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1. Introduction

The instantaneous field of view (IFOV) enhancement, developed l"/at LARS

primarily for improving resolution of Landsat imagery, is actually a kind
of image restoration combined with interpolation to give larger pictures
with sharper edges. This type of image restoration differs from other
types Z'/in several aspects: first, it has precision control over the
tradeoff between resolution gain and noise increase; second; its filter
design 1s essentially data-independent, hence only one design is required
for one imaging system; third, it allows shaping of the composite system
function so that sidelobes can be reduced if desired. However, there are
some drawbacks; first, the filter design technique, as used by McGillem

and Riemer [20, 21], involves solving a system of differential equations

by a digital computer and requires substantial amounts of CPU time (in the
order of hours); moreover, the filter obtained has to be truncated to re-
duce size, thus it is only an approximation to the optimal. Second, in the
continuous IFOV enhancement model, interpolation is only an add-on stage to
the restoration filter, there is a strong chance that the restoration filter

is not an optimal match to the interpolator. The present version of the IFOV

* This work was sponsored by the National Science Foundation under Grant ENG-7614400.

1/: Developed by C.D. McGillem and T.E. Riemer, see references {20,217, the
same problem was also studied by Smith [24].

2/t To name some other restoration methods: Wiener filtering [16,17],
constrained minimum mean square estimate [5, 6], and some others,
see references [7, 13, 18, 19].




enhancement filter is a trauncated, re-sampled version of the convolution
of a cubic interpolation filter and a restoration filter using the discrete
Fourier transform technique [22]. There may be some loss of the optimality
which has been purchased so dearly in the design of the restoration filter.
Third, the final operational IFOV enhancement filter has a size of 97 by
129 points which is such that the filter operation cannot take much ad-
vantage of either circular convolution or direct convolution. As a result,
the enhancement requires a substantial amount of CPU time to process a full
frame of Landsat data.

In this report a simplified solution method for the restoration filter
(Stuller, [9, 10, 11]) is described together with still further simplifications
which reduce the computer solution time requirement to the order of seconds.
The restoration filter obtained by this method has certain optimal aspects
which will be described later. Finally, an interpolation-restoration method
that ensures optimality is described. The final optimal enhancement filter
obtained is found to be significantly smaller and to have better performance
than those previously obtained.

2. Design of the Restoration Filter

Figure 1 is a widely used model of image degradation and restoration
which is based on a continuous shift-invariant blurring function b(x) and
a continuous restoration filter p(g), where x is the two-dimensional
coordinate system of the image. Let f£(x) and n(x) be the original image
and the noise introduced by the imaging system, then the blurred image can
be expressed as:

g(x) = /. b(x-wf(w)du + n(x) = b (x) *f (x)+n (x) 1)

where * denotes the convolution of two functions and also the integration

is understood to be over the entire two-dimensional space.
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The restored image f(x) is given by:

£(0) =S plx-wg(wdu = p(x) (b *E () + p(x)*n(x) (2)

c(@* @) + n_(x)
where c(x) = b(x)*p(x) is the composite point spread function of the overall
degradation and restoration system and no(§)=p(§9*n(§) is the output
noise whose power is usually greater than the power of the original noise
n(x).

By resolution improvement, what is generally meant is that the width
of the composite point spread function c(x) is narrower than the width
of the blurring function. However, there is no unique solution for the
restoration filter p(x) unless we express the 'width' of a function in
a quantitative manner. There are several commonly used quantitative
measures of duration, concentration or width of a function. One of these
which is simple to use is the radius of gyration (Smith, [24]), Rc, of a

function c(x), defined as follows:

© 2 2
2 _ I x|l ¢ ®dx
c

R

17 c2()dx (3)

where Ilgll is the distance function of point x from the origin.

