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SOIL MAP UNIT COMPOSITION ASSESSMENT
BY DIGITAL ANALYSIS OF LANDSAT DATA1

F. R. Kirschner, S. A. Kaminsky, R. A. Weismiller
H. R. Sinclair and E. J. Hinzel2

ABSTRACT

Soil survey map units are designed such that the dominant soil represents
the major proportion of the unit. At times, soil mapping delineations do
not adequately represent conditions as stated in the map unit descriptions.
Digital analysis of Landsat multispectral scanner (MSS) data provides a means
of accurately describing and quantifying soil map unit composition.

Digital analysis of Landsat MSS data collected on June 9, 1973 was used to
srepare a spectral soll map for a 430-hectare area in Clinton County, Indiana.
Sixteen spectral classes were defined, representing 12 soil and 4 vegetation
classes. The 12 soil classes were grouped intc 4 drainage classes based upon
their spectral responses; the 4 vegetation classes were grouped into one all-
inclusive vegetation class.

The spectral soll map produced using these groupings was compared to a
conventionally prepared soil map. Three map units were investigated 1in detail:
a) Mahalasville silty clay loam, b) Reesville silt loam, 0 to 2 percent slopes,
and ¢) Xenia silt loam, 2 to 6 percent slopes, eroded.

Results show that the percentage of soil map unit inclusions can be readily
ascertained according to their soil drainage characteristics and that soil
complexes can be easily quantified. Thus, the composition of s0il map units can
be accurately determined.

“This work was accomplished under the National Aeronautics and Space Administration,
Office of University Affairs, Grant No. NCL~-15-005-186. Journal Paper No. 6690,
Purdue University, Agricultural Experiment Statiom.

ZSoil Scientist USDA/Soil Comservation Service, Graduate Research Assistant, and
Research Agronomist, Agronomy Department, Laboratory for Applications of Remote
Sensing, Purdue University, West Lafayette, Indiana; State Soil Scientist,
Indiana, USDA/Soil Conservation Service, Indianapolis, Indiana; Graduate Research
Assistant, Agronomy Department, Laboratory for Applications of Remote Sensing,
Purdue University, West Lafayette, Indiana, respectively.



INTRODUCTION

Soil maps deplct soil conditions in a particular landscape with varying
degrees of precision depending primarily upon the type of survey conducted,
and the ability of the soil scientist to analyze the landscape and identify
the components of the map unlts delineated. Due to the subjective nature of
soil surveys and the vast areas of land involved, it is often difficult to
evaluate the accuracy of the soll surveys. Currently, field wethods such as
spot checking and line and point intercept transects are used to evaluate the
composition of map units (9). Various studles (1,6,8) to determine map unit
composition suggest that many delineations do not adequately represent conditions
as stated in the map unit descriptions. Also, many separations on a soil map
often actually represent soil complexes rather than taxonomic units with minor
inclusions.

A study was undertaken to determine the feasibility of using digital
analysis of Landsat multispectral scanner (MSS) data as a means of accurately
describing and quantifying soil map unit composition. This paper examines
three distinctly different soil map units, comparing thelr compositions as
described by conventional field mapping techniques and digital analysis of
Landsat MSS data.

STUDY SITE

A 430 hectare tract located in Clinton County, Tndiana (Sections 3, 4, 9,
and 10 of T20N, R2W) was selected as the study site. Soils in this area are
formed in glacial loess which was deposited over till, derived from the late
Wisconsin glaciation, and localized lacustrine deposits. The slope of the
surface topography ranges from 0-6 percent, but commonly is less than 2 percent.

Within the 430 hectare area, 112 hectares comprising three major mapping
units, were selected for intensive investigation. However, the entire study site was
analyzed in order to provide sufficient data points to statistically represent
the spectral variability of the scene. The three map units selected for de-
tailed analysis were: a) Mahalasville silty clay loam, occurring omn nearly
level or slightly depressed lake plains formed in calcareous stratified silts
and sands; b) Xenia silt loam, 2 to 6 percent slopes, eroded, found on moraines
and till plains of nearly level to gently sloping topography and formed in
moderately thick loess deposits over calcareous loam till; and c) Reesville
silt loam, O to 2 percent slopes, formed in loess on nearly level topography.

DATA

Landsat-1 MSS data collected on June 9, 1973 were used as the main data
source for this study. This scene was gselected because the data were: a) of
high quality, b) acquired when most row crop cropland was in a bare soil
state and c) free of interfering atmospheric and surface conditions (i.e.,
clouds, haze and standing water, although Clinton County had received approxi-
mately 2.90 inches of precipitation in the week prior to the Landsat overpass) .



