional oak, sweetgum., and
hickory in Louisiana and Arkansas (MacDonald et al. 1980).
In the Atchafalaya Basin of Louisiana, cypress stands with
variable water level and an undergrowth of swamp vegetation
over the water surface did not yield this anomalous return.
Therefore, MacDonald et al. (1980) proposed that the
phenomena is not species dependent and the presence of a

vegetation understory between the water surface and the
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forest canopy prevents this effect. The resultant tone in
this case is that characteristic of upland forest (not
underlain by water).

Krohn et al. (1983) observed similar phenomena with
Seasat SAR data acquired over eastern Virginia and
Maryland. A moderate to bright tone was characteristic of
upland forest consisting of several oak species. red maple.
Virginia pine, loblolly pine, and shortleaf pine, due to
diffuse scattering. Radar return from lowland sites with
vegetation underlain by water was strong in some cases and
vice versa depending on the structure of the canopy. Thin-
stemmed coastal marsh plants having heights of
approximately one meter and underlain by water had a lower
return than the upland forest, whereas a neighboring
flooded mature forest of loblolly pine, with some mixed
hardwood species and an understory of evergreen bayberry
exhibited a stronger return than upland forest. Farther
inland, three flooded vegetation associations yielded high
returns (stronger than upland forest). Pure stands of
water tupelo with an understory of evergreen bayberry had
the lowest of the three strong returns. Multi-tiered
unevenaged forest stands of red maple, sweetgum, willow
oak, and willow had a slightly higher return. The highest
return at this second site was from flat-leaved marsh
plants having a height of approximately 0.5 m above the

water surface. To explain the difference found between the
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two marsh areas., Krohn et al. (1983) suggested that the
height of the vegetation was not the important parameter
influencing the return, but rather some other factor such
as vegetation density of morphology was causing the
increased backscatter.

Ormsby et al. (1985) investigated radar return from
flooded vegetation situations and found that the L-band
response from shorter vegetation species, such as marsh
grass, in a flooded situation, was minimal unless the
vegetation itself was wet. However, with increased
vegetation volume and height, the amount of scattering and
enhancement increases when the vegetation is underlain by
water. The difference in radar return between flooded and
non-flooded forest areas using Seasat-A SAR data and L-band
(18.75 cm) scatterometer data for an area in Texas and
Maryland was quantified by Ormsby et al. (1985). The
slight differences in species mix were not considered.
Since no precipitation had occurred prior to measurement,
it was felt that all variation was due to surface roughness
as well as signal enhancement due to the standing water
beneath the canopy. They concluded that an increase of
approximately 3 to 6 dB can be expected from water under a
forest canopy regardless of species mix.

Ford et al. (1983) interpreted four SIR-A images of
predominantly forested areas. It was found that forest

swamps often have a very strong (bright) radar return.
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This was the case for an area of the Lower Coastal Plain of
North Carolina, where hardwood swamps characterized by
large gums, cypress, maple, and bay trees, produced strong
radar returns. Cypress-tupelo swamps in the Savannah River
floodplain of the southeastern U.S. also had strong radar
returns, while drier regions of ocak, ash, and hickory
within the swamp forests had a lower (darker) radar return.

Within imagery for the two areas mentioned above. Ford
et al. (1983) also found that socuthern pine forests
(loblolly and longleaf pine included) had a light gray
appearance, and thus not as strong a radar return as the
swamp areas. Clearcuts within the pine forests could be
easily delineated by their darker tone and typical linear
boundaries. In the North Carolina scene, large pocosinas,
characterized by open aspect with stunted shrub and vine
species associated with a mat of roots over saturated black
organic mud, had low radar returns (dark gray).

It was found by Hoffer et al. (1985) and Mueller and
Hoffer (1985) that incidence angle has a large influence on
radar return from forest vegetation. The analysis of
multiple incidence angle SIR-B data obtained over a
forested study site in northeastern Florida showed that
forest cover had a relatively high backscatter. Slash pine
forests had a lower return than the cypress-tupelo and
cypress swamps. Forest cover underlain by standing water

(swamps) had a very strong return. The steeper the
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incidence angle, the more pronounced was this enhanced
return. At a shallow angle of incidence (580) pine forest
and deciduous swamps were not differentiable.

A scene from a coastal swamp area of Irian Jaya,
Indonesia, demonstrated that in some cases, different
tropical forest types can be separated in the imagery (Ford
et al. 1983). Lowland tropical forest, with an associated
mangrove swamp understory, was represented by a generally
uniform medium-gray tone. The absence of the mangrove
understory increased the radar return and the resultant
tone was a lighter gray. This is in accordance with
findings by MacDonald et al. (1980).

From the above observations, it can be seen that
forest cover often has a high L-band radar return. Since
the target surface roughness is one of the major factors
affecting radar return (Lillesand and Kiefer 1987), it is
to be expected that a forest canopy which is varied and
rough textured will diffuse the radar signal and cause a
relatively high response. The presence of standing water
below the forest stand can cause an increase in radar
return, in some cases causing an anamolous return. The
enhanced return is believed to be caused by a complex
scattering phenemenon where the signal penetrates the
forest canopy, is reflected in the corner formed by the
tree trunks and water surface, and then exits the canopy

back to the sensor.
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With a shorter wavelength SAR system, the enhancement
due to flooding has not been as consistent. Both Krohn et
al. (1983) and Ormsby et al. (1985) stated that with
flooded tall vegetation such as trees, the enhancement so
prevalent with SAR imagery obtained at a 23.5 cm wavelength
was absent from imagery obtained at a 3 cm wavelength.
However, thin-stemmed coastal marsh plants which had
relatively low radar returns in Seasat imagery (L-band) had
high return in X-band imagery (Krohn et al. 1983). They
attribute this effect to the inability of the shorter
wavelength energy to penetrate the forest canopy while the
marsh vegetation scatters the X-band signal in a diffuse
pattern. Contrary to the findings of Krohn et al. (1983)
and Orusby et al. (1985), it was reported by Wu (1984) that
X-band SAR data can be used for detection of standing water

beneath forest vegetation.

Quantitative Analysis

The application of quantitative techniques to remotely
sensed data as reported by Bartolucci (1879), Colwell
(1983), Lillesand and Kiefer (1987), and Phillips and Swain
(1378), have Been concentrated on the numerical analysis of
multispectral optical data. Recent advances in digital
computer storage and processing capabilities have enabled

the acquisition of high-resolution digital SAR imagery
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(ERIM 1986). A radar system is not multispectral since it
usually operates at one wavelength only. However, such
variables as look-direction, polarization, and angle of
incidence can create multiple-parameter data sets for the

same ground location.

Classification. Techniques developed for multispectral
optical image data have been applied to the classification
of digital SAR data acquired for vegetated areas. Dual-
polarized (HH and HV) digitized X-band SAR data for a
predominantly forested area in South Carolina was
quantitatively analyzed using three classification schemes,
one using a per-pixel classifier and the other two
utilizing spatial classifiers (Knowlton 1982; Knowlton and
Hoffer 1983). Spatially based classifiers performed better
than the per-point classifier with data of original pixel
resolution and also spatially averaged (degraded
resolution) data. Spatially degrading the resolution
caused the greatest improvement in classification with the
per-point classifier. Classification accuracies (based on
seven cover types) obtained using spatially based
classifiers ranged from 63.3% to 68.4%, while those
obtained with the per-pixel classification élgorithﬁ were
35.7% and 45.9%, depending on spatial resolution. A

supervised training method was utilized in this study.
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Wu (1983, 1984) quantitatively analyzed aircraft X-
band (three polarizations) and satellite L-band SAR data
for areas in South Carolina and Alabama. L-band SIR-A
imagery was digitized at 20 m resolution and later filtered
with a 3 x 3 averaging window to reduce speckle. A
supervised training method was utilized followed by the
application of a maximum-likelihood classification
technique. Classification accuracies were below 50% for
pine forest. pine forest with slash (thinned). clearcut,.
pasture/fallow field, and cropland classes in the X-band
SAR data. To improve classification with SAR data. Wu
suggested that a classification algorithm incorporating
texture or spatial feature information should be included
in the classificétion scheme. The L-band SIR-A radar
classification had the best results (83%) for pine forests
over 30 years of age. The L-band analysis also indicated
that radar returns from three pine forest classes were
highly correlated with tree age.

Spaceborne L-band SAR data acquired by Seasat and SIR-
A were digitally analyzed for land cover mapping purposes
(Ulaby et al. 1983; Brisco et al. 1883). A supervised
maximum~-likelihood algorithm was utilzed on a per-pixel
basis and also on spatially averaged data. Combined data
sets and single data sets were classified for five general
cover types (including forest). The best classification

accuracy (97.5%) was achieved by combining two Seasat data
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sets (one ascending track, one descending track) with a
SIR-A data set (all three data sets spatially averaged).
Ulaby et al. (1983) felt that this indicates that the
effect of different incidence angles can increase
classification accuracies. The Seasat-A SAR had an
incidence angle of 209 while SIR-A had an incidence angle
of 500,

Ulaby et al. (1980) quantitatively analyzed dual
polarized (HH and HV) L-band SAR data to determine its
utility for classifying agricultural crops. A higher
overall classification accuracy (71.2%) was achieved using
both the HH and HV polarization data sets together. Forest
could be discriminated using the cross-polarized (HV) data,
but was confused with agricultural crops when only the

like-polarized (HH) data was utilized.

Spatial Filtering. As mentioned earlier, the coherent

averaging of independent looks for each pixel can be used
to reduce the speckle from digital radar imagery. However,
if this is not a viable option and an alternative is
desired or additional smoothing is necessary, spatial
filtering is often conducted. This technique was utilized
by Brisco et al. (1983), Knowlton and Hoffer (1983), Sader
(1987), and Wu (1984). Wu utilized a 3 x 3 pixel cell for
averaging L-band SIR-A data, but no comparison was made

with non-filtered data. However, Knowlton and Hoffer
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(1983) did study the effect of filtration--a 2 x 2 pixel
average--on the outcome of three different classification
algorithms. Overall performances between the filtered and
non-filtered data sets were found to be significantly
different for the Gaussian maximum likelihood (GML) and
minimum distance PER-FIELD classifier based on the Newman-
Keuls Multi-Range test. However, they were not
significantly different for the SECHO classifier, a LARSYS
contextual classification algorithm which considers both
spatial and spectral information. An increase was seen in
classification performance for the GML classifier. but a
decrease was seen for the PER-FIELD classifier when using
the filtered data.

Brisco et al. (1983) investigated the influence of
speckle on classification accuracy by degrading the
resolution of a Seasat-A SAR and SIR-A image in a step-wise
manner and then classifying the data. The spatial |
averaging did increase classification accuracy rapidly at
first, up until about 20 independent samples were averaged,
after which the increase was more gradual. Brisco et al.
(1983) felt that the rapid increase is due to a reduction
in fading (speckle effects). An improvement in overall
classification performance was achieved by using a 6 x 6
filter which boosted the SIR-A (single data set)
classification from 71.8% to 85.3%. Goodenough et al.

(1980) investigated the performance of four classification
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techniques with a four channel SAR data set consisting of
X-band (HH and HV) and L-band (HH and HV) radar data. They
concluded that all SAR data should be median filtered prior
to interpretation for crops and forest.

Sader (1987) used a 5 x 5 median filter to remove
speckle noise from multipolarized L-band aircraft SAR
before determining the relationship between radar return
and various forest stand characteristics. No comparison
was made between filtered and unfiltered SAR data.

To summarize, it would appear that from an applica-
tions standpoint, the use of computer aided analysis
techniques applied to SAR data has been very limited in
comparison to the extensive analyses conducted with optical
data such as Landsat Multispectral Scanner and Thematic
Mapper data. This is particularly true in the area of
forest vegetation -- few radar studies have concentrated on
the use of radar data in forestry, and an even smaller
number of studies has utilized digital analysis technigues
for mapping and monitoring forest cover. The analyses that
have been conducted have dealt with radar data obtained at
various wavelengths, polarizations, and incidence angles
for a variety of forest types and conditions. Few
applications studies have comprehensively addressed the
question of how variations in these parameters affect
backscatter from a given forest target. Additionally, it

was found that although spatial filters have been applied
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to SAR data, little applied research has been conducted to
select the most appropriate filter treatment. In total, it
would appear that the existing knowledge base for
interpreting and digitally classifying radar data of
forested land is not very extensive and many gaps and
questions exist. Additional studies are required to
determine the effects and interactions of both the system
and target parameters on radar backscatter. Fortunately, a
number of satellite radar experiments are being planned
that will acquire multi-parameter SAR data sets in the
early and mid-1990’s. These experiments will allow
thorough investigations of the many influences on radar

backscatter.
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CHAPTER 3
MATERIALS AND METHODS

Study Site D s

The data utilized for this study covers an area of
approximately 380 square kilometers (147 miz) of Baker
County (and a small portion of Union County), Florida,
located in the northeastern part of the state (Figure
3.1).1 The dominant natural feature of the study site is
the northern portion of Swift Creek Pond in the
southeastern corner of the SIR-B image data, while a
dominant cultural feature is the highway intersection of
Interstate 10 and US 90, located near the center of the
study site. This highway intersection is located
approximately thirty kilometers south of the Okefenokee
Swamp and thirty kilometers east of Lake City, Florida.

The study site is located in the Central Delta Plain
and Tertiary Highlands physiographic subdivision of the

Florida Plateau (Puri and Vernon 1959). It is

1. The study area indicated here corresponds to a subset of
the total SIR-B data obtained for the "Microwave and
Optical Remote Sensing of Forest Vegetation" study that was
described in Chapter 1.
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~ r’ —- SIR-B FILTER EXPERIMENT IMAGE
- < -~ SIR-B COVERAGE(ENTIRE SCENE)
— TM COVERAGE

Figure 3.1 Location of the SIR-B data set utilized in this
filtering experiment. The boundaries for the
entire SIR-B scene of the Florida Forestry Test
Site and the registered Thematic Mapper data

.are indicated.
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characterized by swampy plains with lakes in soluble
limestone. Soils of the area are predominantly sandy.
Elevation within the study site ranges from approximately
27 to 53 meters (90 to 175 feet) above mean sea level.

The nearest official weather station is located at
Lake City. The climate is humid, subtropical and is
characterized by a mild mean annual temperature of 20.2° C
(68.40 F) with mean annual precipitation of 137.62
centimeters (54.18 in) [NOCAA 1876].

Ownership of the forested land in the study site is
principally divided between Champion International
Corporation. Owens-Illinois Corporation, Southern Resin and
Chemical Company, and the U.S. Department of Agriculture
Forest Service (Osceola National Forest). Forest cover
types on the study area according to the classification
scheme developed by Avers and Bracf (1974) for the Osceola
National Forest are Pine Palmetto Flatwoods. Cypress
Swamps, Creek Swamps, and Mixed Bay Swamps. These forest
cover types, along with the associated tree and shrub
species, are given in Table 3.1. Species present in a
particular forest stand include a combination of species
associated with the general forest type. The scheme was
developed for natural vegetation types associated with the
soils of the area. Even under intensive management, the
location or composition of these vegetation associations

have not greatly changed since most of the Swamps were left
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General forest cover types of Osceola National

Forest, Florida, after Avers and Bracy (1974).

COMMON UNDERSTORY SHRUBS®

Table 3.1

FOREST COMMON TREE SPECIES

TYPE

PINE slash pine (Pinyg elligttii)

PALNETTO longleaf pine (Pinus palustris)

FLATHQODS?

CYPRESS pondcypress {(Taxodium distichua var. nytang)

SHANPSS baldcypress {(Taxodiyp distichya)
swasp tupelo (Nyssa svlvatica var. hiflora)
black tupelo (Nyssa sylvatica)
sweet bay (Magnolia virginiana)
loblolly bay (Gorgomia lisisathysi
slash pine (P{nys eiljottii)
pond pine (Pinys serotinal

CREEX sweet bay (Magmolia virginigna)

SHANPS red saple (Ager rybrus)
sweetqus (Liguidambar styraciflua)
loblolly bay (Gardonis lasiantiws)
cabbage pain (Sabal palagtto)
black tupelo (Nyssa sylvatica)
water oak (Quercus nigra)
loblolly pine (Pinus taeda)

NIXED sweat bay (Magnolia virginiamal

BaY red saple (Acer rybrup)

SuANPS slash pine (Pinus elliottji)

pondcypress (Taxodiua distichus var. nytans)
sweet qua (Liquidasar styraciflus)

water tugelc (Nvssa aquatice)

pond pine (Pinys serctipa)

water oak (Quercus nigra)

saw palsetto (Serenca repeng!
coason gallberry ([lex glabra)
large gallberry (llex coriaces)
southern bayberry (Myrica cariferal
oak (Quercys spp.)