In carrying our resolution improvement, it is generally necessary to
restrict the amount of output noise so that the restored picture will not
be dominated by noise. Mathematically, this is accomplished by restricting

the output noise power to be less than some specified level 0?:
2 2
E_}g{no x)}<o (%)
We can state the entire restoration problem in mathematical terms as

follows:

Find a function p(x) which minimizes the quantity




- 2

2 x| DbG*E)] dx

R = " 7 (5)
S b@*p(x)] dx

Subject to the output noise constraint:

E {[P@*®]?} < o? (6)
The s;iution can be found through use of Lagrange multipliers and the
theory of operators. Briefly the procedure to obtain a solution is as
follows:

First form the functional

L= /] 1zl |26 *p () 12dx - ML) (b0 *p(x)]2 dx
+ 22 E {[px)*n(x)]?%} )]
If the noise is statiZAary, the last term of (7) can be expressed in
terms of the autocorrelation function of the noise Rnn(l):
b B @] )} = %2 /2 L p@p® R (wy) dudy (®
Now set the gradient of L with respect to p(x) equal to zero and solve
for p(x). Using the technique of variational calculus described by Franks

{23], the resulting expression is:

ALofo, b(u=x)b(u-v)p(v)dudy \

= £:£:]IEJIzb(gfg)b(g:g)p(g)dEQZ.+ X2£:Rnn(§fg)P(g)dg 9)
Since the bluring function b(x) is known, the restoration filter p(x)
can be found by solving (9). The solution technique used by Smith and
McGillem and Riemer involves taking the Fourier transform of both sides
of (9), this leads to a second order differential equation with complex
variables which must, in general, be solved by numerical methods which
are to some degree approximations. An alternate and much simpler approach
is to assume that the restoration filter p(x) is discrete, then (9) becomes

a matrix equation whose solution can be computed by readily available




computer subroutines. This procedure is described in the next section.

3. Simplified Solution Method

The simplified solution method was described by Stuller [9, 10, 111.
The main idea is to reduce the admissible solution set to a smaller subspace.
Instead of allowing the solution p(x) to be any function, only discrete
filters are permitted. It is easier to illustrate this in the one dimen-

sional case. Consider a one dimensional discrete restoration filter

n

p(t) = Z pié(t—ti), where the pi's are the 2n+l coefficients of the
i=-n

discrete filter and the t,'s are the time shifts to space the points of

i
the filter. Now, the minimization problem which was stated in (5) and

(6) becomes:

Determine the 2n+l coefficients p_n,...,po,.,,,p
which minimize the quantity:

o 2 n 2
It [b(e)* T piG(t—ti)] dt
i=-n
R = (10)

Y n 2
L Ib(e)* i_n p; 8(t-t )] dt

subject to the noise constraint

O s 2 o 2
E{[n(t) E—n Py (t—ti)] }—o (1)
n n
With c(t) = b(t)*[z p,6(t-t,)] = I p,b(t-t,), the numerator of the
oo 1 N 1

expression in (10) can be rewritten as:

w 20D n
Ltz pib(t—ti)][Z pjb(t—tj)]dt
=-n j=-n
n n o 2
=z I pyp.S t b(t-t )b(t-t )dt
i=-n j=-n 1°3 1 i

= T
P Ap (12)




where the elements of A are given by

o 2
aij =/ t b(t-ti)b(t—tj)dt, i,j = -n,...,0,...,n (13)
Similarly for the denominator
o B n T
[z pb(e-t )]z p.b(t-t )]dt = p Bp (14)
—-oo.=_n i i j=—n 3] j

where the elements of B are given by

bij = iwb(t"ti) b(t—tj)dt, i,j=-n,...,0,...,n (15)

The left hand side of the noise constraint becomes:

2 n n
E{no(t)} = E{gz_npin(t—ti)]gz_n pjn(t—tj)]}

T
where the elements of N are

n,, = E{n(t-—ti)n(t-—tj)}, i,j=-n,...,0,...n a7

i3

The matrix N is the autocorrelation matrix of the noise.

The optimization problem can now be expressed as follows:

Minimize

R = plap/p"Bp (18)
subject to the constraint

2 S o (19)

At this point, one may notice that the indices of these matrices and
vectors run from -n to n. Also, from c(t) = b(t)*p(t), we have

T o 2 2
PAp =/ tec (t)dt (20)

Since t? is always positive and c2(t) is always non-negative, it follows
that B?AR > o and B?éR = o0 only when c(t) = o, thus matrix A is positive-definite.
A similar argument can be applied to B, and N, being an autocorrelation

matrix, also has this property. Further, by examining aij and bij’ it is

seen that aij = aji = a—i,—j = a—j,—i and similarly for bij' Thus, A




and B are persymmetric matrices, i.e., they are matrices that are symmetric
about each diagonal.

