FOREST RESOURCE INFORMATION SYSTEM

NASA ST. REGIS LARS
LARSFRIS USER’S MANUAL
Volume 5
Purdue University LARS Contract
~aboratory for Applications Report No.100580

of Remote Sensing October 1, 1980

@ Purdue Research Foundation

Star information Form

1. Report No.

100580

2. Government Accession No.

3. Recipient’s Cataiog No.

4. Title and Subtitle

LARSFRIS User's Manual
Volume 5

5. Report Date

October 1, 1980

6. Pertorming Organization Code

7. Author(s)
LARS Staff, R.P. Mroczynski, editor

8. Performing Organization Report No.

9. Performing Organization Name and Address . .
Laboratory for Applications of Remote Sensing

Purdue University :
West Lafayette, IN 47906

10. Work Unit No.

11. Contract or Grant No.

NAS9-15325

12. Sponsoring Agency Name and Address

R.E. Joosten/SF5
NASA/Johnson Space Center
Houston, TX 77058

13. Type of Report and Period Covered

14. Sponsoring Agency Code

15. Suppiementary Notes

16. Abstract

This document contains user instructions for the proper use
and application of the Software which comprises the LARSFRIS

package.

LARSFRIS represents a compilation of software developed

over a number of years by the staff at Purdue University's Labora-
tory for Applications of Remote Sensing. The software packages are
designed to help the user analyses digital image data, such as that
collected by the Landsat Multispectral scanner. This is one of
five documents that comprise the LARSFRIS package.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement
Landsat analysis

Digital Image data
User Documentation

Software packages

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price’

*For sale by the National Technical information Service, Springfieid, Virginia 22161 NASA - JSC

ACKNOWLEDGEMENTS

An undertaking of the magnitude of the LARSFRIS documentation,
albeit only a modification to existing materials, depended on
the individual dedication of many people. A number of LARS
staff contributed to updating LARSYS ver. 3.1 and integrating
LARSYSDV (developmental software) into the final LARSFRIS soft-

ware package.

LARS staff who made significant contributions to either creating
new or updating existing program modules included; Sue
Schwingendorf, Bill Shelley, Carol Jobusch, Joan Buis, Luis
Bartolucci, Louis Lang, and John Cain. Kay Hunt deserves

special thanks for coordinating and organizing staff efforts.

Typing of the manuscript for the LARSFRIS documentation was
ably handled by; Dee Dee Dexter, Sylvia Johnston, Pam Burroff,
and Bonnie Phibbs. Assistance in editorial matters was pro-
vided by Doug Morrison and Davida Parks, and Sue Ferringer

provided graphic inputs.

Special thanks are also appropriate for members of the FRIS

Steering Committee; especially G. R. Barker of the St. Regis
Paper Company, and R. E. Joosten of the National Aeronautics
and Space Administration, for their patience and sage council

during the preparation of these volumes.

Preparation of this documentation was supported by NASA

Contract NAS 9-15325.

PREFACE

The documentation of the LARSFRIS system closely parallels
existing LARSYS Version 3.1 documentation. The major
differences are in the addition of certain program modules
which provide the user greater flexibility in the analysis
of multispectral data. The LARSFRIS documentation exists

in three parts: LARSFRIS Program Abstracts, LARSFRIS System

Manual, and LARSFRIS User's Manual.

The first of these contains the documentation of each Fortran
and Assembler routine and each CMS Executive routine in
LARSFRIS. These program abstracts are provided for programmers

who are required to revise and/or maintain these routines.

The second manual, LARSFRIS System Manual, is directed pri-
marily to programmers and analysts who maintain or revise the
system or write new functions that must be interfaced with
LARSYS. It céntains detailed information of (and references
to) the hardware and software framework upon which the system
was built, the internal organization of the software, the
organization of the data fields, and a discussion of special

techniques that were used in the implementation of LARSFRIS.

This manual, LARSFRIS User's Manual, contains a comprehensive
description of the functional organization of the system, the

processing functions provided, and the manner in which the

ii

functions are invoked and controlled. While it is written
primarily for the system's user, a good knowledge of its
contents is essential for any individual who intends to

work with the system -- be he a user, an analyst, or a

programmer.
i

Table of Contents

Page
SECTION 1. INTRODUCTION 1-1
SECTION 2. THE LARSFRIS SYSTEM ENVIRONMENT 2-1
2.1 LARS Computer Equipment 2-2
2.2 IBM-Supplied Software 2-5
2.3 The LARSFRIS Virtual Machine 2-10
SECTION 3. THE LARSFRIS SYSTEM ORGANIZATION 3-1
3.1 The Overall LARSFRIS Hierarchy 3-3
3.2 Executive and Monitor Level Organization 3-5
3.3 Organization of the Functional Load Modules 3-16
SECTION 4. LARSFRIS IMPLEMENTATION TECHNIQUES 4-1
4.1 COMMON Block Usage 4-2
4.2 Use of Object-Time Dimensions 4-6
4.3 Programming LARSFRIS Supervisors, Readers and
Initiators 4-9
4.4 Generating Functional Load Modules 4-31
4.5 LARSFRIS Error Handling 4-41
4.6 Use of the LARSFRIS System for Test Runs 4-44
4.7 Attaching and Detaching Tape Drives 4-52
4.8 Implementation of the Control Card Checkout Feature 4-54
SECTION 5. LARSFRIS DATA ORGANIZATION 5-1
5.1 LARSFRIS Data Set Reference Numbers 5-2
5.2 LARSFRIS Processing Level Files 5-5
5.3 LARSFRIS System Information Files 5-66
5.4 Other LARSFRIS Files 5-69

APPENDIX I. LARSFRIS SYSTEM PROGRAM MODULES

SECTION 1

INTRODUCTION

SECTION 1

INTRODUCTION

This manual is directed primarily at the programmer or analyst

who maintains the LARSFRIS system or writes new programs for it.

It is assumed that the reader is familiar with the external
characteristics and general operating concepts of the system.

These topics are discussed in considerable detail in the LARSFRIS
User's Manual, which is also a prerequisite to a good overall under-

standing of the LARSFRIS system.

The remainder of the System Manual is divided into four major
sections. Section 2 describes the hardware and software environ-
ment that forms the basic framework for the design of the LARSFRIS
system. Only a frief outline of these subjects is presented
there, but an adequate bibliography which lists the other pub-
lications on these subjects is also included. The second section
also contains a discussion of virtual machine techniques and the

LARSFRIS virtual machine configuration.

Section 3 describes the physical and logical organization of the
system. Flowcharts are presented which show the overall
hierarchial organization of the system and the individual organi-

zation and flow of control for each major entity.

Section 4 describes a number of programming and system imple-
mentation topics that will provide a better understanding of

the internal characteristics of the system as well as procedures
to use in updating and revising it. It is strongly recommended
that all of the‘topics in this section be read carefully by

any programmer Who is to modify or revise LARSFRIS programs.

Section 5 conclmdes the System Manual with a description of the
data usage in LARSFRIS. Included in that section is a table of
all Data Set Reference Numbers that are used (with the symbolic
DSRN's and the associated FILEDEF'statement), a detailed descrip-
tion of the contents and format of each file that is used at the
processing level of the system, and"equivalent descriptions of

a number of special system files that support the user.

o~

SECTION 2

THE LARSFRIS SYSTEM ENVIRONMENT

SECTION 2

THE LARSFRIS SYSTEM ENVIRONMENT

This section describes the computing environment that forms the
basic framework for LARSFRIS. This environment consists of the
computer equipment, the IBM-supplied system software, and the
use of virtual machines. An understanding of these topics is
essential to understanding the internal design and implementation
of LARSFRIS. References for further information on all of these

topics are included at the end of the section.

The subsections are:
2.1 LARS Computer Equipment
2.2 IBM-Supplied Software

2.3 The LARSFRIS Virtual Machine

2.1 LARS COMPUTER EQUIPMENT

The computer ?hardware currently used is centered around an IBM
3031 machine with two million bytes of main memory. Unit record
equipment (card reader, card punch and line printer) are con-
nected to the CPU via a byte multiplexor channel. Seven~- and
nine-track magnetic tape units are connected to the CPU via two
block multiplexor channels. One block multiplexor channel is
used for a special digital image display and editing unit. The
operating system and user files are maintained on two spindles of
IBM 3350 disk storage connected via a block multiplexor channel.
Two spindles of CDC 3330-11 disk storage and two spindles of CDC
33502 disk storage used to maintain user files are connected via
a block multiplexor channel. Figures 2-1 and 2-2 illustrate this

configuration.

2-3

og/e/v 3sip Jod sajAgebow ¢8l OABY o 4 OEEE 010
ysip Jod selAqebow 99z 9By ¢OSEE . Mun lonuod 103ulid
clce 8&0
14014
1d8
0091
182 082 162 182 082 wab059e0
[>e]2 ™| suonesunwwo)
€as 1dg . GOLE
Idg 0091 >l] | G L > >
009t /008 300
SHUM MSIJ ¢ OSEE SHUN ¥SIA 11 PON »40EEE B ._Mﬁ_hm_
]
2as 54 _ I
oo 0081
/008 Hun joauoD) wn aoo
1 abeloys - jonuo) gt young
L0£8E 0aD 2214 ovse
1as 4
idg oo%t
0094 7008 IS oS! 500
4074 200 - Hay
ovse
4H4S D <> 44S
0as oo¥ 06€ —
Idg 0091 Aejdsig
0091 /008 1enbiq SHUN SIQ 4 OSEE
] |
nun wn 10C 100
jou0) jo1uoD Hn ojosuon sJojesedo yun 10u0D — ajosuo)
adey adey l04juoy] ajeusoNy abeiolg s.JojesedQ
£08¢ £08€ Losy 9€0€ ogse Wal 9g0¢e
I]]
| [o
S 14 € [1 0
veyy | ueys | ueun | ueup | ueup | ueyp

{selAqeBay 2)
abelolg uiey pue
1€0E Nal

uoineinbyuoy) alemplieH LEOE

omputer Configuration

S C

LAR

Figure 2-1.

4

-

o8/E/v
JoxAAYNN WaPOW

9EVT J8IIMDIA

-3 s R ———

eleds

14D

140
180

(1olenw3 dSVYH)

Sdg 0096
[VTEE]

004 eveg

(JoreInuI3 08.2)
9..£ Wal

9€V BYIMD3I]

S48 008v

sibay 1S

(Joeinw3 08/2)

00l ejeQq ————————o——i

o€V ..m-tiOuQﬁ

Sd8 00¢Z

X19 uojosy

W?eVv eweqeyy

X19 co,o.sé

140/

180/1L
(sorenw3 08.2)
00l ejeq

Sd8 002

st

(soeinus dSvH)

00l ejeq
Le02Z-£8Y €1 leig —
9802-£8v €IL 1eg

Sd8 0096

$80C-€8Y £1L 1810

UOISNOH

$802-£8Y €12 1e1q
feunuial Adoopien
leulwis)] AdoapieH
19} Impuel}
J8)iimpuai)

(JoleInWw3 dSvH)

Sdg 0096

OO0l Bjeq

sexalosr

WMo VOSSEDZ—-0OI-—0Z¢ VOZ-XOJ DZ—k

(Jorenuw3 08.L2)

(43.117) vE/1L dad

Sd8 0036 T X9i4
10919 pneg Z Xoid 00€ 1e1Q 9snoH u|
1091eq pneg 2 Xol4 0EZ [e1g asnoH u|
10318 pneg Z %a14 GGS.-£9v LiE 1&d
1091eq pneg Z %oid vSSL-E9Y LI e
109190 pheg Z %oid €GSL-E9Y LiE 1B1g
159180 preg] 2GSL-€9F LIE 1B
109j8g pneg Z x9|d 1562-€9v LLE 1elq
Sdg 0096 2 Xoid Xiuoippal
(ojenws 0g.2)
Sdf 0096 Z Xol4 001 eeq
Sdg9 00¢ Z Xoid 9gv] LumDAQ
Sd8 00ve T Xai3 X19 uojop
Sd8 00v2 Z X33 X19 uojopuf
Sdg 00v2 Z xoid X15 uojopy
Sd8 002 Z X4 X19 uojopu
Sdg 002 Z X913 X19 uojopul
Sdg 00t Z X313 X19 uvojoui
Sdg 00ve Z X913 X19 uoojuy
] Sdg 0096 (foeMwz 0822)
1 xe4 001 ejeq
—
—
Sdg 00¢€
1 Xa|4 ——9€V1 IUMO3Q
[
Sd8 00¥2
| xai4 [—— X419 uojoj
L
g 00¥C
wn__. X843 X19D uoiojuy
—
Sd8 00re
S — X199 uoloj

Configuration

Remote Terminal

LARS

Figure 2-2.

2.2 IBM-SUPPLIED SOFTWARE

The LARSFRIS system uses the following IBM-supplied software com-
ponents as its base: VM/370 CP and CMS, the FORTRAN IV compiler
and the Assembler. These components are very briefly described
below. The reader should consult the references 1listed at the

end of this subsection for more detailed information.

VM/370 CP

The basic monitor program or control program under which the
LARS computer operates is called VM/370. VM is a multi-pro-
gramming package which uses special hardware features of the
3031 to create an environment in which it appears to each
user that he has complete control of a dedicated machine,
complete with I/O devices. These apparent machines are
called virtual machines since they are created by software
and do not exist in any physical sense. To the user and the
program, the virtual machine is indistinguishable fromrm a
real system, but it is really one of many that VM is manag-
ing. VM allocates the resources of the real machine to each
virtual machine in turn for a short slice of time, then
moves on to the next user”s virtual machine--thus time-shar-

ing.

Since the real machine does not have sufficient real memory

for all users” virtual memory, a technique called paging is

2-6

used by VM. Virtual memory is divided into 4,096-byte
blocks caﬂled pages. All pages except those currently in
use are skored by VM on secondary storage, and are called
into and @wapped out of real memory on a demand basis. In
addition,?all virtual machine input/output is handled by VM.
However, ' all these operations are completely transparent to

a user anﬁ the virtual machine.

VM also provides, as part of the virtual machine, commands
that parallel the buttons and switches on the operator”s
console of a real machine. The user can issue these com-
mands froﬁ the terminal, and thus the terminal becomes the

pseudo~console for his virtual machine.

VM simulates card reader, punch and printer operations for a
virtual machine. If a program running in a virtual machine
is to process a card file, that card file must first be read
into VM, headed by an ID card to identify the intended vir-
tual machine. It is then stored as a disk file in what is
called the VM spooling area. When the wvirtual machine
requests card-reader input, VM supplies it with card images
from the spooled input file. The same process works in rev-
erse for printer and punch output; a disk spooling file is
created, which is later transferred by VM from disk to a

real printer or punch.

CMS

After the control program (CP) creates the virtual machine,
that virtual machine must be equipped with its own opera*ing
system to provide support for the programs to be run. The
programming system most commonly used at LARS is called the
Conversational Monitor System (CMS). LARSFRIS uses CMS as

its virtual machine operating system.

CMS 1is a single-user, conversational operating system
designed to provide full use of a System 370 machine using a
simple command language that can be entered at the terminal.
CMS provides a full range of capabilities--creating and man-
aging files, compiling, debugging and executing programs,

utilities, control commands and library facilities.

The LARSFRIS programmer will normally use all the facilities
of CMS, whereas the typical LARSFRIS user is insulated from
CMS and is only aware of LARSFRIS. More advanced LARSFRIS
users may effectively use some CMS facilities in conjunction

with LARSFRIS.

FORTRAN

CMS provides a FORTRAN IV compiler which is identical to the
0S G-level compiler. FORTRAN IV is a mathematically-ori-
ented language useful in writing programs for applications
that involve manipulation of numerical data. The majority

of the LARSFRIS program modules are written in the FORTRAN

2-8

-IV langusage.

Assembler

CMS suppdrts the 0S/370 Assembler language. The Assembler
provides access to the full facilities of the hardware and
operating system to the programmer, which FORTRAN does not.
A small hnumber of LARSFRIS program modules are written in

Assembler language.

LARS Modifications to CP and CMS for LARSFRIS

CP and CMS both required several additional functions and minor
modifications to permit LARSFRIS to operate as designed. Contact
the LARS programming staff for detailed information about these

changes,

References

The following collection of documents describes the programming
supplied by IBM.

VM/370

GC20-1818 VM/370 CMS Command and Macro Reference

SD23-9023 BSEPP Supplement for GC20-1818

GC20-1819 VM/370 CMS User”s Guide

SD23-9024 BSEPP Supplement for GC20-1819

GC20-1820 VM/370 CP Command Reference for General Users

FORTRAN

GC28~6515 FORTRAN IV Language

GC28-6817

Assembler

GA22-7000
GC33-4010
GC33-4021

2-9

FORTRAN 1V Programmer”s Guide

System/370 Principles of Operation
Assembler Language (0S/VS-DOS/VS-VM/370)

Assembler Programmer”s Guide (0S/VS and VM/370)

\ 2-10

2.3 THE LARSFRIS VIRTUAL MACHINE

CP implements phe virtual machines. Since the virtual machines
(VM) are simuiated, their configurations may differ from each
other and from, the real machine. Most virtual machines, however,
have the same configuration. This configuration is based on the
requirements of LARSFRIS and CMS, which is the VM operating sys-
tem required by LARSFRIS. Refer to Figure 2-3 for the configura-
tion diagram. Note that the dashed 1lines represent optional
devices and that the virtual device addresses are in parentheses.
When the user completes the LOGON sequence, his virtual machine
is automatically established as that represented by the solid
lines. Certain optional devices may be attached to his virtual
machine automatically by LARSFRIS depending on which LARSFRIS

functions are selected.

Configuration

The VM/370 components are:

VM/370

CP provides virtual System/370 processors with an installa-
tion-specified amount of main storage. Because of the sin-
gle level of overlay load modules used by LARSFRIS, 960%
bytes is large enough to handle the largest functional load

module,

2-11

Tape Drives

Card ‘
Reader {00C) r (181)
Terminal I
Keyboard |
(009) :
Card
(Punch 20! - (182)
) |
System/370 |
|
Main Storage: —
|
Printer (00E) 960 Bytes - (183)
|
|
|
l
L (184)
(191) (192) (2c) (10D) (190) F:::féééz)
A Disk
D Disk
(Temp) N Disk 0 Disk ____’,)
(LARSYS) (Runtable) S, Y Disk
s pisk (CMS System)
(CMS System)
MINI-DISKS
Figure 2-3. LARSFRIS Virtual Machine

Card Reader

This device is automatically specified as a spooled card
reader. Therefore, the card reader in the computer room may
be used or, for remote LARSFRIS users, any of the remote
card readers may be used. The ID card specifies to which

userid CP should spool the input deck.

Card Punch

This device is automatically specified as a spooled punch.
Therefore, the punch in the computer room will be used
unless a REMOTE command has been issued to specify another
unit for punch output. The LARSFRIS module EXCOMD EXEC will
automatically issue the proper REMOTE command for a remote

user.

Console Keyboard

The terminal where the user LOGON occurred will be assigned
as the console screen for the virtual machine (simulating

the console of the real machine).

Disk Storqge

CP and CMS implement the mini-disk concept. This permits
many users to have distinct portions of a real disk assigned
to their virtual machines. These mini-disks may be private
or shared Qith other users. The LARSFRIS user automatically

has access to five mini-disks. The five disks are:

A DISK -

D DISK -

S DISK -
Y DISK

N DISK -

O DISK -

This is the user”s private or permanent disk. The
size of the A disk is defined in the CP user direc-

tory for each userid.

This disk provides space to store intermediate
results during a terminal session; thus, it is a
temporary disk. The D disk 1is automatically
assigned from a pool of termporary disk space set
aside for that purpose. LARSFRIS currently
acquires 3 million bytes of temp disk space when
the user enters LARSFRIS. The temp disk is always

cleared when I LARSYS is issued by the user.

These are the standard system disks shared by all
CMS users. The S and Y disks are a pair of shared
read-only disks containing all of CMS and other
system software. This includes the CMS nucleus,
all transient routines, compilers, FORTRAN library,

etc.

All LARSFRIS users have access to a single shared,
read-only N disk that contains the LARSFRIS pro-
grams and necessary system support EXEC routines.
Access to the disk is provided automatically when

the user issues the I LARSYS command.

This disk contains the LARSFRIS system runtable.

N
1

14

Tape Drives
T

Virtual éape drives must correspond one-for-one with actual
tape driJes in the computer room. Since there are a limited
number of actual tape drives available, their usage must be
carefully managed. LARSFRIS attempts to improve tape drive
utilization by automatically and dynamically attaching and
detaching drives based on the requirements of the processing
function the user is currently running. For more informa-
tion on how tapes are attached and detached, see Section 4
(Subsectién 4.7). The VM may use up to four tapes concur-
rently; however, none of the present functions require more

than two drives, and most of them require only one.

References

The folldwing documents describe the LARSFRIS virtual
machine:

GC20-1818 VM/370 CMS Command and Macro Reference

SD23-9023 BSEPP Supplement for GC20-1818

GC20-1819 VM/370 CMS User”s Guide

SD23-9024 BSEPP Supplement for GC20-1819

————————— LARSFRIS User”s Manual

SECTION 3

THE LARSFRIS SYSTEM ORGANIZATION

——

SECTION 3

THE LARSFRISSYSTEM ORGANIZATION

This section describes the system organization of IARSFRIS, The
organization is described mainly through a series of flowcharts,
which document the physical and logical hierarchy of the systenm,
and the flow of system control down to the individual program

module level.

The subsections are:
3.1 The Overall IARSFRIS Hierarchy
3.2 Executive and Monitor Level Organization

3.3 Organization of the Functional Load Modules

Subsection 3.1 describes the IARSFRIS system control hierarchy.
This includes the two levels of IBM-supplied software VM/370
and CMS) and the three levels within the IARSFRISsystem itself.
The accompanying figure shows these relationships graphically,
with the flow shown from the highest level VM/370 at the top
of the page, down to the lowest level (the individual super-
visor) at the bottom of the page. Within IARSFRIS the individual
CMS executive routines or processing function supervisors are

identified by name.

3-2

Subsections 3.2 and 3.3 provide the detailed flowcharts for
each of the three IARSFRIS levels that were identified in the
first subsection. These flowcharts show the overall system
logic and the major actions, the routines called, and data
input and output; down to the level of the individual execu-
tive routine or program module. For more detailed descrip-
tions of the‘logic of the individual routines and programs,

see the:u&EFEE;Program Documentation Manual.

The flowcharts in these two subsections all follow the same
charting conventions. The actions that are performed by the
exXecutive routine or supervisor (or by a called routine) are
briefly stated in the box on the left hand side of the page.
Opposite this brief statement is a graphical representation
of the action. Functional routines that are called are repre-
sented by boxes with the name of the routine printed in the
top of the box. Support routines that are called are not
represented by separate boxes; instead their names are simply
listed inside the box for the functional routine that calls
them. I/0 actions are represented by the standard flowchart-
ing symbols for reading and writing data. Appendix I contains

a complete list of all modules used in the IARSFRIS System.