Virginia willow {[tea virginical
fetterbush (Lypnia lugida)

buttonbush (Ceghalanthus gccidentalis)
svergresn bayberry (Myrica heterophylla

Virgiai: willow (ltea virginica)
sweet pepperbush (Clethra alaifelia)
flowering dogwood (Cornug florida)
red bay (Perseq horbonfa)

sweet peppertush (Clathry alnifolig)
southern wazeyrtls (Myrica cerifera)
buttonbush {Ceghalanthus occidentalis)
ywpon (llex voaitorial

large gallberry (1lex coriaces!
fatterbush (Lyonis lycida)

t. Partial listing.
2, Soes young loblolly pine (Pinys tasda) plantations are presant, but their total acreage is

sininal,

3. Ssall cypress ponds often occur as inclusions within Pine Pelasstto Flatweads.
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as such, and the Pine Palmetto Flatwoods have remained as
such with minor changes such as pine species conversion.
Southern pine is managed with a rotation age of 50 years on
the Osceola National Forest and from 25 to 30 years on land
owned by forest product companies. Longleaf pine is more
common on the Osceola National Forest than on company
lands. Most company lands have been converted to pine
plantations where suitable (mostly land classified as Pine
Palmetto Flatwoods}, whereas older naturally seeded pine
timber is more common on the Osceola National Forest. Pine
plantations are almost exclusively slash pine with a low
acreage planted in loblolly pine. The two most dominant
understory species of the Pine Palmetto Flatwoods are saw

palmetto and common gallberry.

Data Utilized

Primary

The primary data analyzed were a multi-angle SAR data
set obtained by the Shuttle Imaging Radar-B (SIR-B) during
Space Shuttle Flight 41-G in October 1984. The data were
collected on October 9, 10, and 11, each day at a different
angle of incidence (Table 3.2 and Figure 3.2). These data
were digitally processed by the Jet Propulsion Laboratory

(JPL) at the California Institute of Technology in
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Characteristics of the digitally correlated
SIR-B data acquired over the Florida Forestry
Test Site during Space Shuttle Flight 41-G.
Characteristics listed pertain to the entire
SIR-B scene obtained for the area.

Table 3.2

Paraseter

Data Set Characteristic

Centar incidence angle

Acguisition data

58.40

9 Qctaber 1984

45.3°

10 October 1984

28.4°

11 October 1984

Center acquisition time: GNT (934 0917 0900
EDT 0334 0547 0300
Data take scene nusber AK-064,2-003 AK-080.2-003 AK=96,2-003
Orbital track
(Azisuth fros true north)  43.0° 45.0° 45.6°
Platfara altitude 2.3 kn 230,12 ka 223,47 ke
Slant range to near edge 409,81 ks 137 ks 9.4

Center resalution
(ground range x azisuth)

Correlated pixel size

16,50 2 3.5

12.5a x 12.3»

19.8 2 x Al

1252 x 12308

29.60 x 25.3a

1250 x 12,58

Resanpled pinel size 28.58 & 2850 28.52 x 8.3 28.52 x 2830
Quantization levels 23 234 236

Navelength B3 23.5ca 23.5 ca
Palarization L HH HH




77

SIR-B MULTIPLE INCIDENCE ANGLE DATA SET
BAKER COUNTY., FLORIDA

280 450 58 ©
OCT. 11, 1984  OCT. 1@, 1984 OCT. 9. 1984
5:00 AM EDT 5:17 AM EDT 5:34 AM EDT
/ / -
/ 7
/ , -
/ / P
/ / P
/ 4 e
/ / P
/ / 7
/ /” Pid
/ / Pid
/ / 7
/ Pid
/s
/ ////
Rl THEMATIC MAPPER DATA
12~ ACOUIRED ON OCT. 12, 1984

Figure 3.2 BSIR-B multiple incidence angle data set for the
Florida Forestry Test Site. Thematic Mapper
data was acquired for the same area one day
later.
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Pasadena. California. A description of the SIR-B Digital
Processing Subsystem utilized at JPL is given by Curlander
(1986). The actual ground resolution varied for each of
the three data sets as seen Table 3.2. Not shown in Table
3.2 is the fact that the range resolution varied across the
scene in the range direction (image center resolution is
listed). For the sake of uniformity, all SIR-B data
processed by JPL was digitally correlated to 12.5 m x

12.5 m pixels. The three different data sets corresponding
to the different angles of incidence were digitally
registered so that each ground pixel would be represented
by three digital numbers relating to the three different
incidence angles.

One day after the acquisition of the 280 incidence
angle SIR-B data, a Landsat Thematic Mapper (TM) scene was
acquired for the study site. Characteristics of these data
are given in Table 3.3. Since a focus of the overall study
by Hoffer (1984) was to investigate the synergistic effects
when utilizing SAR and optical data, the registration of
the SIR-B and TM data sets was highly desirable.

Therefore, the original registered 12.5 m x 12.5 m SIR-B
data set was averaged (4 pixels), rotated, and resampled to
a ground resolution of 28.5 m x 28.5 m pixels by JPL. This
allowed for the digital registration of the SIR-B data to
the TM data. The TM data could then be used as reference

data directly for the 28.5 m x 28.5 m SIR-B data during the



Table 3.3 Characteristics of the Landsat Thematic Mapper
digital data for the Florida Forestry Test

Site.l
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Spactral Band  Wavelength Range Spectral Graund Pixel

Designation (Micrometers) Region IFOV Size
™1 0.45 - 0.32 Visible blue 30« 28,50
™2 0.52 - 0.40 Visible gresn 30 2 20.5 a
™3 0.43 - 0.49 Visibla red 30 » 28.5a
™4 0.76 - 0.90 Near infrared 30 A.5a
™3 1,55 - 1.79 Niddle infrared 30 28.5 a
™é 2.08 - 2,38 Niddle infrared 30a 28,5 a
™m7 10.40 - 12.50 Thersal infrared 120 & 8.3

Acquisition date

12 Qctober 1784

World Reference Systas

Path

Scane ID number

Platfora altitude

17

39

5022 513311 FL

705 ka

Center incidence angle 0 degrees

Quantization levels

236

1. Sensor characteristics defined by Freden and Gordon {1983).
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filtering study. Figure 3.3 shows the SIR-B data set (289
image) utilized in this experiment. For comparison
purposes, Figure 3.4 shows the Thematic Mapper Band 5
(1.55 - 1.75 ¥m) image for the same area.

This study investigated filtering of the 28.5 m pixel
size SIR-B data. The 28.5 m data were selected for
filtering since the majority of the digital analysis at
Purdue has and will continue to depend on usage of the
28.5 m SIR-B data registered to the TM data. The most
appropriate filter treatments will be defined for each of
the three incidence angle (280, 450, and 580) data sets.

The SIR-B data were recorded on computer compatible
tape (CCT) in band sequential format by JPL. Due to
requirements of the various image processing systems
utilized. the data were converted to various formats (e.&g.
band sequential and band interleaved) according to the

requirements of each system.

Reference

Reference data utilized for interpretation of the
SIR-B data included aerial and ground photography,
vegetation and soil samples, field notes, and forest stand
inventory information provided by the timberland owners.
Photography at different scales and formats were also

available as reference data. Color infrared (CIR) stereo



81

Figure 3.3 SIR-B 28° incidence angle image of the data set
utilized in the filtering experiment.
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Figure 3.4 Landsat Thematic Mapper band 5 (1.55 - 1.75 Km)
image corresponding to the SIR-B data in
Figure 3.3.
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coverage photographs (1:100,000) were acquired for the
complete study area in September 1984 by JPL. Complete CIR
coverage for the area was also available at a scale of
1:58,000, obtained as part of the National High Altitude
Photography program, with different sections of the area
photographed in January 1983, February 1984, and March
1984. In addition to the above complete coverage, stereo
photographs (1:15,840) obtained in January 1981, were made
available by St. Regis Corporation (now a part of Champion
International Corporation) for a large portion of the study
area. In August and October (during Flight 41-G) 1984, 35
mm reference photographs of various forest stands and
features were obtained with both CIR and normal color film
types from a light aircraft and also from the ground. The
primary and reference data utilized in this study are
listed in Table 3.4.

As was mentioned above, the TM and SIR-B data sets
were digitally registered by JPL. Given this. and the
short time interval (one day) between acquisition of the TM
and SIR-B data, the TM data are also considered to be
important reference data. As was indicated in Table 3.3,
this TM data set consists of measurements collected in
seven optical spectral bands covering portions of the
visible, near infrared, middle infrared, and thermal

infrared portions of the electromagnetic spectrum.
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Table 3.4 Digital image and photographic data utilized in
the SIR-B spatial filtering experiment.
UsSE DATA TYPE ACQUISITION PIZEL  PHOTO PHOTOGRAPHIC COVERABE OF
DATE SHIE FORMAT DATA SCALE STUDY AREA!
PRINARY Shuttle lmaging 9 Oct 1984 8.5 c
ANALYSIS  Radar-B 10 Oct 1984 8.5 c
(SIR-8) 11 Oct 1984 8.5 "
REFERENCE  Landsat § 12 Oct 1984 8.5 a c
Thematic Mapper
m
REFERENCE  Vertical Aerial 14 Sap 1984 70 sa 11100 000 ¢,8
Phatography Nar 19684 9 in {: 38 000 4
(Color IR) 5 Feb 1984 9 in 1 58 000 4
24 lan 1983 9in 2 38 000 P
12 Jan 1981 % in s 15 840 P,8
REFERENCE  Oblique Aerial 7 Oct 1984 B varies P-
Photogr aphy 16 Aug 1984 35 e varies P
{Calor IR
and Color)
REFERENCE  Bround 2-11 Oct 1984 S varies P
Photography 14=19 fug 1984 N varies P
{Color and
Color [R)
1. Coveraget C  Complete

P Partial

§  Stereo pairs
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Several maps were used for reference data including
USGS 7.5 minute quadrangles (1:24,000), a Baker County Plat
Directory, and forest stand maps supplied by the various
timberland owners. No Soil Conservation Service Soil
Survey has been conducted for Baker County.

Two visits were made to the study area, the first in
August 1984 and the second during Space Shuttle Flight 41-G
in October 1984 (subsequent visits were made by fellow
researchers in February 1986 and June 1987). The first
trip facilitated familiarization with the study area and
establishment of contacts with timberland owners.
Additionally, aerial and ground 35 mm photos were taken and
stand descriptions were prepared to document conditions of
selected forest stands. During the second field visit,
additional forest stands and features were photographed and
described, and inventory data and maps were obtained from
Champion International, Owens-Illinois., Southern Resin and
the USDA Forest Service. Stand inventory data parameters
are listed in Table 3.5. Inventory data were organized
into a database using dBase III software running on an IBM

PC/AT.

SIR-B Data CI st

To effectively utilize any type of remote sensing

data, the analyst must understand fundamental
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Table 3.5 Forest stand timber inventory data provided by
cooperating timberland owners.

STAND | OWNERSHIP
PARAMETER
USFS Champion Owens- Southern
Illinois Resin

‘Stand

Designation b4 X b4 X
Species b4 b4 X X
Acreage X X X X
Age X x X X

Site Index or

Site Quality X x x x
Volume (Cords) x x x
Volume (Cords/Acre) X X x
Basal Area/Acre x X b'd
Stems/Acre x b4 X
Stems/dbh/Acre!l X p 3
Tree Height X

1. Estimated at date (which varies by stand) of cruise and
not projected. One-inch dbh classes for Southern Resin
and two~inch dbh classes for Owens-Illinois.
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characteristics of the sensor system and the associated
signal-target interactions. An inherent characteristic of
SAR data is speckle noise. The presence of speckle
increases the overall variance of the data and also the
variance for a particular cover type class. Because of
this increased variance, computer-aided analysis techniques
developed for use with optical data may not work as well
with SAR data. To effectively analyze SAR data, these
differences. including speckle noise, must be taken into
account.

Table 3.6 illustrates the difference in digital number
variance (using identical ground locations) between Landsat
Thematic Mapper optical scanner data and SIR-B radar data
for several cover types. For comparison, TM band 1
(visible blue) and the SIR-B 280 data sets have been used.
™ band 1 is a noisy band for the TM sensor in relative
terms, while the 280 SIR-B data set is the least noisy of
the SIR-B data sets. It can be seen that in all cases, the
standard deviation of the SIR-B pixel values is much
greater than those of the TM data (both data sets have 8-
bit dynamic range). For pattern recognition techniques to
be effective, the cover type classes to be discriminated
must be differentiable in the feature space. The ability
of a statistical classification algorithm to differentiate
classes is highly dependent on the dissimilarity or

separability of classes. As the variance for individual



Table 3.6
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Comparison of mean and standard deviation of

SIR-B (280 incidence angle) and Thematic Mapper

(band 1, 0.45~-0.52¥) digital numbers for

various cover types.
amplitude of 8 bits.

Both data sets have an
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Water
Recent Clearcut

Slash Pine
(2 years)

Slash Pine
(9 years)

Slash Pine
(25 years)

Slash/Longleaf
Pine (50 years)

Longleaf Pine
(76 years)

Cypress Swamp
Cypress Tupelo

Pasture

82

62

08

18

15
26
.17

SIR-B

Mean

27.15
87.53 14.
54.33 11.
71.11 14.
66.76 18.
88.16 21.
85.00 21.
130.95 28.
137.13 31
29.10 5

.20

74.

72.

73.

75.
74.
75.
82.

30

12

89
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1.44

1.54

1.39

58

162

135

121
99
100
50
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classes and the covariance between classes increases, the
statistical separability decreases and the chances of
misclassification increases. Thus. it can be seen that a
reduction of the variance caused by speckle noise is highly

desirable.

D. 2 ] E J : E 0].!0

The SIR-B data were analyzed using the Purdue
University Computing Center (PUCC) IBM 3083BX mainframe
computer, an IBM 7350 High Level Image Processing System
(HLIPS), and an ERDAS (IBM PC/AT-based) system. Software
utilized for analyzing the SAR data included the LARSYS
System, HLIPS, ERDAS, Statistical Analysis System (SAS),
and customized Fortran 77 programs.

In preparation for subsequent digital processing of
the SIR-B data, the image data was formatted on computer
compatible tapes in both LARSYS MIST (band interleaved) and
band sequential formats. This allowed for processing by
both the HLIPS and LARSYS software. The tapes containing

these image files are listed in Appendix A.

P imi tu

Low-pass spatial filtering was selected as the method
for reducing variance in the SIR-B imagery. A variety of

filter treatments were applied to several of the SIR-B
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image data sets (i.e., 12.5 m and 28.5 m pixel size, 3
incidence angles -- all data sets for the same area). The
entire digital filtering experiment was divided into two
studies in order to fulfill the objectives previously
outlined. These two studies included a Preliminary Study
which is discussed in this section and the Major Study
which is discussed in the following section.

The purpose of the preliminary study was to provide a
basis for selecting filter treatments to be utilized in the
Major Study and also to demonstrate the value of filtering
as applied to SAR data. As was discussed in Chapter 2, the
most common arithmetic operations utilized for smoothing of
SAR data are mean and median procedures. Therefore, the
filter algorithms selected were based on those two
arithmetic operations. For both of these operations, a
separable and non-separable algorithm was chosen. Thus.
both one-dimensional (separable) and two-dimensional (non-
separable) windows were included in the selected
treatments. The four algorithms selected were square mean
(non~separable), separable mean, square median (non-
separable), and separable recursive median. By varying the
window dimensions2, a variety of treatments were available

2. For purposes of discussion, a separable 1 x n window and
a non-separable n x n window are considered to have a
window size of n. This is not inappropriate since the two
passes (rows and columns separately) of a separable 1 x n
filter simulate a n x n non-separable window.
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for implementation and evaluation.

The two variables of interest in the preliminary study
were algorithm and window size. The median algorithms were
expected to preserve edges and boundaries better than the
mean algorithms. It was thought that the separable filters
might preserve edges and boundaries better than the non-
separable filters. The possibility of reaching a root
signal was investigated by repeating the same filter
treatment (and thus creating a new treatment) by using
additional iterations. It was felt that the separable
recursive median filter would reduce the variation and
reach a root signal in fewer iterations than the non-
recursive filters since it utilized filter feedback as
discussed in Chapter 2. By using various combinations of
these two variables, it was hoped that insight would be
gained into the effects of algorithm and window size on
filter output. The overriding goal was to select the most
appropriate combination of these variables that woqld
constitute the best filter treatment for the SIR-B data.

The square mean, separable mean3, and square median
algorithms were available through the High Level Image
Processing System_running on the PUCC IBM 3083BX mainframe.

The separable recursive median algorithm was originally

3. It should be noted that unlike the other three
algorithms, the separable mean filter was limited to a
maximum size input image of 1024 by 1024 pixels. There was
no limit for the other algorithms.
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developed within Purdue’s School of Electrical Engineering
and was subsequently converted for use on the PUCC IBM
system (see Appendix B). Modifications of the separable
recursive median program included handling of skewed data
sets which was foreseen as a need with the rotated 28.5 m
SIR-B data sets.

The next step in the Preliminary Study was to develop
methodologies for implementation of the various filters.
This was particularly important for determining the effects
of multiple iterations4 and the methods of padding. Test
images were utilized to study these characteristics for
each algorithm. The proper values for controlling padding
were determined and it was found that the output image from
the separable mean algorithm being utilized was slightly
smaller than the input image by one to three lines and
columns depending on the window dimension. These missing
image lines and columns were replaced by extraneous values
that had to be removed before subsequent iterations.

After the procedures of digital filtering were
developed, filtering of actual SIR-B data was done. In the
preliminary study, a variety of filter treatments were
applied to the 12.5 m SIR-B data obtained at an incidence

- W - —-—— - - - = -

4. The implementation of multiple iterations was
investigated. However, in the Preliminary Study, only the
first iteration of the algorithms was utilized in the
filter evaluation procedures of the Preliminary Study.
This variable was later investigated in the Major Study.
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angle of 280. Photographic prints were made for each of
the filtered images and the unfiltered image. The
photographs utilized in the visual assessment were printed
at one scale only and were displayed on the HLIPS
electronic display device with a linear histogramming
technique. This produced a high contrast image.
Interpretation of these photographs did not clearly
indicate any one particular treatment as being best. Since
the literature had spoken favorably of the separable
recursive median filter, two different window sizes were
selected for this algorithm. One window size was selected
for the square mean and square median algorithms. The
separable mean algorithm was not selected because it could
not be implemented with data sets larger than 1024 pixels
in either dimension. Therefore four treatments were
selected for a preliminary evaluation of their
effectiveness.