The denominator of (18) corresponds to the energy of the composite
system function as can be seen from (10). Thus it is essentially a gain
factor and does not alter the shape of the response function. By setting
this quantity equal to unity the optimization problem can be restated
as follows.

Minimize

2 T
R =pAp (21)

subject to constraints

plBp = 1 (22)

pNp = o2 (23)
A problem of this kind may be solved using Lagrange multipliers.

However, it is necessary that the set

T
{p: h, = p'Bp, hy = p'Bp} (24)
satisfy so-called regularity conditions [25]. To do so, it is sufficient
that the gradients Zhi and 222 are independent. To check this, we impose a
1

condition that o is not equal to any of the eigenvalues of B N. Now

suppose that ygl = 2Bp and Vh, = 2Np are dependent. Then there exists a

constant y such that

2 Bp = 2Np
=1
or yp =B Np - (25)
=1
This means that y is an eigenvalue of B N but

T T
o> =pNp=pyBR=Y
2 -
which says that ¢ is an eigenvalue of §_¥§ and thus contradicts the

original assumption, hence the gradients Vh, and Vh, are independent.




The condition that o? is not an eigenvalue of gflg_does not represent
a severe restriction. Since B and N are positive-definite matrices, the
eigenvalues are positive and distinct. If it should happen that the
desired noise level 02 is an eigenvalue of §f¥§ a small change in 0? will
correct the situation.

The solution of the minimization problem is obtained by forming the
augmented functional

F=pap - A1(p Bp-1) + Ap(p Np-0?) (26)
where A and ), are Lagrange multipliers which are constants to be
determined as part of the solution. The extreme value of.(26) is now

found by setting the gradient equal to zero and solving for p.

VF = 2Ap-2); Bp + 2o Np =0 @27
\1Bp = (A + 22 N)p (28)
or
-1 -1
Mp = (B A+ 2B "N)p (29)

the constraints are
T

pBp=1 (30)

piNp = o2 (31)
To find the restoration filter (28), (30) and (31) must be solved
simultaneously for p, A} and A;. This is done by assuming a value for
Ao and solving (28) for its eigenvalues. The smallest eigenvalue corresponds
to the correct solution for A; as can be seen by multiplying (28) by E?

and substituting the values of the constraints.

T T T
AMp Bp = p Ap + Aop Np

i.e.,

R = )\1 - )\20’ (32)
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For any given A; and 02 the smallest radius of gyration corresponds to
the smallest A;. The solution for p obtained from the assumed XA, is
substituted into (30) and (31) to see if they are satisfied. If not a
new value of A, is chosen and a new p computed. This is repeated until
a solution is obtained that simultaneously satisfies all of the equations.
The following algorithm is a summary of this:

Alg. 1: To compute a restoration filter by the simplified method

1. Make an initial guess of a value of the scalar Ay, say iy =1

2. Compute eigenvectors p and eigenvalues X; from A\1Bp = (A + A,N)p

3. Choose the smallest eigenvalue and its eigenvector p

4. Compute the quantity c2 = B?ER

5. Divide p by c (now p satisfies (30))

2
6. Compute the quantity s2 = 2?HR° Check if |s2 -0c | < acceptable

2

2
error, stop if yes; otherwise decrease Ay if s > ¢ , or increase

2

is 52 < 0% , go to step 2.

4. Technique to Reduce Computation

Since the matrices A, B and N are persymmetric, it can be shown that
the solution vector p is either symmetric or skewsymmetric [12]. The
order of these matrices is 2n+l which is odd and the eigenvector p
corresponding to minimum radius of gyration is symmetric; that is, the
coefficients p—i=pi for all 1 = 1,2,...,n, and therefore theré are only
n+l unknowns. Intuitively, it should be possible to solve for these
unknowns from matrices of order n+l only, and, if so, round-off error and
computer time will be significantly reduced. This may be accomplished by
deriving matrices U, V and S of order nt+l corresponding to A, B and N