—

3.1 THE OVERALL LARSFRIS HIERARCHY

The organization chart in Figure 3-1 shows the hierarchy of
control and, where applicable, the individual module names.
The system runs under Control Program/370 and the Conversa-
tional Monitor System operating system (CP/370 and CMS).
CP/370 is the highest level of software, with CMS running in

a virtual machine under CP. The LARSFRIS modification of CMS
causes the EXCOMD routine to be executed when the 'i larsys'
command is issued. When RUN LARSYS is issued by the user,
EXCOMD calls RUNLS EXEC which loads the root module and passes
control to subroutine LARSMN (the FORTRAN main program).
LARSMN reads Function Selector cards and passes control to the
appropriate supervisor after loading the load module. All of
the supervisors names shown in the process level are also the
names of the load modules. The functional modules all load at

the end of the root (LARSMN) and thus overlay each other.

Most load modules (and supervisors) execute only one function.
The exceptions are RUNSUP (TRANSFERDATA, CHANNELTRANSFORMATION
and IDLIST), GRHSUP (GRAPHHISTOGRAM, LINEGRAPH and COLUMNGRAPH)
and RESSUP (COPYRESULTS, LISTRESULTS, and PUNCHSTATISTICS). The
module CHASUP is called by RUNSUP to supervise the Channeltrans-
formation function. This hierarchy is the same as that used on

the batch machine except that the module PROFILE would replace

EXCOMD.

cp

LARSYS/
CMS
EXCOMD
EXEC
Executive
Level
RUNLS
EXEC
Monitor
Level LARSMN
T] [| | I |
RATSUP STASUP SEPSUP CLASUP PRISUP CLUSUP SAMSUP BIPSUP
MERSUP SECSUP HISSUP SMOSUP RUNSUP GRHSUP RESSUP PICSUP CoMSUP
{Casyp]
TN
Process Level
Figure 3-1. The Overall Organization of LARSFRIS.

3.2 ORGANIZATION EXECUTIVE AND MONITOR LEVELS

Executive Level Flowchart

The executive level is entered when IARSFRIS/(MS is ipl'ed. A
LARSFRIS modification to CMS causes EXCOMD EXEC to be executed
automatically after IPL. EXCOMD detaches tapes and the dis-
play unit, acquires a T-disk, initializes the Statistics File
and then goes into a loop which reads and processes LARSFRIS
control commands. For a definition of the function of these
commands, see the IARSFRIS User's Manual. The flowchart that
follows indicates the processing of only those commands which
involve files outside of EXCOMD. Steps 1.0-4.0 on the
flowchart are executed only once before the command processing

loop is entered.

Load Module Name: Executive

EXCOMD |

2.0

EXCOMD entered from
CMS when LARSFRIS/CMS
is ipl'ed.

Tapes and display
detached.

0-disk attached and
cleared and dummy
statistics file created.

Print priority news if
any.

Process LARSFRIS control
cormmand. (Only commands
which interact with
files outside of EXCOMD
will be shown.)

RUN LARSYS command,

Execute RUNLS EXEC loads
and executes LARSMN and
detaches tapes.

STATDECK command. Move
the Statistics File to
the D-disk.

EXECUTIVE

All
Tapes

0

>
0-disk W

—

PRIORITY

PRIORITY
NEWS

All
Tapes

3-6

8.0 HISTDECK Command. Moveé
the Histogram File to
the D-disk.

9.0 CLEAR Command.

10.0 LIST Command. Execute
LIST.

11.0 REFERENCE Command.
Execute REFERENC.

EXCCUTIVE

[

SAVED

i

HISTO

DATA

) (!

LIST

SAVED
STAT-

DECK
~1—

O

LARSFRIS

YPEITEM

INDEX

{

REFERENC

Index

[

REFEREN!

YPEITEM

Referenc

)

12.0

13.0

14.0

14.1

14,2

14.3

14.4

NEWS Command. Execute
NEWS .,

TERMTEST Command.

BATCH Command. Control
and data cards are
read onto a temporary
disk file.

PBID is called to
punch the first batch
header card.

IDNAME is called to
get user's ID and
NAME.

Second batch: header
cards punched followed
by control and data
cards.

Temporary file of

- control and data cards

erased.

| __NEWS

EXECUTIVE

TERMTEST

NEWS

NEWS

"
S

Termtest

Control &
data
cards

Control
and data

cards

BATCH

PBID

IDNAME

DATA

3-8

15.0 PRINT Command.
16.0 PUNCH Command.
17.0 CCINPUT Command.
18.0 MSG Command.

19.0 QUIT Command.

EXECUTIVE

\ 3-10

Monitor Level Flowchart

The monitor level is entered from RUNLS EXEC after loading the
LARSMN load module (CMS file LARSMN MODULE). Control enters at
LARSMN, the FORTRAN main program of IARSFRIS. The monitor "level
includes LARSMN, and the subroutines it calls as described on
the load module flowchart. The Root Load Module which contains
the monitor routines also contains a number of system support
subroutines not actually used by LARSMN but used by many of the
functions in other load modules, as well as the GLOCOM common

block.

LARSMN functions in a loop reading Function Selector Cards
requesting major processing functions and initialization
functions and executing these functions. After all cards have
been read by LARSMN and the functional load modules, control

passes back to RUNLS EXEC in the executive level.

J—

Load Module Name: LARSMN

LARSMN

5.0

LARSMN 1is entered after
the loading of the
LARSMN module.

Call ERRINT to issue

a SPIE macro to permit
LARSFRIS to handle all
program interrupts.

Call ERRSET to ignore
exponent underflows.

Call IDNAME to access
the User's name and
userid.

Call GETIME and GTDATE

to put date and time
in header.

Call CTLWRD to read a
function selector
card.

Call UNMNT to detach
any tapes not required
by the next function.

ERRINT

ERRSET

IDNAME

GTDATE

Entry
GETIME

CTLWRD

MONITOR

(Control |

Cards

UNMNT

Y

Tapes

8.0

9.0

10.0

11.0

12,0

13.0

14.0

15.0

16.0

17.0

Call BLOAD to load the

BLOAD

load modple containing

CMS

the requested function.

MONITOR

LOADMOD

Call PROCES to trans-
fer control to the

XXXSUP

supervisor in the load
module. :See Section
4.4 for further
explanation.

This is not]
in LARSMN

J _ERASE

Call ERASE to erase
any scratch files

used by the function.

HD1,HD2 and COMMENT

Y-disk

BCDFIL

initialization

functions require a
call to BCDFIL.

The RUNTABLE initiali-

RTBSUP

zation function is
implemented by a call

CTLWRD

D-disk

———————
RUNTABLE

ERPRNT

to RTBSUP.

CHECKOUT Initialization]
Function.

DATE Initialization
Function.

TYPE Initialization
Function.

CARD Initlialization
Function

RESET Initialization
Function.

IVAL
CTLPRM
GETIME

data

card

18.0 LARSMN module includes
support routines.

TAPOP

ERPRNT
CHANEL
LARS12
TSTREQ
ERMNAM
CPFUNC
MOUNT

URADST
GADRUN
RUNERR
GADLIN

MONITOR

3-14

Batch Monitor Flowchart

The LARSFRIS facility that supports the batch mode of operation is
implemented by two routines, a CMS executive routine called BPROFILE
and an assembler language program called BATRD. BPROFILE is entered
whenever LARSFRIS is ipl'ed, and again whenever a batch job is
finished. (This is done with an EXEC file 'EXCOMD' on the

N-disk.) The first time the batch machine is ipl'ed, BPROFILE will
request a time limit to be applied to all jobs run by that machine
in the future. It is exited only by the DRYUP command which will

logout the batch machine.

The BATRD routine is called by BPROFILE to read and interpret the
batch header cards, communicate with the operator on the status of
the batch virtual machine, and generate accounting information.
For detailed information on BATRD refer to the LARSFRIS Program

Documentation Manual.

Load Module Name: Batch Monitor

BPROFILE

3.0

4.1

BPROFILE entered after
ipl of LARSFRIS

Time limit requested.
Disconnect if requested.

3-15

BATCH MONITOR

ACCT

Erase accounting file,
if any.

Set up 'EXCOMD EXEC' on
T-disk to call BPROFILE

BATCH

EXCOMD

after present job
finished.

Execute BATRD to inter-
pret header card and set

up accounting information.

Initialize statistics

file.

Execute RUNLS EXEC to
run LARSFRIS

EOSTAT
INIT

RN

Execute BATEND entry
point in BATRD to pre-
pare and punch account-
ing information. BATEND

re-ipl's IARSFRIS thus

BATEND

returning to step 1.0.

EXEC
Tl

BATCH
HEADER

y

CP
accountind
card

3-16

3.3 ORGANIZATION OF THE FUNCTIONAL LOAD MODULES
1

The individual flowcharts for each of the seventeen LARSFRIS load
modules are presented on the following pages. The flowcharts
describe the flow of control within each load module, identify
all program routines used, all use of input/output files, and

all CALL's external to the load module.

The pages are brganized and numbered by supervisor in the

following order:
BIPSUP
CLASUP
CLUSUP
COMSUP
GRHSUP
HISSUP
MERSUP
PICSUP
PRISUP
RATSUP
RESSUP
RUNSUP
SAMSUP
SECSUP
SEPSUP
SMOSUP

STASUP

BIPSUP

1.0

BIPSUP (Biplot Super-
visor) is called by
LARSMN to start the Bi-
spectral plotting func-
tion.

BIPRDR is called to read
the control cards.
Statistics are read, and
reduced. Control then
returns to BIPSUP.

BIPLTR (Plot Control) is
called. PFeature infor-
mation and class infor-
mation is printed.
BIPDIV is called to
calculate and print di-
vergence figures.
Plotting routines are
called to print the
appropriate information.

BIPDIV computes separa-
bility using divergence.

BIPMEN is the mean
plotter.

BIPELL draws the class
ellipsoids.

BIPCLA classifies the
data. It finds min,
max and range for each
class.

3.3 BIPSUP~1

BIPSUP
BIPRDR
BIPLTR
BIPRDR /
CTLWRD'< Control
ERPRNT Cards
gggﬁ;ﬁ N[TIstings
BCDVAL
FVAL <:
STAT
REDSTA OR = S;:Ei
THRESC ¢ Statdeck
~
BIPLTR
COVIN Output
BIPDIV Listing
CDTR
BIPMEN
BIPELL
BIPCLA
vV

3-17

Load Module Name: CLASUP

l.0

2,0

CLASUP

CLASUP erntered via
call from LARSMN,

CLARDR is called to
read and interpret all
control cards. If the
results file is to be
written to tape,
MMTAPE is called to
mount the tape (MMTAPE
is also called to
initialize a tape).

GTSERL is called to
compute tHe serial

number.

3.0

3.1

MMTAPE is called to
mount and position a
results tape.

CLAINT is ralled to do
general infitialization,
compute array bases

and read the data cards
via LAREAD, Field
Description Cards
describing the areas to
be classified are
written to CLASSIFY
SCRATCH. Record types
1-3 of the Classifica-
tion Resultis File are
written.

STAT is called to read
the statistics from
disk or cards. If
they come from cards,
they will be written
to disk.

CLARDR

3.3 CLAasup-~1

|

Control
cards

TSTREQ
CTLWRD
ERPRNT
IVAL

CTLPRM

Request

POLSCN
CHANEL

GTSERL

MMTAPE

TAPOP
) MOUNT

CLAINT

Selection
Summary

ication

Control
information

ERPRNT
REDSTA

__/_I

LASSIF

CRATCH

./Classigicatio

—>1 _ STATS

Results File

Statistics

deck

@

STATS
DATA

3.5

CLSCHK is called to
check class (and pool)
validity.

FETCHK is called to
check channel validity.

REDSAV is called to
reduce statistics into
classification pools.

LAREAD is called to
read in Field Descrip-
tion Cards describing
areas to be classified.

TSPACE is called to
determine if the
T-disk has space
available for the
results file (if
RESULTS DISK was re-
quested).

THRESC is called to
generate the THRTAB
table of Chi-square
values.

2a
CLSCHK
FETCHK
—>
REDSAV
—>{ ERPRNT
LAREAD .
DATCRD
ERPRNT
IVAL
LARS12
TSPACE
—>
THRESC
—>

3.3 CLASUP-2

Field

Descriptio
LCaxrds l

3-19

4.0

4.1

5.0

CLSFY1 is called to
generate a header,
print the statistics
summary and invert
covariance matrices.

COVIN is called to
invert a covariance
matrix.

CLSFY2 is called to per-
form all classification.
It works one area at a
time retrieving the
field description from
CLASSIFY SCRATCH. The
data for the area is
read from the Multi-
spectral Image Storage
Tape. It writes records
types, 5 and 8 to the
Classification Results
File.

CLSFY1

3.3 CLASUP-3

Saved

GETIME
WRTTRN
WRTMTX
TAPOP

training
fields

Listing

Classes

e

and
Channels

\Table "~

Statistics

summary

Classfigzgzgén

COVIN

MINV
ERPRNT

CLSFY2

Results
File /
Record 4)

Classification
run

TSTREQ
GETRUN
RUNERR
ERPRNT
TAPOP

\{ClassiﬁicatioJ

GETIME
GADLIN

Results File
Recoypds 5&8)

o

5.1

CONTEX is called to
apply the maximum
likelihopd classifi-
cation rule; and write
one line of the Clas-
sification Map. It
writes Record types

6 and 7 to the Clas-
sification Results
File.

5.1.1 CLASS is an assembler

routine which does

the actual classifi-
cation and computes
the likelihood code.

MCONTX is called to
compute the L1 or
L2 (Euclidean) dis-
tance of each point
to all classes; and
to write one line of
the Classification
Map. It writes Re-
cord types 6 and 7
to the Results File.

Control is returned
to LARSMN.

3.3 CLASUP-4

4a
CONTEX lassification
ap
—
<
CLASS
—>__ MconTx
<

Resultg File

Load Module Name: CLUSUP

CLUSUP |

1.0 CLUSUP is entered from

2.0

LARSMN to process the
Cluster function
request.,

CLURDR is called to
read control cards and
perform initialization
operations. . The
scratch data set is
rewound. A ‘summary

of the user's requests
are printed. RDFLDS is
called to process the
field description
cards. Control is
returned to CLUSUP,

RDFLDS reads field
description cards from
the card reader, orders
them by run number

and line number and
then writes the fields
onto the cluster
scratch disk data set
in the order supplied.
Return is made to
CLURDR.

CLURDR

3.3 CLusur-~-1

S
Control

CTLWRD
ERPRNT
CHANEL
CTLPRM

Cards

User's
Request

FVAL
IVAL
BCDVAL

“| Selection

Summary-—

CLUSTER

RDFLDS

LAREAD
ERPRNT
IVAL

\

SCRATC

Field
Description

Carxds

CLUSTER,
SCRATC

3.0

FIXFLD is called to
print the fields to be
clustered and retrieve
data from the Multi-
spectral Image Storage
Tape. Fields are
listed on the printer
in the order supplied.
The fields are then
written on the scratch
disk area in the order
to be processed. The
Multispectral Image
Storage Tape is mounted
for each run requested
and data is read as
requested. Run and
channel information is
printed. After all
data is read the fields
are listed in the order
Processed. Return is
Mmade to CLUSUP.

CLUPRO establishes
initial cluster centers
and calls CLUMP to
cluster the data. The
array map of clustered
points is printed.

Then the table of number
of points per cluster is
printed, one for each
field read from the
cluster scratch data
set. If punching of

the fields was request-
ed, then first card is
punched and PCHFLD is
called. Statistics are
calculated and written
on STATS DATA. I1f a
punched statistics deck

is requested it is punch+t

ed out, A check is then
made for further
clustering. Return is
made to CLUSUP.

FIXFLD

3.3 CLUSUP-2

GETIME
GETRUN
ERPRNT
GADLIN
LINERR
RUNERR
TOPRU

CPFUNC

CLUSTE

4

SCRATC

Field

Y

Listing in

4

Channel
Listing

Y

CLUPRO

GETIME

Clustered

4

Array
Map

Field

Descriptian
ards

CLUSTE
SCRATC
h S

D

N

TATS

ATA
S
STAT

DECK

4.1

4.1.1

5.0

CLUMP is called to
cluster the data and
output on the printer
means and variances.
CLUMP]l is called to
clump requested data.
Then new means and
variances are calculated
and output on the
printer. Return is made
to CLUPRO.

CLUMPL1 is called to
clump the datmh into
clusters. Return

is then made to CLUMP.

MDIST is called to
compute separability
information and print
results, Return is
made to CLUPRO.

PCHFLD is called to
punch the field descrip-
tion. If FIELD
specified on the PUNCH
card then fielgd descrip-
tion cards are punched.
Control is thep

returned to CLUPRO.

CCHIS is called to print
out histograms if
requested. '

CLUSUP returns control
to LARSMN.

3.3 CLusup-3

CLUMP Cluster
> TSTREQ Statistics
TIMER
CLUMP1
‘Separabilit
~MDIST. _————————glnformation
CGROUP Listing
K—] INVPNT .
Cluster
Grouping
Table
PCHFLD
‘—? Cards
—
v CCHIS
i, Histograms
GETIME
<

Load Module Name:

CcoMsSuUP

COMSUP

1.0

2.0

COMSUP is entered via a
call from LARSMN.

COMSUP is called to read
and interpret all control
cards.

CHTAPE is called to
mount and position the
Classification Results
tapes.

CHANGE is called to read
the header information
from the two input files,
locate the correct clas-
sification areas, and
write the initial records
to the output results
file. It then reads the
classified data, one line
at a time from the two
input files, calls COMPAR,
and writes the output re-
sults,

COMPAR compares each point
of the two input lines
using the CHANGE classes
supplied by the user (on
CLASS, FPIRST, and SECOND
cards) and assigns an
output class number for
each point of the line.

Control is returned to
LARSMN.

COMSUP

CTLWRD
IVAL

TSPACE
BCDFIL
ERPRNT

3.3 COMSUP-1

Control
Cards

Request

CTLPRM

CHTAPE

TAPOP
CTLWRD
MOUNT |
CTLPRM
IVAL

ERPRNT
CPFUNC

CHANGE

TAPOP

@icati

COMPAR

Selection
Summar

Classyfication

Resultg Files

Resultgs File

Load Module Name: GRHSUP

GRHSUP!

1.0 GRHSUP is entered from

2.0

LARSMN to process

the Graphhistogram,
Linegraph, and
Columngraph functions,

GRHRDR is!called to
read and interpret
control cards for the
graphhistdgram
function if requested.

GRHIST first reads
requested ‘histograms
from the direct access
data set, It then
prints the histogram
header information

and plots histogram
graphs.

LINRDR is called to
read and interpret
control cards and
perform initialization
operations for the
linegraph and
columngraph function
if requested.

3.3 GRHSUP-1

_GRHRDR Control
CTLWRD cards
ERPRNT
CHANEL \JOUser

Request
Selection
Qumnazy——
GRHIST
GETIME gg{o
TSTREQ
IOR
| Histogram
graphs
/_———
Control
LINRDR cards
CHANEL
CTLPRM User
CTLWRD Z}Request
ERPRNT Selection
FVAL Summary —
GETRUN \~__//y
IVAL —
RUNERR Multispéctral

5.0

6.0

7.0

GLIN reads and graphs
spectral responses

for requested lines of
data from the
Multispectral Image
Storage Tape.

GCOL reads and graphs
spectral responses
for regquested columns
of data from the
Multispectral Image
Storage Tape.

GRHSUP returns
control back to LARSMN.

3.3 GRHSUP-2
GLIN
GADLIN Multispgg;;a:
GETIME tog
LINERR 5 orag
TSTREQ ap
“|Header . l
Lnfﬁgﬁ
GCOL Multispectral
GADLIN
GETIME
LINERR
TSTREQ

Load Module Name : HISSUP

BISSUP;L

1.0

3.0

HISSUP is pntered from

LARSMN to process the
Histogram &unction.

HISRDR is talled to
read control cards and
perform injtialization
operations, A summary
of the user's rcquests
are printed. The cor-
rect Multigpectral
Image Storage Tape that
contains the data to be
histogrammed is located
and mounted.

Space in ARRAY for 3
arrays is dllocated.

HISTD is called to cal-
culate the histograms,
HISTD readg data from
HISTO DATA to acquire
previous histogram data
if OPTIONS ACCUM was
specified. ' The Multi-
spectral Image Storage
Tape is read for each

line to be histogrammed.\

After calcullations are
complete, the HISTO
DATA file is updated
and the histogram
information: and
statistics are printed.
The histogram deck
will be punched if
PUNCH HIST was
specified.

HISSUP returns control
back to LARSMN.

HISRDR

CTLWRD
CTLPRM
IVAL

CHANEL
GETRUN
RUNERR
ERPRNT

3.3 HISSUP-1

e
Control

cards

User's

Request
Selection

Multispectral

HISTD

TSTREQ
GETIME
ERPRNT
GADLIN
LINERR
RLCP

Image
\gtorag
ape

HISTO

DATA

Multispectral
{ Image

Storag
ape

s o
Histogram

Informatio
and

Statistics
Histogram

Deck

Load Module Name: MERSUP
MERSUP
1.0 MERSUP is entered from
LARSMN to process the
Mergestatistics function
2.0 MERRDR is called by MERRDR & Control
MERSUP to read and inter- ontro
CTLWRD cards
pret the necessary CTLPRM
control cards IVAL
FVAL
CHANEL
RTMAIN
2.1 CLSDEC decodes parts of CLSDEC
POOL or CLASSES cards .
entry pointj
POLDEC
2.2 POLSET decodes parts of POLSET
POOL card LOCATE
BCDFIL
POLDEC
2.3 MERINT reads statistics MERINT &
files <——{ STATRD
2.31 STATRD reads statistics STATRD (f e
files, modifies mean and STAT < g;gﬁlstlcs
covariance arrays REDSTA
2.32 MEXPAN expands the mean MEXP
and covariance arrays
2.33 REDFLD interprets the REDFLD . 4
training field cards LAREAD | ¢
ERPRNT
3.0 MERSTT creates a merged ————J MERSTT & /St tist]
statistics deck from the REDSAV D akls ics
various input decks and ec

writes it on a temporary
disk

3.3 MERSUP-1

>

29

4.0

POLMER poo¢ls appropriate
classes and writes new
statdeck to disk, punches
statistic$ if requested

COSPEC prints a coincident
spectral plot of all the
classes in a given stat-
deck

BISPLT prints a bispec-
tral plot of all the
classes in a given
statdeck

MERSUP returns control to
LARSMN

POLMER

3.3 MERSUP-2

STATS

STAT

REDSTA
REDFLD
REDSAV

DATA

Saved

WRTTRN
WRTMTX
GETTME

Training

COSPEC

GETIME

i STATISTICS’

Coincident

% BISPLT

“—4 GETIME

spectral
Lploe —

Bispectral

(P1ot —

3-30

Load Module Name: PICSUP

PICSUp

1.0 PICSUP is entered from
LARSMN to process the
Pictureprint function.

2.0 PICRDR is called to
read control cards and
perform initialization
operations. A summary
of the user's requests
are printed. If
HISTOGRAM COMPUTE was
requested, the requir-
ed tape must be mounted
and then a CALL HISTD
is performed. The
correct data tape
run to be displayed
must also be mounted.
An extra record is
written to a disk file,
HISTO DATA, to insure
that it is formatted
as a direct access file.
If BOUNDARY DELETE or
STORE was specified,

a CALL BONDSU is
executed.,

2.1 HISTD will first read
data from HISTO DATA
to acquire previous
histogram data.

After the new data

is histogrammed, the
records are updated.
The Multispectral

Image Storage Tape is
read for each line to
be histogrammed. The
histogram information
and statistics are
printed. The Histogram
file will be punched

if PUNCH HIST is
specified and HISTOGRAM
COMPUTE.