The Landsat MSS data were geometrically corrected (i.e., rotated, deskewed
and rescaled) (2), and registered to ground control points selected from U.S.
GCeological Survey 7% minute topographic quadrangle maps. These procedures
produced a data set of a scale of 1:20,000 with points in the data registered
to their exact ground position. A soil map of the study site had previously been
prepared by soil scientists of the USDA/Soil Conservation Service (SCS) as an
ongoing progressive survey in cooperation with the Purdue Agricultural Experiment
Station. The aerial photography and field mapping sheets used by the USDA/SCS
personnel were also at a scale of 1:20,000, allowing for convenient comparisons
between the conventionally and computer prepared soil maps.

PROCEDURES

Landsat MSS data covering the study area were analyzed by a computer-imple-
mented analysis package, LARSYS (7). Initially a clustering algorithm was
used to arbitrarily divide the MSS data into groups of sample points of similar
spectral characteristics by calculating the Euclidean distances between each
sample and cluster class center and assigning each sample to the class with
the minimum distance. After the initial clusters were formed from all data
points, new cluster class centers were developed by considering the mean of
each cluster. The process continued until the cluster centers did not change
from one iteration to the mnext (3). Statistics consisting of the mean relative
reflectance values and covariance matrices for each cluster grouping were
determined and used in calculating the class divergences (a measure of the
dissimilarity of two distributions) (4,5). A more reliable criterion for
determining dissimilarity between distributions, termed transform divergence
(D)

Dy = 2[1 - exp (-D/8)],

where D is the original divergence, was actually used in this analysis (10).
Based on results obtained from the transformed divergence, cluster groupings
could either be deleted, retained, or combined based upon their statistical
separability characteristics.

The clustering procedure indicated that there were 16 spectrally separable
classes within the study area. A ratio A = V/IR,* calculated for each spectral
class, was used to identify 12 soil and 4 vegetation classes within the 16
spectral classes.

The mean and covariance statistics developed for each of the 16 classes
were used by computer—implemented pattern recognition techniques and a maximnum
likelihood Gaussian classifier (10) to assign each of the data points to one
of the 16 spectrally separable classes. These classes were later grouped into
four major soil classes and one all-inclusive vegetation class. Each major

*V is the relative intensity of the mean spectral responses of the visible wave-—
lengths [(0.5 to 0.6um) + (0.6 to 0.7um)] and IR is the relative intensity of the
mean spectral response of the reflective infrared wavelengths [(0.7 to 0.8um) +
(0.8 to l.1lum)].



soil class was assigned to one of four drainage classes based upon the range
of their total reflectances (i.e., the sum of the relative reflectance values
from all four Landsat bands, Table 1). These groupings were verified by de-
tailed field checking.

Mean reflectance values were calculated and plotted (Figure 1) for the
major soil classes and vegetation. The separability of these grouped spectral
classes is evident; however, the vegetation class does add some confusion to class
distinctiveness. A one~way analysis of variance was performed on the mean re-
flectance values for each major class and showed significant differences for
all groupings in all four channels. The Newman-Keuls multiple range test was
used to indicate where these signitficant differences exist (Table 2). However,
non-significant differences appeared between the vegetation and soil classes.
Individual channel reflectance values indicate there is bare soil plus minor
vegetation present in each soil class. Confusion, therefore, cannot be con-
sidered in error, but rather a true {ndication of the scene. Even within soil
classes some overlapping distributions occur. Consideration of only the mean
reflectance values (first order effects) for all 4 spectral channels shows all
classes to be separable with the exception of the somewhat poorly and poorly
drained soil classes. However, the maximum likelihood classifier uses not only
the mean reflectance values but also the covariance matrices (second order
effects) of the classes for classification. Thus, utilization of data from all
four spectral channels (visible and infrared) and second order statistics con-
tribute to the successful separation of the individual classes.

An alphanumeric spectral map delineating the 4 soil and 1 vegetation groupings
was produced at a scale of 1:20,000. Field checks were conducted to evaluate
the agreement between the conventionally developed soil map and the spectral
soll map. Field observations included a) precise locatlon of the three map units
on both types of soil maps, b) notation of the various soils and their respective
drainage classes and ¢) notation of the boundaries (agreements and disagreements)
of the three map units and of their individual soil components.

RESULTS

The conventionally prepared soil map of the study area, and the enhanced
boundaries of the 1) poorly drained Mahalasville, 2) moderately well drained
Xenia and 3) somewhat poorly drained Reesville map units are shown in Figure 2.
To allow for comparison, the boundaries of the three map units, as delineated on
the conventional solls map, were superimposed upon the spectral soil map
(Figure 3). As previously stated, the 12 spectral classes of soil were placed
into 4 major soil groupings which were correlated with 4 soil drainage classes.
It is clearly evident from Figure 3, that dissimilarities exist between the
map unit boundaries as conventionally mapped and the boundaries suggested by
the spectral map. Significant inclusions not delineated on the conventionally
prepared soil map were noted on the spectral soil map, and in all cases, the
inclusions identified different drainage characteristics than identified by the
named map unit (Table 3). Field checking of these three map units and adjacent
areas revealed the spectral classification to be correct.