Early work was conducted with the 12.5 m data as it
was the first data set made available by the Jet Propulsion
Laboratory and this was the standard pixel size for the
SIR-B experiment. However, when the 28.5 m data set became
available, it became clear that the bulk of the digital
processing and analysis would be carried out with the
second data set. Therefore, emphasis was switched from the

12.5 m data to the 28.5 m data set.
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To verify the merits of spatial filtering with SIR-B
data, these four treatments were applied to the entire
scene of the 28.5 m SIR-B data (all three incidence
angles). Computer classification’ of these four data sets
(each corresponding to a filter treatment) and the
unfiltered data was conducted using forty-seven training
fields totaling 5214 pixels (Hoffer et al. 1986). Results
from this preliminary study indicated that the use of
diéital filtering could improve classification accuracy as
compared to the unfiltered data, and it became clear that a
more detailed evaluation of various filtering techniques
was needed. The evaluation techniques used had not
provided definitive results and it was evident that
development of a variety of evaluation techniques was
necessary using both qualitative and quantitative methods

of assessment.
Major Study

Introduction

After it was determined that a more detailed filtering
study should be conducted, the Major Study was initiated.
The 28.5 m SIR-B data was utilized in this study. The

three variables of interest in this study were the filter

- - — - - - - —— > — - =

5. Using a per-point Gaussian maximum likelihocod algorithm.
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algorithm, window size or dimension, and the number of
iterations (i.e. times that the filter is consecutively
applied to data set). Based on the results of the
Preliminary Study., a selection of 34 filter treatments was
made (Table 3.7). The four algorithms selected in the
Preliminary Study were once again used, however,
modifications to the window sizes and number of iterations
were made.

The range of window sizes that was investigated was
from three to seven (odd only) with the separable mean and
square mean algorithms. The window size was limited to
seven by the HLIPS software. For the square median
algorithm, the window size was limited to three by HLIPS.
There was no limit on the size of the window for the
separable recursive median algorithm. Therefore, a maximum
window size of nine was selected. It was felt that such a
large window was not necessary, but that the output would
give insight into the effects of larger window sizes.

The number of iterations for each algorithm was
limited to three with the exception of the square median.
For this algorithm a maximum of four iterations was
selected since its window size was restricted to three. It
was thought that an additional iteration might provide
results comparable to increasing the window size.

A 770 line by 610 column portion of the SIR-B scene

was selected for filtering (shown previously in Figure
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Table 3.7 Filter treatments applied to the SIR-B data in
the Major Study.

Window Algaritha
Dinension
Square Separable Square Separable
Hean Haan Hedian Recursive Nedian
I Jsqnt Jgmit Jsenot JSRNDL
JsamN2 JSMN2 J5aMn2 JSRMO2
350m3 JSMNS 3sano3 JSRNO3
JsanDe
L] SSaMNL SNt SSRMD1L
3502 5aMN2 588102
3503 a3 SSRMB3
7 750 81 TSRMDA
750me2 75me2 TSRMB2
7503 75M43 TSRMO3
9 95RMD1
95RM02
SRS
KEY

MMM * filter trestaent code
Wheret
8 = window disension

AMAA = filter algorithe
SOMN - Square sean
SN - Separable sean
SQM0 - Square sedian
SRND - Separable recursive sedian

n = iterations
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3.3). For purposes of discussion, this data set will
hereafter be referred to as the SIR-B image. The selected
34 filter treatments (Table 3.7) were applied to each of
the three incidence angle data sets of the SIR-B image.

In the Preliminary Study, it was found that visual
assessment of the filtered images was not always
definitive. With the large number of different treatments
involved, it was difficult to sort through and distinguish
the differences between the many treatment photos., since
visual appearances were often quite similar. For this
reason and others discussed in Chapter 2, a combination of
both quantitative and qualitative tests was desired. After
careful consideration, four evaluation studies were
selected. These included: (1) Cover Type Differentiation
Study, (2) Edge/Boundary Retention Study, (3) Cover Type
Classification Study, and (4) Visual Assessment Study. The
first three studies were quantitative in nature, while the
last one was a qualitative study. Each of these will be
discussed in detail in subsequent sections.

Before conducting the evaluation tests, the selection
of blocks of data, called fields, was necessary. These
fields were to be utilized in the Cover Type Differentia-
tion Study and the Cover Type Classification Study. Each
data block was selected from within the boundaries of a
particular cover type unit such as a forest stand, pasture,

or water body. Identity of the cover units and boundaries
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were determined by relating reference data (e.g. stand maps
and aerial photographs) to the SIR-B imagery. The
registered TM data was a particularly useful reference for
locating and selecting fields. A total of seventy-eight
fields of known cover type were selected and their pixel
coordinates were recorded. The LARSYS software required
each field to be rectangular in shape.

The four evaluation studies that were utilized for
assessing the 34 filter treatments will be discussed in
detail. The 28° incidence angle SIR-B data was utilized in
the Cover Type Differentiation Study and the Edge/Boundary
Retention Study. For the Visual Assessment Study and Cover
Type Classification Study, all three incidence angles (289,

450, and 589) were utilized in the analysis procedures.

Cover Type Differentiation Study

The purpose of the Cover Type Differentiation Study
was to quantitatively measure the differences between
various fields representing a variety of different cover
types. Pattern recognition techniques utilize the
statistical properties of known patterns to develop rules
whereby other unidentified patterns can be classified into
a limited number of discrete classes (Swain and Davis
1978). In the application of this theory with remote

sensing data of the earth’s surface, patterns are
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associated with each cover type. The nature of the pattern
is dependent on the characteristics of the cover type and
the electromagnetic energy being measured. It is the
statistical differences between these patterns that allows
for the various cover types present in a data set to be
differentiated in the feature space of the image data. As
the separation or statistical distance between the cover
type patterns becomes greater, the cover type classes
become more distinct. Unidentified data pixels can more
accurately be assigned to classes (patterns) that are
distinct rather than to those that have overlapping
statistical distributions. The variance associated with a
given cover type class pattern has a great effect on the
differentiability of two classes as illustrated in Figure
3.5 for a one dimensional (channel) situation.

As the variance is reduced, the classes become more
distinct and classification accuracy should increase. As
mentioned previously., speckle noise increases the variance
of SAR data. The purpose of utilizing spatial filters is
to reduce the variance. To quantify the differences
between the fields, transformed divergence (see Swain 1978)
was used as the measure of statistical distance between the
classes of interest. The greater the difference
(statistically speaking) between two fields, the larger the

transformed divergence value for that pair of fields.
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Illustration of the effect of increased
variance on the differentiability of two cover
type classes. In (a), cover types A and B are
differentiable in the one-dimensional feature
space. In (b), the increased variance
associated with classes A’ and B’ causes
overlap of their statistical distributions,
even though the means are identical to those
found in (a). The shaded area represents the
probability of error associated with the
classification of these two cover types.
(After Swain 1978.)
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The desirable outcome of filtering is that as the
variance is reduced, the statistical distance, or
separability., between two dissimilar classes becomes even
greater as illustrated in Figure 3.5. Fields having
similar cover type properties were not desired since the
statistical distance between them would be low in the
unfiltered data and would remain so after filtering. Since
it was the change in transformed divergence that was of
interest, only dissimilar fields were selected. Sixteen
fields (of the available 78) were selected as being
representative of the variety of different cover types
located in the SIR-B image. The minimum size of the cover
type units in which the fields were selected was 9 x 9
pixels. This reduced the likelihood of the cover type unit
being obliterated (smoothed beyond recognition as a
separaté entity from its surrounding cover type units) by
even the largest window size of nine.

For each of the 34 treatments and the unfiltered 28°¢
incidence angle data, the class mean vectors and covariance
matrices were calculated for the 16 selected fields of
different cover type.8 Next, the transformed divergence

between all possible pairs of fields was calculated for

- —————— — ——— e - G - —— =

6. When the variance for a given field was 0.0 due to the
filtering, this caused the covariance matrix elements
associated with that field to be zero. To enable further
use of such matrices and avoid division by zero, the 0.0
values in the matrices were replaced by the value
0.0000001.
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each treatment. An average transformed divergence value
was generated for each treatment based on the transformed
divergence values between each pair of fields.

The treatments were ranked according to average
transformed divergence and a Studentized Newman-Keuls
multiple range test was run on the average transformed
divergence values (x = 0.05). The Studentized Newman-Keuls
multiple range test identifies groupings of means according
to the statistical differences between the means (Steel and
Torrie 1980). The test was used for testing for
statistically significant differences between the average

transformed divergence values.

Edge/Boundary Retention Study

The purpose of this study was to provide a measure of
the edge/boundary retention properties for each of the
filter treatments. Low-pass filters are also known as
smoothing filters. Smoothing in the sense of reducing the
variance in the data was desired, but the blurring of edges
and boundaries was not wanted. Therefore, a test was
devised to measure the edge/boundary preservation
properties of the different filter treatments. As was
noted previously, this test was conducted with the 28.5 m,
280 incidence angle SIR-B data set. It involved the

selection of transects across boundaries between cover type
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units as was done by Cushnie and Atkinson (1985) with
Thematic Mapper data. The boundaries were selected such
that they would divide cover type units that had distinctly
different appearance in the imagery.

Transects were oriented perpendicularly to the
boundary. Two vertical (along columns), two horizontal
(along lines/rows), and one diagonal (approximately 450)
transect were selected from a number of potential
locations. A variety of orientations was selected to
reduce the directional biases, if any. of the filters. .
Figure 3.6 illustrates the layout of a horizontal transect.
The transects were three pixels in width, and at least 10
pixels in length. The length was adjusted so that each end
of the transect included at least nine pixels (i.e. three
rows or columns depending on orientation) of roughly
equivalent digital number value, that were located in the
cover type unit on that side of the boundary. Vertical and
diagonal transects were similar except for their
orientation. The width of the diagonal transect was along
the columns, as with the horizontal transect, however, each
group of three row pixels was offset from the previous row
by one pixel (having a stair-step effect). The vertical
transects had length along the columns and width along the
rows.

The pixel values of these transects were utilized in

two ways. They were utilized to calculate contrast ratios
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Example of horizontal transect across =n=e
boundary between cover type A and cover type B.
Column means are first calculated for the
transect digital numbers. These means are then
utilized to generate transect plots and also a
ratio representing the contrast between the two
constant neighborhoods.
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and to plot curves depicting the boundary. For each of the
filtered and unfiltered 28° data sets, a contrast ratio for
the cover types on opposite sides of the boundary was

calculated as follows:

3 —
2 x
i=1 ,
R = —=oe- (3.1)
ﬂ —
2 x
i =D~1
Where:
R = Contrast ratio (reciprocal of quotient taken
if necessary so that 0 < R < 1),
et = Mean of three pixels located in column or row
along the width of the transect.
i = Row or column number,
n = Number of rows or columns in the transect

(lengthwise).
Additionally, a plot was made of the average digital number
values along the length of the transect as illustrated in
Figure 3.6. For each of the five transects, 35 such plots
were made (corresponding to the filtered and unfiltered
data sets).

The plots and ratios were used to “grade"” the
boundary/edge retention properties of each of the filter
treatments. It was felt that the plots contained the
majority of the useful information. Therefore, more
emphasis was placed on analysis of the plots rather than

the ratio values. For each plot, the shape of the curve
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was graded and a score given to it according to the
generalized grading procedure given in Figure 3.7. The
first step was to determine the shape of the curve. When
the boundary/edge was retained, a distinct level or plateau
was found at both ends of the transect plot. For purposes
of evaluation, a plateau was defined as at least three
points with nearly equal value (¥ 2 digital numbers) found
on either side of an edge. A plateau represents a
theoretical "constant neighborhood” as discussed in Chapter
2. If two distinct plateaus were discernible, the shape
was determined to be a "step.” It had a "ramp” shape if
only one plateau was discernible. That is, the transect
was changed into an incline and the transition zone
extended into one or both of the constant neighborhood
regions. If no plateau was present nor was there a
constant incline, then the shape was called "uncertain.”
The latter two shapes were given a score of zero.

For those plots judged as having a ramp shape, the
number of transition points between the two plateaus was
counted. If there was an enhancement in the boundary (e.g.
caused by corner reflector effects) and this enhancement
was retained. the number of transition points was decreased
by one for that treatment. To be considered an
enhancement, there had to be an increase of at least 10
digital numbers as compared to the adjacent constant

neighborhood (cover type unit). For each filter treatment,
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RAMP OR UNCERTAIN ASSIGN

SHAPE NO PCINTS

STEP

DETERMINE
PLATEAUS

I

COUNT
TRANSITION
POINTS = M

LEAST NUMBER
OF TRANSITION
POINTS FOR
TRANSECT = N
ASSIGN
’ 4 POINTS
ASSIGN
’ 3 POINTS
ASSIGN
’ 2 POINTS
ASSIGN
N 1 POINT

Figure 3.7 Generalized flowchart for the evaluation of
transect plots and assignment of a score.
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the scores from the five transects were added to yield a
aggregate score. The filter treatments were then ranked by
their aggregate scores. A high score was the most
desirable as this indicated that on the average. the
associated filter treatment had the shortest transition
zone between the two cover type plateaus.

The ratios were calculated using Equation 3.1 for
those curves that had a ramp shape. The ratios for the
five transects were then combined, yielding a composite
ratio for each filter treatment. For those treatments
assigned the same aggregate score, the composite ratio was
used to rank the treatments for a given score. A low ratio
was desirable as this indicated a high contrast was

retained between the two cover types.

Cover Type Classification Study

The 78 fields selected previously were divided into
training and test fields for computer classification
purposes. Twenty-seven fields considered to be
representative of the cover types present and providing
representation of classes proportional to their presence in
the scene were utilized for training purposes. These
training fields and their cover type descriptions are
listed in Table 3.8. The means and covariance matrices

were calculated for each field using all filtered data sets
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Table 3.8 Training fields used for the Cover Type
Classification Study, their cover type, field size,
and cover class group.

Caver Type Nusber of Cover Class
Pizels Broup
Forest clearcut 20 PINES
Forest clearcut 81 PINEL
Slash pine plantaticn, age 2 years 83 PINE!
Slash pine plantation, age 3 years 2 PINEL
Slash pine plantation, age 3 years 28 PINE!
Slash pine plantation, age 5 years 108 PINEL
Slash pine plantation, age 9 years ) PINE2
Siash pine plantation, age 17 years 40 PINE2
Slash pine plantation, age 22 years 98 PINE2
Stash pine plantation, age 24 years 108 PINE2
Slash pine plantation, age 26 years 108 PINE2
Siash pine plantation, age 30 years 81 PINE2
Slash pine (natural origin), age 39 years 32 PINE2
Slash pine {natural origin), age 43 years a4 PINE2
Longlea¢ pine (natural origin}, age 62 years &b PINE2
Longlea¢ pine (natural origin), age 77 years 110 PINE2
Slash pine - cypress swasp 99 SWANP1
Tupela - cypress swamp 24 SWANPL
Blackqus - sweet bay - saple swamp, age 62 years 81 SNANPL
Slash pine - hardwood swasp 90 SHANP2
Slash pine - cypress swasp 1] SWANP2
Cypress swasp 90 SWARP2
Bare soil 70 SNOOTH
Bare soil a1 SNOQTH
Pasture a1 SNOOTH
Nater 100 SNOQTH

TaTAL 1982
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as well as the unfiltered data for each of the three
incidence angles.?” The training field statistics were not
combined by cover type. Rather, each field was treated as
a separate class during the classification process, but
were later grouped by cover class for evaluation purposes.
The remaining 51 fields were utilized as test fields
(totaling 2881 pixels). These fields were classified
utilizing the LARSYS processor CLASSIFYPOINTS. a per-point
Gaussian Maximum likelihood classifier (Phillips 1873).
Thus, 35 classifications were conducted. each consisting of
the same filter treatment applied to all three incidence
angles. The overall correct classification accuracy was

calculated as suggested by Heller and Ulliman (1983):

™
Z Ny
PCC, = 120 (3.2)
= Ti
[E
Where:
PCCo = Overall percentage correct classification

performance (all cover types),
N+ = Total number of test pixels correctly

classified for ith cover class,

7. As in the Cover Type Differentiation Study. the
covariance matrix elements with value 0.0 were changed to
0.0000001 to enable use of these statistics data sets.
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Ti = Total number of test pixels for ith cover
class,
n = number of cover classes

For evaluation purposes, the 27 training fields were
grouped into five cover classes as indicated in Table 3.8.
The five groups were selected after viewing bispectral
plots of the training field statistics and five groupings
were found.8 The 51 test fields were also divided into
these cover class groups. The overall classification
performances (PCCo’s) were compared to determine
differences produced when using filtered versus unfiltered
SIR-B data. The statistical significance of these
differences based on PCCo’s were then tested using the
Studentized Newman-Keuls multiple range test with an x =
0.05. Prior to this calculation, the PCCo’s were
transformed with an arc sine transformation to convert the
binomially distributed proportions (PCCo) into a normal
distribution (Steel and Torrie 1980).9 The statistical

analysis was conducted on a stratified basis to evaluate

- . —— - —— -

8. These bispectral plots consisted of plotting digital
number mean from one incidence angle against the mean of
another incidence angle for each training field.