PICRDR

CTLWRD
CTLPRM
DATCRD
CHANEL
ERPRNT
BCDVAL
IVAL

GETRUN
RUNERR

3.3 PICSUP-1

r 4
Control

cards

User's

Request
Selection

(Summg

Multispectra
{ Image \RUNTABLE

!

- \Storage FILE
Tape

;

0

HISTO

2A

HISTD

DATA

TSTREQ
GETIME
ERPRNT
GADLIN
LINERR
RLCP

HISTO

DATA

)

Multispectral

J

Image
Storage

Tape

k

Histogram

information
and
(Statistics

Histogram
Deck °9

2.2 BONDSU will erase

2.2.1 LAREAD reads the

3.0 PIC1 is called to

FIELD BNDRIES if
DELETE is|specified.
If STORE is specified,
existing records of
FIELD BNDRIES are read
and updated by Field
Description Cards (the
cards are read via
LAREAD). A summary
list of new boundaries
is printed.

Field Description
Cards.

generate the gray scale
prints. If BOUNDARY
OUTLINE is specified,
FIELD BNDRIES is read.
If HISTOGRAM LEVELS
CARDS is gpecified, the
levels cards are read.
If HISTOGRAM HISTOCARDS
is specified, the histo-
grams deck is read.
Otherwise the HISTO
DATA file 'is read. If
PRINT HIST is speci-
fied, a CALL GRHIST is
performed. If PUNCH
HIST is specified and
not HISTOGRAM COMPUTE,
the histogram file is
punched. 'The Multi-
spectral Image Storage
Tape is read for each
line to be displayed.
If boundaries are to
be displayed, a CALL
FLDBOR is executed.
The pictorial map is
then printed.

3.3 PICSUP-2

R ——]
Field cards

Multispectral

BONDSU
> added to I
GETIME storage
\Sumnary
>Iriein |
BNDRIES
LAREAD
YRy I |
DATCRD Field
ERPRNT Description
IvVaL Cards
LARS12
PIC1 Levels
TSTREQ cards
. DATCRD
FVAL
ERPRNT HISTO
LREND DATA
GETIME
GADLIN
LINERR
Histogram
~ Deck
s
Histogram
21 Deck

Pictorial

Map

FIELD
BNDRIES

3.1

3.2

FLDBOR will insert
boundary symbols into
a given line of data
to be printed.

GRHIST reads the histo-
gram data from HISTO
DATA and prints the
graphs.

PICSUP returns control
back to LARSMN,

FLDBOR

GRHIST

I\

5

GETIME
TSTREQ
IOR

3.3 PICSUP-3

HISTO
DATA

3-33

Load Module Name: PRISUP

PRISUP |

1.0

2.0

PRISUP is ralled from
LARSMN to perform the
Printresults function.

PRIRDR is called to
read contrel cards

and check data. Also,
if a tape results file
is requested, MMTAPE
is called to mount

the tape. If results
are on disk, a read is
made to be certain the
file exists.

MMTAPE mounts and
positions the results
tape.

PRIINT is called to
perform initialization.
Threshold values are
converted to internal
code, data is checked,
data cards are read via
RDFLDS and the first 2
records of the results
file are read.

RDFLDS and entry RDTRN
are called to read
test field data cards
and to read training
fields.

3.3 PRISUP-1

<] PRIRDR (Control |
TSTREQ cards
CTLWRD
CTLPRM
ERPRNT List of
IVAL > user
BCDVAL requests
FVAL
LOCATE
GRPSCN Classification
MMTAPE Classification
TAPOP Rziglts
MOUNT
~ PRIINT List of
> tions
TSTREQ oP
ERPRNT
GRPCHK
CTLWRD
BCDVAL Classification
RDFLDS Test field
> RDTRN data cards
Classification
<— LAREAD < Results File I
4

2a

4.1

STATS is called to read
record type 4 from the
results file and print
the statistics summary
if requested,

DISPY1l is called to
position the results
file to the next area
of interest. Indexes
are computed and the
area header printed via
PRTHED.

PRTHED prints (and may
write on PRESULT
SCRATCH) the header
containing run, channel
and classes information.

DISPLY generates (and
may write on PRESULT
SCRATCH) the display
map for an area and
calls PCTTAL to tally
performance data.

FLDBN is called to
place outline symbols
in the display map
(called for each line).
Used only if outlining
requested.

PCTTAL computes per-
formance data for train-
ing on test fields
{(called for each line).
Called only when
performance tables
requested.

@

3.3 PRISUP-2

Statistics

Summary
STATS
ERPRNT
WRTMTX Classificatio
Results File
s] DISPY1 Q
ERPRNT //;I;;:lfica 10
~4
TAPOP N Results File
PRTHED
=] GETIME
| PRESUL'
SCRATCH
| DisPLY @s\sifzica io
- TSTREQ & Results File
MOVBYT
ERPRNT
TAPOP Display
>S4 map
N
P “ | PRESULT
'~ SCRATCH]
> FLDBN
<]
PCTTAL
—>

6.0

DISPY2 is called to
control printing of

the perflormance tables.
The headers are printed
by PRTHED and the tables
are gendrated and printed
by PRTPCT. If multiple
copies were requested,
PRTHED will write to the
scratch ‘disk and DISPY2
will print off the copies

PRTHED prints (or
writes to disk) the
headers for tables.

PRTPCT prints (or
writes to disk) the
performance tables.
Called once for each
kind of :table.

PRACRE calculates and
prints the tables of
acres and hectares for
test field.

PRISUP returns control
to LARSMN.

DISPY2

3.3 PRISUP-3

Test and

TSTREQ
MOVBYT

train fiel
listing

PRESUL
SCRATC

Multiple

PRTHED

copies of
tables

—1 GETIME
HEADID

PRTPCT

> GETIME

Table
headers

>

) PRESUL
SCRATC

Performanc

tables

PRACRE

|
.

<

PRTHED

PRESUL
-1 SCRATC

Acreage
Tables

Load Module Name:

RATSUP

RATSUP

1.0

RATSUP is entered from
LARSMN to process the
Ratiomeans function.

RATRDR is called to read
control cards. A list
of the control cards
along with some inter-
preted requests are
printed. The results
tape will be mounted if
stats are on tape.

Control is passed back to
RATSUP. Here the prelim-
inary calculations are made
and the statistics deck is
read. REDSTA is called to
reduce the statistics.

Routines RATIO & RATIOS
calculate the ratio in the
first four channels in the
stat deck, and the channels
in the visible region &
infrared region respective-~
ly supplied by the user.

3.3 RATSUP-1

Pl rmror []
S CTLWRD Control
| | CTLPRM Cards
| { IVAL
| { BCDVAL
} ERPRNT Control

MMTAPE °
\ Card Info
i
}
|
| .
: <22319Q§ ‘Results
I - Tape
|
1
—
RATSUP or
Results Statistics
RATRDR Tape Deck
ERPRNT
STAT
REDSTA
RATIO
RATIOS
TIO & tat Info
RATIOS &
Ratio Info

Load Module Name: RESSUP

1.0

RESSUP__

RESSUP is entered from
LARSMN to process either
the Copyresults, .
Listresults, or Punch=-
statistics functions.

RESRDR is called to read
control cards and per-
form initialization
operations. A summary
of the user's requests
are printed. If FROM
TAPE (TTT) is requested
then MMTAPE is called to
mount the classification
results tape. If TO
TAPE (TTT) is requested
then MMTAPE is called

to mount the output
results tape. If

FROM DISK is specified,
then a read to the disk
is made to insure
results are present.,

RESRDR

TSTREQ
CTLWRD
ERPRNT
CTLPRM
IvaL

MMTAPE

3.3 RESSUP-1

Control

cards

ﬂla\s'sification
Results

\ File f

Copy
Tape

User's
Request

Selection

%’

|

SSIFY

RESCOP is called to
read the first two

recoxds from the resultsQE___

tape and calculate base
addresses of arrays
used in ARRAY. A CALL
COPY is then performed.
A check is made to
process additional
files or return to
RESSUP.

RESCOP

ERPRNT
TOPRF

D (&

Classigication

2A

Results
File

@

3.1

COPY reads first two
records from results
tape. Header informa-
tion is printed on the
results file listing.

If COPYRESULTS was
requested, two records
are written on Copy
tape if TAPE specified
and on disk if DISK
specified. Statistics
records are processed
and copied if requested.
If PUNCHSTATISTICS
requested, then a deck

is punched. The
remainder of the file

is then read or read
and copied. 1If

NOLIST specified, control
is returned to RESCOP.
If not, then a results
file listing is printed.
If COPYRESULTS requested
then the copy tape is
terminated by 2 file
marks, a check record,
another file mark.
Return is made to
RESCOP.

RESSUP returns control
back to LARSMN.

@

3.3 RESSUP-2

Statistics

COPY
ERPRNT
TOPRF
TOPEF

—>1 TOPBF
<

Deck

Classification

Resultsg

Tape
Copy
Tape

Results
File

Listing

—

CLASSIFY
RESULTS

—

3-39

Load Module Name: RUNSUP

RUNSUP |

1.0 RUNSUP is epntered from
LARSMN to process the
Idprint, Channeltrans-
form and transferdata
functions. The error
handling routine for
GADLIN (called in
TRAXEQ) is!contained
in RUNSUP and calls
these ROOT:subroutine:

LINERR
ERPRNT
TOPBS.

2.0 The Idprint function
is contained in
RUNSUP and calls these
ROOT subroytines:

TSTREQ
CTLWRD
ERPRNT
CTLPRM
IVAL
GETIME
TOPRW
TOPRU
MOUNT
TOPRD
TOPFF

Control cardds for the
Idprint function are
read in. If PRINT
TAPE was reguested, a
Multispectral Image

Storage Tape is mounted

and the ID records on
this tape are printed
out. If PRINT RUN or

PRINT ALL was requested,

the system runtable
is accessed to obtain
the ID record(s), and
the record or records
are printed out.

3.3 RUNSUP-1

S
Control

cards

——)

RUNTABLE
FILE

Multispectral
_{ Image

Storage
ape

Listing

40

3.0

CHASUP is entered if
the Channeltransform func
tion was requested.

It is a combination
card reader and super-
visor. A Multispectral
Image Storage Tape is
mounted and an output
tape is written which
is a Multispectral
Image Storage Tape
containing the
duplicated run.

TRARDR is entered if

the Transferdata func-
tion was requested.

It reads in control
cards, reads the first
field description cargd,
mounts the Multispectral
Image Storage Tape, and
prints the header and
channel information.

If the TAPE and/or

PUNCH options are spe-
cified, it also records
on tape and/or punched
cards the same infor-
mation. Control is then
returned to RUNSUP which
will call TRAXEQ to out-
put the roll parameters
and/or the data values
on the Multispectral
Image Storage Tape.

TRADAT, the second entry
point, is entered each
time control is returned
to RUNSUP from TRAXEQ.

It will read all sub-
sequent Field Descrip-
tion cards and will mount
tapes output the channel
and header information
for these runs. The only
difference between this
entry point and TRARDR

3.3 RUNSUP-2

CHASUR Control
CTLWRD cards
> ERPRNT
CTLPRM
IVAL
GETRUN
MOUNT
TOPFF
TOPRD
TOPRF
<T TOPWR
TOPEF
TOPRW
SUBGEN
SUR
TRARDR
TRADAT Control
A CTLWRD Cards
ERPRNT
CHANEL Field
CTLPRM Descriptién
IVAL
GETIME
LAREAD
GETRUN
TOPRU
MOUNT
TOPBF
ggggg Header and
Channel
e eu—
< Header and
Channel
Informatioh

3-41

5.0

is that the latter
reads the ¢ontrol
cards. TRADAT will
eventually! read the
END card amnd notify
RUNSUP of the end of
the input deck.

TRAXEQ is entered to
print the roll
parameter and print,
punch, and record on
tape the Myltispectral
Image Storage Tape
values, depending upon
the user's specifica-
tions. The Multi-
spectral Image Storage
Tape is alxeady mounted
and left positioned at
the first data line by
TRARDR or TRADAT.
Control is returned

to RUNSUP after the
completion of each run.

RUNSUP returns control
to LARSMN.

TRAXEQ

GADLIN

3.3 RUNSUP-3

Multispettral
Image

\Storage

Tape 4

Roll

Parameter

Requested l

Multispectral
it

Image Storage

Qégg,v ues

Multispectral

Image Storage
Tape Values/

Tmage Storage

Multispectral
/]Tage Values

Load Module Name: SAMSUP

SAMSUP

3.1

3.2

3.4

SAMSUP is entered from
LARSMN to process the
Sampleclassify function.

SAMRDR is called by
SAMSUP to read and
interpret the necessary
control cards for
SAMPLECLASSIFY.

SAMINT is called to do
general initialization,
compute array bases and
read the data cards.

STAT is called to
read the statistics
from disk or cards.
If they come from
cards, they will be
written to disk.

REDSTA is called to
read statistics

from disk and stores
them in main memory.

CLSCHK is called to
check class (and pool)
validity.

GRPCHK is called to
check group validity.

SAMRDR

3.3 SaMsupr-1

Control

CTLWRD
ERPRNT
CTLPRM

N

POLSCN

cards

Options

GRPSCN
CHANEL

SAMINT

selected

Control
information

ERPRNT

STAT

Statistics

Deck

STATS

REDSTA

T v

CLSCHK

T v

> GRPCHK

2A

DATA

STATS
DATA

3.6

3.7

FETCHK is icalled to

check channel validity.

REDSAV is called to
reduce statistics into
classification pools.

RDFLDS is called to
read and sort the

Field Description Cards.

SMCLS1 is called to
output the statistics
information and also
to invert the
covariance matrix and
calculate the
determinant,

SAMINV is called to
invert the covariance
matrix and calculate
the determinant.

2A

FETCHK

REDSAV

<

RDFLDS

=
<

3.3 SaMSupP-2

Y —
Field

escription
Cards

SMCLS1

> TRNTES
FIELDS

SR —]
Classes and

GETIME
WRTTRN
WRTMTX

Channels
Table

Saved

Training
Fields

Listing
Statistics

SAMINV

MINV

1

Summary

—

o

5.0

SMCLS2 is called to
perform classification
on a per field basis.

HEADER is called to
print the run informa-
tion header from the
Multispectral Image -
Storage Tape.

SAMINV is called to
find the inverse and
determinant of a
matrix.

SMMULT is called to
compute vector and
scalar products of a
matrix.

SAMSUP returns control
back to LARSMN.

SMCLS2

A4

TSTREQ

3.3 SAMSUP-3

Multispettral
{ Image)RUNTABLE

GETRUN
RUNERR
GETIME
GADLIN
LINERR

\Storage FILE
Tape é

| Classification

Results

ERPRNT

(ordered)

Classification
Results

“1 (as input)

[r—————— Y
Classification

HEADER

/

SAMINV

MINV

SMMULT

Performance

Py

Load Module Name: SECSUP

SECSUP
|

3.0

SECSUP is called by
LARSMN to start the
supervised echo
function;,

SECRDR ig then called
to read the control
cards for the function.
The results tape is
mounted if needed.

SECINT is called by
SECSUP to initialize
variables and to set
up the array. It

also reads data cards
and the stat deck.
Option info is
printed, and a loop

is entered to classify
the area.

3.3 SECSuUP-1

SECSUP

SECRDR .

SECINT

SECRDR Control

CTLWRD | Cards

RTMAIN B ——

ERPRNT

ggiERM Listing

FVAL

POLSON

BCDVAL \J//"\\\

ﬁggggL Intermediate
\Tape {

SECINT

STAT < Tape

ERPRNT 4\\\

LAREAD

REDSTA

CLSCHK

FETCHK MIST tape

SECRD

REDSAV

SECPRT [

GETRUN Listing

RUNERR

GETIME

HEADER (—————————w

SECHO1l Data

TOPEF < Cards

TOPRF

TOPBF N

MAX@ Results tape

3-46

5.0

SECPRT produces tabular
statistics for user
information and does
minor array processing.

SECPRT

GETIME

3.3 SECSUP-2

WRTMTX
SAMINV
SMMULT
ERPRNT
RTMAIN
TOPRF

Listing

i

)

TOPEF
TOPBF
MAX@
SQRT
MING

MTAPE mounts and
positions the results
or intermediate tapes.

GATHER gathers
statistics on a given
cell for classification.

1 GATHER l

< ALOG

V2

MTAPE

TOPRU

Results Tape

C

)

N

MOUNT
TOPRW
CPFUNC
RINGIN
TOPBF
TOPFF

Results Tape

)(

Intermediate

ERPRNT
RTMAIN
CTLWRD

CTLPRM
TOPRF

SECHOl is called for
each area to be
classified, and
classifies each line
of data.

SECHO1

Tape

<

FILBUF
LIKRAT
ADD2

BEGFLD

Listing

i

)

TOPBS

ALOG

>/Results Tape

C

10.0

11.0

12.0

SECRD reads the data from

the intermediate tape

STATS2 has 3 entry points i+
LIKRAT, ADD2, and BEGFLD.

LIKRAT is a likelihood
test by subtracting
log-likelihoods and
returns a resultant
value. ApD2 adds a
cell to the stats of

a field. ' BEGFLD
initializes field
stats. :

LOGLIK produces a log
likelihood for a class
in the input stats.

SAMCLS performs
maximum likelihood
classification.

FILBUF raeturns a set
of buffers with cell
information from tape.

EC

RD

|

STA

TS2

<

T\

LOG

LIK

SAM

CLS

T

LOG

LIK

FIL

BUF

GAD
GAT
LIN
SAM

LIN
HER
ERR
CLS

3.3 SECSuP-3

___Input Tape

(data)or
intermediate)

Load Module Name: SEPSUP

SEPSUP

1.0

SEPSUP is entered from
LARSMN to process the
Separability function.

SEPINT is called to
read the control cards,
(CALL SEPRDR), read

the statistics (CALL
STAT), save the statisg-
tics in core (CALL
REDSTA), check classes
(CALL CLSCHK), channel
(CALL FETCHK), best
(CALL BSTCHK), and show
(CALL SHWCHK), requests
and to request and
accept typed-in changes
if errors are found.
The bases of the re-
duced arrays (based

on pooled classes) are
found, computations

are performed and
TSPACE called to
determined whether the
scratch results will
fit on disk. Then
supervisor information
is printed, statistics
are reduced, (CALL
REDSAV), and the
symbols, weights, and
show regquests are
placed in the

dynamically allocated
array (CALL SYMSET).

SEPINT

STAT

REDSTA
CLSCHK
ERPRNT
CTLWRD
BCDVAL
FETCHK
REDSAV
TSPACE

3.3 SEPSUP-1

P —
Statistics

Deck

STATS

DATA

Supervisor

J

@

Kijiijfjfigj

49

2.1

2.3

SEPRDR is called to
perform initialization
operations and read
and decode fthe control
cards. The control
cards and options
requested are printed
on the printer. If
errors are detected,
the card angd error
message will appear
both at the terminal
and on the printer.

BSTCHK deletes any
combinations request
which is larger than
the number of channels
in the given data.
Entry point SHWCHK
examines each show
request for having
channels in ascending
order and valid chan-
nels listed.

SYMSET is called to
set up all the symbol
combinations and
place valid weight
requests and show
requests in the
dynamically allocated
array. The weight is
ignored for an invalid
class combination and
this message appears
on the printer and
typewriter.

2A

SEPRDR

CTLWRD
ERPRNT
IVAL

BCDVAL
POLSCN
CHANEL
BCDFIL
LOCATE
CTLPRM

3.3 SEPSUP-2

SR
Control

cards

ummary
of User's

Requests

BSTCHK

entry
SHWCHK

T

SYMSET

W

3.0

4.0

5.0

DIVRGl is called to
print out the symbols
and corresponding
classes, channels and
calibration information
training fields, and,
if requested, the
statistics.

MOUNT is called to
mount a scratch tape
if the scratch device
is not disk.

ARBASE is called to
calculate the
remaining array bases
which are dependent
on the current
combinations request.

DIVRG2 supervises the
calculation of the
divergences by calling
GETINV to obtain the
next channel
combination and compute
inverse of the
covariance matrix, and
then calling DIVERG

to perform the
computations. The
channel combinations
and divergences are
then written on the
scratch tape or disk
as available.

> DIVRG1l

GETIME
WRTTRN
WRTMTX

3.3 SEPSUP-3

Classes]
channels

MOUNT

Training fields

Statjstics

Separabilit
p at >4

ARBASE

Y.

ERPRNT

> DIVRG2
TSTREQ

Scratc
Tape

Separability

@

6.1

GETINV is icalled to
obtain the next set of
channels and compute
the inverse of the
covariance matrix.

If the determinant is
zero, a message that
the channel statistics
for some class are
ill-conditioned is
printed at the printer
and typewriter.

DIVERG is called to
compute the divergence
for each class
combination.

DIVPRT is called to
print the separability
of the classes by use
of the divergences

just calculated. The
show requests are
obtained (CALL GETSHW),
the weights are saved,
and page formats set
up. GETDAT is called to
obtain the needed
divergences from the
scratch device and to
apply options requested
from control cards.

The results are ordered,

headings printed, and
numbers set up and
printed 1 line at a
time. The best set of

3A

GETINV

MINV

IVERG

—> p
=

<

DIVPRT

IOR
ERPRNT

DIVPTL ‘

3.3 SEPSUP-4

Separability
Information

@

for best

_channel
combinations

channels is saved
before a return is
executed. Entry
DIVPT1 is called after
the user has entered
options at the type-
writer, and the above
sequence is followed
as required by changes
in options requested.

GETSHW searches through
SPLCOM array for all
show requests with the
correct number of
channels and places
them in SAVQUE array.

GETDAT obtains the
separability information
from the scratch device,
applies the saturating
transform if SATFLG=0,
checks for excluded
combinations and show
requests, orders

results by DIJ(MIN) if
MINFLG=1, and

returns the infomation
to DIVPRT.

@

L >, GETSHW

6_-
GETDAT

>

<

3.3 SEPSUP-5

Separab{;;;;\\

Scratch
Tape
or
I
SEPAR
SCRATCH

i

53

3.3 SEPSUP-6

8.0 USER allows the user N USER r_,_,——~"’
to type in different CTLWRD User types
sets of options at the BCDFIL Control words
terminal, using the ERPRNT -
o narg) ords Locare Sormaty of

’ CTLPRM > User

lus t i
Eontro?ewgié;?wxng < IVAL requests
RESET to get back to
the initial set of
cptions, and HELP and
TABLE to get informa-
tion at the terminal.
If a new SHOW request
is entered, GETSHW adds
it to the set of SHOW
requests with the
proper number of
channels.

GETSHW

9.0 SEPSUP calls entry
DIVPT1 if the user
did not type STOP.
Otherwise, the best
set of channels is
saved and control
returns to LARSMN.