as described below. Starting with p_i=pi, let us rewrite the restoration




11

filter p(t) as:

n n
p(t) = p,8(t-t) =p + z py[8(t-t,) + 8(t+e,)] (33)
i=-n i=1
Thus
n
b(t)*p(t) = p b(t) + £ p_ [b(t-t ) + b(t+t,)] (34)
o] i=1 i i i
= poao(t) + plal(t) + ...+ pnan(t) (35)
where
b(t), 1 =0
ai(t) = {
b(t-ti) + b(t+ti), i=1,2,...,n (36)
T
Now define a vector r = [po, pl,...,pn] (37)
Then the numerator the expression of the radius of gyration in (10)
may be rewritten as:
- n
S t2[b(t)* £ p, 8(t-t,)]%dt
~-c0 _ i i
i=-n
- 5 n n
= S2t2[ 2 pya (][ £ pa, (t)]de
=0 117 =0 33
n n o
= I Ipp, {mtzui(t)a (t)dt
1=0 j=0 * J ]
- r'ur (38)
where the elements of U are given by
(=]
Uij = Latzai(t)aj(t)dt, i,j = 0,1,...,n (39)
LAy oo 1f 1=3=0
| ao,—j+ao,j’ if i=0 and j#0
a—i,o+ai,o’ if j=0 and i#0 (40)

| a1,-1%21, 5721,
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Similarly, the denominator of (10) may be rewritten as:

n
[ob(0)* T p 8(t-t)1%dt = £'ve 1)
=-n

where the elements of V are given by

vij = &ai(t)aj(t)dt, i,j =0,2,...,n (42)
b, if i=j=o
0,0
_ by,-10p, 3> 1f 1=0 and 3#0
b_y o*by o» if 3=0 and 10 (43)

bi,-j+b-i,j+bi,-j+bij’ otherwise

The left hand side of the noise constraint may be rewritten in an analogous

fashion as:

n n
E{n_(©)} = E{[iiopini(t)][jio pjnj(t)]}
- r'sc (44)
n(t), i=0
where ni(t) = {
n(t-ti) + n(t+ti), i=1,2,...,n (45)

and the elements of § are given by

si5 = E{ni(t)nj(t)} (46)
( ng o» if i=3=0
no,—j+no,j’ if 1=0 and j#0 @)
= < n_y oty o 1 =0 and 140

n .t ., .4 .tm,., otherwi
k i,-j -i,j i,-j ij’ se




13

A straight-forward application of the Lagrange multiplier method will show that

the optimum vector r satisfies:

n¥e = @+, Or (48)
rvr = 1 (49)
E?Sr = o2 (50)

The matrices U, V and S are of order (n+l) only, so computatiom is
significantly reduced. It should be noted that the last three equations
are analogous to equations (28), (30), (31), thus the solution r may be
computed by the same algorithm as given by Alg. 1. By expanding the
n+l elements of vector r to 2n+l elements, the restoration filter p is
then obtained.

5. Discussion of the Simplified Solution Method

If the restoration filter has a short duration, then filtering of a
large picture can be efficiently performed by direct convolutionl/. One
of the goals in the original McGillem and Riemer filter design was to
concentrate the restoration filter near the origin so that a short truncated
version of it could be used for filtering to reduce edge effects as well
as reduce computation time. This was achieved by introducing an extra
constraint on the width of the filter. The price of doing this was added
difficulty of solving the system of differential equations and only reduced
but not eliminated the filter amplitude away from the origin. The simplified
method described above permits arbitrary selection of the filter's length
and the solution is still guaranteed to be optimal for that length of the
restoration filter. This optimality property provides an optimal but

simple means of achieving the desired goal. Furthermore, the size of the

1l/: TFiltering of large pictures, e.g., 2048 by 2048 pixels, will be easier
by direct convolution if the filter is small. Circular convolution via
the fast Fourier transform is difficult because the 2-dimensional
picture has too much data to reside in the memory of an ordinary computer.
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the matrices depends on the length of the filter, so no CPU time is wasted
to compute some points of the filter which are eventually to be discarded.
This is part of the reason that this method takes much less CPU time to
carry out the design.