9. See pages 184 - 187 of Latty (1981) for an example of
transforming the PCCo’s with the arc sine transformation
and a demonstration of calculating significant differences
using the Studentized Newman-Keuls multiple range test
procedure.
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the effects of algorithm, window size, and the number of
iterations.

In addition to the classification of the test fields,
classifications were conducted for a 256 x 256 pixel block
centered around the highway intersection of Interstate 10
and US 90. A select number of treatments (as discussed in
the next section) were classified. The classifications of
this subimagel® were analyzed in the Visual Assessment
Study to assess the effects of filtering on classification
for a larger area (rather than only test fields). Also.
the visual assessment of the classified image would serve

as a check to the tabular PCCo results based solely on test

fields.

Visual Assessment Study

As mentioned in Chapter 2. it was thought that a
combination of both quantitative and qualitative evaluation
techniques would be required to effectively select the best
filter treatment(s) for the 28.5 m SIR-B data set. The
three evaluation studies previously discussed were meant to
provide quantitative and semi-quantitative measures of

filter performance. This section will discuss the visual

10. Hereafter, this 256 x 256 pixel block will be referred
to simply as the subimage.
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assessment study which constitutes the gqualitative
evaluation.

This study was based on the visual analysis of
rhotographic prints of the various filter treatments. The
subimage selected above was utilized for detailed analysis
in the Visual Assessment Study. As was stated previously,
definitive results were not obtained in the preliminary
study when visually assessing the filter treatments.
Therefore, for this study. more effective display
techniques were investigated and utilized. The
improvements included using different display scales and
different digital display histogramming techniques. Both
black and white and color film types were utilized for
taking photos of the 256 by 256 pixel block at full scale
and at 1.6 times enlargement. The photos taken are listed
in Table 3.9. The visual analysis procedure can be broken
down into several steps. The outline of the procedure
followed is given in Figure 3.8.

The first step included detailed analysis of the 289
incidence angle subimage. Black and white photos were
taken of all treatments of the 289 subimage. Two different
histogram techniques were utilized when displaying the data
on the electronic display device of the HLIPS system. The
first method used a linear stretch technique, while the

second applied a standard deviation adjustment.il1 The

—— G —— . ——  —— = ——— -

11. The linear stretch technique was the *H display option
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Table 3.9 Image photographs utilized in the Visual
Assessment Study.

Data Set Filter Enlargeesnt Fila Type Print Type
Traataents Factor

Indi vidual I-fngle I-frgle 10 L Black ¢ C(olor Contact Enlargesant
Incidence Angle  Composite Classification? ALl Subset Wite
32 86 3

1. These classification photos were not used in the qualitative filter seisction process. Rather, they were used to
verify the rasults cbtained in the Cover Type Classification Study.



Figure 5.9
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Analyze black and white photos
of all 28 degree filter treatments

Select subgroup of filter treatments

I

Analyze 45 deg
and S8 deg black
and white photos
of subgroup
treatments

Analyze color
composite
(28,45, S8 deg)
of subgroup
treatments

-

Select best filter treatment(s)

Flowchart of the Visual Assessment Stuay

procedure.
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former provided a high contrast image which was good for
highlighting some of the data characteristics. The latter
histogram technique provided a continuum of gray tones
which made subtle details more apparent. The combined use
of these two different histogram techniques was found to be
superior to that used in the Preliminary Study where only
the linear stretch technique had been utilized.

For comparison purposes, contact prints were made for
the initial evaluation. Enlargements of some of the key
treatments were made for more detailed analysis. A
qualitative assessment of the filter effects was made. The
effects of the algorithm, window size, and number of
jterations were studied. A subgroup of filter treatments
was selected for more detailed analysis.

In the next step, a variety of photographs were taken
for the subgroup of filter treatments, as was indicated in
Table 3.9. Single band images were photographed for the
450 and 580 incidence angle SIR-B data. Additionally,

color composite images using the three incidence angles

of HLIPS. With this display method, a histogram of all
pixels in the image was computed. Then a translation table
was built in such a way that the image data was level
sliced into equally populated levels. The standard
deviation adjustment technique was the *S display option of
HLIPS. In this method. a translation table was calculated
so that the displayed data had a given mean and standard
deviation. The default values were utilized for the xS
option which were identical for all three color guns as
follows: mean = 128.00: standard deviation = 45.00. In
the monoband (gray) mode the defaults were: mean = 128.00:;
standard deviation = 40.00 (IBM 1883).
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were photographed for the subgroup of filter treatments
that were selected in the first step. The various
photographic products developed in this step were analyzed
and a decision was made as to which treatments were
performing the best. A gqualitative selection of the best
filters was made based on visual assessment of the photos
for the unclassified images.

For the purposes of providing a visual check of the
tabular classification results, a visual assessment of
subimage classifications was also conducted. For each of
the subgroup (selected above) filter treatments, the
subimage was classified using the training statistics
developed in the Cover Type Classification Study. Color
photos were taken of these classified images displayed as
five cover type groups. These photos were used to
interpret and verify the results obtained in the Cover Type

Classification Study.

Filter Selection

The results from the quantitative and qualitative
evaluation methods were compared. The initial plan was to
give equal weighting to each of the three gquantitative
evaluation studies and the visual assessment. However, it
became apparent that the Visual Assessment Study and the

statistical analysis of the classification performances
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provided the most useful information. Results collected by
the remaining two studies were therefore considered to be
of secondary importance and were used primarily to offer
additional insight into the effects of the various filter
treatments. Besides the selection of the best filter
treatment, information on trends related to algorithm,
window size, and iterations were obtained through analysis

of the data obtained from the variocus evaluation studies.
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CHAPTER 4
RESULTS AND DISCUSSION

Introduction
The results presented will be divided into two
sections. First, the results from the Preliminary Study
will be briefly discussed. This will be followed by a
detailed presentation and discussion of the results from

the Major Study.

Prelimi Stud

The purpose of the Preliminary Study was to provide a
basis for selecting filter treatments to be utilized in the
Major Study and also to demonstrate the value of filtering
as applied to SAR data. A variety of filter treatments
were applied to the 28° incidence angle, 12.5 m SIR-B data.
Visual assessment was conducted for photographic prints of
uniform scale and displayed using a linear histogram
stretch. This histogram technique was later found to be
inferior to other techniques. In this assessment, only one
iteration of filtering was considered. The four treatments

selected using visual interpretation techniques were:
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3SQMN1, 3SQMD1, 3SRMD1, and 5SRMD1 (see Table 3.7 for
explanation of treatment codes). Visual assessment of
these four treatments showed that there were no definitive
differences or clear-cut advantages for one treatment over
another. This was largely due to the methods utilized in
producing the photographic prints.

In order to quantitatively analyze the effects of
these filters on the 28.5 m SIR-B data., the four selected
treatments were applied to the three incidence angle images
(280, 450, and 589). For evaluation purposes, 122 test
fields of known cover type were utilized (totaling 8648
pixels). Table 4.1 shows the classification results based
on three cover type groups. It can be seen that in all
cases, the classification accuracy improved with filtering.

After evaluating both the gualitative and gquantitative
Preliminary Study results, it became clear that a more
detailed analysis of various filter treatments was needed.
The assessment techniques utilized in the Preliminary Study
did not provide clear-cut differences between treatments.
Therefore, additional evaluation techniques were seen as
necessary and these were developed and implemented in the
Major Study. It was decided that a combination of both
quantitative and qualitative assessment techniques should
continue to be utilized. Improvements in the visual
assessment techniques (i.e., more effective photographic

products) were also seen as necessary.
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Table 4.1 Classification results for the Preliminary
Study given by cover type group and overall
percent correctly classified (PCCo) based on
three cover type groups.

Treatment Cover Type Overall
Performance

Pine Swamp Other

Unfiltered 87.86 79.9 71.6 79.7
3SQMN1 94.0 90.4 65.2 85.2
3SQMD1 92.5 89.9 65.4 84.8
3SRMD1 92.4 89.2 65.0 84.1

5SRMD1 956.5 92.4 63.8 86.2




Introduction

It was seen in the Preliminary Study that filtering
was beneficial to the classification process. The reason
for this was the reduction of the variance in the data.
To provide a better understanding of the effects of
filtering on the SIR-B data., Figure 4.1 illustrates the

effects of spatial filtering for three different cover

types. Transects across three cover type units are plotted

for the unfiltered 28° data and the 3 x 3 square mean and
3 x 3 square median treatments, each at two iterations
(i.e. 3SQMN2 and 3SIMD2, respectively). It can be seen
that the variance in the data has been greatly reduced.
This variance reduction is quantitatively documented in
Table 4.2 for several filter treatments. The standard
deviation associated with all cover types was reduced by
all the filter treatments. It should be noted that the
filter output represents two-dimensional filtering (i.e..
the filter output was influenced by pixels not shown).
this is the reason for the large changes from one filter
treatment to another in the plots for the swamp transect.
The results from the four evaluation studies (i.e.,
Cover Type Differentiation Study, Edge/Boundary Retention

Study, Cover Type Classification Study., and Visual
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Figure 4.1

UNFILT 3SQMN2 5SQMN2 7SQMN2

a WATER + PINE o SWAMP

Digital number plot showing transects across
three cover types for unfiltered and filtered
280 incidence angle SIR-B data. The three
treatments shown are 3SQMN2, 5SQMN2, and
7SQMN2. Each transect represents 15
consecutive (along a row or column) digital
number values in the respective cover type.
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Table 4.2 The effect of spatial filtering on the digital
number mean and standard deviation associated
with various cover types for 28¢ incidence
angle SIR-B data.

Unéiltered 350MM2 530MN2 750MN2
Caver Type Sampie
Nean so Mean )] Naan ) Nean 8D Pizels

Water 22.87 391 2.8 1.43 22.80 {.14 22.12 0.99 100

Recent Clearcut 38.10 14,44 %8.7¢ 8.13 0.3 .M 38.08 3.8 8t

Slash Pine

(3 years) 83.9 12,33 63.89 .49 b4.47 3.590 62.48 .39 72

Slash Pine

{9 years) T2.41 14,93 73.00 L9 T3.42 2.25 70.4 .08 8
Slash Pine

{22 years) 75.88 15.44 75.46 b.49 17.57 4,82 75.08 3.7 98
Langleat Pine

(62 years) 100,74 17.48 101.79 3. 40 101,94 2.68 96.52 .97 86

Cypress Swasp 131,31  27.12 128,14 9.862 124,97 5.52 114,18 42 90

Sail 3.9 7.9 32.14 3.20 R.16 .37 33.09 2.34 70

Pasture 37.83 1.37 37.54 3.06 37.98 1.70 3.7 148 8t
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Assessment Study) are discussed below. The Cover Type
Differentiation Study and Edge/Boundary Retention Study
were conducted before a detailed visual assessment was
conducted for the various treatments. This was done in the
hopes of reducing the number of treatments utilized in the
Visual Assessment Study. The Preliminary Study had
resulted in a large number of photographic prints
corresponding to the different treatments where subtle
differences between the treatments could not be easily
detected qualitatively. It was hoped that the two initial
tests would eliminate some of the treatments from further
consideration. After the Visual Assessment Study. the
Cover Type Classification Study was conducted to verify the

results found in the Visual Assessment Study.

Cover Type Differentiation Study

This study was conducted to quantify the improvement
in the filtered SIR-B data from a classification
standpoint. Transformed divergence was used as a predictor
of classification accuracy. The larger the transformed
divergence value. the lower the chance of misclassification
between these two classes and the higher the expected
classification accuracy. The average transformed
divergence values for each of the 34 treatments as applied

to the unfiltered 28° data are listed (ranked by average
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transformed divergence) in Table 4.3. When these data were
ranked, a continuum of average transformed divergence
values was obtained. A comparison was made using a
Studentized Newman-Keuls multiple range test. All the
filter treatments showed a significant improvement over the
unfiltered data. However, the groupings of the filter
treatments overlapped so much that no statistically
significant differences were observed between the average
transformed divergence values for any of the treatments.
Therefore., the relative ranking of the transformed
divergence values was not felt to be useful for comparing
the treatments and this study was no longer pursued. It
was originally felt that the results of this study could be
used to reduce the number of filter treatments evaluated in
the subsequent tests. However, since no definitive
differences were found., all treatments were used in
subsequent evaluation tests.

Although a definitive ranking of the treatments was
not obtained, it can be seen from Table 4.3 that. in
general, the higher the degree of filtering (i.e. larger
window size and/or more iterations), the greater the
predicted classification accuracy. This indication of the
relationship between window size and number of iterations

with classification performance is reasonable.
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Table 4.3 Average transformed divergence values for the
unfiltered and filtered 28° incidence angle
SIR-B data. The maximum transformed divergence
value is 2000.

Treatment TD
9SRMD3 1921.
9SRMD2 1921.
9SRMD1 1889.
7SQMN3 1854.
TSMN3 1847.
7TSQMN2 1834.
7SRMD3 1833.
TSRMD2 1833.
5SMN3 1831.
5SQMN3 1817.
7SRMD1 1816.
7SMN2 1814.
TSQMN1 1789.
5SQMN2 1788.
5SMN2 17786.
TSMN1 1775.
58RMD3 1757.
58RMD2 1757.
5SQMN1 1700.
3SMN3 1698.
3SQMN3 1698.
5SRMD1 1697.
5SMN1 1695.
3SQMD4 1692.
3SQMD3 1661.
3SQMN2 1646.
3SMN2 1645.
3sQMD2 1615.
3SMN1 1557.
3SQMN1 1557.
35QMD1 1516.
3SRMD3 1511.
3SRMD2 1510.
3SRMD1 1494,

UNFILTERED 1275.
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Edge/Boundary Retention Study

The purpose of this study was to provide a measure of
the edge/boundary retention properties of each of the
filter treatments. The foundation of this study was the
analysis of pixel values along each of the five transects
that bisected cover type boundaries. It was hoped that
this study would give insight into the effects of the
various filter treatments on spatial features -- whether
they were retained or they were lost due to blurring. For
each transect, plots were generated for each of the 34
filter treatments and the unfiltered 28¢ SIR-B data.
Figure 4.2 is an example plot. Each plot was assigned a
score (indicative of the sharpness of ti:e boundary) and a
contrast ratio (indicative of the contrast between the two
cover types) was calculated as described in Chapter 3. The
scores and contrast ratios were totaled for the five
transects and the resultant aggregate scores and composite
ratios for the 35 data sets are listed in Table 4.4. The
data were ordered. first by aggregate score and then within
each aggregate score group, by composite ratio. A high
composite score was desirable as this indicated
preservation of boundaries. Because the contrast ratios
only gave an indication of the average contrast since no
measure of variation was included in the calculation, they

were only of secondary value. Nevertheless, a low score
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Plot for Transect VERT3
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170

Digitol Number
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‘igure 4.2 Example of an edge/boundary plot for the SIR-B
280 incidence angle data, in this case., using
the 7SRMD2 treatment.
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Table 4.4 Aggregate scores and composite ratios for the
transect curves based on five transect

locations.

TREATMENT SCORE RATIO
TSRMD1 23 2.0286
9SRMD1 23 2.332
9SRMD2 23 2.354
9SRMD3 23 2.354
TSRMD2 22 2.047
7SRMD3 22 2.047
5SRMD3 20 1.813
5SRMD2 20 1.813
5SRMD1 19 1.808
3SRMD3 18 1.729
3SRMD2 18 1.729
3SRMD1 18 1.729
3SMN1 12 1.729
3SQMN1 12 1.743
3saQMD1 12 1.743
3sQMD2 9 1.759
3sQMD3 9 1.7865
3sQMD4 8 1.766
5SMN1 5 1.760
ISQMN2 5 1.766
3SMN2 4 1.743
5SQMN1 4 1.772
ISQMN3 2 1.792
ISMN3 1 1.753
S5SMN2 0
5SMN3 0
5SQMN2 0
5SQMN3 0
TSQMN1 0
TSQMN2 0
7SQMN3 0
TSMN1 0
TSMN2 0
TSMN3 0
ONFILT 0
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was indicative of a high contrast between the two cover
types.

The results showed that the separable recursive median
algorithm preserved edge/boundaries much better than either
of the two mean algorithms at all window sizes and number
of iterations. However, even though the separable
recursive median algorithm preserved the edge/boundary, the
contrast between the two cover types was lowered. The
square median algorithm did not preserve edge/boundaries as
well as the separable recursive median algorithm, however,
it generally preserved the edge/boundaries better than
either of the two mean algorithms. Most mean treatments
received an aggregate score of zero. This indicated that
the boundaries were turned into ramps and a distinctive
edge was lost (blurred). This was especially true when the
window dimensions were increased to greater than three.
This is in accordance with what was theoretically expected
as discussed in Chapter 2. The only mean filter treatments
that received any score greater than zero were those with
window dimensions of 1 x 3 (separable) or 3 x 3 (non-
separable) at all iterations. For the mean algorithms, the
next larger window dimension of five only received a

positive score at the first iteration.