Load Module Name: SMOSUP

SMOSUP

1.0

SMOSUP is entered from
LARSMN to process the
SMOOTHRESULTS function.

SMORDR is called to read
control cards and to ini-
tialize variables and ar-
rays. GRPSCN is called to
interpret a group card and
READMX interprets the user
defined classes from a MIX-
CLASS card. MMTAPE is
called to mount the input
and/or output results tape.
If INRESULTS DISK is speci-
fied, then a read to the
disk is made to be sure re-
sults are present. A sum-
mary of the options requested
is printed.

READMX scans and interprets
the MIXCLASS control card.

SMOINT reads Record Types 1
and 2 from the input re-
sults, calls GRPCHK to up-
date or fill the group ar-
rays, transfers information
to the pool arrays and
writes the new record types
1 and 2 to the output re-
sults file. The statistics
file (record type 3) is then
read, marked as invalid and
copied to the output file.
The requested area is lo-
cated on the input file,
data lines are read, and
shifted if necessary.
SMOOTH is called to modify
the classified points and
the final records are writ-
ten to the output tape.

SMOOTH tallys the number of
points in each class for each
group (cell) of pixels and
assigns the majority class to
all pixels. Priority classes
remain unchanged, and the data
buffer is reloaded with the
modified cells.

SMORDR

w
I

55

3.3 SMOSUP-1

Control

CTLWRD
ERPRNT
CTLPRM
IVAL
FVAL
GRPSCN

<~{ MMTAPE

Cards

> R

EADMX

L
I

< C

OCATE
VAL
TLWRD

SMOIN

T

GTSER
ERPRN
GRPCH
CTLWR
FVAL

TOPEF

é_wTOPRF
TCPBF

L
T
K
D

Summary of
User's Option
Requests

SMOOTH

Load Module Name: _STASUP

STASUP

1.0 Enter STASUP from
LARSMN.

2,0 CALL STARDR to read,
interpret and check
for validijty all con-
trol cards.

3.0 Call STAINT to write
the first card of the
statistics file, read
the data cards and
compute space needed for
some dynamic arrays.

4.0 Call LEARN to control
all computation of
statisticg and genera-
tion of histograms,
correlation matrices,
spectral plots and
statistics deck.

4.1 Call FLDCQV to compute
means and covariances
for a field. WRTMTX
is used t9 print the
statistics.

STARDR

3.3 STAsSUP-1

Control

CTLWRD
CTLPRM
ERPRNT
BCDVAL

cards

List of
N

IVAL
FVAL
CHANET,

STAINT

options

\

Field
Description

LAREAD <

ERPRNT
DATCRD

Cards

STATS

DATA —

)

List of
>t control

;

LEARN

LAREAD

information

STATS

DATCRD
BCDFIL
GETIME
TSTREQ
GETRUN
RUNERR

DATA

il

Multispectral

GADLIN
LINERR

ERPRNT

FLDCOV

WRTMTX
GETIME

TV

£

{ Image JRUNTABLE
Storage FILE
Tape

Statistics
for a

@

field

Call FLDSPC to print

the spectral plot for
a field (entry point

in CLSSPC).

Call FLDHIS to print
the histogram for a
field. (Entry point
in CLSHIS).

Call CLSCOV to compute
mean and covariance
for a class and print
if requested. (Entry
point in FLDCOV)

Call CLSSPC to print
the spectral plot
for a class.

Call CLSHIS to print
the histogram for a
class.

Call MULSPC to print
one multispectral
plot. (Entry in
CLSSPC) .

Call PCHSTA to write
the statistics on
the Statistics File
and if a deck is
requested, punch it.

Control is returned
to LARSMN.

FLDSPC

GETIME

3.3 STASUP-2

Field

T

FLDHIS

GETIME
IOR

spectral
plot

Field

CLSCOV

WRTMTX
GETIME

histogram

Class

CLSSPC

T Vv Ly

GETIME

statistics

Class

v

CLSHIS

1

GETIME
IOR

spectral
plot

Class

MULSPC

0

GETIME

histogram

|)
Multispectral

PCHSTA

TSTREQ

plot

<sTaTs

DATA

Y ———
>4 Statistics

Deck

SECTION 4

LARSFRIS IMPLEMENTATION TECHNIQUES

SECTION 4

LARSFRIS IMPLEMENTATION TECHNIQUES

This section describes a number of implementation techniques
that were used in the development of IARSFRISVersion 3 as well
as discussions of some of the intérnal characteristics of the
system that are of particular interest to the programmer or

system analyst. The topics that are covered are:

4.1 COMMON Block Usage

4,2 Use of Object-Time Dimensions

4.3 ProgrammingLARSFRIS Supervisors, Readers and Initiators
4.4 Generating Functioﬁal Load Moduleé

4.5 1IARSFRIS Error Handling

4.6 Use of the IARSFRIS System for Test Runs

4.7 Attaching and Detaching Tape Drives

4.8 Implementation of the Control Card Checkout Feature

4.1 COMMON BLOCK USAGE

This section discusses the requirements for BLOCK DATA subroutines,
describes how to change to a new version of a COMMON block, and
gives a table of which program modules contain which COMMON

blocks.

A BLOCK DATA subroutine must exist for each COMMON block that is
used in LARSFRIS. Without the BLOCK DATA subroutine, there would
be no CMS TEXT file for the COMMON block and thus no way to

explicitly load the block. Even if no variables are initialized
in the BLOCK DATA subroutine, it is necessary to explicitly load
it in order to force the COMMON to load at the correct location

(see Subsection 4.4 on Generating Functional Load Modules).

Procedure for Changing COMMON Blocks

An automatic procedure for changing to a new version of a
COMMON block has been developed. The procedure requires the

following:

Input Requirements

1. The number of lines in the old COMMON must be known.
These number of lines will be deleted before inserting
the new COMMON block. The count of lines starts with
the COMMON statement and includes the specification
statements, since they frequently change when the

COMMON block is changed.

2. An EXEC file which lists the names of the FORTRAN
programs containing the COMMON block. This file should
have a first card of CONTROL OFF plus one card of the
form shown below for each Fortran routine that is
affected.

&1 &2 name FORTRAN &3 &4

where "name" is the name of the FORTRAN program.

3. Finally, the file containing the new COMMON block must
be ready. This file should contain the COMMON statement
and all specification statements. The filename, file-
type of the file must be 'cname COMMON' where 'cname'

is the name of the COMMON block.

Procedure Restrictions

The following restrictions apply to the procedure:
1. All FORTRAN files to be changed to include the new
COMMON and the COMMON file must be on the A-disk.

2. The name of the COMMON block must be 6 characters long.

The Change Procedure

The procedure will replace the old COMMON with the new

COMMON in each requested program that uses it.

To change the COMMON blocks use the following command:
list EXEC COMCHNGE cname lines

where:

list = the name of the EXEC file with the names of

FORTRAN programs

cname the name of the COMMON block

lines = the number of lines in the old COMMON. It is
extremely important that lines be correct
since this many lines will be deleted from

the file before adding the new COMMON block.

The EXEC COMCHNGE executive routine executes an Assembler
program called CHNCA which creates a new file containing the
FORTRAN routine and the new COMMON. It does this by directly
copying from the old source file to a new source file until the
character string specified by "cname" is found. The new COMMON
block is then read and copied into the new file. The counter
that is used for reading the old file is then increased by the
number of lines specified by "lines" in the command. This
effectively skips the old COMMON, and the remainder of the old
file is copied into the new one. COMCHNGE then erases the old

file and gives the new one its name.

Four error messages can be produced by COMCHNGE. When they are
produced, the FORTRAN routine being processed at the time of the
error is left unchanged, and the entire procedure is terminated.
The errors are:

1. cname COMMON does not exist

The FORTRAN file typed above does not exist.
An I/0 error occurred reading or writing.

The FORTRAN program typed above does not contain the

COMMON block.

4-5

4.2 USE OF OBJECT TIME DIMENSIONS (UTILIZATION OF ARRAY)

The LARSFRIS system provides each functional load module with
storage space which it can access by use of the FORTRAN
object-time dimension facility. The space is provided in the
form of the array "ARRAY" in the COMMON block GLOCOM. GLOCOM

is located at the end of the LARSMN(root) load module. ARRAY is
specified as REAL*8, and the number of bytes it contains is given
by the variable TOP (I*4) also in GLOCOM. Thus, the functional
load module can determine the amount of space available in ARRAY.
ARRAY is never used to pass information from one functional load
module to another (The vector TEMPAS in GLOCOM is provided for

this purpose).

There are three ways in which ARRAY can be used. The simplest
ways are to use it directly or to "equivalence" other variables
to it. Both of these methods have a limitation in that they fix
the amount of space allocated to a given variable (e.g., if A

is equivalenced to ARRAY (1) and B is equivalenced to ARRAY (25),
then A can have no more than 24 doublewords). This can be a
severe restriction when working with a variable number of classes,
channels and samples in a line. Therefore, the most common usage

of ARRAY is the third way; the use of object-time dimensions.

The use of object-time dimensions is achieved by passing argu-
ments to subroutines which are, in fact, parts of the array
"ARRAY". For example:

CALL SUB(ARRAY (I1) ,ARRAY(I2))

SUBROUTINE SUB (COVAR,MEAN)
COMMON /EXAMPLE/ N1,N2

DIMENSION COVAR (N1) ,MEAN (N2)

In the example shown, the CALL statement will pass two arguments
to subroutine SUB (in this case ARRAY(I1l) and ARRAY(I2)) which
are the starting locations in ARRAY for the storage of two arrays
identified in SUB (in this case COVAR and MEAN). Since both Il
and I2 are variables, they are computed (prior to the CALL)
according to the space requirements needed for the options
selected in any given run. This is useful because there may not
be enough space in array ARRAY if the user selects all the
channels and maximum classes for instance, even though there is
enough space for all channels and half the classes or vice-versa.
Note that the functional programs should check to be certain
that there is sufficient space in ARRAY for their requirements.
In the subroutine being called (SUB) the arrays (in this case
COVAR and MEAN) have variable dimensions (in this case N1 and

N2 respectively). Any variable dimension must be an INTEGER*{
and non-subscripted. It may be defined in COMMON as shown

above or in the calling list as shown here:

SUBROUTINE SUB(COVAR,MEAN,N1,N2)

DIMENSION COVAR(N1l) ,MEAN (N2)

Note that the FORTRAN - G compiler will permit the program to
simply use the dimensions COVAR(l) and MEAN(l) but this
technique should not be used for two reasons. One is that it
is very poor documentation cf the program and the other is that
the FORTRAN - G debug facility cannot be used unless variables

are properly dimensioned.

4.3 PROGRAMMING LARSFRIS SUPERVISORS, READERS, AND INITIATORS

This subsection provides information which will aid a programmer
in writing the supervisor, card reader or initiator of a
processor. It contains common message structures and documen-
tation of the usage of IARSFRIS support subroutines. First is a
section on the general functions of supervisors, card readers
and initiators, and some of the general programming features
which may be applicable to any kind of subroutine. Then a
section is provided with descriptions of the programming logic
used in supervisors and card readers. Refer to the LARSFRIS
Program Documentation Manual for specific subroutine uses.

See the documentation of CTLWRD, BCDVAL, and ERPRNT since these
subroutines are used extensively by card reading subroutines.
Also see documentation for LAREAD which is used by initiators

to read Field Description Cards.

General Functions of Supervisors, Card Readers and Initiators

The supervisor is the highest level subroutine of any load
module. It receives control from LARSMN, executes a function,
and returns control to LARSMN. The supervisor consists primarily
of calls to other subroutines. In a load module with more than
one IARSFRISprocessing function, the supervisor may be the
supervisor for all of the functions, or it may call a subroutine
to control each function, and this subroutine is itself called

a supervisor.

4-10

The card reader reads and interprets the function control cards.
It usually pefforms checks for complete and accurate control

information after the control cards have been read.

The function of an initiator is less well defined than that of

a supervisor or card reader. In general, an initiator performs
initialization operations for the processor other than control
card reading. This may include reading data cards, reading
stored information from a disk data set, computing base addresses

of variable-dimension arrays, and printing header information.

The naming convention is a hierarchical one. That is, if
initiator functions are in the card reader, the subroutine is
called a card reader, and if the card reading is done in the
supervisor, the subroutine is called a supervisor. Sometimes
these functions are combined into one subroutine to avoid having

a large number of very short subroutines.

Supervisors

All supervisors will have the following organization:
l. Type a message of the form
Innnn functionname FUNCTION REQUESTED (xxxSUP)
'functionname' is the name of the processor without
the asterisk (for example STATISTICS).
2. Read the control cards either in the supervisor or by
calling a card reading subroutine.

3. Call an initiator if this processor uses one.

4. Perform the requested function either in the supervisor
or by calls to major processing subroutines.
5. Type a message of the form
Innnn functionname FUNCTION COMPLETED (xxxSUP)

6. Return to LARSMN

The following pages show an example of a supervisor (the super-

visor for the STATISTICS FUNCTION.)

o~
4
]
<
S ——— J d B — doood dooad
0G0 0OT0OOUOOONCO0 0000000 OON0OO 000000000 COOO0O0 ,OOOLOOOLOOO 000 000QJOO0
AN TN LA D O (2= N M PN O TP O et (NN T N O 00 O Ot N ,5673901&345@789 2355671?0‘235557899‘23 nor-
OO OO QO QO rd st s d 2t bt = =N N N N NN N N MY N A A 0 (00 P o 1N P T T SN DNV NN N OO 00 0 8 0§ 80 e I o i e P
OQLOOULOOQVOOOVOO COOOOOOQCOOOCOOQCOOOCOOOOOOOOOO00000000COOOOCOOQCOOCCOOQOOOM
00COOOCCOQCOOQCO000000000QC00OCOOQCOOOCOOQOOOOOOOOOOOOOOOQOOOOCOOQCOUOCOO QOO
AAQAAAAAAAAAAAAAAAAAAﬁAﬁAAAAAAAA‘A“AAAAAAAAAAAA,‘AAAARAA.AAAAAAAAAAAA_AAAAAAA <adq
B Pt o e o g e B 5t e e B 8 e s B B B e e s . el i o o o P B Bt s e B P e I e e Bt o = o, s i B o s o B . e o o e B B B o B P e o o Bt o o]
N vinunnnan i NN I NAVTBKN SSS&SSSSSSSSSSSSSSSSSSSS&,SSSSSSS.SSSSSSSS(.f Ny
» » . - » ») * !
» - - . " o4 R . '
. - - o~ * " " - I - »
[} L 4 » “or » » " £ 3 * * o
- - w —~en - - * - .
- » w - - » PR ' - .
- » < - < » L D - - * *<
. - - na | » » - ->
» » %) ~— - . n » - - »
4 -) az . *w * a = sl |
- - - b - . » LR » D » - -
- - -3 - o » »u - v & - - ‘
- - %3 - M » " » < e ez
» » " . —t— " . . - . 2w |
- - < b -y » " t Vi . «x |
* - -y P [» - a bt -8 » g
- - vut O <us » * % * | * *w
» - o « - WL e -» - " » * * - _
- - .t ¥ - o * - * - H .- |
» - - - 6O & - - » - * - [.-
» - - Z ™) -~ » - g nu - ® =
» » wy - - P ooy » ~ »® - * *eng
- - a’] -~ m) [F » u R - - * S
* » Cd © @ « -0 v -» . * % » v e * O
» > - O3 O u A L e e e » = - % * w o« L s
¢ O » W N oex| X - b el » o * » * 2« » 0y
. = | 0w A =N | W mOr - % D u et * b= S P
* b= » -0 Q% e - . e » v LR 3 td us & <o
. O - D U O~ vaa, . * - . # >
. Z ou P R —t Xt I . - Zz « Za>> an » % eda
*» DO X | eq> - Mo - . WO Pwdldd «# * = » * e
*» o I o ~31cx O Prtug » x> | ax>aa w » o« # -0
» o * Oy e® Q] D=z LD .z AN o= w e - — T
* W - Dre® o | o &L=l D) » - S, XS AOU W * - *d -
. O . e X d n~y ZUT ala » STEIE VL - Srgrih o U F R 4 » [*® >
* ot » ~DA QL XM -~ D—-0 I . O m d et [FIE - Z =» "0
. - » OXDAVD o<t » A LAY O= # W > mde e mm0 4 * D » *Oaq
» n - NG WX NLa o Qe A # N DldqA»Orddalagne » * w o * o
=t * = | » - TaL-NE ~ ~ %D XX AL XX ® * * » -,
@ *® > a O ae X~ W “ ey w XXX OXXXT>* * wow #0OL
* aai # = &P=lD & Q[0 e - ey Z # N A= I LT & - O # 2 R
* = 1 ® N aDAD e jax> i # W <a " Txen xS e m 0~ -
2z L LY I UDX-0 o0 =~ Ded™MA L #) S TUUW WL * D - I sV O we
< © | ~ L > A A Fr o DN i@ 4 O CLITUXTILIITaw® & # - Y_ * =< " Rirer o
o N [# o~ — A XOrZDa Owwimbim o 2 & GOt ## o« |# —_—— g K> N0V
— M e Oa # WAIUT A mee O UK - _-DOITAN ., - | Xadh O i» ——tt) Sy QW |
o LA S -4 v 2 <O NOO Ou Rttt S T 4 b AL UL LU Ow» (" <O% 0O #00 O OO = |
o » U - e seeXale UO ” SLLNNZ & o QOODWODODODUR® J @ =~—ln _{ #0n oD O = |
v » o - » A0 d TN s TTaaad # > H - . ## O [Onewh _j #w—y -0 |
WV a O~ « qf DIODZ & a0 NZUIUN > orpmpm g B INADANENANDNIANE R of #=0O ># & #>ZN0 «OT
X |« vV i *» Dx AXTOTU Xt Lt Ed e bud e PSR) VNN NDNAANDNANG # e _,t U ¥ L ®ALLUED O T e
qa (k= R VI NTOOTOZA - DR AN QAN —D Y & * Wil WWwwwwe e Z lsgooaa b 22D N -
A o8 > o LD ITDDI>TIA e PAOLT A== UK # AAALUALLXTTXN R O HD eT I # o &I~ N o~ |
D ®* AN F =y QuIRWATWAad qUUDUA—~UNRAZT # DOLQQACI2CODDRER O RUX—aR HLOULO -t oo !
73 * W= # O . ®£ i wVox «Q | OFfooaad #» D000 QOIS TIADE # =T O—* = O e XX e
< ® a> = le Quoo Mo wa aadne~wi—aqwoas # qaaqragqqaadde® X S TuU—H L e ol e <
- _0 Dud & uim WA Sng— et o, ‘FL OhmXXvvos # vy ' e () 2wo Oe m ®*Z AOUZLAT~
A & e AY, e T D= AL=Xd L | AP Poww w3 WU YLUBULLUUNLER® A egre X8 *—~ D A X =~
‘‘‘‘ =i TR eatm NAL LY q Dy | Ev] _ » VANATALAMIANANRS # e (S par—ds T sa U A~y
: ot * _ ® e DG S 2nanQ, [- 45 S | * dqadHadddqddda® > #iA~ =8 Qi B o K
o < je P® DU Z00=Iquwial ssujuaaa] - MODNDZVDVNDDDOR® X [#be =R 2 @1 NONH
- e U QOOU =X b LOOO> 1 »' i ‘ “® W wa o > e O wwa
A e * x T, T L * HHanh g ne O & =X % O ®) W) 2t g
_o - * . ad x f R DY - ; | D mim e I et & X dmear
. a * O¥ O | _ wWWwZZ00> - et Nty D ﬁARCA‘ a #Q OQupaxun«a
_. ® D # e O O & 4t d I 0d . ~NZOY XAZd S E VUXLOU* D 20 U—OLIILL
. N e i ~NNN N O~ O 1 —. N - Y AULOUTIIOR S 8 - » » i
{e * ' » R . » ARND>ELDI—E Dyt Qi Q #* - @ Q
w * = o» _ » Pt d dOO0A DO LO R W W o # W w <
d ® N e ' * COIIVLGDw UL ITVNE S X {* - % N a —
- . [. , * : i L i (- ' po
AL ST ICTE WTUTE Ry I C R | (8] ; LOLLLOLLLLLLLLLLLLUVULL Lo i
B : ' . { L i
ST B R | _ | ! |
i . 1 i | I

FILE. « & STASUP ™ FORTRAN BT -
150 1F (CHKQUT) GO TO 200

STA0Q790

CHEBIRRSERRERR SRV ABBURBAXAEEERNDEPESEINR G RN RSBS00 nsssotssscxssesSTAQOBCC

C STACUBTU

C CALCULATE SYA![SYICS STA00820

[4 STAC0B830

C‘.'ttt"t‘t“'.t0".".‘tl.tt“.t‘l"‘t.'ttt‘.t‘tO.‘.t"tt’.“.“‘.‘."S]’ACOBQO
‘“—‘“‘—‘catr‘LEA&R(ARRAY(SPECI) ARRAY{COVAR1),ARRAY{AVAR] J, ARRAYICLSID1J, SYAOQOBSU

ARRAY LMENl‘ ARRAY (FLVvAK 1) yARKAY (CLMENT)y ARRAY (CLVAR T 1STADOB&0

. s AR RAY(HFIALI YARRAY {HCTALL) sARRAY (DATBAS) b STAQ0&170

» DAIEAS.ARRAY 1)) STAQC88C
200 WRITE _(TYPEWKR , 91507 STYACO890

9150 FORMAT (¢ [0199 STATISTICS FUNCTION COMPLETED {STASUP)*) STAQ00900

RETURN STA0091C

ENC STAQ092C

P

Card Readers

Control card readers consist of three sections:

The first section initializes flags and switches to
default values, initializes arrays which have default
values, and calls TSTREQ to clear the STOP/SUSPEND

flag.' This flag must be cleared before any calls are

made to TSTREQ to check the flag.

The second section is a loop which reads and interprets
the control cards. Control passes out of the loop when
a DATA or END card is read. This loop uses CTLWRD to
read the card and determine the keyword on the card.
Then a branch is made to code that completes the inter-

pretation of that kind of control card.

The third section checks for complete and consistent con-
trol information. In some cases, the user is asked to
type in additional control cards, which are necessary for

proper operation of the function.

The following section describes control card reader programming

by illustrating the PRINTRESULTS card reader with an explanation

of the logic used. Following the explanation is a listing of the

complete subroutine. The subroutine shown is PRIRDR.