The discrete restoration filter is a more realistic model for image
degradation and restoration for certain applications than is the continuous
representation. Figure 2 shows an imaging system similar to that of Landsat.
In this system the optics degrades the original picture it takes, and a
quantizer introduces noise while it converts the analog or continuous
picture to a digital picture. The resulting output image is sampled and
quantized and has additive noise. The restoration filter operates on the
discrete image. For such a situation the discrete restoration filter is
more suitable than the continuous filter.

Another advantage of the simplified procedure is that it can be readily
extended to the completely discrete image degration and restoration model,
as shown in Figure 3. Such a model has an advantage of not requiring knowledge
of the functional form of the blurring function, only the tabulated values are
required. This is especially suitable for imaging systems whose blurring
function is not exactly known, but can be determined empirically by other
image processing techniques.

The simplified method gives solutions for restoration filters very similar
to those obtained by solving the differential equations. A one-dimensional
continuous guassian blurring function of radius of gyration 5 (standard
deviation is 7.071) is chosen to illustrate this similarity. Curve 1 of

Figure 4 (a) is the restoration filter obtained by solving the differential
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- (a) Restoration filters designed for a guassian blurring function
with a radius of gyration of 5. Curve 1 is the continuous
restoration filter obtained by solving the differential equation,
curve 2 is the discrete restoration filter obtained by the
simplified solution method.
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(b) Composite system functions for the restoration filters in (a).
Curve 1 is the guassian blurring function, curve 2 corresponds
to that obtained by solving the differential equations, curve
3 to that computed by simplified solution method.

Fig. 4: Comparison of restoration filters and their corresponding
composite system functions obtained by various method of solution.
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equation (McGillem and Riemer, Figure 4.79, p.l11, reference [21]), this filter
has a full length of 129 points, but if a 1% truncation threshold level is
used, its length can be reduced to 33 points. The composite system function
corresponding to this filter is curve 2 of Figure 4(b). The stated radius
of gyration of this filter is 3.55 giving a ratio of 3.55/5=70.1% that of
the original blurring function. Curve 2 of Figure 4(a) is a similar (in
the sense that it has about the same noise increase) restoration filter
obtained by the simplified method. The length of this filter is chosen to
be 21 points so that it is shorter than the other filter. The composite
system function corresponding to this filter is curve 3 of Figure 4(b).
This filter bas a radius of gyration of 3.25 giving a ratio of
3.25/5=65%. The shape of the simplified discrete filter is similar to that
of curve 2 and both of them have noticeable sidelobes.

Table 1 is a tabulation of CPU time required to compute some discrete
restoration filters using the simplified method. The time requirement
depends ( quadratically ) on the length of the filter. It should be
noted that the CPU time requirements is reduced 3 times if the filter is computed
from the smaller matrices U, V and S. The saving becomes more noticeable
for large filters. However, as mentioned before, the CPU time requirement
is generally only in the order of seconds.

6. An Optimal Interpolation-Restoration Processor for IFOV Enhancement

Figure 5 is the schematic diagram of the IFOV enhancement for a
cne-dimensional signal. The reason for treating the two-dimensional
pictorial data as one-dimensional signals is that the single dimension case
is much easier to deal with both in the filter design and in the filtering

operation. The front part of this model is a typical digital image-gathering




Length of
Restoration
Filter

Table 1: Time requirement for computing various filters using the simplified method on
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system: - an imaging degrading or blurring function, followed by a sampler

to convert the analog image signal to digital data and thus add quantization
noise to the signal. The middle part is an interpolation operation that
computes intermediate data points to provide an enlarging effect. An
interpolation scheme such as cubic interpolation can be regarded as con-
volution of zero-augmented data and an interpolating pulse [26]. Figure 6(a)
is an illustration of cubic interpolation with a magnification factor of 4.
The interpolating pulse is given by [26]:

h = (0,~5,-8,-7,0,35,72,105,128,105,72,35,0,-7,-1,=5) /128 (51)
Figure 6(b) is a plot of h with equal sampling intervals.