132
Visual Assessment Study

Based on experience with visually assessing the
filtered images of the Preliminary Study, it was felt that
the quantitative tests of the Major Study would provide the
most conclusive results. As discussed in Chapter 3, the
display and recording techniques used in this Visual
Assessment Study proved to be far superior to those
employed previously. The improvements included the digital
display of data with two different histogramming
techniques, and the production of photographic prints at
two scales. Figure 4.3 illustrates the two histogram
techniques utilized when displaying the data. The two
different scales of the photographic images can be se2n in
Figure 4.4. The combined use of these histogramming
techniques and the display of the data at two different
scales provided much more effective methods for assessing
the filter treatments than had been the case during the
Prelimihary Study. '

When the various photographs were analyzed. it was
found that the differences between filter treatments were
much more apparent than was found with the quantitative
tests. Therefore, contrary to what was expected at the
onset of the Major Study, the Visual Assessment Study
results were found to be extremely useful. Following is a

discussion of the algorithms and their effects on the data.



Figure 4.3

Imagery of the unfiltered 280 incidence angle
SIR-B data utilizing two different histogram
adjustment techniques. The top image was
displayed with a standard deviation adjustment
technique (*S), while the bottom image was
displayed with a linear stretch technique (*H).
The accompanying map identifies some of the
major features found in these images.
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Figure 4.3 (Continued)



Figure 4.4

Example imagery (unfiltered 28° incidence angle
SIR-B data) illustrating the two image scales
utilized when visually assessing the filter
treatments. The top image (approximately
1:80000) depicts the 256 x 256 pixel subimage,
while the bottom image (approximately 1:50000)

is an enlargement of the highway intersection
area.
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Separable Recursive Median. It was found that the output
of the first iteration of this filter had a bias along the

rows -- features tended to be elongated along the rows. In
some cases it appeared as streaking. The separable
recursive median algorithm filtered the columns and rows
separately, with the rows being filtered last. Evidently.
this was causing the elongation. The larger the window the
more apparent this effect became. The second iteration
greatly reduced this effect. Figure 4.5 shows the first
and second iterations of the separable recursive median
filter with a window size of 1 x 7 (7SRMD1 and 7SRMD2) on
the 280 data set. The elongation and its reduction can be
seen clearly in the two images presented.

Although there was an apparent difference between the
first and second iterations of the separable recursive
median algorithm, there was little difference between the
second and third iterations. The differences were so
slight that they could not be detected visually for any of
the filter treatments. When the two images were digitally
subtracted from each other, the differences found were
sparsely distributed throughout the image and were of low
intensity. This indicated that the second iteration very
nearly approached a root signal as defined in Chapter 2.
Therefore, a third iteration was not seen as necessary.

It was found that a 1 x 5§ was the largest window that

should be utilized with 28.5 m data. With all window
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Figure 4.5

The effect of a second iteration with the
separable recursive median algorithm.

Streaking along the rows is evident in the
first iteration image (top), while this problem
has been greatly reduced by the second
iteration (bottom). These images represent the
7SRMD1 and 7SRMD2 treatments.
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sizes, the separable recursive median algorithm gave the
filtered image a rather blocky appearance. Figures 4.5 and
4.6 demonstrate this point. At window sizes of 1 x 3 and

1 x 5, the blockiness has not obliterated features (Figure
4.6), whereas at the window size of 1 x 7 (seen previously
in Figure 4.5), the only distinguishable features are the
swamp areas that appear white and have a very strong return
in contrast to the surrounding area. Even at this large
window size (1 x 7), however, it appears that the
boundaries are maintained around these high contrast
features.

Based on these findings, the conclusion is that two
iterations should be utilized with the separable recursive
median algorithm. A window size of 1 x 3 or 1 x 5 is
recommended. From a visual interpretation standpoint, the
1 x 3 window appears to be the best since many linear
features such as the highways and railroad were retained.
It should be noted. though, that averaging done by the eye
decreases the need for a high degree of filtering when
visually interpreting the imagery. The variation within
the data creates a texture which is also interpreted. Per-
point classifiers only consider one pixel at a time and do
not consider the area surrounding that particular pixel
(i.e. its context). Therefore, digital processing of the

data may require a higher degree of filtering. The Cover
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Figure 4.6 SIR-B 289 incidence angle data filtered with
the 3SRMD2 treatment (top), and the 5SRMD2
treatment (bottom).
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Type Classification Study results will provide answers to

this issue.

Sguare Median. Only one window size was available with
the square median algorithm, that being 3 x 3. Therefore,
the variable of interest was the number of iterations. The
first three iterations of the 3SQMD algorithm for the 280
subimage are shown in Figure 4.7. The second and third
iterations have the best appearance. The first iteration
does not provide enough smoothing, while by the fourth
iteration; some surface features are being lost.

In general, the square median filter provides an image
that is slightly blurred as compared to that produced with
the separable recursive median filter. However, the
blurring is not excessive and actually gives the image a
more natural appearance. That is, the transition between
gray tones is more gradual and it has a less blocky
appearance.

The 35QMD filter has been utilized commonly for
filtering SAR data. However, the use of multiple
iterations had not been commonly reported in the

literature. The benefits of additional iterations are

clearly shown in Figure 4.7.

Separable Mean. There were two variables to consider with
the separable mean (SMN) algorithm -- number of iterations

and window size. The first iteration tended to give the
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(a)

(b)

Figure 4.7 SIR-B 289 incidence angle data filtered with
the square median algorithm utilizing a window
size of 3 x 3 at (a) one iteration, (b) two
iterations, and (c) three iterations.
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(c)

Figure 4.7 (Continued)
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image a "gridded" appearance as seen in Figure 4.8 (a). By
the second iteration, this effect was greatly reduced as
can be seen in Figure 4.8 (b). The separable mean images
had an "out-of-focus" appearance due to the blurring caused
by the filter. As the number of iterations increased, this
effect became more pronounced. Therefore, it was concluded
that the optimum number of iterations for the separable
mean is two.

The separable mean filter tended to enlarge high
contrast features such as swamps. Also, linear features
such as highways and railroads tended to be lost at the
larger window sizes, especially at window size 1 x 7.
Therefore, the best window size with the separable mean
filter was visually selected as 1 x 3. Thus, the best
treatment for this algorithm was 3SMN2, an example of which

is shown in Figure 4.9.

Square Mean. As with the other mean algorithm (separable
mean), ﬁhe square mean produced images that appeared out-
of-focus. Thus, the blurring effect seems to be a
property of mean filters in general. Additionally, the
first iteration produced a gridded effect as was also the
case with the separable mean algorithm. The second
iteration reduced this effect, as can be seen in Figure
4.10. The third iteration causes the most blurring.

Therefore, it was concluded that two iterations was best.
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Figure 4.8

The effect of a second iteration with the
separable mean algorithm. Gridding seen in the
first iteration (top), is greatly reduced by
the second iteration (bottom). These images
represent the 7SMN1 and 7SMN2 treatments
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Figure 4.9 SIR-B 280 incidence angle data filtered with
the 3SMN2 treatment.
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Figure 4.10

The effect of a second iteration with the
square mean algorithm. Gridding seen in the
first iteration (top), is greatly reduced by
the second iteration (bottom). These images
represent the 7SQMN1 and 7SQMNZ2 treatments.
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Visually, the window size of three was best. The best
square mean treatment is shown in Figure 4.11.

In the Visual Assessment Study, the best treatment was
selected for each of the four algorithms. These four
treatments are shown in Figure 4.12. When the two mean
treatments shown in Figure 4.12 are compared, it can be
seen that the separable mean and square mean algorithms
produce very similar results. The comparison of Figures
4.10 and 4.8, and also Figures 4.11 and 4.9, confirms this
similarity. This similarity was not found between the two

median algorithms.

Cover Type Classification Study

Since the predicted classification accuracies obtained
in the Cover Type Differentiation Study using transformed
divergence did not provide definitive results. 34
treatments and the unfiltered SIR-B data (all three
incidence angles) were classified. The results of the 35
classifications are listed in Table 4.5. The filter
treatments have been ranked by their overall classification
performance (PCCo) based on five cover type groups (PINE1,
PINE2., SWAMP1l, SWAMP2, and SMOOTH) that were selected as
discussed in Chapter 3. The PCCo’s span a continuum of
values and definitive differences could not be determined

when all were grouped together for analysis. Therefore,
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Figure 4.11 SIR-B 289 incidence angle data filtered with
the 3SQMN2 treatment.



(a)

(b)

Figure 4.12
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SIR-B 289 incidence angle data filtered with
the four treatments selected as most
appropriate using visual assessment
techniques. The treatments are (a) 3SQMNZ2,
(b) 3SMN2, (c) 3SQMD2, and (d) 3SEMD2.



(c)

(d)

Figure 4.12 (Continued)
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Table 4.5 Classification results for the unfiltered and
filtered 28.5 meter SIR-B data, given as
overall percent correctly classified (PCCo)
based on five cover type groups and 51 test
fields.

9SRMD1 79.
UNFILT 72.

Treatment PCCo
TSQMN2 95.7
5SQMN3 95.6
TSMN2 95.4
5SQMN2 95.1
7TSQMN1 94.9
5SMN2 94 .9
7SMN1 94.5
5SQMN1 93.6
5SMN3 93.6
3SQMN3 93.4
3SMN3 93.3
5SMN1 93.0
5SRMD3 92.8
5SRMD2 92.8
7SMN3 92.1
5SRMD1 91.0
3SMN2 80.7
3SQMN2 80.7
35QMD4 90.4
3SQMD3 89.7
TSQMN3 89.2
3sQMD2 88.2
3SMN1 87.6
3SQMN1 87.5
3SRMD2 85.7
3SRMD3 85.6
3SRMD1 85.2
3SQMD1 85.1
7SRMD1 84.0
7SRMD3 83.9
TSRMD2 83.9
9SRMD2 81.1
9SRMD3 81.0

2
9
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the analysis of these PCCo’s was done on a stratified
basis, using the three variables of the treatments as
strata. Therefore, results will be presented for each of

these strata and then generalizations will be drawn.

Number of Iterations. Table 4.6 contains the results
obtained by using the Studentized Newman-Keuls multiple

range test to determine the influence of the number of
filtering iterations on overall classification performance.
For nearly all combinations of algorithm and window size
(except window size of seven), the second iteration showed
a statistically significant improvement in the
classification results. Results from the Visual Assessment
Study showed that for thé two mean algorithms (SMN and
SQMN), gridding was apparent in the first iteration and
this effect was greatly reduced by the second iteration.
The statistical analysis results are in agreement with
these findings.

In the Visual Assessment Study. streaking and linear
exaggeration was found with the first iteration of the
separable recursive median algorithm. Figure 4.5 clearly
demonstrated that the first iteration should not be used.
However. the results presented in Table 4.6 do not clearly
show an improvement in PCCo associated with the second
jteration for this filter treatment. This illustrates the

value of utilizing both quantitative and gqualitative



Table 4.6

3SQMD1

85.1
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Statistical evaluation of overall
classification performances showing the effect
‘of number of iterations for each algorithm and

window size combination.

The PCCo’s are based

on 51 test fields (8221) points) and 5 cover
Statistical differences were

type groups.

calculated using the Studentized Newman-Keuls

multiple range test («x

= 0.05).

Non-

significant differences are underlined.

3SQMN1
87.5

55QMN1
93.6

TSQMN3
89.2

3SMN1
87.86

35QMN2
90.7

3SQMN3
93.4

- — —  — ——— - - - - ————— . - W w———— —_ - - ———— - -
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evaluation techniques. The dual usage allows for
confirmation of results and detection of problems that
might go undetected if only one method were used. It is
seen that in all cases, the second and third iterations of
the separable recursive median algorithm are not
significantly different. Thus, the theory of reaching a
near root in two iterations is strengthened.

For the two mean algorithms implemented at window size
of three, significant improvement in classification
accuracy was found with the third iteration. For visual
assessment of the images, the second iteration of these
algorithms was preferred. At the third iteration, small
features such as small swamps were lost in the unclassified
imagery. The test fields were not placed in these smaller
swamps and therefore their loss was not considered in the
calculated PCCo’s. Thus, it was felt that the second

iteration was the best choice.

Window Size. The results of the statistical evaluation of
the PCCo’s as influenced by window size are given in Table
4.7. DBased on the results presented above. only the second
iteration was considered. The square median algorithm is
not included since it was run at only one window size. The
classification accuracy increased when the window size was
enlarged from three to five for the three algorithms

included in this analysis (i.e., square mean, separable



Table 4.7

155

Statistical evaluation of overall
classification performances showing the effect
of window size for each algorithm implemented
at two iterations. The PCCo’s are based on 51
test fields (8221) points) and 5 cover type
groups. Statistical differences were
calculated using the Studentized Newman-Keuls
multiple range test (x = 0.05). Non-
significant differences are underlined.

3SQMN2 5SQMN2 TSQMN2

- ———— T ————— = —

90.7 85.1 95.7

3SMNZ2 S5SMN2 7TSMN2

90.7 94.9 95.4

7SRMD2 3SRMD2 5SRMD2

83.9 85.7 92.8
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mean, separable recursive median). The next increase in
size showed no significant increase for any of the three
algorithms, and in the case of the separable recursive
median algorithm, it actually showed a statistically
significant decrease. This latter finding is not in
agreement with the trend seen in the Cover Type
Differentiation Study. However, it should be noted that
the previous study was done only with the 280 incidence
angle image, while the classification was conducted with
all three incidence angle images.

Upon inspection of the classified 256 x 256 pixel
subimage, it was seen that even though the larger window
size of five (versus three) showed an improvement in PCCo
from a quantitative standpoint (Table 4.6), the results
were found to be qualitatively inferior. Figures 4.13 and
4.14 show the effects of the larger window size on the
classification results. In Figure 4.13, it can be seen
that the increased window size caused the loss of linear
features such as US 90 and the railroad line running from
center to the lower left. Also, many small swamps have
been lost. This is consistent with the results found in
the Visual Assessment Study. The shape of high contrast
features was preserved at the increased window size. This
is seen with the swamps and T-shaped borrow pit pond.

Figure 4.14 illustrates the effect of increasing the

window size from 3 x 3 to 5 x 5 with the square mean
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Figure 4.13 Image comparison of classification results for
the separable recursive median algorithm at
window sizes of 1 x 3 and 1 x 5 (at two
iterations). The top image is the 3SRMD2
treatment, while the bottom image is the 5SRMD2
treatment. Five cover type groups are
displayed as follows: PINEl1l - pink; PINEZ -
green; SWAMP1 - black; ©SWAMP2 - brown;

SMOOTH - blue.
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Figure 4.14 Image comparison of classification results for
the square mean algorithm at window sizes of
3 x 3 and 5 x 5 (at two iterations). The top
image is the 3SQMN2 treatment, while the bottom
image is the 5SQMN2 treatment. Five cover type
groups are displayed as follows: PINE1 - pink;
PINE2 - green; SWAMP1 - black; SWAMP2 -
brown; SMOOTH - blue.
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algorithm. As was seen with the separable recursive median
algorithm in Figure 4.13, the increased window size caused
the loss of much of the highway/railroad network and also
small swamps and other small cover type units. However,
unlike the separable recursive median algorithm, the square
mean drastically changed the shape and size of certain
features. The arch-shaped swamp in the lower left corner
is a continuous unit in the unfiltered image and reference
data. Its shape has been retained with the 3SQMN2
treatment. However, it has been broken into two units by
the 5SQMN2 treatment. Also note the change in shape of the
T-shaped borrow pit pond above the highway intersection.

In addition to its shape being altered, there is also an
appearance of a row of PINEl class pixels parallel and to
the left of the water.

The basis of the quantitative PCCo’s was the 51 test
fields and how they were classified. This method of
assessment was a compromise between effectiveness and
practicality. The derived PCCo’'s provide a measure for
comparison, but the limitations must be considered. The
fields used in this experiment were rectangular in shape

. due to the constraints of the LARSYS software that was used
for calculation of statistics and classification of the
data.— Because irregularly shaped polygons could not be
utilized, the fields could not conform to the true shape

of the cover type units. Thus, the fields tended to be
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centered within relatively large cover type units -- there
was a bias in the selection of fields due to the
constraints of the software. Therefore, the splitting of
the swamp as seen in Figure 14.4 (b), was not reflected in
the PCCo’s, since no test field was placed in the narrow
neck connecting two larger portions. The test field for
the swamp was located in the right portion and had a very
high classification accuracy.

Another problem with the test field evaluation
technique utilized was related to the complexity of the
scene. None of the cover type units exhibited true
uniformity. Even the slash pine plantations (the most
uniform of the forest cover types) had variation in
density, height, tree diameters and other stand parameters
for a particular stand. This variation was natural and
could not (and should not) have been avoided. When
selecting test fields, the analyst made a judament call as
to how much variation should be included. Based on
reference data such as aerial photography, Thematic Mapper
imagery, field knowledge, and forest stand maps and
inventory data, +the analyst selected what was thought to
represent homogeneous fields with some natural variation.

To determine why the larger window sizes were often
showing improved classification accuracy quantitatively
while qualitatively the trend was the opposite,

classification maps of selected test fields were generated
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and analyzed in conjunction with the unfiltered SIR-B data
and reference data. It was found that in many cases, a
small inclusion of another cover type or some variation
within the field was causing some of the pixels to be
"incorrectly"” classified. What was considered normal
variation at the time when the test field was selected was
found to be statistically similar to another cover type by
the classification algorithm. At the larger window sizes
(> 5), this variation or the small inclusion was smoothed
out and no longer caused a misclassification. The effects
of the problems encountered in the classification
performance evaluation caused the larger window sizes to
seem as if they were producing better results when in fact
they were not. Thus when the qualitative and quantitative
results were considered in toto, it was felt that the

window size of three gave the best actual results.