4-15

OFOOO
OO~
O KD ot gt
=t et 4 et gt
[=]=]TeTo)
— ot St gy o
£ 4-4- 43- 4
anaaa

INTTTALUIZE
CALL TSTREQ(I)
RESTRT = C

210

Fooorooo

TN O~DPO
andanla 2R T T Tl oV
pond ool gt gt poed o4 g ot
alsi=leol=lelole)
Pt et gt s o S0t g
Eaa&Xao
paasapaca

~HOXO

) NI OO
bt "
4O =X O
Orh 43 Z 4
<A D220
Loz
PDx—wwIOD<
ﬁGSR - O

-

o
-t

et et O =4
UNUNR Relelale)
AP 0 I)

P\l X 3 D=2 N0
L e e B S ok)
R IV W
[L = b XX O
Z OV D O |

OOOOFOOOUOOOFOOO
PN TN O N OO~ NN O
PN NN N 2333«5333
Pt b et mad ot #7 md ot o 5 gt ek ot Ot et ek
POCOROOOPLOO
Pt Dt et g Pt Pt et g P8 St e g ot Bved gt Gt
oo XXeokaoo
poaoocpaaacpaac

pooco

paad

st 0 gt g

oooorooo
OO QN
I T TUSE SURT S8 4

Leclandond

0000r00
N O~ 0 O O
& RN
ottt g et

POOODOOOPOVLOOOV
Pt 3 Pl g (e 2t o g et S et grust, et Pt find
L. 14:1:4:4-4:4:4-7-3-4: 1- 4
faacacnpnaascpaoaadsfan

POV
TOOOW\L L]

it N

NN
va b uQ
W o <T el

NZ2Z 2wl

The statement

This is the first section of the card reader.

setting ERRCOR to 0 is required before the first call to CTLWRD

This tells CTLWRD that it is to read the card from

is made.

the control card input device (rather than read a corrected

card from the typewriter or an additional card).

IFICONPUT.EQ.2) WRITE(TYPEWR,1102) PRI01520
TTI02-FORMAT {* 10072 TYPE PRINTRESULTS CUNTRUL CARDS UPRTRORT") PRI

If control cards are to be read from the typewriter, an informa-

tional message with the above format must be typed.

1,656)

This ASSIGN will stay in effect until section three of the card
reader is executed. This statement starts the second section

of the card reader. The GOTO will normally branch to statement
210 unless a branch has been made from section three into section

two. 1In that case, the GOTO is used to transfer control back to

section three.

210 CALL CTLWRO(CARD,COL,SUPWRC,8,CODE,READIN,ERRCOR) PRIO1610
—— _1F (CODE LEQ, 8) SPARE(2) = 1 PR10162Q
IF (ERRCGR .EQ. 4) CALL RTMAIN PRIO1630

IF (ERRCUR .EQ. 2) CALL ERPRNT (139,'STOP? PRIO1640

GG TO (3CCy420,4450,500,550,6C0,650,£50), CODE PRIC1650

This call to CTLWRD reads the next control card and determines
the keyword on the card. The vector SUPWRD is a list of possible
keywords for the Printresults processor. If ERRCOR is returned
from CTLWRD with a value of 2, EOF was read on the input data,

so ERPRNT is called to write the appropriate message. If ERRCOR

is returned from CTLWRD with a value of 4, 'KILL' was read and

— 220 W
9220 F
c

23C 1

6

4-17

the functipn should be terminated. The computed GOTO is used to
branch to code complete interpretation of this particular con-

trol card. (CODE indicates which keyword is on the card.)

TE (TYFEWR.9220) CARD PRINIAAO
MAT (5Xg20A4) PRI01670
L erRPRNT (ERRNUM,*GO") PRI01680
{ERRCUR oNEs 3) ERRCOR = 1 PRI01690
TO 214 : PRIOCLTIOO

These five statements form an error handler. Statement 220 is
branched to when an error is detected while interpreting a
control card. Before branching to statement 220, the variable
ERRNUM is set to the appropriate error number. The error
handler types the erroneous card (note the FORMAT statement
since this same format should be used when writing a card image
to the printer or typewriter), calls ERPRNT to write the error
message, then sets ERRCOR = 1 to inform CTLWRD that it is to
read a corrected control card from the typewriter. If ERRCOR =
3, this means that control has come from section three (i.e., an
additional input is necessary), and ERRCOR must remain 3 to retain

that level of error correction.

The code from statements 300 to 650 is used to interpret the
various control cards. The details on only two kinds of cards
will be illustrated to show the general logic used in control

card interpretation.

R2CT¥F T1COU LEQ. 727 GO TO 20T PRTOZ690
CALL CTLORM (CAKD,COLgRESCOD,3,COCE,£230) PR102700
¢ 6C TC (425,430,4357, COLE PRIOZT1O
APE SPECTFICATION PRIGZTI0 —
E TAPE S ECTFIC T1 PRICZTID
425 VECSZ = 1 PRI02750
CALL IVAL (CARE,COL,ROTAPE,VECSZ,E440) PRIN2760
TFIVECS . . JTGUO TU 44C PRTIOZ7T70
60 T0 42¢ PRI 02780
¢ 3 CIFICATION §§'8§§38
¢ FILE SPE A
— %30 VECSZ = 1 PRIC28I0 —
CALL VAL (CARD,COL,ROFILE,VECSZyE445) PR102820
IF (VECSZ EQ. 0) GO TO 448 PRIG2830
GC TG 420 PRI0? B840
¢ | N PR1G3840
A
DISK SPECFICATIO A
435 RESULT = CLASSR
PR102B90 —
¢ eaon faisssse
TAP .
¢ ERROR IN ES FRigsas
ROEeTT0 220" PR102940
¢ EC PR105980
R F [
¢ ERROR IN FILE § ploeoss—
445 EERYEM20° PRI02990

The code illustrated above is that used to interpret the RESULTS
control card. Since the RESULTS card can have mofe than one
control parameter, the illustration shows a loop going back to
statement 420 after each control parameter is processed., State-
ment 420 asks if there is another control parameter on the card;

if not, control returns to statement 200 to read the next card.

The call to CTLPRM has a non-standard return specified. This
return will be executed if CTLPRM cannot recognize the control
parameter or discovers a syntax error on the card. 1In either
case, CTLPRM will have typed the erroneous card with the error
message requesting a corrected card be entered. The non-standard
return to statement 230 will set ERRCOR = 1 (to advise CTLWRD
that it is reading a correction from the typewriter) and branch

to call CTLWRD.

4-19

When 1IVAL makes a non-standard return, this means there is a
syntax error in the specification. The non-standard return
branches to set ERRNUM to the appropriate error numeric and
then branches to the internal error handler at statement 220.

cttatvtttvtv:vtvttt‘tttttt:tatttat*'v:*t:v*ttnttttvttttttt#atw:attt*ttct?klO}OOO

P
C GRCUP CARD PRIC 2020
PRI03030
C#ttt###t#tttt#t*#**#**######*t*#####*##*ttt#tt*###tt##*t#*#‘#vttt#tttt#PR103040
4507 CAIL ‘GRPSCNI{GRPNAM; GRPSTKyNOGRP 53 CUL, CART £4560) PRIC2050"
10 20C PR103060
460 STCPFG = 1 PRI03070
STKP R =0 PRI0C3080
CCRPS = C PRTC3090"
CALL ERPRNT (446,°G0OT0*,£2C0) PR103100

This code interprets the GROUP card by a call to GRPSCN. The
non-standard return indicates syntax error on the card. This

is an error which cannot be recovered from by entering a corrected
card; however, the program should continue to execute until all
the control cards have been read. This is accomplished by
setting a flag (STOPFG = l.) STOPFG was initialized to 0. After
all the cards have been read, STOPFG will be checked, and if it

is 1, execution will terminate.

YRR X RS R IR E NN R K KRR RN TN T TR SR kK F DN AN T EFNFEI TR PRIVZ T 7O

C PRIC4180
{ o shighies
'rc' TEXENX THRAFYX: ARFTETX EEE X ¥FXPRICS 53
C PR1C4220
C CHECK FOR CORRECT CONTROL CARD INPUTS PR104230
C PRIC4240
GOU ASSIGN 691 10U GU PRI04250"
C PRIC4260
C CHECK FOR COMPLETE INPUT SPECS. I.E EITHER DISK OR PR1Q4270
C IF TAPE +AD TO GIVE A FILE NUMBER. (TAPE AC. CF ZERQ IS PRI04280
E OKTSINCE THIS MAY MEAN USE SURATCH TAPE FRUM CUASSIFITA g§¥22§§ﬁr
651 IF (RESULT .EQ. CLASSR .OR. RQFILE .GT. 0) GO TC 655 PRIO4310
ERRNUM = 456 PR]04320
GU U 80V PRTIC&330

Statement 650 begins section three of the card reader. Section
three is reached after all control cards have been read in. It
is used to check for valid control information given by the user
and will give him the opportunity to type in an additional con-
trol card if needed (results card in this case). Statement 651
determines whether or not a file number was specified if
classification results are to be recorded on tape. When state-
ment 651 does discover an error (missing file number), ERRNUM
is set to the‘appropriate error number and control passes to
statement 800 (see code at 800 below) and then to statement 210
in section one to read in the additional results card. After
the card is read, a branch will be made into the code in
section two te interpret the revised results card. After the

card has been interpreted, control will pass to statement 200.

At this point, the purpose of the ASSIGN in statement 650
becomes clear: the program should not go to section one to read
in another control card but should branch back into section 3
(statement 651). The code at statement 800 (shown on the next
page) must be used in any card reader which reads in an

additional control card after discovering missing data.

O¥oU 10 85U

This code illustrates a check for valid control information
which does not result in a request for an additional control
card. Statement 660 will skip the loop making the check on
class grouping if no grouping was requested. The DO 664 loop
checks for consecutive group numbers, and if an error is found,
ERPRNT is called to write the error message and terminate
execution. The branch to statement 850 means all control in-
formation checking has been completed. The code from state-
ment 850 through the end of PRIRDR performs further initializa-
tion for the PRINTRESULTS function. It is peculiar to
PRINTRESULTS and is not general programming which will normally

be a part of a card reader.

PR
PR
«GT. NOGRPS) CALL ZRPRNT (458,°STCP*) gs
PR

This code sets ERRCOR = 3 to use CTLWRD to read and interpret an
additional control card. When ERRCOR = 1, CTLWRD will go to the
input stream for the next card if a Carriage Return is the

response to a request for a card. But when ERRCOR = 3, CTLWRD

will respond to the Carriage Return with an error message stating

that the additional card must be typed and will then read from

R="3 PRIC4%90
ERPRAT (ERRNUM,*'GOT0',£210]) PRIC4500

the typewriter again. Note that when ERRCOR = 3 on entry to
CTLWRD, it remains 3. The call to ERPRNT writes the error
message requesting additional control information and branches

to the call to CTLWRD in section two.

The complete listing of the PRINTRESULTS card reader begins on

the second page following this page.

Initiators

Initiators have very little in common. Normally, however, all
card reading (both control and data cards) will be completed
in the initiator. When all cards have been read, the following

message should be typed:

10034 ALL CONTROL AND DATA CARDS HAVE BEEN READ

Reading Data Cards

Data cards should be read using the same techniques as control
cards. For reading data decks containing field description
cards, use subroutine LAREAD which will read the card and
interpret it as either a free form or fixed form of field
description card. LAREAD will also identify TEST, CLAS, DATA
and END cards, See the module description for more detail on

the usage of LAREAD.

Card Reading Considerations

When reading a user input deck, use the 'END=' exit in the
FORTRAN READ statement to point to a call to ERPRNT with error
message 139, This indicates that end of file was reached in the

middle of an input deck.

A READ to the typewriter will produce an EOF condition if the
user enters a Carriage Return with nothing else on the line.
Therefore, when the user enters only a Carriage Return, the

'END="' exit will be taken from the READ statement.

After a READ to the typewriter, a check must be made for the
characters 'KILL' as the first four characters of the typewriter
input. If KILL is entered, RTMAIN should be called to terminate

execution of the function. This check supports the batch monitor.

When reading input decks, every card must be checked for an END
card. When an END card is found, the appropriate cell in GLOCOM
must be set = 1. (This is currently SPARE(2) though it is sub-
ject to change so check the variable definitions in GLOCOM).

This is necessary because when LARSMN receives control after the
completion of a function, it flushes any unused cards for that
function unless the END card has already been read. It uses this

flag to determine if the END card has been read.

4-24

ARIRCR ™~ FORTREN BT

TFILE

00#00053\. 090#000 OOOhOOO OOOFOOO Q0OPOO0C 000#000 OOOhOOO UOOOhOOO COOPOOOPOOD
= OMT N OP D OO VO OO NN O VO Oyt N T N O M O PN DN 1O = DO O 2365678?0!23656 DO OMNMTINON D
[loiolelolololot0l PENNN NN NINNN O AMM MO AN S G TR @ 3 N INNANIDD NN IR O O O 0 O G0N0 O O PP po b e Pe i
OOCOOOCOOOCoccaoocmooocooCOOCOOGCOUOCOUOCOUOCODOCOUOCOOOCOUOCOUOCO OLODOVOPOVO
OOWOOOCOOOCOOCOOOCUOOCUOOC_UOCOOOCODOCODOOODOCOOOGOUOCCUOCOUOCOOOCOUOCOVOQOUOCG
r o d ol ot ot g ot ’ - s 2 s —
aporxadaXxadordrarroyXaapdadXcaaXadaldodfoaraxaxXeraXdoaXaoxraecidaeXadoaac
capaaancdanaaandcaapancapsaacpanscpasapasdpaaapaacpaacpaasdpaadpaaapasapaachaadcpaan
» - » - -
» » - -
- * *» - - IS -e
» - * > - < - -
- - *N - - - o
- » *n - - . z zz
» * » -~ o~ <t - — -
» » L) " [T - 2z T
- - PYe) ~ ~u o« —|e apwnoa
» - ») a a " ore » o
* * #* - X -y - - - PN WS -
» » L X3 - - -l " »| WK N Z St T om
* * » [SS - (%3 - [N et N e
» » * W . — A im X Z) T pmDran| -
- - » » < » » - [Pri— - o WD —~xineX ! »
» - » * e W - - [} O o> - v =Q. -l QAUMwUL: &
bl » ol *Ow O] < < Z»x o el O oQmx0O0; O
W » | - - * al a . - ur e O Xi={e O Or » LD —dxXOod X |
w - - * aql x - ~| Tl = ALy - V=) Zw pbumD! I |
W - 4 » - =] - - Q o~ o] -~ - Wil W t % (- %9)) e >
- » - g Zl (o] U e e [Velw [TS o P sxz - X @ ~—
2 - - ~uLQ | - ! D N . - e w b3 "~ Z O M= * s
m - » - *a - 0 »n b4 - -0 oD & o~ QO a o - —_ O -
-4 » » *«0 e O @ «a U Mk Q> i} o -4 S 3 -~ T eZErex
ﬂ a » - *O0 O wi a L —N PA * (D] D [oYST=) b-d Dt ot 4
» » * Wi N exi ¥ - —pil) e of e < wZ — e N
o » - . ey =N w 0 MO dp - cp| - -~ INICL DY 3
o » * =0l O o - - -y e i CDVNCWE | o T] - ea Ol *x
> » » » D& —OX - Qlu~ b)y e OX| N [T O Od =~ el o om e
» - *» Q0 =i . — Tt O RS R I T A] i ah LS I R RNV Y
xQ - * - * 3 e 2 ~ o oo e O] eTr olll X w O o —~— Qe e AN
“ wo e - @ o ~3ax O w Z - e —-pm—ZNL IX | N - - W) bt T O
QW » » #OX oW Q| e~ I D=2 ZD) x et T W "~ .- - Y g A]
gl # - ® OV e aw o peihd =D qpn e = N & e ZOREXK O = XA
a - - * X Tl Sy o) RHH a< Fier 2> - 3 A Qe b DX~ IOX
[- 1] * *+#~0O0 DT XM - O3 O OMY «e W el TN N UNE P OOV
x! » - #0XNAVD < » " OO Ok K s = | Ow —sQUpE =D X DO JIT R
o<| = * *NOmwXADa, o ~ - e O Z o o 1 T~ ODLOT D=0
AW » #ew | TAWANE w W -t (LB &) e ore -T (S BT, } Z O adew -
< » » 0 o * X W [od L d * o o a) SN TR VIO ™ | ompm Vrr.ur L A [L oand
> & P~ #Xp-|D & QD eQ L T Tt S LDOT L0 & AT & b DB~ e St
o N 2N & <IN D> Q Bl el Tt o G) COZ L] e PN A Z —— P
-t » P * #0002 ~Q e—a.r DN) O R ZE ey | wwom o - q Dee 2 eZF (L
© onl » - . Sxdd—Zrm . o N D e D | ~O | FO A Frm ey
< R7_t el # *apOr-2ZDa - Ot b & E [N el WD XM o] T Obee,ndgXan s
NN e » #UOWTO = XWX = =0 ROIAAN Apo g 2 *NZ| Hwam] d a0 eZZrmCrmmd)
ol zol o N N T <D NOO Ord: el b pm Zhe O eIV OXO! OUF=EZ =m0 LZ0O00X
» ON: # * W #q reeXlO = JO [T] SWWINZ VI eX X g » XXM - ey T N R~
oON| # - tL!WD -, SNt TTAAAS RO I>U em| OQO=Z o o) & WU tmpmmmame
[V 2 "% e o o» Bm RODDZ & ermx N NZX DN » o= QOO DIDNN~® XU il O & e OMOMNN e
< » Z * O® a # SxXDOTu e~ — L ZDZr = s em PdOZN pm DN XX AOUOOR Y Ue Pt it ot D Nyt
< # OO0 # Xluw = ENZOOUUZA - DEALCA X ¢ NDw We Net] X OPO 0] O ZOlw e
- 7 ~ % eiow R_oMUULVNUPvY P dORT SO —dOWY X, N o) o) d eXTdd o' oX el YKL XM -
m - 8 Xlue 49 #0UVDLWARWAd qUORUD—UNNINZ O ewld UOXX| ZHmlD-xE« —-0OLOLOULVVLVLE X
moO= » A > 0 | X wox| xo | piacod Opx -Do0x| VW Zda LLOOpS3000x
s Z> » P 20 sle e s wx| XXTNTAUHL~QAWD D el LU UL OO ST NN W22 a i dd 1O
» D & wpree i._ # SHOAD Sy o—a@l QU | WILe=2 /00 QUL OO ey el ODDUBN I L '
X W & X} - R IR it e Y & L et N e I 2 S e FRRDTTRE Lo —————— -
O e * e X NN LT A= e DY w I ~ i ©3 w , w.
o« * | % miee O] # 2paqOunnava e dd f i & IX] ' -
- Pe She O #20D3xquwoad| seswwaasg i 4 »ewdw a =, -1
« w | «# Do al *00Upw—aXA-— Soou>| o i PrYeT) o > ' >
a » | » e a' X [P v Ty I x I hogppe -
- | ®» e -2 Qg e (DI a QL D - [T i 2
e o @ Dae w U : wwzz000; :) | wwzOL o O 3
e o lae De 2 e0 F L s W H o , o oo - W w
- # = 2 SNMLND~DO [NMTN O PN MT N O © - ~“ANMINO~DID -~
- ! . *» @ @ ! 1 : .
x| o# . W o» | { | .
o - *» O = }
» - » | i _] !
(T8} CCCTCC LLLLO i ! i o L ! %) ")
N 1
| _ i .
t 1
_ i | . ﬁ .
’ i ! ; _

25

QOOLOCOLOQGuOOODOCOOOOOLQGOQOOC QOO
O AN O P TN e N VPN U D O Olome N N

DVDVQAVVRTGDVPCNOOC OO0
LUOOCLAOVVICDVWIOOV~

|

LOCCLOCOO

VN O P 80 QM I = AN $ LA O OO Ot NN T
OOmOOOOOllLlllllllZZZZZ

-

0000000

1

! ~ L
O0O0OOVAC VO
O OO NN P N\ D W G Ot N TR O P @ O O vt NI P O
222&233”333”33".‘ 4"&4454 55555555

QOOUA00VIOOLOODVIOQO 0000000

ot

- ol ot ot

0000WOOO0000900000000000000000OOOOOOQOOOC

FCRTRAN 81

LWORK1(240)

KILLZ

oo e ! -

RTRDOR

P

—t

FILE.

(=]
o
-4
Q.
-*
*
*
-
*
*
»
»
-
*
»
*
*
- - »
- - *
— w #*
L4 o *
- 3 X »*
- - 3
- - »
*
- - »*
- N o e
~— @ aj*
- - 2L e
-2 4 > N
- 3 N wu
e e U e -
.~ Qe
- | = oyw
- - " - -
— e XD e
e = WD e.@
D e i
D D INe
A b M.
N L - *
N I RSE]

- TNCUxX e
- [L 3 '}.
. o -
A PR
Te X ne e =R
- e WZAUN
o=
oo X W
- —a ‘e
Xe sojee o !®

NSNS SN0
1 wv o o

A
A
A
A
A

DATA

oUQooL
R]
cadaaan

METERS

~CuIx<daoox 2
O LWV a 20
QD> el -

|
tugx ZZxx-aE
&t QO Qe il) Z pel

W ZIX=0 aTIZk
X0 O axF2U00

VARIABLES USEC IN PRIRDR

Crestsnavssnsnnsinssn

>uZ wdw ox=~Za
1 DG A=Y <~

N AT OD2

_NNL EAFNNRJR
lda> Seerma TS
i 4QZNZ S U L—TD

QMY XS A OUE
O XOr~OD wdemtix, D

Lol & £V TRV TR b L (P-4
LN LR RN T
>4

Q 18]
wx O W Oewa
EZOOLW QiauxTg
N QA AU D) Zthme e Oy

ZA4dIQDWU T T -

AONDIOI D= Z ZA N
D00 [S]S]S SIS

RRRRRRRRRRRRRRRRRRR&RRRRRRRMRRRR
caadaaaacansacaadaannaaad,

CHEPBESEABREN VNI RE SRR R AR R RSB RN RIS B RIS SIS SR AR AARIERISESEAIL S SR SRS R RS L
INITIACTZE

C

aaaaanano

DD DDQAD 2
|

o~

~N
-

3
C
K
£
[
C
£
1
C
p
E
L
R
A
i
¢
.
L
€ DECCDE_CONTRUL CARES

M
|
|

et e e om0 g

XX AL XL LX X XA AL XXX XXX L
aaacaacaaaaaoa

¢

|

)‘

0L CARDY — (PRIK

[
(22 AR S R 2 E R AR YR I R RS RTRYEFY 3]

|
|

4-26

"PRIRDR™ ™ FORTRAN "Bl

FILE.