The heart of the enhancement processor is a restoration filter which
will depend up on both the blurring function and the interpolating pulse.
In order to have an optimal restoration effect, the restoration filter must
be designed taking into consideration the kind of interpolation that is to
be employed; however, the model as shown in Figure 5 does not fit into one
of the standard image degradation-restoration models (Figures 1,2,3) unless
the blurring function is convolved with the interpolating pulse to produce
an equivalent blurring function. Since sampling and zero-augmentation are
involved, the discrete model of Figure 3 is preferrable. Let the vector
b denote the sampled version of fhe blurring function b(t), i.e., each
element of b is bi=b(ti) where ti is the sampling instant (do not confuse
b, with bij in (15) which is an element of the square matrix B), and let

i

the chosen magnification factor be M. The zero-augmented sequence is given
by

b, = (..., b

b, _1205+++50,b_,0,...,0,b

1,0,...,0,.}..) (52)
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Fig. 6(a): An interpolation may be regarded as convolution
of the zero-augmented data and an interpolating
pulse which characterizes the type of interpolation.
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Fig. 6(b): An example of the cubic interpolating pulses. The
shown pulse has a magnification factor of 4.
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with M-1 zeros between each element bi of vector b. Now the equivalent
blurring function ge can be formed as:

=D, ™ (53)

Such a convolution will also be denoted by

b, =b (54)

*
ek Ak hk

with k regarded as a discrete variable.

The equivalent noise Ee can be similarly formed by zero-augmentating
the noise sequence n and then convolving with the interpolating pulse:

= *

n, = n,"h (55)

With these equivalent functions, the enhancement model fits into the
discrete-discrete degradation-restoration model as shown in Figure 7.
What is now required is to compute the square matrices A,B, and N (we call
these A , B and N hereafter). These matrices are defined in terms of the

—e’ —e —e

continuous functions in (13), (15) and (17), but with a slightly modified

derivation. The discrete counterparts can be found as follows:

© 2
Bty TE-alBE) by 3Pe e gyBt (56)
Pty Tik-oPe(l-1)Pek=1)"" (57)
Rety = Eille(km1)"e(lm3)’ (58)

where b and n , denote each element of the vectors b and n_, and a_,_.,
ei ei —e i <] eij

b ,., and n are the elements of matrices A, B, and N .
eij —e’ —e —e

eij

\
The last equation can be converted into a more useful form as follows.

Since nek=nAk*hk’ and h has 2L+l elements, it is possible to rewrite this as




equivalent restoration A
f(tx)— blurring —— filter —f(ty)
function o) enhanced
be=bp*h data
interpolating equivalent
pulse noise
h Ne=n*h
A
zero-
augmentation

Fig. 7: An equivalent model of Fig. 5.
for designing the restoration filter of the optimal
IFOV enhancement processor.

recorded
data ——

zero-
augmentation —

quantization noise n

This model is suitable

g(tk)

enhancement enhanced
filter —— data
Pe =h*p f(ty;)

Fig. 8: Schematic diagram of the optimal IFOV enhancement

processing.
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o~

n = n h
ek 1. =L A(k—ll) 11 (59)

[

Substituting this into eq. (55), gives

i

n  =E{( & )}

. n.. . o h )
eij k 11— L A(k-i 11) 11

4

n . h
9 -L A(k—]—lz) 12

(60)

L
b3 E {n n . }h, h
1 k A(k—i-ll) A(k—]-lz) 11 l2

The left hand side can be easily evaluated if it can be determined what

the value the expectation will be at shifts m1=i+1l and m2=j+12. If the

magnification factor M is greater than one, at least some zeros are augmented

and some shifts will yield an expectation value of zero except when m, —m,

is a multiple of M. The expectation can therefore be written as:

B MAkmy) PACk-m,)’

={ Ek{nk—ml/Mnk—mz/M} £ (my=m) ) /M=0,41,42, ...

(61)

0 otherwise

For many kinds of noise the stationarity assumption is valid, i.e.,

By %m0 T B NN om Y (62)
1 2 2 1
For this case, (61) becomes
Ek{nA(k—i—ll) nA(k—j-ll)}
E {nknk—(m2~ml)/M} if (mz—ml)/M =0, +1, +2,... (63)
= {
0 otherwise
If the original noise n, is white, then Ek{nknk_ } is zero

(mz—ml)/M

except when m1=m2, i.e., 11=12+i—j, and eqt (58) can be simplified to
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L

ety T No/D T By By ) (64)

where No/2 is the noise level.