Algorithm. The results from the statistical evaluation of
the algorithms’ influence on the overall classification
performances are presented in Table 4.8. For the
statistical analysis of the algorithms, only the second
iteration of each algorithm was considered. The square
median was only implemented with a 3 x 3 window size, and
therefore could not included in tests for the larger window

sizes.



Table 4.8

3SRMD2
85.7

162

Statistical evaluation of overall
classification performances showing the effect
of algorithm for each window size implemented
at two iterations. The PCCo’s are based on 51
test fields (8221) points) and § cover type
groups. Statistical differences were
calculated using the Studentized Newman-Keuls
multiple range test (x = 0.05). Non-
significant differences are underlined.

3sQMD2 3SMNZz 3SQMN2
88.2 90.7 90.7
SSRMD2 SSMN2 55QMN2
92.8 94.9 85.1
TSRMD2 TSMN2 TSQMN2

83.9 95.4 98.7
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The differences in classification accuracy between the
two mean algorithms were not statistically significant at
any window size. This was in agreement with the findings
of the Visual Assessment Study. Only slight differences
were detected between the unclassified imagery produced by
these two algorithms. Inspection of the classified
subimage revealed that the separable mean algorithm tended
to have more linear exaggerations (elongations along rows
or columns) than was the case for the square mean
algorithm. Therefore, the square mean (SQMNZ2) algorithm
was preferred over the separable mean (SMN2) algorithm.

The classification results provided by the median
algorithms (SRMD and SQMD) were statistically different
from those results obtained with the two mean algorithms.
Additionally., it was found that for a window size of three,
there were statistically significant differences between
the classification accuracies of the two median algorithms
(3SRMD2 and 3SQMD2). This could only be tested at a window
size of three, and in this case the 3SQMD2 treatment
provided better classification results than the 3SRMD2
treatment.

At all three window sizes evaluated (3, 5, 7), the
mean algorithms provided higher classification accuracies
than those obtained with the median algorithms. These

differences were found to be statistically significant.
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Filter Selecti

Based on the results of both the Visual Assessment
Study and the Cover Type Classification Study, the number
of candidate treatments to be considered in the final
selection process was considerably reduced. The most
appropriate number of iterations was found to be two. For
the 28.5 m SIR-B data, the best window size was selected to
be three (either 1 x 3 separable or 3 x 3 non-separable).
Therefore, this left four treatments for further analysis,
namely, 3SRMD2, 3SQMD2, 3SMN2, and 3SQMN2.

The Cover Type Classification Study indicated that the
differences between the two mean treatments were not
statistically significant. However, it was determined
through visual assessment of both the unclassified and
classified imagery that the 3SQMNZ2 was preferred over the
3SMN2 treatment, since the latter pfoduced linear
exaggerations in the imagery. Therefore, the remaining
three treatments were the 1 x 3 separable recursive median
filter, the 3 x 3 square median filter, and the 3 x 3
square mean filter, each implemented at two iterations
(i.e., the 3SRMD2, 3SQMD2, and 3SQMN2 treatments,
respectively). The 280 incidence angle image filtered with
these three treatments was shown in Figure 4.12. Figure

4.15 shows the classified subimages for these three
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treatments. The unfiltered data is also shown for
comparison purposes.

All three treatments provided significant improvements
in classification accuracy as compared to the unfiltered
data and Figure 4.15 provides a visual verification of this
fact. Of the two median treatments, the 3SQMD2 provided a
significantly better classification accuracy (88.2 % as
compared to 85.7% for the 3SRMD2 treatment). Additionally.
the appearance of the classified image was less blocky,
although the retention of linear features was comparable
between the two median treatments. Some of the smaller
features were retained better with 3SRMD2 treatment than
was true for the 3SQMD2 treatment. In summary, however,
the overall appearance of the unclassified and classified
imagery obtained with the 3SQMD2 treatment was judged to be
better than that obtained with the 3SRMD2 treatment.

The 3SQMN2 treatment provided a statistically
significant improvement in classification accuracy over the
3SQMD2 treatment as seen in Table 4.8. However, in
arriving at a decision between these two filter treatments,
the results of the quantitative and qualitative evaluation
tests were reviewed. It was found that in the
Edge/Boundary Retention Study, the median algorithms
retained edges and boundaries much better than the mean
algorithms. More specifically, the 35QMD2 treatment was

found to retain edges and boundaries better than the 3SQMN2



166

(a)

(b)

Figure 4.15 Classified imagery for the (a) unfiltered,
(b) 3SRMD2, (c) 3SQMD2, and (d) 3SQMN2 SIR-B
subimages. Five cover type groups are
displayed as follows: PINE1l - pink; PINE2 -
green; SWAMP1 - black; SWAMP2 - brown;
SMOOTH - blue.



(e)

(d)

Figure 4.15

(Continued)
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treatment. The mean algorithms scored low in edge and
boundary retention because the edges were turned into ramp-
shaped transitions. This was confirmed in the Visual
Assessment Study where it was found that the 3SQMN2 image
seemed blurred or out-of-focus when compared to the 3SQMD2
image. When the two classified images are compared
visually (Figure 4.15). it is seen that the
highway/railroad network has been retained much better with
the 3SQMDZ2 treatment than with the 3SQMNZ2 treatment.

The results of the evaluation studies point toward the
selection of the 3 x 3 square median filter implemented at
two iterations (3SQMD2) as the best spatial filter
treatment for the 28.5 meter SIR-B multiple incidence angle
data set for the Florida Forestry Test Site. The three
angle color composites and the classified images for both
the unfiltered and filtered (3SQMD2) data are presented in
Figure 4.16.

When the classification results were evaluated, it was
found that the speckle within the unfiltered radar data
caused much spatial variation in the classified image. The
cover types are interspersed and highly homogeneous regions
are not common. The classification of the 3SQMD2 filtered
image provides a much more definitive representation of the
cover types present in the area. Cover type units are
represented in a much more homogeneous manner. It should

be noted though, that some detail has been lost in the




Figure 4.16

Unclassified multiple incidence angle color
composites and classified imagery for the
unfiltered and 3SQMD2 SIR-B subimages. For
the color composites, the incidence angle
subimages are displayed as follows:

red = 280; blue = 450; green = 580. 1In the
classified imagery, five cover type groups are
displayed as follows: PINE1l - pink; PINEZ -
green; SWAMP1 - black; SWAMP2 - brown; SMOOTH
- blue.
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Figure 4.16 (Continued)
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filtering process. The linear features such as the
highways and railroad have become less distinct. It should
be realized, however, that some spatial detail may have to
be sacrificed in order to achieve a reduction in the
variation within the SAR data.

The results of classifications conducted in this
experiment were displayed and evaluated on the basis of
five broad cover type groups. These groups consisted of
two pine, two swamp, and one smooth cover type group.
Within each of these broad groups there was a tremendous
variety of more detailed cover type units. For instance
the SMOOTH group included water, bare soil, pasture, and
roads. The four forest groups included all the forest
types (and conditions) described in Chapter 3. This
experiment only addressed the question of how filtering
could be used to improve the classification of these five
cover type groups since a detailed classification of the
SIR-B data was not the intent nor objective of this study.
For example, the classification accuracy of the more
detailed subgroup cover type classes (such as 25 year slash
pine versus 60 year old longleaf pine) was not tested
between treatments. However, at the level of detail
utilized in this experiment, spatial filtering has provided
a significant improvement in both the unclassified and the

classified SIR-B 28.5 m data.
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CHAPTER 5
SUMMARY AND CONCLUSIONS

Summary

The purpose of this study was to determine the most
appropriate low pass spatial filter treatments for reducing
speckle effects in Shuttle Imaging Radar-B (SIR-B) digital
data that is to be utilized for assessing forest resources.
The SIR-B data set utilized consisted of multi-angle data
collected during Space Shuttle Flight 41-G at center
incidence angles of 28.40, 45.39, and 58.49. The pixel
size of the unfiltered data was 28.5 meters. '

Thirty-four filter treatments were applied to the
data. These treatments included the use of square mean.
separable mean., square median, and separable recursive
median algorithms implemented at 1 to 3 iterations with
window sizes ranging from 1 x 3 to 1 x 9 (separable
filters) and 3 x 3 to 7 x 7 (square filters).

Both quantitative and qualitative evaluation
techniques were utilized. Four specific evaluation studies
were conducted: Cover Type Differentiation Study,

Edge/Boundary Retention Study, Cover Type Classification
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Study, and Visual Assessment Study. The Visual Assessment
Study and the Cover Type Classification Study were found to
provide the most useful information for evaluating the
various treatments. Distinct differences due to type of
algorithm, window dimension, and number of iterations were
found. The most significant results are summarized as

follows:

n The median filter algorithms were more effective for
preserving edges and boundaries than were the mean
algorithms (see Table 4.4). The separable recursive
median algorithm most effectively preserved edges and
boundaries. The square median algorithm did preserve
edges also, though not as well. It was found that the
two mean algorithms tended to blur the edges and
boundaries in the imagery.

2) The use of both quantitative and qualitative
evaluation techniques provided an effective approach
for selecting the best filter treatment. The
qualitative visual assessment of the images often
revealed problems that were not detected in the
quantitative tests. Conversely, the gquantitative
tests were helpful in confirming the results derived
visually.

3) For visual assessment of the imagery, the most

effective presentation was achieved utilizing two
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different histogramming techniques for image
enhancement and the use of two different print scales
(approximately 1:80000 and 1:50000). The different
histograms were useful for highlighting subtle details
(see Figure 4.3) and the two scales gave an overall
view and a more detailed one (see Figure 4.4).

For the separable mean, square mean, and separable
recursive median algorithms, a single iteration
produced visually inferior images. A distinct
gridding effect was produced by a single iteration of
the first two algorithms, while a single iteration of
the separable recursive median algorithm produced
streaking.

With all algorithms, the second iteration provided the
best results. For the three non-recursive filter
algorithms (separable mean, square median, and square
mean) implemented at window sizes of three and five,
the second iteration showed a significant! improvement
in the classification results (see Table 4.6).
Additionally, the second iteration alleviated the
gridding and streaking problems encountered in the
first iteration with the separable mean. square mean,

and separable recursive median algorithms. The

The term significant, as used in this chapter. refers to

statistical significance tested at « = 0.05 using the
Studentized Newman-Keuls multiple range test.



6)

7)

8)

175

application of multiple iteration filter treatments to
SAR data has not been commonly reported in the
literature.

The third iteration of the separable recursive median
showed little improvement in appearance of the SIR-B
imagery as compared to the second iteration. This was
confirmed statistically when no significant difference
in classification accuracy was found (see Table 4.6).
This indicates that a near root image was achieved in
two iterations.

Visually. the window size of three was selected as
providing the best results for all algorithms applied
to the SIR-B data with two iterations. The window
size of five produced significantly better
classification results than the window size of three
(see Table 4.7), however visual inspection of the
classified images and the classified test fields
showed that the window size of three was more
appropriate.

There was little difference in appearance between the
filtered imagery obtained with the two mean algorithms
(separable mean and square mean), and statistical
analysis showed (see Table 4.8) that there was no
significant difference between the classification
accuracies achieved with these algorithms (based on

the second iteration). However, inspection of the
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classified images showed that the square mean
algorithm produced more acceptable results.

The two median algorithms (3SQMD2 and 3SRMD2) produced
images that had distinctly different appearance. The
separable recursive median algorithm produced imagery
that was blocky in appearance. The square median
imagery had a more natural appearance with a more
gradual transition between tones. Classification
results were significantly better with the 3S@MD2
treatment than with the 3SRMD2 (see Table 4.8).
Therefore., the 3SQMD2 treatment was judged to be the
better of these two treatments.

The best mean treatment (3SQMNZ2) provided
significantly nigher classification results (see Table
4.8) than the best median treatment (3SQMD2). but the
Edge/Boundary Retention Study (see Table 4.4) and the
Visual Assessment Study evaluations indicated that the
median treatment retained edges better and preserved
more detail. Although the difference in
classification accuracies between the two treatments
(90.7% versus 88.2%) is statistically significant., it
was decided that this difference was not large enocugh
to outweigh the results obtained in the Edge/Boundary
Retention Study and Visual Assessmeﬁt Study.

In evaluating all 34 treatments from both a

quantitative and qualitative standpoint, the 3 x 3
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square median filter implemented at two iterations
(3SQMD2) produced the best overall results with the

28.5 m SIR-B data.

Conclusions

The major conclusions from this research with 28.5 m

Shuttle Imaging Radar-B digital data using four filter

algorithms (i.e., square mean, separable mean, square

median, and separable recursive median) are:

1)

2)

3)
4)

The 3 x 3 square median filter implemented at two
iterations (3SQMD2 treatment) was the best filter
treatment for reducing speckle effects in this data
set.

The second iteration provided much better results than
were obtained with a single iteration.

A window size of three was determined to be best.

Both quantitative and qualitative evaluation
techniques were needed to effectively identify the

best filter treatment.
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CHAPTER 8
RECOMMENDATIONS

This study has cleﬁrly shown the benefits of spatial
filtering SAR data. Some interesting insights were gained
into the effects of various filter treatments when apprlied
to SAR data. Although many interesting results were
obtained, during the experiment many questions arose that
remain unanswered. Identified below are some of these
areas where future research is believed to be needed.
Additionally, problems that were encountered during the
experiment are addressed. It is recommended that

additional research be pursued in the following areas:

1) The effect of different SAR data pixel sizes and
resolutions on filter selection should be studied.
The results from this study should provide a good
beginning point for work with SAR data of different
spatial resolution and pixel size, but these results
should be verified with other data sets.

2) The square median algorithm should be tested with
larger window sizes. In this experiment, this

algorithm was only tested at a window size of three.
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Where a higher degree of filtering is necessary, this
algorithm implemented with a larger window may be
useful.

The results of this study should be verified with a
more detailed classification study. This experiment
did not measure the classification accuracy of
subgroup (detailed cover type classes) cover type
pixels from one treatment to another.

The use of the filtered SAR data should be tested with
other uses besides classification. The reduction of
the variance in the data may improve statistical
analyses such as biomass-signal correlation.

The effects of filtering SAR should also be
investigated in relation to the use of contextual
classifiers. The results should be compared with
those obtained with per-point classifiers.

The spatial integrity of the filtered SAR data should
be tested. Perhaps a graphics map overlay could be
used to monitor shrink and swell of surface features.
This would also allow for detecting the loss of
features. A graphics overlay capability (e.g., a
geographic information system) would also provide
wall-to-wall reference data that could be used for
selecting training and test fields.

The use of more sophisticated algorithms should be

pursued. More complex arithmetic operations should be
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investigated. Adaptive techniques which modify the
smoothing operation according to the local statistics
would be of interest. The local statistics are
calculated based on the pixel and its neighborhood.
Reports on two more advanced algorithms are given by

Nathan and Curlander (1987) and Azimi-Sadjadi (1987).

A few problem areas were encountered in the

experiment. Two of the more significant ones were:

1

2)

The LARSYS program utilized for calculating field
statistics was limited to rectangular fields. A
capability for utilizing irregular polygons would have
allowed the boundaries of the selected fields to
correspond more closely to the boundaries of the cover
type unit being sampled. This would have allowed the
selection of fields from small irregularly shaped
cover type units.