OOPOOOROOO OOOFOOO O000POOC Ooorooo OOOFOOOOOOOUOOOUOOOUOOOhOOOVOOO OOOWOOOUOOO
~ODPO~NMINO DT ONMINORROO~NMINONDCORNM$INOMDIOmeNMT N O MO OHNM G N O OO NIMTIN OO O g
VAN 0 010V D00 OO P e DR DDV DLDV PRI P PP OOODOOO D OO e et rbomtond rebd ot mt NN NNV NNV A A
——— ottt ot ok g g b o s 8t e gt 2 gt 4k ot ot ot NN U O NN N N O N N O AN N N NN NN VN N NN N
00UOOOUOOOVOOOOOOOWOOOOOOOOOOOUOOOUOOOOOOOCOOOCOOOCOOOCOOOCOOOUOOOUOOOQOOO POQO
| St . 0% g - ’ e =t et gt St -
P A T T T T LI A T 43I T T I T T T 1 T e L 1 T L T L L £ L
?WPPPPPPPPVPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPVPPPPPPPPPPPPPPPP?PPPPPPPPPP
- ol
- » m
- -
» -)
» »
. . &
: -
» ﬂ o
*
: 2 f
- -
- »
. : m
-
» »
4 . m
- -
HE ;
* ™) - -
- o - "
- o« o » Lod
- o o - -
- w -0 " - - -
» - - - " ~ o~ H
@ > o . » < -
L4 - Q= - -, ey -l - " [0)
» (= — - » ©Oo NN - w
- 3 wo » T mo A - -
- w . " NO @M wo | ow
* 3 -0 m " w - W W o o -
» - o . LN o - W o w
- w mo ~ "o wow o (%] o~
- Q —A - ﬂ O - al o - - <
* 3 -2 - ¢ -t Ql 2 L4 ~ - PN
- (%) - » » O -+ (S} - - Y] i
- . ZeO - - e ~ - . - - 3 ~
- Demtre 2O - " e ~O « ©o| o L™ wn) N e
» - YO - [2 -y - - - L - w (] "
- onaxa = . - » O - oo = Q - 1 wn Qn
» X ~XO - » ON - (=1 =] =] o — | e
i Ial- 1N - ”® OO, w r: (&) (&) (S L i (6] oy O
- an nwaj =0 * " =3 a s - - x i bl x xx
- D~ i o] OV & poOx - L =30 NN > : - 20 ==
#| m~ALoLOC] VX # L X=I% x QDOY $Ov, 0O o) 2} or
#| O XAQACY| v *» "N ey Q - ern mem Wty - { . -
[IR {e e s W " —an z - - |) w 40 o
«! ©o0a. ol E ® Q0 - . Opoo | o000 | O z| oL VL
#| +OVNm~CO! D~ »—0m o QO Ol 09 o (%] - o 00
@~ FONNN Zn B » -0 o - . . | =D - W - [T)
e bR~ gNlx w ®oam o opao | ool om | a g ao~
*#DUED s s T o # »Ox » - abxd |[Ozolaxe la | wn > @ e
ed DO exww # » <N [4) < <t L& 4 « ' o o O
*#DOU WUNXDL=-Z » »~00Q) o Um0 _-_o~ 00 [} : v \ LoWLW
BpmteD s s TIN 0 » »ON—m; A —fN—ey TN e -~ a Z. N e P]
B NOUW- - Rl ke E J o AN K=} W e e o e W -4 R o - - -
®Iex xxXOA KL @ " LERN - Lol d) b=l - E-3 T W I Xy e
ertier OUJID™NXIDw 4RO > Il aigaz oIz d~ >3 P > . 9 >l =
®ND JLULION— O O wOum! - <O (SIS RPN « RS oA] 000D & N O wtN QN—m——
OO X—-— XN O [t () >m O WO W UL O OMAMm - ~N ~ NOF ZE0
s Odxx [= N TS > - SON0Y ! QU0 JO © > - o 2 N DWmDSD
e DU VwwUwR WLe & RO U i w - O WUrbDO O U P ux @ PO W, IO N o000
D L LR ot A L S "CL'I [ad T WD GNP O I SO H wdbmbmb= O [T Zr WV ad T v =
.ﬁ.. = ! - - O -—— < bt ot W U~ X (L.\SL(lmL v x & 3 Pep
#*pPoQAL LU OxDan s pPUav -t ﬁAG m ndidqui-pDuduErau 1 DAO~0 @ KO xQ wauwouuwd
OO =D T U= O b= WICG w wnp VO HOO=OP~O~OO—==DLO IO W WO WO E JOmO=—{>
- | » Z - w T ﬂ ot -
& ©O OCb O & = #O « - a LAl d o -3 -] n e L~ m N Ml own
* | Om o~ m X BO R < © W (=1 o O N o~ & <+ x © (=] w
* Ny _ 29 N ® o kM _S m X M 33_ Lo} nom - 3] L S 4 E A
» » »
wo | _ LUV _LCC oo CTC i . i vou| Voo LVPpL vou
: H |
P i ' , _ '
' H | v _ _
t | i ' : ' !

FILE. . . PRIRCR FORTRAN B1
405 LETSZI=3 PRIN2350
e CALL BCOVAL (CARD.CCL.DUML1 EFYSZ.E6161) PRINZ23AL
1F (LETSZ .EVU. O) GO TO «le PRIC2370
DO 407 I=14LETS2 PR1023R0
IF (DUM({1) .EQ. FBCD) TSFLD=1 PR102390
IF_{CUMIL) .EQ._ CBCD 2 _TSCLS=] PRIN2400
407 IF (CUMIL) .EG. PBCD) PCT= PR102410
G0 TG 30¢C PR102420
PRI02430
C COPI1ES PRIN2440
PR102450
411 =1 PRIC2460
CALL IVAL(CARD,COLyCOPIES,1,E417) PR102470C
LC TC 30u PRIO24BO
- c PR102490
C ERROR IN TRAINING SPEC PR102500
C PRI02510
415 ERRNUM = 443 PRI02520
6C TO 22v PR102530
‘ PR102540
C ERROR IN TEST SPEC PR102550
PRIN2560Q
416 ERRNUM = 4khé PRIC257¢C
GC TO 22¢ PR102580
[+ PR102590
C ERRQR IN TABLES SPEC. PRIQ2600
[+ PRI02610
417 ERRNUM = 445 PRIC2620
GO TC 22C PR102630
COERRAISIBAEEXSINSIFIEREREEAEREBIEIKLRERI SRR RS RS AINSRNRER S0 00802222 PRI02640
C PRI0265C
E PROCESS THE RESULTS CARD gz 852?8
BEENSRIAENRRER AR SRR R ERERA RN S E RIS EEEEES AR SR ¥ IR I IS SRR SRR OISV 6228 PRI02LEC
CIFTCOU JEC. 72) 6O YO 200 PRI02690
CALL CTLPRFM {CARD,COL,RESCED,3,C0ODELE230) PRIC27CO
€0 TO (4254430,4357, CODE PRIG2710
PRIQ2720
APE SPECIFICATTON PRI02730
PR]02740
423 el LV AL (CARD,COL sRQTAPE \YECSZ2E440) PR102169
A » AR g 2 LAY 3
FT{VECSL EQ. 0) to 10 440 PRIOZTIC
GO T0 4«2y PRIC2780
;:c FILE SPECIFICATICN g%lggggg_
430 VETSZ = 1 PRI0Z2B10
CALL IVAL (CARC,COL,RQFILE,VECSZ,£445) PRJ02820
IF (VECS -£C. 0) GO TO 445 PRIG2830
GO TC 420 , PRIO28B40__
C PR102850Q
C DISK SPECFICATION PRI02860
© 435 RESYLT = CLASSR PRI0SBE0
435 = - R —
08 ?E 420 PRI028S0
c PR1029CO
C ERROR IN TAPE SPEC. PRI02910
< PEIDZ%ZO
44U ERRRON = 45% PRIOZF30
GO T1C 220 PRI0294C
c PR102950
c ERRCK_IN_FJLE SPEC e e _._PR 02"?0 -
C PRIO297C
445 ERRNUM = 455 PR1C2S80
C * ‘99 Igtggt.ttt‘t‘tltttt“#t‘t“.ttttt&it‘tt“ttt“.t‘ x% ‘ttt"t‘ttgk 85990
(22 2) » * * E
(o PR 058?% —
C GROUP CARD PRIC3G20
C PRIC3013C
Cttttttt'tl'ttttttttt‘ttitt‘ttt‘.t‘tt‘tt‘t“i‘tttl‘iO"rlt!t_’_‘t‘t’ttt.lt!PR 03048 _
ST 450 CALL _GRPSCN{GRPNAM,GRPSTK,NOGRPS,COL yCARD,E46C) PRI103050
GC _TC 200 PRICI060
o et} A
X = -
NCGRFS = 0 : PRI030SG0O
CALL ERPRNY (446,°'GOTD*,E£2C0) PRIC31CO
C.lt't“t.‘t‘tt't.‘t‘t*t"#“t“l‘tlt’t“‘l‘ttttttt.’t’t‘t!‘lt‘ttv".nt.PRlc}[[0
R . . ._ ... PFRIOQ2120 __

FILE. . o PRIRDR ™ “FORTRAN ®I
% SYMBOLS CARQ ;s €3130
TTTTTUNR RS YR INTIERSSS IR EE A RERN s‘rﬂmﬁim1vmvmrr:mntmmﬂmitfipn”g‘g{%g—"—'
500 1234 PR103160
CALL BCOVAL (CARD,COL, WORK,!,£540). PRID3LT0O
.. K=SYMCNT] PRI0O3180
IF IX .GT, 60} GO TU 547 PRIO3IIFO
502 OC 50¢5 J= PR103200
505 Svrn!x(gvréN!oJ)=LHORK(4’J-3) PRI03210
SYMONT =K PR103220
LU 7O 200 PRT03230
540 ERRAUM = 447 PR103240
GC 1C 22v PR103250
. o B . B PRIC3I260
- E‘—“— TOC™ MANY "SYMBOUS SPECTFTED. RECUCE NUMBER gs 8;%70
80
543 WRITE (TYPEWR,9543) K,MAXCLS PRI03290
WRITE (PRATR,9543) K,MAXCLS PR103300
TSI CFCRMAT TTUT0073 7 YOU THAVE T ENTERED Y, 137 SYMBOUS. THE FAXIPUF ; —PRIU3IZTO———
1 ' ALLOWEC IS 'y13,%,%/9X,*EXCESS SYMBOLS WILL NOT *, PR103320
2 EE USED (PRIRORT®) PRIC3330
1 =] -(K-MAXCLS) PR103340
- TGO TCT 502 7 PRIO3IISU
C““Qtttl“t“t‘t.“‘tttttttt‘tl‘ttl‘tttttt"lttt.t‘tt‘t.t‘t‘tttt.t“ttPR 03360
C C3370
C THRESFCLD CARC PR1C2380
PRID3I3Y0
(‘_tt..ttlt.ttttp"tt‘ttttt#tttl‘tttttttttttttlt‘t‘ttt.t"ttt'ttot‘ttttt‘OPR 034CO
55C 1=60~ThSLAT PRIC3410
IF {1 .Nt. 0) GO TO 551 PRI1C3420
A e “WRITE ITYFEWR,55101 CARD PRID3R3I0
WRITE {PRNTRy551C) CARD PRi03440
551C FCRMAT {* 10C74 MAXIMLM OF 60 THRESHOLDS ALKEADY STORED.®, PRIC3450
* ABOVE CARD IGNORED (PRIRDR)*) PR102460
GO~ TC20C PRIDILTY
551 CALL FVAL{CARD,COL yRWORK1,1,£59C) PRI03480
CC 552 Jrl,l PRIC3490
[F (RwORKItJ) GT. 99,00C1) GO TO 591 PR103500
C T T U552 THRESUTHASCNTHIT=RWORKITI) PRIC3SI0 —
THSCAT=ThSCNT+] PR103520
GC TC 200 PR1C3530
C PRI03540
- T SYKTAX ERRUR TN THRESRCUD SPECSS PRITISSO
C PRI03S560
59C ERRNLM = 448 PRIC3570
GG TO 22¢ PRIC3580
T "591° ERRAGM =783 PRIOISSO0
> 10 22 PRIO3600
Ctt.tttto‘t‘t.0#Otttttt‘t#ttt‘..Ottt‘tttt“t“tt‘ttt‘tttt‘.l‘".ttlt.tttpn €3610
C C3620
| g BrotxCaRD PR103640
C.'.!ttt‘.tttt'tO‘#t#t#‘ttttt‘Q‘Otttttttttt“t“.t‘t“tttt.‘tt."‘t.tt#tPR 03650
600 BLKKY=1 PRIC2660
601 IF (CCL ,GE. 72} GU TO 2CUO i PRIDISET0
CALL CTLPRMI(CARD,COLyBLKCOD 4,CUDE,£230} PRIC36E0
CC TC 1665,6100615,6251,C008 PR103690
C PR102700
T RUN PRIDITIO
C PRIO3720
605 [a} PRI0373¢0
CALL IVALICARD,COL,RUNNUM,]1,E64 PRIC3740
IF [RUNNYY .GE. 1000CO0CC LAND. RUKNNUF UT. 1000000037 GU TO &80T PRID 3750
ERRAUM = 460 PRI03760
GC IC 22¢ PRIO3ITTC
[4 PRIC3780
- L LALU PRIV3I7IIU
PRI03800
61C CALC=1 PRI038]0
GC 16 681 _PRIC3820
T T T e — PRI03830
C LINES PRI03840
PRID3850
615 1=2 PRIC3860
T T T CATU TVALTCARD CULTRORK 15 E6 437 PRIU3B 70
D0 616 Jal,l PR!033E0
BLCCK (J)2w0RK{ I} PRI03890
616 IF (BLOCK(J) .LE. 0) BLOCK(J)=} PRIC390C

FILE. . . PRTRDR™~ FORTRAR Bl
IF (BLOCK(1) .GY. BLOCK({2)) GO TU 644 PR103910
GC 10601 PRICIA920Q
[: PRIC2930
C cot PRI03940
c PRI03950
625 =2 s PRICIAO.
CALLU _TVALTCARD,COL,WORK, I, E645) PR1IC2970
DO 626 J=l,l PRI03980
BLECK (K) =h0RK) PRISeR0
626‘1%’|BLUCRJK) WLELO) BLOCKIK) =1 PRIC4010
1F (BLCCK(4) GT. BLOCK(S)) GO TIC 646 PR104020
c 60 TC 601 ;g 2233&___
4
: [+ ERRORE IN " BLOCK CARD PR1C4050
C PR1040€&0
642 ERRAUM 5t 449 ?2 €287e
6 “RRNLM = #50 PRIC4090
GO T PRIC4100
644 ERRNUM = 451 gg 821%8____
TTTTTERS T ERRNUM = 452 PRICG130
GO 1C 2 PRIQ4140
64¢& ERR?UH = 453 PRI0&150
Cttit:ghtiﬂiuntonrmnttt--.n-tttttttttutontttttttttto‘ottttt.an-atmnapi’zugz'%go
C PRI04180
E END CARD gs 04190
THEBFEF TR ER IV AN IR BT FF R F A E SRR RS RS G R AR RSB R A SRR A IR X “&Tf’iti’totto‘npa’{gzsg’o
< PR104220
C CHECK FCR CORRECT CCNTROL CARD INPUTS PRIG4230
¢ pa}pagag
&5t ASSIGN 651 1O GO PRICa2%
o PRIC42¢0
¢ HEERoEOR EOTBLETS 1AL SEECSL LAE E1INER BISE 08 I
£ R SINEE TR Onay hean it Sanr(lfﬂLnPE'FRCM'CLA'SélFY‘CB!‘DN‘)“':;&I&%&%"“
651 IF (RESULT .EQ. CLASSR .OR. RQFILE .GT. 0) GO IC 655 PRIO431C
ERRNUM = 4§56 PRIQ4320
GC 10 80T PRIC4330
E PRIC4340
CHECK FOR EXISTENCE OF SYMBGLS IF MAPS REQLESTED gg 8:;28
655 ASSIGN 658 TO GO PRIC4370
56 IF (NOMAPS .EQ. O .OR, SYMCNT .GV, 0) GO YO 660 PRIC4380
ERRNUM = 457 PRIG4390
GC_TC 80G . PRIC44CO
%80 IFINCGRPSTEQ.OIGT YD B850 PRIC4AIC
DO &6% I=lyb PR104420
1F(GRPSTK(]) .6GT. NOGRPS) CALL LRPRNT (458,°STCP*) PRI04430
664_CCNTINUE e _PRi044%0___
GO YT B850 PRIC4450
c ‘ PRIC4460
E GET AN EXTRA INPUT CARC FOR MISSING DATA gg 02270
BOU ERRCOK = 3 PR 2:?88‘“‘
CALL ERPRAT (ERRNUM,*GOTD',£210) PRIC4500
E 1F_RESULTS ARE_ON _TAPE, MOUNT IT 52 82358
—f— e e e AR R 2 RS LA L U PRIC4530
850 IF (CHKOUT) GO TO 900 ° PRIC4540
IF (RESULT .EQ. CLASSR) GO TO 870 PRI04550
CALL MMTAPE (RQTAPE, RCFILE, 0) PR ,caggo
GC TC 500 PRICA5T0
% PRIC4580
¢ DO A READ OF THE RESULTS FILE TO BE SURE IT EXITS CN THE DISK ;s gaggo
—— e e e e e 4600
TTTTUT8T70 REWIND TLASSRT PR caug'
REAC (CLASSR,END=8B0,ERR=880) I PRIC4620
ﬁgh%qugtﬂssﬁ PRIG4630
__‘“__EHU‘IIITQERDRN1 (359, VSTOPY) PR 82658—"'
C'a‘..tt"‘!“‘tltttt‘l.‘.“““‘!l"“‘t#tl‘lt"t“‘.t.#“t‘!'t.#“tt"l’ﬂlc&b60
[R104670
€ PRINT CUT OPTICNS _PRI0468Q____

4-29

4-30

PRIRCR ~ “FORTRAN T ET

"FILE

,
! i
| i

i
_ |

wwomwmswmmwmmmzmmmrmmwmmw wmwrwmn <
67ﬂ1¢77777?’8888388 VIPPCPOPOPODOOO
VILPSIILPIITELPT T TIT 4444444“44‘_&.555“55
ocmoocoooocccoccoo VOODOOO oco,oooo [o =]
r
“RRRR“RRRRRRRRRRRRRRRRRRRRRRRRKR“RWRR
GapaasapoacacpaccpoacpacdpacapfaacpLAAnOd
»
-
-
»
- -~
» ~
. -
- w
- &~
» (=713
* -
- i
* ax
- f=]
[- 4
- >0
- Tl ~
» -+ | >
: 53k 5
- -
- - 0 o~ - -
i SXE 3L WP
& wy
- Lo (a7} -h
» -2 ZZ empmes WD
s e Ade p oy
[2 -Xu T W wl
- OO & ow i
- DN -~ QOZrPY win
» * N e LI N
* - ,"RUAaA Vie | XXEF = Wi g
*| NP NOP DO N U, OV wwaerZ YW
*! O00DOVOLOmmmZ O -Q| AaaOPu
*] O0O0DOOCPDOOOCDYW -t~ Wi ol
» 9999999‘9999PHF ANUP NOXXX Z
* L N R -] LTl % [DTV VT TES Iy~ 81
LA 4 442 1:-4-3-4-2-4-3- 1 —LDdWARG e 2
- T'TTTT-I.YIT!ITTE(LYIT L4 -l -22D .
*TIIIEZTZ2ATZT WA = OWOLOND N —
®] TAXAXX XN X XL VI L 2 LY T -
#/ caanoacpacanxXUT oo
B | vt Pt e e KA D) (aV-4 & - —) L]
® 0 WLHL DLW LWL O Wb e L DU T e
L A adadad ol ot ol ol ol od ol ol SR VY] ~)CASNN [l 2™ .
- lllll]lllllllvl.ll'lTnRSAj D AL U et e A
ol XYY XogXXXoaoXwn NN =N z
* HHHHHHHTNHHHSERRNE [4. LV VNIV QEN TV,)
* U O ol il e - Y.-l .A .
» \V)\r\l)ln)all))’LADUl. 2z
‘mlll]lllw;lloor»ﬁ“ﬂ“mu.lmw.“ T”OC
» i - =
®E> e 0 0 0 0 0 lwl S a2 e DD Jeahm e e v vt ot v O i
‘OQUQUOQQOUUTQQOOUURUURRRRRPUS
‘qEEEEEEETEEGEEYCCCPCUPPPPD.ADU
.N'OOOIDQ. hl-o IY“'C'III""II"' .
s - o 0d o0 oo S
- = oy o - TP WOV, RSTIVE S-S U T G m
€T > U AININ ZM I b e b e e e X
BELO=N N dodpdd D Dwwt wwwoawm—www D W
DX JIEVIOL RPN i -
t‘LATT'RKS.\.CH]ETTT el steriamion wistoded wiil "R =X
SEIQUPITIETA e IR FERSINEI - mw
B o e s e e —
- @O Orag i QK fX OO (X ¢ -t
sruuubeuubuuuuueOod COLVOCDVLSO wZ
D e e ll.l..ll._.r..rﬁ FFTFFF e e e e -4
* -
. " ML NODPO~NM -
-0 COD QOOOCOLD mmdmim
QOD O0DODVDOOOD
* o PO
(S (W &1V]

4-31

4.4 GENERATING FUNCTIONAL LOAD MODULES

This section first defines the functional load modules. It
then describes the flow of control and physical arrangement of
pfograms in main storage. Finally, the programming of EXEC
routines to generate functional load modulgs is described in
detail. Figure 4-1 showing the main storage arrangement under
various conditions is shown on the following page and is

referred to throughout the discussion.

The functional load modules are CMS module files. They are
created by loading the appropriate TEXT files and using the CMS
GENMOD command to create the MODULE file. The name that is
assigned tc CMS MODULE file is the name of the first program or
routine in the module. Thus, the name of the root load module
is LARSMN since the FORTRAN program LARSMN is the first program
(physically) in the module; likewise, the name of a functional
MODULE>file will be xxxSUP (where xxx is the first three letters
of the function name) since the supervisor will always be loaded

at the beginning of the functional load module.

In the following text, the word 'load' in lower case refers to
the general process of loading from disk to main storage. 'LOAD'
in upper case means loading by the CMS LOAD or INCLUDE command,

'LOADMOD' means loading by the CMS LOADMOD command. For further

information on these commands refer to CMS Command and Macro Reference

GC20-1818

After LOAbing 2. After LOADing 3. After LOADMODing 4. After LARSMN

Figure 4-1.

all TEXT files all TEXT files the LARSMN has LOADMODed
for generating for generating a module a functional
LARSMN : functional module load module
‘ o
CcMS nuc}eus CMS nucleus CMS nucleus CMS nucleus
}
; A 1
LARSMN LARSMN LARSMN LARSMN
other ro¢ot other root other root other root
programg programs programs programs
; B
GLOCOM GLOCOM GLOCOM GLOCOM
i
(o]
XXXsup xXXxsupg
XXXCOM unavailable XXXCOM
PROCES
i other
‘ other (See text) function
function program
program modules
modules
D
vnused
E
unused FORTRAN
a FORTRAN DCB's DCB's and
unuse and buffer buffers.
e F
CMS EXEC CMS EXEC CMS EXEC CMS EXEC
control and control and control and control and
loader loader loader loader
tables tables tables tables
G

Main Storage Allocation

Flow of Control and Physical Arrangement

When the LARSFRIS control command RUN LARSYS is issued, the
RUNLS EXEC is invoked. RUNLS uses the CMS LOADMOD command to
load the root load module (LARSMN). The contents of main
storage at this point are shown in the figure in column 3.
When LARSMN reads a Function Selector card, it calls BLOAD
which uses the LOADMOD command to load the requested
functional module. The contents of main storaée at this
point are shown in the figure in column 4. After the
functional module is loaded, LARSMN passes control to the

first byte of the module (address C in the figure).

The figure alsc shows the contents of main storage at
various times. Each of the significant addresses shown
on the figure are represented by the following letters:

O - Address zero, start of main storage of the
virtual machine.

A - End of CMS nucleus and start of the storage that
is available for user programs. The FORTRAN pro-
gram LARSMN always starts at this point. The
remainder of the programs in the root follow
LARSMN. These include LARSFRIS support subroutines
such as TAPOP and CTLWRD and FORTRAN library

subroutines. These programs end at address B.