Fortunately the set up of these matrices can be programmed as an
algorithm for any given blurring function in tabulated form and any given
interpolative pulse with any given magnification factor. The restoration
filter p can be computed easily as outlined in Sections 4 and 5.

Once the restoration filter p is obtained, it can be combined (by
convolution) with the interpolating.pulse to yield the enhancement filter
2.

p, = b*p (65)

There is no need to interpolate the data first and then restore
afterwards. Such a filter is optimal with respect to the minimum radius of
gyration criterion and the selected interpolation scheme. The size of this
filter can be controlled by carefully considering size reduction as a
tradeoff with increased radius of gyration. Figure 8 is the schematic
diagram of the enhancement processor and Figure 9 is an illustration of
the design of an enhancement filter.

7. Preliminary Enhancement Experiements with Landsat Images

In these experiments, the ratio of radius of gyration of the composite
system function to the radius of gyration of the blurring function is used
as a performance indicator. The smaller such a ratio, the better is the
resolution improvement. In the absence of the noise constraint, most
one-dimensional filters have a ratio of about 0.5, however if output noise
has to be restricted, most ratios are roughly 0.6-0.75. Even with a ratio
of 0.707 for each dimension, the two-dimensional resolution element is

reduced to 0.5 of its original size, and the improvement will be very
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(a)

(b)

(c)

(e)

A discrete version of the continuous
gaussian blurring function
having a radius of gyration of 0.4166.

3-X cubic-interpolated version of the
discrete guassian blurring function,
formed by heshA*h. It has a radius of

gyration of 0,4918.

A 21-point restoration filter p
designed optimally for b in (b),
noise increase is restricted to
22 d3s.

The enhancement filter p , formed
e
by p =p*h.

The composite system function ¢ of
the entire blurring and enhancement
system, formed by g;heﬁp. It has a

radius of gyration of 0.312, a
performance ratio of 637%.

Fig. 9: An example of the design of an optimal IFOV enhancement

processor.
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noticeable. The continuous IFOV enhancement filter was stated to have a
ratio of 0.5 (two dimension). Its performance on a selected area near
O'Hare Airport of Chicago is shown in Figure 10(c). It is seen that there
is a clearly noticeable resolution improvement over the corresponding
cubic interpolated picture (Figure 10(b)).

Using the optimal method described above, two enhancement filters were
designed. The first filter had a two-dimensional performance ratio of 0.65
with about a 17 dB noise increase. This filter had a size of 31 by 35
points, only about 8.7%Z of the size of the continuous IFOV enhancement
filter (97 by 129). Its performance on the same area is shown in
Figure 10(d). By looking at the highways around the airport, it appears
that its quality is slightly better than Figure 10(c).

The second filter that was tested had a two-dimensional performance
ratlio of 0.45, a noise increase roughly 22 dB and had a size of 31 by 35
points. As shown in Figure 10(e), the resolution improvement is more
evident and there are as well as some undesirable effects of noise.

It may be concluded from these tests that the new enhancement filter
possesses equal or better performance than the continuous model but has much

smaller size. This will reduce filtering cost substantially.
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Fig. 10(a): The O'hare Airport, Chicago. Landsat imagery, LARS
run no. 73033500, line 1001-1200, col 901-1100, channel 2.

Fig. 10(b): 3x4 cubic interpolation of Fig. 10(a).
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%

Fig. 10(d): An optimal IFOV enhancement of Fig. 10(a) using a restoration
filter with a performance ratio of 0.65 and noise increase
of 17 dB. :
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Fig. 10(e): An optimal IFOV enhancement of Fig. 10(a) using a
restoration filter with a performance ratio of 0.45
and noise increase of 22 dB.




10.

11.

12.

30

REFERENCES

D.L. Phillips, "A Technique for the Numerical Solution of Certain In-
tegral Equations of the First Kind", J. ACM, Volume 9, 1962, pp. 84-
97.

S. Twomey, ''On the Numerical Solution of Fredholm Integral Equation of
First Kind by the Inversion of the Linear Systems Produced by Quadra-
ture". J. ACM, Volume 10, 1963, pp. 97-101.