Throughout the experiment, it was seen that there is a
need for developing more effective mechanisms to
facilitate integrated use of the image processing
systems at Purdue. Software already exists for
reformatting image data for use on the various
systems, and work has begun on the transferring of
statistics from one system to another. This work
needs to continue and additional work is needed in

such areas as transfer of classification results files
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and transfer of field coordinate files. The “"system”
is functional as it stands, but a number of

refinements such as these would streamline the

research process.
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LARSYS Multispectral Isage Tapes (MIST)

LARSYS Run Incidence MIST Classifi- Treataent Tape/File
Angle cation

84028701 28 i unfiltered and 29 treatsents 228211
84028702 28 X 5 treatasnts 2282/2
84028703 45 X untiltered and 29 treataents 2282/3
84028704 45 H 5 treatasnts 2282/4
84028705 58 X unfiltered and 29 treatments 2282/%
84028706 58 X 5 treatasnts 2292/6
84028711 28,45,58 X unfiltered 2282/7
84028712 28,45,38 i JS0MN1 2282/8
84028713 28,4%,58 X 3SANN2 228219
84028714 28,45,38 X ISEMN3 2282/10
84028715 28,45,58 X 53GMN1 2282/11
84028714 28,45,38 H S50MN2 2282/12
84028717 28,45,58 X SSAMN3 2282/13
84028718 28,435,538 H 7SaMNE 2282/14
84028719 28,435,358 X TSQMN2 2282/15
84028720 28,45,38 X 7SGMN3 2282/14
84028721 28,45,58 X JgmNL 2282/17
84028722 28,45,38 X JSmN2 2282/18
84028723 28,45,38 X JSNN3 2282/19
84028724 28,45,38 H 5SMNL 2282/20
84028725 28,435,358 X 35N 2282/
84028724 28,45,58 H JSMN3 2282/22
84028727 28,435,358 X 7SHNL 228213
84028728 28,45,38 H TSMN2 2282/24
84028729 28,45,38 X TSHN3 2282/2%
84028730 28,44,58 X 3sqmdt 2282/26
84028730 28, 45,38 X Jsand2 2282/27
84028731 28,45,38 1 35amMD3 : 2282/28
84028732 28,435,358 X JSRNDL 4014/1
84028733 28,435,358 X 3SRMD2 4016/2
84028734 28,435,358 X SSRND!L 4014/3
84028735 28,45,58 H SSRMD2 4016/4
84028734 28,445,358 X 7SRND1 4014/5
84028737 28,45,38 H 7SRMD2 401476
84028738 28,435,358 X 9SRMDYL 401477
84028739 28,45,58 H 9SRMD2 40146/8
84028740 28,45,358 X 3SanD4 4014/9
84028741 28,454,358 X JSRMD3 40156/10
84028742 28,45,58 X SSRND3 4016/41
84028743 28,45,38 H 75RMD3 40146/12
84028744 28,43,58 X 9SRHD3 4014713
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LARSYS Classification Tapes

LARSYS Run Incidence MIST Classifi- Treataent/Area Classitied Tape/File
Angla cation
84028711 28,43,58 H unfiltered, 31 test fields 138711
84028712 28,45, 58 X J5omNt, 51 test fields 134712
84028713 28,435,358 1 J5ame2, 51 test fields 1347/3
84028714 28,45, 58 1 J5aMN3, 51 tast fields 138774
B402071S 28, 48,58 X s8amt, 31 test fields 136245
84028714 28,45,38 X S8QMN2, 51 tast fieids 138716
84028717 28,495,358 X SSOMN3, 31 test fields 136717
84028718 28,45,38 X TSAMNY, 31 test fields 1387/8
84028719 28,4%,58 14 750MM2, 51 test fields 136719
84028720 28,435,358 1 T80MN3, 51 test fislds 1367710
84028721 28,45,38 |4 I5MNL, St test fields 1367/11
84028722 28,45,58 X I5MN2, Si test fields 1387/12
84020723 28,45,38 [ I5MN3, SI test fields 1357/13
84028724 28,45,38 X SSMNL, 51 test fields 1367/14
84028728 28,43,38 L S5MN2, Si test fields 1367/1%
84028724 28, 45,38 1 J8MN3, 5L test fields 1367/16
84028727 28,48,38 X ToMML, St test fields 1387/17
84028728 28,45,38 X TEMN2, 51 test fields 1357/18
84028729 28,435,358 X TSHNS, S1 test fialds 134719
84028730 28,43,58 4 35am0s, 51 test fields 1367/20
4028731 28,44,38 X 150MB2, 51 test fields 1347/21
84028732 28,45,58 X 350MD3, S! test fields 1387/22
84028733 28,445,358 X JSRNDE, 51 test fields 1367/23
84020734 28,485,538 X I5AMD2, S1 tast fields 1387/24
84028733 28,45,38 | SSRMDS, 51 test fields 1367/23
84028735 28,45,38 X SSRMD2, 31 test fislds 1367/28
84029737 28,483,308 X TSRMDE, S1 test ¢ields 1367/27
84028738 28, 45,58 X TSRMD2, 51 tast fialds 1367/28
84028739 28,43,58 X 95RNDL, 51 test fields 1367/29
84026740 28,43,38 X 95RND2, 31 test fislds 1387/30
84028741 28,4%,3%8 H J5QND4, 51 test fields 1347/3t
84028742 28,43,38 X JERND3, 31 test fields 1347/32
84028743 28,438,358 ! JSRMD3, 51 test fields 137/
84028744 28,45,38 X TSRMD3, 51 tast fields 1387/34
84028743 28,48,58 X 9SRND3, S1 tast fields 1347/33
84028711t 28,435,358 ! unfiltered, 254 x 255 subimage 1347/36
84028713 28,43,%8 ! J5GMN2, 256 x 254 subisage 1387/37
84028714 28,435,580 X 550MN2, 256 x 256 subisage 1357/38
84028719 28,48,38 ! 75UMN2, 256 x 254 subimage 1387/39
84028722 28,45,38 X ISMN2, 286 x 286 subimage 1347/40
84028725 28,45,38 X SSMN2, 236 x 2546 subisage 1347/4t
84028728 28,45,58 X TSMN2, 286 x 236 subimage 1347/42
84028730 28,44,38 X 35aMD1, 256 x 256 subisage 1347/43
84028731 28,435,38 X IsoMD2, 256 x 23b subimage 1367/44
84028732 28,45,%8 5 35QMD3, 256 x 256 subisage 1357743
84028734 28,485,358 H JSRMD2, 23b x 254 subisage 1367/44
84028734 28,49,38 { JSRMD2, 234 x 254 subimaqe 1387/47
84028738 28,459,398 X TSRMD2, 236 x 256 subimage 1367/44
84028727 28,495,308 X 7SMNL, 234 x 236 subimage 1347749
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CNS Backup Format Tapes

Tape/File Contents

M4/ T4 and SIR-B {unfiltered), Hacienda BSQ format, 770 lines x 410 columns
3414/2 SIR-B (SGMN treataents), Hacienda BSQ format, 770 lines x 610 colusns

J414/3 SIR-B (SGMD treataents), Hacienda BSQ format, 770 lines x 410 colusns

J414/4 SIR-B (SMN treatsents), Hacienda BSQ format, 770 lines x 410 colusas

Ja14/3 SIR-B (SRMD treatments), Hacisnda BSQ foraat, 770 lines x 410 coluans

3414/ SIR-B (SRMD treatments), Hacienda BSQ forsat, 770 lines x 410 colusns

INAN SIR-B (SRMD treataents), Hacienda BSQ format, 770 lines x 410 coluans

J414/8 SIR-B (SRMD treatments), Hacienda BSQ format, 770 lines x 410 coluans

J414/9 SIR-B (28° treataents), Hacienda BSQ format, 770 lines x 610 columns

3414/10 SIR-B (SGMD and SRMD treatments), Hacienda BSQ format, 770 lines x 510 taluans
J414/11 SIR-B (SMN treataents), Hacienda BSQ format, 770 lines x 410 colusns

Ja14/12 SIR-B LARSYS stats

3414/13 SIR-B LARSYS stats, CC decks

J414/14 SIR-B LARSYS stats, classification results, cc decks

IS SIR-D (28° treataents), Hacienda BSQ farmat, 770 lines x 410 coluans

3814716 SIR-B (28° treatments), Hacienda BSQ format, 236 lines x 236 columns

a7 SIR-B (45° treatasnts), Hacienda BSQ format, 234 lines x 234 columns
4153/1-34 Backup of MUELLER account, February 1987 - September 1987; filter work files



186



r)rurmr)r)r:r>r)r>r>r>r>r>r>r>r>r>r>r)r>r>r>r>r>r>r)r)f)r)r:r>r)r>r>r7r>r>r>r>r>r>r>r>r>r:r)r)r)r)r>r)r>r>r>r>r>r7r3

¥ % X % X X %X X X X X X % X %

* % %X % % X % X X X X X X X X

VARIABLE

SEPARABLY.

RECURSIVE FILTER).
COLUMNS ARE FILTERED SEPARATELY.
ARE FILTERED, THE COLUMNS ARE FILTERED FIRST AND THEN THE
ROWS OF PREVIOUSLY FILTERED DATA ARE FILTERED.
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SEPARABLE RECURSIVE
MEDIAN FILTER FOR IMAGE DATA

PROGRAMMERS: PETER WENDT

CECILIA WEBER
PAUL MUELLER

| 000000000**000000000|
|00000000*  *000000|
| 0000000* *000|
| 000000* *|
| 00000* *0|
|0000* IMAGE  *00|
|000*  DATA  *000|

| 00* *0000|
{0 *00000|
{0000* *000000]|
| 0000000* *0000000|
| 0000000000**00000000]
| <=====- K -ee- d

TYPE DESCRIPTION

ON THE ECN SYSTEM

CONVERSION TO PUCC IBM SYSTEM
JULY 1985

REVISIONS TO HANDLE SKEWED
IMAGES; ADDED COMMENTS;

ADDED PROGRESS REPORTS
NOVEMBER 1985

THIS PROGRAM MEDIAN FILTERS IMAGE DATA RECURSIVELY AND

BOTH SKEWED (SURROUNDED BY ZERQOS) AND SQUARED (NO
PADDING OF ZEROS) IMAGE DATA SETS CAN BE FILTERED. HOWEVER,

WITHIN THE ACTUAL IMAGE DATA, THERE MUST BE NO ZEROS PRESENT

FOR THE FILTER TO OPERATE CORRECTLY.
BELOW EXPLAINS THIS POINT GRAPHICALLY.
OF THE FILTER IS ONE DIMENSIONAL (1 BY LENGTH). THIS

WINDOW PROGRESSES ALONG A ROW OR COLUMN OF DATA. NEW

MEDIAN VALUES REPLACE THE ORIGINAL DATA VALUES (THUS, A

THIS FILTER IS SEPARABLE IN THAT ROWS AND
WHEN BOTH ROWS AND COLUMNS

NOTE:

Fe R 5 T K % % F K % % K % e T K e K %k K Tk v 3k % Kk 3k K 3k 3k ok 3k ke 3k 3k Sk 3k dk sk sk e 3k sk S sk 3k ok vk sk gk sk sk 3k 3k 3k ok ok e ke ke sk sk ok ok ke ke

* % % % X % %X % X X X X X % X

% Fe % % F Fe % % Fe T % K %k K K % K K Tk K K sk kKo kKA Tk kv ok K Tk vk 3 ke 3k 3k 3k ok 3k gk sk 3k ke vk Sk K Sk ok ok ke gk Sk ok e ok ke ke ok sk ek ek
sk % sk K v o % K K K K Fe v KK ¥ K Kk K R sk K e sk 3k sk sk e e 3 ke 3k ok k 3k vk vk e e Tk e 3k T % vk ok Yk ok ok %k ke 3k %k ok ok vk ok ok e ke e ok ke

THE DIAGRAM
THE WINDOW

% % % % % % % % % X % ¥ X X %

I % % % % Fe Y % K K e T v ok K K K K vk T vk ok kK Kk ke e gk vk Tk ¥k kK S sk ke sk vk e ke 3k ok 3k e ke sk sk ke 3k 9k K ok e ke e ke vk e v ek K e ok

IT IS ASSUMED THAT NO

0'S ARE CONTAINED WITHIN
THE ACTUAL IMAGE DATA,
WHEREAS FOR SKEWED IMAGES,
THE AREAS OUTSIDE THE
ACTUAL IMAGE ARE EXPECTED
TO BE REPRESENTED BY 0'S.

K K ok Kk K Kk Kk k Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk k Kk %X X *k %k k %k k% *x *x *x *x *

k Kk Kk Kk Kk K % Kk K %k Kk X Kk Kk Kk Kk Kk Kk k k k k k X k %k *x k k * k% % k* *x %
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CoLS

DATAPT
FIRST

FLTCOL
FLTROW
FMTCHR
I

1J

IK
IMAGE
INTRVL

IN
J
LAST

LENGTH
MEDIAN
N

ouT
RANK

REPORT

ROWS

*x X *x %
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INTEGER SENTINEL VALUE INDICATING WHETHER ROWS SHOULD
BE FILTERED (1) OR NOT FILTERED (0); FILTERING
WILL PROGRESS FROM TOP TO BOTTOM ALONG EACH
COLUMN OF DATA

INTEGER NUMBER OF IMAGE DATA VALUES (PIXELS) FOR A LINE
(ROW) OR COLUMN TO BE FILTERED

INTEGER COORDINATE OF FIRST IMAGE DATA VALUE CONTAINED
IN A LINE (ROW) OR COLUMN TO BE FILTERED

INTEGER NUMBER OF COLUMNS FILTERED

INTEGER NUMBER OF ROWS (LINES) FILTERED

CHARACTER FORMAT OF A LINE IN CHARACTER ARRAY

INTEGER LOOP CONTROL VARIABLE CORRESPONDING TO LINES

INTEGER NUMBER OF LINES (ROWS) IN INPUT DATA FILE

INTEGER NUMBER OF COLUMNS (LRECL) IN INPUT DATA FILE

CHARACTER ARRAY REPRESENTING ORIGINAL IMAGE

INTEGER NUMBER OF COLUMNS OR ROWS TO BE FILTERED
BEFORE A REPORT ISSUED

REAL INCOMING PIXEL VALUE (UNFILTERED)

INTEGER LOOP CONTROL VARIABLE CORRESPONDING TO COLUMNS

INTEGER COORDIANTE OF LAST IMAGE DATA VALUE CONTAINED
IN A LINE (ROW) OR COLUMN TO BE FILTERED

INTEGER WINDOW WIDTH (2N + 1)

CHARACTER ARRAY REPRESENTING FILTERED IMAGE

INTEGER N = (LENGTH -1)/2 ‘

REAL PIXEL MEDIAN VALUE

INTEGER VECTOR OF RANK VALUES CORRESPONDING TO PIXELS
CURRENTLY IN THE FILTER WINDOW; DIMENSION OF
RANK MUST BE GREATER THAN OR EQUAL TO LENGTH

INTEGER A PROGRESS REPORT ON NUMBER OF COLUMNS OR ROWS
THAT HAVE BEEN FILTERED WILL BE DISPLAYED ON
TERMINAL SCREEN IF "1" SPECIFIED; IT WILL NOT
IF "0" SPECIFIED

INTEGER SENTINEL VALUE INDICATING WHETHER ROWS SHOULD
BE FILTERED (1) OR NOT FILTERED (0); FILTERING
WILL PROGRESS FROM LEFT TO RIGHT ALONG EACH
ROW

REAL VECTOR USED IN SUBROUTINE; DIMENSION MUST BE
GREATER THAN OR EQUAL TO LENGTH

x Kk Kk Kk Kk Kk Kk Kk Kk Kk % K Kk Kk Kk %k % %k Kk *k Xk Kk X %k k *k *x % % * X

k K Kk Kk Kk Kk Kk k Kk Kk Kk Kk Kk Kk X %k %k % k %k *k *k Kk %k X %k * % % ¥k *x % % %X

NOTES:

TO CUSTOMIZE THIS PROGRAM TO YOUR IMAGE, THE FOLLOWING TWO
PARAMETER STATEMENTS MUST BE CHANGED WITHIN THIS PROGRAM. THE
PARAMETERS IJ AND IK MUST BE CHANGED TO MATCH THE NUMBER OF
ROWS AND COLUMNS, RESPECTIVELY, IN YOUR INPUT IMAGE. CHANGE
IJ AND IK IN THE PARAMETER STATEMENT FOLLOWING THIS COMMENT
BLOCK. SINCE THE CHARACTER VARIABLE 'FMTCHR' IS USED TO
REPRESENT THE FORMAT OF AN LINE (ROW) OF IMAGE DATA, THIS
VARIABLE MUST BE CHANGED TO MATCH THE LINE LENGTH (NUMBER

OF COLUMNS WHICH IS EQUAL TO IK). SINCE THE IMAGE ARRAYS

ARE CHARACTER ARRAYS, EACH DATA POINT IS OF THE FORMAT OF
"Al' ACCORDING TO FORTRAN SYNTAX. THEREFORE, THERE ARE AS
MANY A1'S AS THERE ARE DATA POINTS. HOWEVER, IN FORTRAN,

ONE CANNOT SIMPLY SAY 1024A1 IF THERE ARE 1024 DATA POINTS
(COLUMNS, OR IK) IN AN IMAGE LINE. THE MAXIMUM REPEAT FACTOR
IS 255 (I.E., 255A1), SO ONE MUST WRITE THE FORMAT AS

A STRING OF CHARACTER FORMATS WHERE THE REPEAT FACTORS
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WILL TOTAL THE NUMBER OF DATA POINTS (COLUMNS) IN THE LINE.

FOR EXAMPLE: IF EACH LINE CONSISTS OF 1024 DATA POINTS,
MEANING THAT IK=1024, THEN THE FOLLOWING
PARAMETER STATEMENT SHOULD BE USED

PARAMETER (FMTCHR = '(255A1,255A1,255A1,255A1,4A1)")

THIS PARAMETER STATEMENT IS WITHIN THE VARIABLE DECLARATIONS
SECTION OF THE PROGRAM.

ALSO NOTE THAT THE TOTAL LENGTH OF FMTCHR CANNOT HAVE A
LENGTH OF MORE THAN 60; IF IT DOES, THEN ITS DECLARATION
STATEMENT MUST BE CHANGED ACCORDINGLY.

TO RUN THIS PROGRAM, MAKE THE ABOVE MENTIONED CORRECTIONS
TO THE PROGRAM CODE, AND THEN EDIT THE FILE

'MEDSKEW EXEC' AND CHANGE THE FILEDEF'S ACCORDING TO

YOUR INPUT AND OUTPUT FILE NAMES AND DIMENSIONS. UNIT 2
REFERS TO THE INPUT, WHILE UNIT 3 REFERS TO THE QUTPUT FILE.

THE DIMENSION OF THE VECTORS 'RANK' AND 'X' MUST BE GREATER
THAN THE ACTUAL WINDOW SIZE OF THE FILTER BEING USED. THUS,
THEY SHOULD NOT HAVE TO BE REDIMENSIONED UNLESS THE WINDOW
IS GREATER THAN 201.