4-34

B - GLOCOM is loaded at the end of the other programs
in the root. B is the beginning of GLOCOM.

C - The end of GLOCOM. All functional load modules
are loaded at this point, with the address 'C'
being the beginning address of the load module
‘supervisor. LARSMN always loads a functional
load module at this address and branches to it
through a CALL to a dummy subroutine named PROCES.
‘This dummy subroutine is used to create a symbolic
‘address for address 'C' in the following way:

- When the LARSMN load module is loaded during
the generation procedure, the dummy subroutine
PROCES is loaded at address 'C'. This resolves
a CALL to PROCES contained in LARSMN, which
becomes a branch to address 'C’'.

- When the GENMOD command is issued to actually
generate the LARSMN load module, it ensures that
PROCES is not included in the module file.

- When the generated LARSMN load module subsequently
loads a functional load module at address 'C'
and CALLs PROCES, the call results in a branch
to address 'C', which is now the beginning

address of a functional load module supervisor.

BN

D -

4-35

Highest address used by the functional module.

All functional programs including the supervisor,

‘common, programs unigque to this module and support

programs lie between C and D.
Start of free storage. Free storage is used by
FORTRAN for storing its data control blocks and

for I/0 buffers for FORTRAN data sets. The

‘address of 'E' must be greater than the ending

address of the largest LARSFRIS functional load module.

If any IARSFRIS functional load module has an ending

address greater than 'E', its loading by LARSMN will

overlay data control blocks and I/O buffers
established by LARSMN. This will result in strange
I/0 errors. The address is fixed during the
generation of the LARSMN load module, based on the
size of the PROCES subroutine. PROCES contains

a large array to make it larger than the largest
IARSFRIS load module. When LARSMN is GENMODed, CMS
stores the address E in the MODULE file (even
though as previously stated, PROCES itself is not
in the MODULE file). When LARSMN is subsequently
loaded, CMS uses the address 'E' from the MODULE

file to set the start of free storage.

4~-36

F -EStart of an area of high memory used by CMS.
‘The very top of memory is used by CMS for
;loader tables. The storage just below the
loader tables is used by CMS for EXEC routine

control.

G - End of main storage of the virtual machine.

Programming Module Generation EXEC Routines

The first part of this section describes the GLARSMN EXEC
routine used to generate the root load module; the second
part describes the creation of EXEC routine to generate

functional load modules. The GLARSMN and GCLASUP routines
are shown (as examples) in Figures 4-2 and 4-3 at the end

of the section.

GLARSMN begins by executing an EXEC routine called LLARSMN
which LOADS the programs in the root. It then uses the CMS
USE commgnd to load PROCES. The LARSMN module is then
generated by a GENMOD command which specifies that the new
MODULE file contains the contents of main storage only from
the begiﬁning of the program LARSMN to the beginning of the
program PROCES. The GENMOD command creates the file with a
filemode of A2. This must also be done in EXEC routines that
create fqnctional load modules. At the time GENMOD is

issued m#in storage appears as shown in column 1, of

Figure 4-1.

4-37

After generating the module, GLARSMN types out an address

on the typewriter terminal. This is done by using the CP
function DISPLAY to display the contents of storage cell 574
(hex). 574 is a word called LOCCNT in the CMS NUCON area,
which contains the address of the next available free storage.

This address may change in subsequent releases of CMS.

GLARSMN finishes with a procedure common to all load module
generation EXEC routines. The procedure prints the load map
after first RENAMing it to have a filename the same as that of
the EXEC generating the module. If NOMAP was specified as a

parameter to the EXEC routine, the map is not printed.

The EXEC routines (GXXXSUP) that generate functional load modules
being the same as GLARSMN, i.e., by executing LLARSMN to load

the programs in the root. This is necessary to enable the loader
to resolve the addresses of calls from the functional programs

Eo subroutines in the root. CMS INCLUDE commands are then issued
to load the functional programs. STACK HT is in effect during
all but the last of these INCLUDE commands, in order to delete
multiple repetitions of the message

THE FOLLOWING NAMES ARE UNDEFINED: (etc.)

Before the last INCLUDE command, STACK RT is issued so that
the message w#ll type for the final INCLUDE and the programmer
will be inforged of any unresolved references. The message
will always sfate that PROCES is undefined. This is not an

error.

The GENMOD command is then issued to create a MODULE file
containing the contents of main storage from the beginning

of the supervisor (address C) to the end of all loaded programs
(address D). The address D is then displayed on the typewriter
by using the CP DISPLAY function to display address 574 (hex).
The programmef should always be certain that this value is less
than the addréss E that is typed out by GLARSMN. The EXEC ends

just like GLARSMN by printing the load map if one was requested.

FILE? GLARSMN EXEC Y PURDUE UNIVERSITY / LARS

ECOMMENT GL ARSMN LARS 0069
£GOTO —START
GLARSMN GENERATES THE ROOT LOAD MODULE
WRITTEN 11/20/72 BY EARL RODD
REVISED 2/15/79 BY LOUIS LANG
IF &1 = NOMAP, LOAD MAP WwILL NOT BE PRINTED
~START ECONTROL OFF
EXEC LLARSMN
INCLUDE PROCES (NOAUTO)
GENMOD LARSMN MODULE A2
ETYPE FREE STORAGE STARTS AT:
CP DISPLAY S74
ERASE £0 MAP
RENAME LOAD MAP Al £0 MAP Al
LISTF £0 MAP Al (E D)
EBEGSTACK L IFO

FILE
CHANGE /:/./
FILE
OVERL AY £STACK LIFO I THIS LOAD MAP CREATED
OVERLAY _ _—
NEXT
£ END
ESTACK HT
EDIT CMS EXEC
EXEC CMS
ESTACK HT :
EDIT £0 MAP
ESTACK RT

ERASE CMS EXEC
EIF €3 EQ NOMAP EEXIT
PRINT &0 MAP

Figure 4-2. The LARSMN Load Module Generation EXEC

4-40

FILE: GCLASUP EXEC F PURDUE UNIVERSITY / LARS

ECOMMENT GCL ASUP LARS 0071
EGOTO —-S5TART
GCLASUP GENERATES THE CLASUP LOAD MODULE.
WRITTEN 11/720/72 B8Y EARL RODD
REVISED 13 FEBRUARY 1879 BY LOUIS LANG
IF ANY ARGUMENT = NOMAP, THE LOAD MAP wiILL NOT BE PRINTED
-START ECONTROL OFF
EXEC LLARSMN
ESTACK HT
INCLUDE CLASUP CILLACOM CLARDR CLAINT MCONTX CONTEX CLSFY! CCVIN (NOAUTO
INCLUDE CLSFY2 CLASS THRESC GRPSCN (NODAUTQ
INCLUDE MMTAPE STAT REDSTA CLSCHK REDSAV LAREAD TSPACE {(NCAUTO
INCLUDE GTSERL MINV {NGAUTQ

ESTACK RT
INCLUDE WRTTRN WRTMTX DECCLS HEADER (NOAUTO
GENMOD CLASUP MODULE A2
ETYPE HIGHEST STORAGE USED:
CP DISPLAY 574

ERASE £0 MAP —

RENAME { OAD MAP Al EO0 MAP Al
LISTF £E0 MAP Al (E D)
EBEGSTACK L IFO

FILE
CHANGE /3/e/
FILE
OVERLAY ESTACK LIFO I THIS LOAD MAP CREATED
OVERL AY _— .
NEXT
€ END
ESTACK HT
EDIT CM$ EXEC
EXEC CMS$
ESTACK HT
EDIT £0 MAP
£STACK RT

ERASE CMS EXEC
EIF £% EQ NOMAP EEXIT
PRINT £E0 MAP

Figure 4-3. The CLASUP Load Module Generation EXEC

4-41

4.5 IARSFRIS ERROR HANDLING

This section describes how IARSFRIShandles three kinds of errors;
application errors detected in LARSFRISapplication programs,

FORTRAN library program errors, and program interrupts.

Application Program Errors

Each of these errors has a unique error message number
assigned to it. When the error message is printed, the
number is prefixed with an 'E'. Most of the error messages
are printed and/or typed by a CALL from the functional
routine to the subroutine ERPRNT. (See the module documen-
tation for further details on this routine). The CALL
passes ERPRNT the error number, which it uses to retrieve
the text of the error message from a file called ERROR
MESSAGE (located on the Y-disk and assigned DSRN 8). Some
programs do not use this facility. Instead they print and/
or type the error messages directly. This is true in
EXCOMD and in support programs such as CTLWRD which are

used by programs other than those in LARSFRIS.

In addition to the error number, ERPRNT is passed a
disposition code which tells it whether to terminate a func-
tion or to continue. ERPRNT can either print and type the
message or only type it. Errors which are mainly informa-
tional and need not terminate a function are only typed so

that the message will not interrupt formatted printed output.

When an error occurs which necessitates termination of a
function, the function either calls ERPRNT with a disposi-
tion of 'STOP' or terminates directly. Termination is
accomplished via a call to RTMAIN (whether in a functional
program or in ERPRNT). A FORTRAN STOP statement is not
used sinée this would terminate the entire run rather than
just the function. RTMAIN will pass éontrol to LARSMN
which will read any remaining cards for this function and

go on to the next function.

Error messages may require a variable numeric data, such as
"iii" in

Ennn A POOL IS MISSING FROM THE DATA. POOL NUMBER IS
iii

Such an error message is implemented by a call to ERPRNT
to write the first line, and the numeric information is
written from the program (typed and printed) on a second
line. The numeric information should be indented at least

ten spaces.

FORTRAN;Qibra:yﬁErrors

FORTRAN library routines can detect errors such as I/0
errors and improper CALLS (e.g., an attempt to take a

square of a negative number). These errors cause IHCnnn

errors to appear on the printed output. The errors are
documented in the 0OS FORTRAN G Programmers Guide. Error
number 208 (for exponent underflow) is suppressed by use
of the FORTRAN ERRSET routine called from LARSMN. The
error will not print; however, in the FORTRAN summary of
errors at the end of the execution, the number of
occurrences will appear. Other calls to ERRSET are made
to terminate execution after one occurrence of all other
FORTRAN errors (thus bypassing attempted "fix-up's" that
cause more trouble than they prevent).

Program Interrupts

IARSFRIS is designed to intercept all program interrupts
except 8 (fixed-point overflow), 10 (decimal overflow)
and 14 (significance), which are marked off by the
FORTRAN Library routine 1HCFCOMH, and must be left

»disabled. (See ERRINT module documentation for more

details). This is done by use of the SPIE macro (See
IBM publication GC28-6646-6, S/360 Operating System
Supervisor Services) executed from a subroutine called
ERRINT. ERRINT is called by LARSMN at the beginning

of execution to initialize the error interception cap-
ability. (See module documentation of ERRINT for detail
of its operation). When a program interrupt occurs,
control is passed by CMS to an entry in ERRINT called
ERRINT1. If the program interrupt is code 13 (exponent
underflow) it is passed to the FORTRAN error handling
routine; if it is any other code, the ERPRT1 entry in
ERPRNT is called (see module documentation). The latter

will print aIARSFRIS error message and terminate execution.

4-44

4.6 USE OF THE LARSFRIS SYSTEM FOR TEST RUNS

In program de§e10pment (modification and debugging of existing

functions and writing of new functions), it is necessary to

make test run#. The disk hierarchy of CMS makes it very

convenient to use most of the standard program modules when

testing new modules. The discussion below first lists the steps

necessary to make a test run. These are followed by supplemental

information which is useful in certain situations.

Steps to make a test run:

1‘

The étandard system programs and load modules will be
available on disk. The system programmer is responsible
for configuring a programmer's virtual machine to give
him #ead-only access to all standard program modules

and load modules or informing him of how to LINK to such

disks.

All subroutines which are to be modified should be
copiéd to the A-disk. It is strongly recommended that
EXEC routines be written to perform this task since

the CMS COPYFILE command requires considerable typing.

If the programmer is writing a new function rather than
modifying an existing one, then this step is not needed,

since all new programs will be created on the A-disk.

Use the EDIT command to make the required modifications

for the test run.

Compile (and/or assemble) the modified programs.

Use the load module generation EXEC routine to create

a test version of the load module. The MODULE created
will be on the A-disk. It will include the modified
programs from the A-disk instead of the standard pro-
grams since the A-disk is searched before any other
disks to locate the programs. (When writing a new
function, time will be saved if a load module generation
EXEC routine is written at the beginning rather than

later.)

Begin IARSFRIS execution by executing the EXCOMD routine
(typing EXCOMD). Then enter CCINPUT and any other needed
control commands and finally issue the RUN command

to start the program running. Use of CCINPUT is
recommended since the control card deck can be easily
modified using EDIT and can be used as many times as

needed without the need to read the deck in each time.

After completing the test run, the programmer can
return to CMS by entering the control command 'CMS'.

(This command is not documented in the User's Manual).

Supplemental Information

1.

Intermediate printouts can be directed to the typewriter
(uni@ 16) or printer (unit 6). Also, the programmer

is free to use disk files not used by the function he

is running. When adding new data set reference numbers,
first consult the system programmer to insure their
validity. Be sure when writing to symbolic unit

numbérs (e.g., TYPEWR or PRNTR) that the subroutine

has @efined these variables (i.e., the subroutine has

GLOCOM or has defined the variables in a DATA statement).

A function can be killed anytime the keyboard is
unlocked for a control card correction by typing in
'KILL'. This will cause the function to terminate.

All disk files will be intact.

If a COMMON block needs to be changed, it is necessary
to copy all program modules containing the COMMON
block onto the A-disk (see the section on COMMON block

usage).

If a module in the Root Load Module must be modified
to make the test run, then it will be necessary to
generate a copy of LARSMN on the A-disk. This is

done as described in Steps to make a test run above.

If a new root load module is created, it is also

necessary to create a new version on the P-disk of

any functional load modules that are used. This is
necessary because the length of test version of LARSMN
is different from the old one, and consequently, the
address of the beginning of the functional load module
will be different (as well as the addresses in the
root of subroutines called by the functional load

module) .

The CMS DEBUG facility provides a powerful debugging
tool. (Note that this facility is different from the
FORTRAN G facility and requires a knowledge of assembler
language.) Two features of LARSFRIS place small restric-
tions on the use of the facility:

- The ERRINT subroutine must not be executed. This
is due to the fact that DEBUG sets breakpoints by
replacing the actual instruction operation code with
an invalid operation code. Normally CMS interprets
the resulting error interrupt as a breakpoint.
However, when ERRINT is executed,IARSFRIS intercepts
and handles these interrupts and will produce an

E901 error message insteoad.

4-48

- LARSFRIS uses an overlay structure. When LARSMN is
?loaded in RUNLS EXEC, it is not possible to set
?breakpoints in a functional load module, since
'the load module has not been loaded into main
§storage. Any breakpoint that is set will be over-
'laid when the subroutine BLOAD actually loads the

'load module.

The following explanation of the use of DEBUG contains
the action required to use DEBUG in LARSFRIS, Following
the éxplanation is a sample terminal session showing
the steps. First, two breakpoints must be set in the
root. To do this, a copy of RUNLS EXEC must be created
on the A-disk and modified to contain a call to DEBUG
after LARSMN is LOADMODed and before it is STARTed
(step 1). When DEBUG is entered, a breakpoint must be
set at the entry to ERRINT. This address is on the
load map. This will permit ERRINT to be bypassed
(steb 2). A second breakpoint (step 3) is set at

location LOADED (also obtained from the load map).

When ERRINT is entered, (step 4) the contents of
regiSter 14 are displayed to find the address to which

ERRINT is to return. Then, using the DEBUG "GO"

command, control is passed directly to that address
(thus bypassing execution of ERRINT). When location
LOADED is reached (step 5), this means that the overlay
module has been LOADMODed by subroutine BLOAD and

BLOAD is about to return control to LARSMN to start
execution of the function. At this point, a breakpoint
is set in the functional load module. Step 6 shows
that the bréakpoint in the load module was reached.

In this example, this breakpoint was the entry point

to a subroutine in the overlay module. The programmer
then set the origin to this address and set a breakpoint
in this subroutine. It turned out that this breakpoint
was never reached. A caution should be noted here.
When breakpoints have been set and not executed, CMS

should be re-ipl'ed before using DEBUG again.

If this procedure is to be used several times, steps
2-5 can all be set up as stacked lines before the DEBUG

command in the RUNLS EXEC.

Some very important cautions should be noted. Whenever
the programmer creates a new load module, any TEXT files
that are on the A-disk will be used in preference to the
standard program TEXT files. This is a useful feature

in making test runs. However, it means that once a

.CDpy runls exec n = = a
R; T=0.09/0.,21 15:485:0%

.efdit runls exec Programmer makes his

Bl

.1/ 10admod/ own copy of RUN EXEC
LOADMOD LARSMN

Y debug and adds line "debug”

Tiie

Ry T=0.07/0.19 15:45:37

«excomd

T=0.13/0.46 15:45:50
.edinput flmelas cc
12¢.05/0.08 15:45:58
.statdeck use fleming
T=4.18/0.34 15:46:07

.run lasérsys

UMSDEGT281 DEBUG ENTERED.

.break 1 zbb18 | location of ERRINT (from load map)
.break £ 2bfo4 J location of LOADED {from lnad map)
.return

DMSL1CTH0I EXECUTIUN BEGINS...
DMSPBUT281 DEBUG ENTERED.
BREAKPOINT 01 AT 0ZBB18

&pr 14
§20p09C location to return to from ERRINT

.go;2092c

DMSDBG7281 DEBUG ENTERED.
BRERKPOINT 02 AT OZBFS54

.break 3 51678 breakpoint set in overlav module

.80
10112 CLASSIFYPQINTS FUNCTION REQUESTED (CLASUP)
I0¢02 TAPE $999 HAS BEEN REQUESTED ON UNIT 181 (TAPMOUNT}
TAPE 181 ATTACHED
IOyCs TAPE READY... EXECUTION CONTINUING (TAPMOUNT)
10032 REDUCED STATISTICS COMPUTED. (REDSAV)
100s4 ALL CONTROL AND DATA CARDS HAVE BEEN READ {CLAINT)
DMSLBG7261 DEBUG ENTERED.
BREAKPOINT 03 AT 051578

.origin 51078 set at breakpoint in subroutire

«x 160
00054 38C

.80
I0002 TAPE 2652 HAS BEEN REQUESTED ON UNIT 182 (TAPMOUNT)
TAPE 182 ATTACHED

I0003 TAPE READY... EXECUTION CONTINUING (TAPMOUNT)
INNNN DATA IS IN LARSYS FORMAT (GADRUN)

10036 DESIRED RUN FOUND ... 77010200 (GADRUN)

I00KY 100 QUT OF 176 LINES ARE CLASSIFIED (CLSFYz)
I00K0 CLASSIFYPOINTS FUNCTION COMPLETED (CLASUP)

10103 CPU TIME USED WAS 45.817 SECONDS. (LARSMN)

|
L0004 END OF INPUT DECK - RUN COMPLETED (LARSMN)
10050 TOTAL CPU TIME FOR THIS RUN WAS 49.851 SECONDS. { LARSMN)
TAPE 181 DETACHED
TAPE 182 DETACHED
T=43,8¢/50.57 16:16:55

(1)

(2)
(3)

i4)

‘5)

(k)

test version is no longer needed it should be erased.
Also, any MODULE files left on the A-disk will con-
tinué to be used rather than the standard system
moduies. If the system programmer has changed the
root‘load module since the programmer last created

a functional module on his A-disk, that functional
moduie will no longer work. For this reason, it is
recommended that load modules for test versions not

be kept but rather that they be regenerated whenever
needed. In light of the above environment the first
step to be taken when unforseen events take place is

to check for unwanted TEXT or MODULE files on the
A-digk. It is also important that when a program source
is modified, it must be compiled or assembled before it

will appear in the newly generated load module.

4.7 ATTACHING AND DETACHING OF TAPE DRIVES

The attaching and detaching of tape drives is handled auto-
matically by LN%E?ISand the computer operator and requires no
user action. When a tape is needed by a processing function,
it calls the Subroutine MOUNT, passing to it the tape number,
DSRN, and thejcharacters 'RI' or 'RO' to indicate either ring
in or ring out. MOUNT assumes that DSRN 11 is TAP1l, DSRN 12 is
TAP2, and DSRN 13 is TAP3. It checks the NUCON device table,
however, to find the assigned unit address for each virtual

tape drive.

MOUNT then sends the CP operator a message requesting that the
tape with the number specified by the user be mounted on the
appropriate virtual tape drive. If the required physical drive
is not attached to the user's virtual machine, the operator is
notified and must first attach one and then mount and ready the
tape. If the drive is already attached, the operator need only
mount and ready the tape. The IARSFRIS programs are designed so
that when MOUNT is called, the tape drive that is required is

either not attached or not ready.

MOUNT goes into a wait state via the CMS WAIT macro after it
has requested the tape. When the tape becomes ready, CP will

pass the resultant interrupt to CMS and the program will auto-

matically resume processing. The interrupt will not be passed

P

to CMS if the operator readies the tape drive before attaching
the drive. 1In addition, the operator cannot recover from this
condition by pnloading and then readying the tape. It is

necessary to detach and then properly re-attach the tape drive,

or else have the user ready the unit via the CP 'READY' command.

At the processing level (i.e., during the execution of a single
input deck), tapes are attached only while actually needed. This
is implemented by detaching all attached drives when a processing
function is requested which does not need them. The detaching

is done by calling UNMNT immediately after a Function Selector
Card has been detected. UNMNT has a table of the tape drives
that each function requires and it detaches any that are not
needed. The status of tapes remain unchanged during execution

of initialization functions, since these precede the Function

éeiecfdé éara: The Clﬁéﬁer functibn reads a Multiépectral

Image Storage Tape at the beginning of the functional processing
and then has no further use for it while the computing is taking
place. Therefore, this drive is detached immediately after

all of the data has been read from the tape. Since it is
possible for the user to re-ipl as a method of terminating

a run, thus bypassing the code at the end of RUNLS which detaches
tapes, EXCOMD detaches any tape drives before executing any
commands. It determines which drives are attached by issuing

a TAPE RUN command and checking the return code.

4.8 IMPLEMENTATION OF THE CONTROL CARD CHECKOUT OPTION

The control card checkout option permits a user to verify the
accuracy of the control and data cards in an input deck without
actually executing the deck. This feature has been implemented
by using the normal IARSFRIS programs and bypassing coding which
actually executes the function. Only coding which reads and

checks contro; and data cards is executed.

The user invokes control card checkout by including the -CHECKOUT
Initialization Function control card in his input deck. When
this card is read, LARSMN sets the logical flag 'CHKOUT' in
GLOCOM to ".TRUE." rather than its normal value of ".FALSE.".

The "~RESET" Initialization function resets the flag to '.FALSE.'.

The following are the general specifications for the control

card checkout option.

1. All control and data cards are read.

2. All control and data cards are checked within the
limitations that are mentioned below.

3. No'tapes are mounted. This means that some data check-
ing bannot be performed.

4. Any disk data sets created by a previous function are

not read since this function may not have been executed

5.
6.

7.

(and probably will not have been, since it was probably
run with the control card checkout option).