S. Twomey, "The Application of Numerical Filtering to the Solution of
Integral Equations Encumbered in Indirect Sensing Measurements", J.
Franklin Inst., Volume 279, 1965, pp. 95-109.

B.R. Hunt, "A Matrix Theory Proof of the Discrete Convolution Theorem',
IFEE Transactions Audio and Electroacoustics, Volume AV-19, 1971, pp.

285-288.

B.R. Hunt, '"Deconvolution of Linear System by Constrained Regression
and Its Relationship to the Wierner Theory', IEEE Transactions Autom.
Control, 1972, pp. 703-705.

B.R. Hunt, "The Application of Constrained Least Squares Estimation to
Image Restoration by Digital Computer" IEEE Trans. Computers, Volume
c-22, 1973, pp. 805-812.

B.R. Hunt, "Digital Image Processing', IEEE Proceedings, Volume 63,
No. 4, April 1975, pp. 693-708.

T.S. Huang, W.F. Schreiber, and 0.J. Tretiak, 'Image Processing",
IEEE Proceedings, Volume 59, No. 11, November 1971, pp. 1586-1609.

J.A. Stuller, "An Algebraic Approach to Image Restoration Filter De-
sign", Computer Graphics and Image Processing, Volume I, No. 2,
1972, pp. 107-122,

J.A. Stuller, "Linear Resolution Enhancement", Computer Graphics and
Image Processing, Volume 5, pp. 291-318.

R.J. Arguello, H. R. Sellner, and J.A. Stuller, "Transfer Function
Compension of Sampled Imagery", IEEE Transactions on Computers, July
1972, 1976, pp. 812-818.

A. Cantoni and P. Butler, "Eigenvalues and Eigenvectors of Symmetric
Centrosymmetric Matrices", Linear Algebra and its Applications, Volume
13, March 1976, pp. 275-287.




13.
14.
15,
16.

17.

18.
19.
20.
21.

22.

23.

24.

25,

26.

31

H.C. Andrews, '"Digital Image Restoratiom: A Survey'", IEEE Computer,
Volume 7, No. 5, May 1974, pp. 36-45.

J.L. Harris, Sr., "Image Evaluation and Restoration, J. Opt. Soc.
America, Volume 56, May 1974, pp. 569-574.

C.W. Helstrom, "'Image Restoration by the Method of Least Squares",
J. Opt. Soc. America, Volume 57, March 1967, pp. 297-303.

W.K. Pratt, "Generalized Wiener Filter Computation Techniques', IEEE
Transactions on Computers, July 1972, pp. 636-641.

F. Daverian, Fast Computational Technique for Pseudo-inverse and
Wiermer Image Restoration, Ph.D. Thesis USCIPI report 610, August
1975.

H.S. Hou, Least Squares Image Restoration using Spline Interpolation,
Ph.D. Thesis, USCIPI report 650, February 1976.

M.J. Peyrovian, Image Restoration by Spline Functions, USCIPI report
680, August 1976.

T.E. Riemer and C.D. McGillem, "Constrained Optimization of Image
Restoration Filters", Applied Optics, 12, 1973, pp. 2027-2029.

T.E. Riemer and C.D. McGillem, Optimum Constrained Image Restoration
Filters, LARS Information Note 091974, 1974.

C.D. McGillem, T.E. Riemer, G. B. Mobasseri, "Resolution Enhancement
of ERTS Imagery', Proceedings of Symposium on Machine Processing of
Remotely Sensed Data, LARS, Purdue University, IEEE Catalog Number
75CH 1009-0-C, June 1975, pp. 3A~27.

L.E. Franks, Signal Theory, Prentice-Hall, 1969.

H.A. Smith, "Improvements of the Resolution of a Linear Scanning De-
vice", SIAM Journal on Applied Math, Vol. 14, No. 1, January 1966,
pp. 23-40. ‘

M.R. Hestenes, Optimization Theory: The Finite Dimensional Case, New
York: Wiley, 1975.

C.D. McGillem, Interpolation of ERTS-1 Multispectral Scanner Data,
LARS Information Note 022175, 1975.