C X K Kk K Kk X K k Kk Kk Kk Kk Kk X Kk Kk K k Kk K %k Kk k %X X % k %k k %k *k %k % *

C* k % Kk % Kk %k Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk k k k k k k X%k Kk Kk %k % k %k *x % %

ODOOODODOOOOO0M

ODOOOO

OOOOOO

¥ % % % % % K de Ak %k KKk Kk kK

* MAIN PROGRAM *

% % % K K % e e e %k vk kK e

* K k Kk k k Kk k Kk Kk Kk Kk Kk Kk Kk k Kk k %k %X %k %k k %k X k k k% Kk %k % * % *x %

VARIABLE DECLARATIONS

k Kk k K Kk Kk Kk Kk Kk Kk Kk X X Kk Kk Kk % k Kk Kk %k *k %k % k k * % *k k k % %

PARAMETER (1J=770,1K=610)

REAL IN,OUT,X(201)

INTEGER RANK(201)

INTEGER ROWS,COLS,LENGTH,FLTCOL,FLTROW,FIRST,LAST,DATAPT,REPORT
CHARACTER*1 IMAGE(IJ,IK),MEDIAN(IJ,IK)

CHARACTER*60 FMTCHR

swexxnnkxxxCHANGE THE FOLLOWING PARAMETER TO MATCH IKxxxsxxxxxxxx
FORMAT OF IMAGE (CHARACTER) ARRAYS BASED ON NUMBER OF COLUMNS

===> SEE THE NOTES SECTION ABOVE THE PROGRAM CODE <===

PARAMETER (FMTCHR = '(255A1,255A1,100A1)")

* X K Kk Kk Kk K k Kk Kk Kk K Kk Kk dk Kk Kk X X Kk k % Kk KX X kX % % *k % % *x %

READ IN THE IMAGE AND INITIALIZE THE MEDIAN ARRAY

* K Kk Kk Kk Kk Kk Kk Kk Kk kK K Kk k Kk X %k *x Kk K %k *k *k X%k kX Kk k % Kk k *x %k % k %
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OPEN(UNIT=2)
DO 100 I=1,1J
READ(2,FMT=FMTCHR) (IMAGE(I,J),J=1,IK)
D090 J =1, IK
MEDIAN(I,J)=CHAR(O)
CONTINUE
CONTINUE
CLOSE(2)

k ok Kk Kk K Kk Kk % Kk Kk k Kk Kk k Kk %k % % K k %k % % ¥ k k *x X k k X% *x %

READ IN THE WINDOW WIDTH FROM USER INPUT

k Ok Kk Kk % Kk %k Kk Kk k Kk Kk k Kk % %k k % k ¥ *k Kk *k *k Kk %X *k k* *x % % *x %

WRITE(16,140)

FORMAT(1X, 'ENTER WINDOW WIDTH XX  (IT MUST BE AN ODD NUMBER)')
READ (15,150) LENGTH

FORMAT (12)

X K Kk Kk X Kk % Kk Kk k Kk Kk Xk Kk *k Kk %k kX * *k k *x k k *k k %k *x k %k *k % %

DETERMINE IF ROWS AND/OR COLUMNS SHOULD BE FILTERED SEPARABLY

d ok Kk % K d Kk K %k k Kk % Kk Kk Kk %k k % Kk %X %X *k %k *k *k *k *k k % *x * k %

WRITE(16,160)

FORMAT(1X, 'SHOULD ROWS AND/OR COLUMNS BE FILTERED?')

WRITE(16,170)

FORMAT(1X, 'ENTER ROWS AND COLUMNS XX')

WRITE(16,171) ‘

FORMAT(6X,'WHERE: 10 INDICATES ROWS ONLY WILL BE FILTERED')

WRITE(16,172)

FORMAT(14X,'01 INDICATES COLUMNS ONLY WILL BE FILTERED')

WRITE(16,173)

FORMAT(14X,'11 INDICATES BOTH ROWS AND COLUMNS WILL BE FILTERED',
! SEPARABLY'/22X,'NOTE THAT WHEN 11 IS SPECIFIED'/22X,'COLUMNS',
' WILL BE FILTERED FIRST')

READ (15,175) ROWS,COLS

FORMAT (I1,I1)

* % kX K Kk Kk Kk k k Kk Kk Kk k Kk % X%k %k X % k *k X % %k *k %k % %X * *x *x % %

QUERY IF PROGRESS REPORTS WANTED

Kk K K Kk Kk Kk Kk k Kk Kk K Kk k Kk K K% Kk %k Kk *k %k X k *k %k Kk k % % %X % k %

WRITE(16,180)

FORMAT(1X, 'WOULD YOU LIKE A PERIODIC PROGRESS REPORT ON THE *,
'"FILTRATION PROCESS?')

WRITE(16,181)

FORMAT(6X,'ENTER A 0 FOR NO REPORT'/9X,'OR A 1 FOR A REPORT')

. READ(15,182) REPORT

FORMAT(I1)
IF (REPORT .EQ. 1) THEN
WRITE(16,183)
FORMAT(6X,'ENTER INTEGER (I3) INTERVAL FOR REPORTS TO BE',
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185
187

O
o
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ENDIF

201

' ISSUED'/9X, '(EVERY XXX ROWS OR COLUMNS)')
READ(15,184) INTRVL
FORMAT(I3)

N=LENGTH/2
IF (COLS .EQ. 0) GO TO 330

FLTCO
DO 24

* Kk Kk Kk Kk Kk Kk Kk Kk k Kk Xk k X X Kk Kk ¥k %k Kk Kk k k *k k %k *k k X % X % % %

MEDIAN FILTER THE COLUMNS (TOP TO BOTTOM ON EACH COLUMN)

k Kk Kk Kk Kk %k kX Kk Kk Kk k Kk Kk k k kX Kk Kk k k k *k *x %k *k %X %X %X %X X %X X *x %

L=20
0 J=1,1IK

k ok Kk Kk k Kk Kk Kk Kk Kk k K Kk Kk Xk k k k Kk Xk k *k *k k k k *x %k %X k * k % %

ASSIGN THE FIRST IMAGE DATA VALUE LINE COORDINATE TO FIRST AND
ASSIGN THE LAST DATA VALUE COCRDINATE TO LAST

* %k k Kk Kk % Kk Kk Kk k Kk Kk Kk Kk K ¥ Kk Kk % k Kk Kk k X *k % k %k ¥ *x % % *x %

DO 185 I =1, IJ
IF (ICHAR(IMAGE(I,J)) .GT. 0) GO TO 187

CONTINUE

FIRST = 1

DATAPT = 0

IF (FIRST .EQ. IJ) THEN
LAST = FIRST

ELSE

DO 190 I = FIRST, IJ
IF (ICHAR(IMAGE(I,J)) .EQ. 0) THEN

LAST =1 -1

GO TO 195
ELSE

DATAPT = DATAPT + 1
ENDIF

CONTINUE

* Kk Kk Kk K Kk %k % Kk Kk Kk Kk k Kk %k k k *k k %k %k %k k *x *x *x %

CHECK TO SEE IF IJ WAS REACHED AND IS THE LAST IMAGE
PIXEL

K K %k Kk X Kk k Kk k Kk k Kk Kk ¥k k k %k k k Xk %k *x Kk *x %k %k %

IF(I-1 .EQ. IJ) LAST = 1J
ENDIF

X K Kk K Kk K k Kk Kk Xk kX k Kk Kk Kk %k Xk Kk %k *k *k %X X k % *k %k % *x %X

DETERMINE IF THERE ARE ENOUGH PIXELS TO FILTER; IF NOT, KEEP
SAME DATA VALUES

~

k ok Xk K Kk Xk Kk Kk Kk X Kk Kk Kk Kk Kk Kk Kk Kk k %k k Xk %k Xk X X %k % % %

IF ((LAST - FIRST) .LT. LENGTH-1) THEN
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DO 197 I = FIRST, LAST
MEDIAN(I,J) = IMAGE(I,J)

197 CONTINUE
WRITE(16,199) DATAPT
199 FORMAT ('COLUMN NOT FILTERED. ONLY ',I6,' IMAGE ',
z '"PIXELS IN COLUMN.')
ELSE
C
C k K K K Kk X Kk k Kk Kk Kk % ¥ % %k % ¥ % k % *x %k *k *x k *x %k %
C
¢ INITIALIZE THE WINDOW (PADDING AT START OF EACH COLUMN)
C
C d ok Kk % K Kk Kk %k Kk Kk X % %k k k %X %X X Kk k k X*x % *x %X %X %k %k
C
DO 200 K= 1, LENGTH
RANK(K)=K
X(K)=FLOAT( ICHAR(IMAGE(FIRST, J)))
200 CONTINUE

DO 210 K=FIRST, N+FIRST-1
IN=FLOAT(ICHAR(IMAGE(K,J)))
CALL RECURS (N,IN,OUT,RANK,X)

210 CONTINUE
E * Kk % Kk K Kk Kk k % Kk Kk k ¥ Kk % %k % X % Kk % *k k *k % * % *
¢
C FILTER A COLUMN
E d ok % Kk %k Kk Kk Kk Kk Kk k Kk k Kk Xk Kk Kk Xk Xk %k X %X *x *k * *k *x %
c
DO 230 K=FIRST, LAST
IF (K .GE. LAST-N) THEN
IN=FLOAT(ICHAR( IMAGE(LAST,J)))
ELSE
IN=FLOAT(ICHAR( IMAGE(K+N,J)))
END IF
CALL RECURS (N,IN,OUT,RANK,X)
MEDIAN(K,J)=CHAR(INT(OUT))"
230 CONTINUE
E * X Kk K K Kk k Kk Kk Kk Kk Kk Kk Kk X % Kk k Kk X% k *k k k % *x *x %
C :
C GIVE A PROGRESS REPORT IF REQUESTED
C
C Kk ok Kk KX Kk K Kk k Kk kX X K K Kk %k X %k %k %k Kk k *k %X *x %X * %k X
C
IF (REPORT .EQ. 1) THEN
FLTCOL = FLTCOL + 1
IF (MOD(FLTCOL,INTRVL) .EQ. 0) THEN
WRITE(16,235) FLTCOL
235 FORMAT(1X,16,1X,'COLUMNS HAVE BEEN FILTERED')
ENDIF
ENDIF
ENDIF
240  CONTINUE
C .
C*************************‘k*********
C

c IF ROWS NOT TO BE FILTERED, SKIP TO WRITING OF FILTERED DATA
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C****************‘k*****‘k********‘k***

IF (ROWS .EQ. 0) GO TO 489

C
C***********************************
C
c READ MEDIAN ARRAY INTO IMAGE ARRAY
C
C***********************************
c
DO 250 I=1,1J
DO 250 J=1,IK
IMAGE(I,J)=MEDIAN(I,J)
250  CONTINUE
C
C**’k****************************‘k***
c
c MEDIAN FILTER THE ROWS (LEFT TO RIGHT ON EACH ROW)
g***********************************
c
330 IF (ROWS .EQ. 0) GO TO 489
FLTROW = 0
DO 450 I=1,1J
E K’ K K K K Kk K Kk Kk Kk Kk ¥y K Kk Kk Kk %k K KX Kk Kk Kk ¥ Kk X k ¥ k X X ¥ %k %
C
C ASSIGN THE FIRST IMAGE DATA VALUE COLUMN COORDINATE TO FIRST AND
C ASSIGN THE LAST IMAGE DATA VALUE COORDINATE TO LAST
E K K K K K Kk K Kk Kk Kk ok % Kk Kk Kk Kk K Kk Kk %k Kk K kX Kk Kk X X *k ¥k % %X *x %
c
DO 340 J = 1, IK
IF (ICHAR(IMAGE(I,J)) .GT. 0) GO TO 343
340 CONTINUE
343 FIRST = J
DATAPT = 0
IF (FIRST .EQ. IK) THEN
LAST = FIRST
ELSE
DO 346 J = FIRST, IK
IF (ICHAR(IMAGE(I,J)) .EQ. 0) THEN
LAST = J - 1
GO TO 348
ELSE
DATAPT = DATAPT + 1
ENDIF
346 CONTINUE
c
C k kK Kk Kk Kk %k K Kk Kk ¥ K Kk Kk Kk Kk Kk K ¥ Kk k %k %k * k %X % %
c
C CHECK TO SEE IF IK WAS REACHED AND IS THE LAST IMAGE
c PIXEL
C .
C X %X Kk Kk Kk Kk Kk Kk Kk Kk Kk KX Kk Kk k k Xk k *k Xk k *k *k k % % %k %
c

IF (J-1 .EQ. IK) LAST = IK
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ENDIF

* %k Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk k k Kk Kk % Kk % % Kk *x %X %k k %X %X % %k % %

DETERMINE IF THERE ARE ENOUGH PIXELS TO FILTER; IF NOT, KEEP
SAME DATA VALUES

% % ok Kk Kk ok Kk K Kk Kk Xk X X k k % %X %k k k k Kk *k X %k k% % %X *X % %

WOOOOOOOO OO

48 IF ((LAST - FIRST) .LT. LENGTH-1) THEN

DO 349 J = FIRST, LAST

MEDIAN(I,J) = IMAGE(I,J)

349 CONTINUE

WRITE(16,360) DATAPT
360 FORMAT ('ROW NOT FILTERED. ONLY ', I6, ' IMAGE PIXELS',
z ' IN ROW.')

ELSE

k K Kk kK Xk K Kk Kk X k Kk Kk Kk Kk k Kk k %k X k Xk k k % % k% % %

INITIALIZE THE WINDOW (PADDING AT START OF EACH ROW)

* k Kk Kk Kk Kk Kk k Kk Kk Kk Kk % Kk Xk X Kk kX k k Kk *k *k k *x %k *x %

OOOOOOOO

DO 380 K=1, LENGTH
RANK(K)=K
X(K)=FLOAT(ICHAR(IMAGE(I, FIRST)))
380 CONTINUE
DO 400 K=FIRST, N+FIRST-1
IN=FLOAT( ICHAR( IMAGE(I,K)))
CALL RECURS (N,IN,OUT,RANK,X)
CONTINUE

o
(o)

* Kk Kk Kk k k Kk %k k Kk Kk Kk Kk Kk X -k k Xk Xk k Xk k k *k *x %k %

FILTER A ROW

K ok K Kk Kk K k Kk Kk Kk Kk %k X Kk k Xk k* %k Kk k * %k %k k * *x %k %

OOOOOOO O N

DO 440 K=FIRST, LAST
IF (K .GE. LAST-N) THEN
IN=FLOAT(ICHAR( IMAGE(I,LAST)))
ELSE
IN=FLOAT( ICHAR( IMAGE(I,K+N)))
END IF
CALL RECURS (N,IN,OUT,RANK,X)
MEDIAN(I,K)=CHAR(INT(OUT))
CONTINUE

S
o

¥ Kk K Kk ok ok Kk Kk Kk k K Kk k Kk Kk Kk Kk Kk k Kk k k %k k X % *x %

GIVE A PROGRESS REPORT IF REQUESTED

X % Kk %k k k% %X k k k %k %k %k % k k %k X %X %k %k %X k% *x % X %k %

OCOOOOOON

IF (REPORT .EQ. 1) THEN
FLTROW = FLTROW + 1
IF (MOD(FLTROW, INTRVL) .EQ. 0) THEN
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WRITE(16,445) FLTROW
FORMAT(1X, I6, 1X, 'ROWS HAVE BEEN FILTERED')
ENDIF
ENDIF
ENDIF
CONTINUE

X k% %k X k Kk k %k k k %k Kk k k k k k %k *k k Kk k kX X ¥k %k Kk *k X ¥ %X k %

WRITE THE MEDIAN IMAGE

* ok ok ok ok ok ok kK Kk Kk Kk % Kk k kX Kk kX Kk Xk %k k Kk kX X kX X k¥ X Xk k% % %k %

OPEN(UNIT=3)

DO 500 I=1,IJ
WRITE(3,FMT=FMTCHR)(MEDIAN(I,J),J=1,1IK)

CONTINUE

CLOSE(3)

STOP

END

RECURSIVE MEDIAN FILTER SUBROUTINE

SUBROUTINE RECURS (N, IN,OUT,RANK,X)
REAL IN,OUT,X(201)
INTEGER N,WW,RG,RANK(201)

SET THE WINDOW WIDTH
WW=2*N+1 '
INCREMENT RANKS AND CALCULATE THE RANK OF THE INCOMING SAMPLE

RO=1
N1=2*N
D0 10 I=1,N1
IF (X(WW) .LT. X(I)) RANK(I)=RANK(I)-1
IF (X(WW) .EQ. X(I) .AND. RANK(WW) .LT. RANK(I)) THEN
RANK(I)=RANK(I)-1
ENDIF
IF (IN .GE. X(I)) THEN
RO=RO+1
ELSE
RANK(I)=RANK(I)+1
END IF
CONTINUE

UPDATE SEQUENCES

D0 15 I=1,N1
X(WW-I+1)=X(WW-1)
RANK(WW-I+1)=RANK(WW-I)

CONTINUE

X(1)=IN
RANK(1)=RO
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FIND THE OUTPUT SAMPLE

DO 20 I=1,WW
IF (RANK(I) .EQ. N+1) OUT=X(I)
CONTINUE

RECURSION - REPLACE THE CENTRAL (TIME) SAMPLE IN THE WINDOW
BY THE MEDIAN

xxkxxFOR A NON-RECURSIVE FILTER, DISCARD THIS SECTION**wxx

RO=1
DO 25 I=1,WW
IF (I .EQ. N+1) GO TO 25
IF (X(N+1) .LT. X(I)) RANK(I)=RANK(I)-1
IF (X(N+1) .EQ. X(I) .AND. RANK(N+1) .LT. RANK(I)) THEN
RANK( T)=RANK(I)-1
ENDIF
IF (OUT .GE. X(I)) THEN
RO=R0+1
ELSE
RANK( I)=RANK(I)+1
ENDIF
CONTINUE

RANK(N+1)=R0
X(N+1)=0UT
RETURN

END