Drainage
Map Symbol Class Summed Reflectance
/ Moderately 184.47-215.13
Well

+ Somewhat 162.47-176.20
Poorly

X Poorly 136.31-151.05

M Very Poorly 118.78

Table 1. Correspondence Between the Spectral Reflectances and
Drainage Characteristics of Soil Groupings.
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1. Landsat Relative Reflectance Values of Spectral Groupings




CHANNEL M SPx Pk
1 52.68 44,38 _ 41.13
2 57.31 44.9 40.4
3 60.53 52.3 43.4
4 27.46 24,73 20.16

VP VEG*
36.56 34.9
32.96 27.09
33.7 53.4
15.78 28.9

Table 2. Significant Mean Spectral Class Values (Newman-Keuls)

*yP, P, SP, MW, VEG: very poorly, poorly, somewhat poorly,
moderately well drainage classes and vegetation class, respec-

tively.

**Bar indicates non significance .05 level



Figure 2. Conventional Soil Map Showing the (1) Mahalasville,
(2) Xenia, and (3) Reesville map units.
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Figure 3. Conventionally Delineated Map Units Superimposed upon
the Spectral Soil Map.



Map Unit

Mahalasville silty clay loam
(poorxly drained)

Reesville silt loam
(somewhat poorly drained)

Xenia silt loam
(moderately well drained)

Table 3.

Size

47.7ha

41.2ha

13.4ha

Percent of Area Represented
by Named Unit

51.4

46.1

30.0

Percent Inclusions Identified
by Drainage Class

21.5%VP; 17.8%SP; 9.37MWk **

0.9%VP; 18.37%MWx, **

16.7%P; 40.07%SP*, **

Composition of Soil Map Units as Determined from Spectral Data.

*VP,P,SP,MW: very poorly, poorly, somewhat poorly and moderately well drainage

classes, respectively.

**Remaining percentage of mapping unit was vegetated,

not be determined from spectral data.

and thus drainage classes could
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map unit four drainage classes were
10.3 hectares, or 21.5
proportions of moderately

Within the poorly drained Mahalasville
delineated. A significant proportion of this map unit,
percent, was shown to be very poorly drained with small
well and somewhat poorly drained soils Included (Table 3). The 10.7 hectares
of very poorly drained soll, which also had a higher organic matter content,
constitutes a large cnough area that it could be mapped as a named serices
separately from the Mahalasville map unit. Likewise, many of the moderately
well and somewhat poorly drained areas could be deleted from the Mahalasville
map unit and combined with adjacent areas of similar drainage. Areas not large
enough to map separately can be identified as either similar or contrasting
jnclusions. Also, the Mahalasville map unit boundary could be adjusted to
include adjacent poorly drained areas which have similar characteristics.

Within the Reesville and Xenia map units, the named series represents only
46.1 and 30.0 percent of the respective map units. The remainder of the two
mapunitsareccmposedofsoilswith distinctively different drainage character-—
istics (Table 3). The boundaries of these map units could be adjusted to
exclude the soils with different drainage characteristics or to include adjacent
soils of similar drainage characteristics. Also since these areas have a very
intricate soil pattern, the spectral data provides an excellent tool for
evaluating the need for establishing a soil mapping unit complex.

CONCLUSIONS

multispectral scanner data can provide the
detail necessary to define soil features not readily discernible through visual
interpretation of Landsat imagery or aerial photography. Capabilities inherent
in this procedure allow for the differentiation of soil drainage characteristics
which can be correlated with soil series being mapped in a given locale. The
accurate identification of soil drainage characteristics and correlation of these

Digital analysis of Landsat

classes with soil series will enable the
soil map unit boundaries, inclusions and
areal extent and relative proportions of
Thus, the composition and purity of soil

soil scientists to readily ascertain
possible soil complexes. Also, the

these features are easily quantified.

map units can be accurately determined.

In both the Reesville and Xenia map units, contrasting inclusions constituted
a large enough percentage of the units to justify additional separations or
the mapping of a soil complex.

Computer—-aided Landsat data analysis can be utilized in numerous aspects
of the soil survey. A spectral soil map based on drainage characteristics
provides the soil scientist with a tool which can aid in the accurate deline-
ation of map unit boundaries. It can aid the inexperienced soil scientist in
the placement of soil borings by allowing him to avoid transition zones and to
select areas most representative of the map unit. Using the quantitative data
generated by digital analysis, it can readily be determined if inclusions exist
within a map unit. These inclusions can be easily defined as being either
similar or contrasting, and thus, the soil scientist can determine if a soil
complex should be established. The determination and measurement of the presence
of inclusion is quite important in the interpretation aspect of the survey. in
urban areas the distribution of small contrasting inclusions (1 to 2 acres in size)
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must be recognized and accurately mapped to allow for appropriate land treatment
which may be vastly different than specified for the map unit as a whole. Both the
areal and quantitative nature of these data can serve as an aid in the quality
control aspect of a soll survey by providing a priori knowledge of the soils.
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