No data is written to disk data sets.

No cards are punched.

The messages indicating 'FUNCTION REQUESTED' and
'FUNCTION COMPLETED' are typed. The message 'ALL
CONTROL AND DATA CARDS HAVE BEEN READ' may or may not
be typed, depending upon the structure of the functional

programs.

Below are listed special cases and exceptions to the above

specifications.

Those functions that assume that the run number equals
the current run when no run is given in the control
cards (HISTOGRAM, COLUMNGRAPH, and LINEGRAPH) do not
make any check for the presence of a run number since
there is no way to know if a previous function would

have left a run mounted.

The check normally made for an invalid group number
on a TEST card (made in RDFLDS) cannot be made at all
in PRINTRESULTS and cannot be made in SAMPLECLASSIFY
unless the Statistics File is available (see below).
This check requires the statistics to determine the

number of groups with just one class. In both of the

above cases, the number of groups is set to 60 before
the call to RDFLDS. This causes any group number in

the possible range of 1-60 to be accepted.

¢ The Statistics File is an exception to the specifica-
tion that no disk data sets are read or written. The

following rules apply to it.

a. If a Statistics File is present in the input
deck, it is read and the disk file is created
as usual. This allows all normal data checking
concerning the statistics to be performed.

b. If the file is not present in the input deck
(indicating that statistics are expected on
disk), a check is made to see if the Statistics
File exists on disk. This check is made by
determining whether the first record is 'EOS'.
If this is the case, the file does not exist
and data checking which requires it cannot be
performed. If the file does exist, all normal

data checking is performed.

These rules affect the Separability, Classifypoints and Sample-
classify functions. Since PRINTRESULTS reads statistics from
the Results File, the statistics are never read when control

card checkout is in effect.

SECTION 5

LARSFRIS DATA ORGANIZATION

SECTION 5

LARSFRIS DATA ORGANIZATION

This section describes the data files that are used in LARSFRIS
and gives the detailed formats and the contents of each file.

The section is divided into three subsections:

5.1 LARSFRIS Data Set Reference Numbers
5.2 LARSFRIS Processing Level Files
5.3 LARSFRIS System Information Files

5.4 Other LARSFRIS Files

5.1 IARSFRTIS DATA SET REFERENCE NUMBERS

The table that follows gives the symbolic DSRN, the DSRN, the
file description and the CMS FILEDEF command for each of the
data sets in the LARSFRIS system, The files are arranged in
numeric oréer by DSRN. The descriptions of the processing level
files thatjfollow in subsection 5.2 are presented in the same
order. Note that DSRN 14 is not used at this time. It may be

used in the future for an additional tape assignment.

Cluster Scratch File

Printresults Scratch File

Virtual card reader

Classification Results

Symbolic DSRN Description
SDATA 1 Statistics File
HDATA 2 Histogram File
CLUSTX 3
PRESUX 4
CRDRDR 5
PRNTR 6 Virtual printer
PNCH 7 Virtual punch
ERRMSG 8 Error Message File
RUNFIL 9 System Runtable
TTFLDX 10 Training and Test
Fields File
MAPTAP 11
Tape
SEPTPX 11

Separability Scratch Tape

Filedef
FILEDEF 1 DISK STATS DATA D1 (NOCHANGE)

FILEDEF 2 DISK HISTO DATA D1 (RECFM F
LRECL 360 BLKSIZE 360 XTENT 61 NOCHANGE)

FILEDEF 3 DISK CLUSTER SCRATCH D4 (RECFM VS
BLKSIZE 800

FILEDEF 4 DISK PRESULT SCRATCH D1 (LRECL 133
BLKSIZE 133 NOCHANGE)

FILEDEF 5 READER (RECFM F NOCHANGE)
FILEDEF 6 PRINTER (RECFM FA NOCHANGE)
FILEDEF 7 PUNCH (NOCHANGE)

FILEDEF 8 DISK ERROR MESSAGE M1 (LRECL 80
BLKSIZE 80

FILEDEF 9 DISK RUNTABLE FILE 04 (RECFM VS
BLKSIZE 808

FILEDEF 10 DISK TRNTEST FIELDS D4 (RECFM VS
LRECL 800 BLKSIZE 800)

FILEDEF 11 TAP1 (RECFM VS LRECL 1500
BLKSIZE 1500)

FILEDEF 11 TAPl (RECFM VS LRECL 1500
BLKSIZE 1500)

Symbolic

DUPRUN

DATAPE

CPYOUT

DUPLTP

SCNDTP

KEYBD

TYPEWR

CLASSR

SEPARX

FLDBND

CLASSX

DSRN Description

11 CHANNELTRANSFORM

12 Multispectral Image
Storage Tape

12 7éopyfe$ﬁlté Oﬁtputhape

13 Transferdata Output Tape

14 Classification Results
Tape

15 Terminal keyboard (input)

16 Terminal typewriter
(output)

17 Classification Results
File

18 Separability Scratch
File

19 Field Boundaries File

20 Classifypoints Scratch

File

Filedef

FILEDEF 11 TAP1 (RECFM VS LRECL 1500
BLKSIZE 1500)

None required (Only TAPOP is used)
FILEDEF 12 TAP2 (RECFM VS LRECL 1500
BLKSIZE 1500)

FILEDEF 13 TAP3 (RECFM F LRECL 80
BLKSIZE 80 NOCHANGE)

FILEDEF 14 TAP4 (RECFM VS BLKSIZE 1500
LRECL 1500)

FILEDEF 15 TERM (LRECL 120 BLKSIZE 120
NOCHANGE)

FILEDEF 16 TERM (LRECL 120 BLKSIZE 120
NOCHANGE)

FILEDEF 17 DISK CLASSIFY RESULTS D4 (RECFM
VS BLKSIZE 800 LRECL 800)

FILEDEF 18 DISK SEPAR SCRATCH D4 (RECFM VS
BLKSIZE 800

FILEDEF 19 DISK FIELD BNDRIES D4 (RECFM VS
BLKSIZE 800)

FILEDEF 20 DISK CLASSIFY SCRATCH D4 (RECFM VS
BLKSIZE 800 LRECL 800)

v-S

5.2 PROCESSING LEVEL FILES

This subsection contains the descriptions of all files that are
used at thelARSFRIS processing level. This includes not only
the remote sensing application files, such as the Statistics
File, but also the support files, such as the Runtable, that

are used at this level.

The functional processing disk files in this group (all of the
disk files except ERROR MESSAGE and RUNTABLE FILE which are
system files stored on the M-disk) are stored on the user's
temporary disk (D-disk) during functional processing. When the
user initially logs into the system and issues the 'i larsys'
command, all of these files are erased. They will also be erased
if he later re-issues the 'i larsys' command and when he logs
off the system via the 'quit' command. During the time between
the first 'i larsys' command and any subsequent 'i larsys' or
'quit' command, the files are handled as follows:
- Scratch files (filetype = SCRATCH) are always erased as
soon as the function that is using them is completed.
- All of the other disk files except CLASSIFY RESULTS
remain intact on the D-disk.
- CLASSIFY SCRATCH is erased each time the Classifypoints
function is executed, immediately before it is executed.
Except for these erasures caused by re-executing CLASSIFY-

POINTS, the file remains intact on the D-disk.

The files are described in the following sequence:

DSRN

1

2
3
4

o

10
11,12,
14,17
11,18

11,12
13
19
20

Statistics File (STATS DATA)
Histogram File (HISTO DATA)
Cluster Scratch File (CLUSTER SCRATCH)

Printresults Scratch File
;(PRESULT SCRATCH)

Error Message File (ERROR MESSAGE)

Runtable File (RUNTABLE FILE)

Training and Test Fields File
(TRNTEST FIELDS)

i Classification Results File (CLASSIFY
RESULTS when on disk)

' Separability Scratch File (SEPAR SCRATCH
~when on disk)

Multispectral Image Storage Tape

Transferdata Output Tape

- Field Boundaries File (FIELD BNDRIES)

. Classifypoints Scratch File

(CLASSIFY SCRATCH)

Page No.
5-7
5-13
5-23
5-25

5-27
5~-28
5-30

5-33
5-50

5-52
‘5-59
5-62
5-64

STATISTICS FILE (DSRN 1)

The Statistics fﬁle is created by the Statistics function or
the Cluster function on disk (as STATS DATA) and may also be
punched on cards. Both forms of the file are in the identical
card image format (RECFM = F, and record length of 80). The
card images are sequenced in columns 73-80 of each record. The
sequence field is in I8 format. The first record is sequence

number 1 and each record is incremented by 1.

File Usage:

The file (from either storage medium) is a primary input for the
Separability, Classifypoints, BIPLOT, RATIOMEANS, MERGESTATISTICS,
SECHO and Sampleclassify functions. Also, the Classification
Results File contains the Statistics File, though the record format

and record size are different.

There are eight types of records on the file. 1In the Statistics
function the first and second type records (the ID and training
field portions of the file) are written by STAINT. The remainder

of the file is written by PCHSTA which also punches the deck if a
card version is requested in STATISTICS. In Cluster the entire

file is written by CLUPRO which also punches the deck if it is
requested. The file is read, wherever it is used in other functions,
by subroutine STAT which transfers it to disk. REDSTA reads the
disk file and actually reads the statistics into memory. CLAINT
reads the Statistics File to count the records and to transfer the

file to the results file.

WRTTRN reads the first record and then reads the training fields
via LAREAD and then flushes the rest of the file. 1In the
Statistics function, LEARN reads the training fields from the
STATS DATA file when they are the only information on the file.
If the Statistyés file is written by the Cluster function,

there are no actual training fields and these records are
replaced by one dummy field card for every class.

File Format:

The Statistics File contains 8 types of records. The content
of these records and the number of each record in the file
is described below.

RECORD TYPE 1
There is one record type 1.

Columns Format Description
1-32 ‘ Alpha 'LARSYS VERSION 3 STATISTICS FILE'
39-43 blank
40-~44 Il 1 = hexadecimal format
or

0 = character format
(see record type 6 & 7)

41-45 blank
73-80 18 Sequence number

RECORD TYPE 2
The type 2 records are copy of the training field deck including

the 'CLAS' cards. When written from the Statisitcs function, the
only differences between these records and the training field

data deck are that any 'CLAS' cards which had no class names

on them have 'NONE' in columns 17-20 and all records have the
sequencing in columns 73-80. When written by the Cluster function,
the 'CLAS' cards have 'CLASS NS-' in columns 1-12, the class
number in column 13, and the total number of classes in column

17. The dummy field cards have the run number in columns 1-8

and class number information in columns 51-54. All other data
fields contain 9's. All records are sequenced in columns 73-80

‘in the normal manner.

RECORD TYPE 3

There is one record type 3.

Columns Format Description
1-5 I5 Number of classes in the statistics
6-11 Alpha ' CLASS'

12-16 I5 Total number of training fields
17-22 Alpha ' FIELD'

23-27 I5 Number of channels used in the

statistics

28-36 Alpha ' CHANNELS'

37-72 blank

73-80 I8 Sequence number

RECORD TYPE 4

There is one record type 4 for each channel used in the

statistics run.

Columns Format Description
1-4 Alpha 'CHAN®
5-7 I3 Channel number
8-18 Alpha ' WAVELENGTH'
19-23 F5.2 Low end of spectral band (in
micrometers)

24 Alpha -t

25-29

30-34
35-37
38-40
41-47
48-50
51-57
58-60
61-67
68-72

73-80

RECORD TYPE 5

There are {NC-1l)/9+1 record

classes.
Columns
1-7

8-70

F5.2

Alpha
I3
Alpha
F7.2
Alpha
F7.2
Alpha
F7.2

I8

Format

Alpha

719

Upper end of spectral band
(in micrometers)
' CODE'
Calibration code
" Col

Value of CO used
] Cl|

value of Cl used
] C20

Value of C2 used
blank

Sequence number

type 5's. where NC = Number of

Description

5-10

'NO. PTS'

7 entries each of which is the
number of points in a class.
Entry i1 on the jth record type 5
is the number of points in class

((3-1) *9+i)

RECORD TYPE 6

There is one set of record type 6's for each training class.
Each set coﬁtains the means of the data values for each channel
used in the.statistics. The beginning of each class is on a
new record. Each record is of the form 'MN' in columns 1 and 2
and data in columns 3-72. Columns 73-80 contain the sequence
number. The data can be in either of two formats, and is
indicated by the flag on record 1. 1If the flag = 1, the format
of the data is 17A4 (Note that A4 format records the hexadecimal
contents of memory with no format conversion. On cards, the
EBCDIC punched card code for the hexadecimal is punched with
one byte represented by each column). There is a maximum of
two cards per class for this format. If the flag = 0, the
format of the data is 5E14.7. With this format, there will be
more record type 6's since there will be only five data values
per record rather than 17. There is a maximum of six cards

per class with this format.

The data elements for a set of record type 6's for one class
are arranged so that element (i) is the mean of data values

for the i'th channel used.

5-12

RECORD TYPQ 7

There is one set of record type 7's fbr each training class.
Each set contains the covariance matrix for one class. The
beginning of each class is on a new record. Each record has
the form 'CV' in columns 1 and 2 and data in columns 3-72.
Columns 73-80 contain the sequence number. These records can
have two formats for the data, identical to those for record
type 6. The data for the set of records for one class is
arranged so that the i'th data element is the i'th element in
the covariance matrix for the class. The lower traingular
portion only of the covariance matrix is recorded (the matrix
being symmetric) and the elements are in the order Cy17 Ca1¢
Cygr C31¢ C35r etc.

RECORD TYPE 8

There is one record type 8. This record is fixed in format.

Column Content

1-3 'EOS'’

4-15 blank

16-59 Yhkkkk LAST CARD OF STATISTICS DECK khkkk?
60-72 blank |

73-80 Sequence number

5~-13

HISTOGRAM FILE (DSRN 2)

The Histogram File is produced by the Histogram angd
Piehureprintifunctions and may be input to those same

three functions and the Graphhistogram function. The file

is always produced on disk and may, optionally, be punched
onto cards. While the data contained on the two media are
similar, the formats are not the same. GRAPHHISTOGRAM and
HISTOGRAM use only the disk version whereas the other two func-

tions will accept either format.

Histogram File on Cards

The Histogram Deck contains 11 different types of records
(card images). A given Histogram Deck has its total number
of cards determined by how many channels were histogrammed.
There are 10 cards (1 of each record type 1 through 10) for
each channel histogrammed plus one type 11 record at the end
signifying the end of the deck. Therefore
Number of cards = (NCR*10) +1

where NCR is the number of channels requested.
The Histogriam Deck is punched by modules HISTD and PICl.
PICl also reads the deck, checking fore sequence errors.
Each card has a sequence number in columns 73—80. The
sequence number = l0*channel number + (record type -1). The
last card of the deck has a sequence number one greater than
the one preceding it. The format size and content of each

record type follows:

RECORD TYPE 1
1

This record identifies the data that was histogrammed.

Columné
1-16

17-24
25-31

32-36

37
38-42

43

44-48
49-54
55-58

59
60-63

64
65-67
68
73-80

Format
Alpha
I8
Alpha

I5

Alpha
I5

Alpha
I5
Alpha

I4

Alpha

I4

Alpha
I3
Alpha
I8

Description

'LARS HISTO RUN('

Run number for data histogrammed
') ,LINE("'

First line number for data

histogrammed

L L]
I 4

Last line number for data

histogrammed

t]
14

Line interval for data histogrammed
') ,COL("'
First column number for data

histogrammed

] t
’

Last column number for data

histogrammed

] L
14

Column interval for data histogrammed
l)'

Sequence Number

RECORD TYPE 2

All entries are fixed point except those indicated otherwise

in the description field.

Columns Format Description
1-4 Ad Lower limit of spectral band in

micrometers (floating point)
5-8 A4 Upper limit of spectral band in
micrometers (floating point)
9-10 A2 Number of histograms accumulated

(maximum is 20)

11-14 A4 Number of samples histogrammed
15—18I A4 Lower limit of histogram (floating
' point) '

19~22 A4 Size of each histogram bin

(floating point)

23-26 A4 Number of lowest bin used
27-30 A4 Number of highest bin used
31-70 20A2 Calibration code for each block

histogrammed (maximum of 20 codes)

73-80 I8 Sequence number

RECORD TYPE 3

Columns |

1-4

9-72

73-80

RECORD TYPE 4

Columns

1-66

67-72
73-80

RECORD TYPE 5

Columns

1-66

67-72
73-80

Format Description

A4 Mean value of histogram (floating
point)

A4 Standard deviation (floating point)

A2 First 32 elements (out of 100) of
histogram results array HISTA

I8 Sequence number

Format Description

A2 Next 34 elements (out of 100) of
histogram results array HISTA
blank

I8 Sequence number

Format Description

A2 Last 34 elements (out of 100) of
histogram results array HISTA
blank

I8 Sequence number

RECORD TYPE 6

Columng
1-72

73-80

RECORD TYPE 7

Columns

1-60

61-68

69-72
73-80

Format

A4

I8

Format

A2

A4

I8

Description

First 18 elements (out of 20) of an
array for storing run number of
accumulated histograms

Sequence number

Description

First 10 segments of a 20 segment
array where each segment contains
3 elements: starting and ending
line numbers and the line interval
for accumulated histograms

Last 2 elements of the array for
storing run numbers of accumulated
histograms

blank

Sequence number

RECORD TYPE 8

ColumnE Format
1-60 A2
61-72

73-80 I8

RECORD TYPE 9

Columgs Format
1-60 A2

61-~-72

73~-80 I8

Description

Last 10 segments of a 20 segment
array where each segment contains
3 elements: starting and ending
line number and the line interval
for accumulated histograms

blank

Sequence number

Description

First 10 segments of a 20 segment
array where each segment contains

3 elements: starting and ending
column numbers and the column
interval for accumulated histograms.
blank

Sequence number

RECORD TYPE 10

Columns

1-60

61-72
73-80

RECORD TYPE 11

Columns
1-3
l16-63

64-72
73-80

Format

A2

I8

Format

Alpha
Alpha

I8

Description

Last 10 segments of a 20 segment
array where each segment contains

3 elements: starting and ending
column numbers and the column
interval for accumulated histograms
blank

Sequence number

Description

'EOH'

Vhkkkk LAST DATA CARD OF HISTOGRAM
DECK kkkkk?

blank

Sequence number

Histogram bisk File

The direct?access disk file HISTO DATA is used to store histo-
gram inforﬁation on the temporary disk (D-DISK). There are
61 records;of 360 bytes each. LARSMN contains the following
statements;

DEFINE FILE 2(61,360,L,POINT)
Global COMMON(GLOCOM) contains the symbolic DSRN, HDATA, which

is set to 2, and the record pointer POINT.

There are three types of records. The first 60 records alter-
nate between a Type 1 and a Type 2. The 6lst record is a

Type 3 recbrd (a dummy record) which when written will force
FORTRAN to format the file for direct access if it has not been
formatted previously in the current terminal session. This
prevents errors if a module tries to read the file when it

does not exist. A Type 1 with a Type 2 record contains the
data pertinent to the histogram for a single channel; thus up
to 30 channels may be histogrammed. Records 1 and 2 pertain to

channel 1, records 3 and 4 pertain to channel 2, etc.

HISTO DATA is initialized (the dummy record 61 written) by
PICRDR, and HISTD. The file is written and read by HISTD

and PIC1l and read by GRHIST.

The format, size, and content of each of the three record types

is described below.

RECORD TYPE 1

Bytes
1-4

5-8
9-10
11-14

15-18
19-22
23-26
27-30
31-34
35-38
39-238

——

Format

R*4

R*4

I*2

I*4

R*4
R*4
I*4
I*4
R*4
R*4

I*2

Size

1 word

1 word

1 halfword

1 word

word

word

word

word

word

N =

word

100 half
words

Description

Lower limit of spectral

‘band in micrometers

Upper limit of spectral
band in micrometers.
Number of histograms
accumulated

Number of samples
histogrammed

Lower limit of histogram
Size of the histogram bin
Number of lowest bin used
Number of highest bin used
Mean value of histogram
Standard deviation
Histogram results array

(HISTA)

RECORD TYPE 2

Bytes Format
1-80 I*4

81-200 I*2

201-320 I*2

321-360 I*2

RECORD TYPE 3

Bytes Format
1-8 I*4

Size

20 words

60 half
words

60 half
words

20 half
words

2 words

Description

Array for storing run
numbers for up to 20
accumulated histograms
Array for storing the
beginning and ending line
numbers and the line
interval for up to 20
accumulated histograms
Array for storing the
beginning and ending
column numbers and the
column interval for up to
20 accumulated histograms
Array for storing the
calibration codes used
for up to 20 accumulated

histograms

Description

Zeroes (Null record)

CLUSTER SCRATCH FILE (DSRN 3)

The Cluster Scratch File is used to store the definition of the
areas to be‘clustered. The format of all records on the file is
the same. The file is written and read using FORTRAN unformatted
I/0 statements. The record format (RECFM) is variable spanned,
unblocked, and the blocksize is 800 bytes. Eight bytes of
control information is placed at the beginning of each of these
records. (This record format is described in detail in IBM
reference manual GC28-6817-2, S/360 Operating System Fortran IV
(G&H) Programmer's Guide, p969-70 "Unformatted Control™.) The

file is used only by the Cluster function.

The format of the records is described below. Each record con-
tains 19 fullwords. Seventeen of these are used and the last
two contain unpredictable data. The reason for the existence
of the last:two words is to use a generalized subroutine
(RDFLDS) to write the file, and it writes 19 word records.

Each record has the following form:

Word Format Content
1 I*4 Run number
2-3 Alpha A description taken from columns

11-18 of a fixed form Field

Description Card.

4 : I*4 First line number for the area

5 I*4 Last line number for the area

6 v I*4 Line interval

7 | I*4 First column number for the area

8 | I*4 Last column number for the area

9 I*4 Column interval

10-1? Alpha Other information taken from columns

51-80 of a fixed form Field Descrip-
tion Card.

18-19 Alpha Unpredictable

The file is created with one record for each area to be clustered.
At the time of creation, the records are in the order in which o
the field description cards describing them were input. The
records are written by RDFLDS in a call from CLURDR. FIXFLD

then rewinds the file and reads all records into main storage.

The file is rewound again and the records are written onto the
file in order of increasing run and line number. At this time,
certain field description values may also be changed to reflect
changes required in order to fit all data into main storage.

FIXFLD then rewinds and reads the file. CLUPRO rewinds and

reads the file several times.

PRINTRESULTS SCRATCH FILE (DSRN 4)

The Printresults scratch file is a disk resident file (PRESULT
SCRATCH) used exclusively by the Printresults function. The
file is used to generate multiple copies of Printresults

printed output. The format of the file is printer image

(RECFM = F and record length of 133) with the first byte of each
record containing carriage control information. The records are
duplicates of those written to the printer except that a record

of 'EOF' is used to separate sections of the file.

The file is first used to save the Printresults map for printing
multiple copies. After the multiple copies of the map have

been printed, the fiie is used to save the performance tables
for printing multiple copies of them. The file is read by
DISPLY when multiple copies of the map are printed and by

DISPY2 when multiple copies of the performance tables are

printed.

The description below indicates the contents of the file both
when it contains the map and when it contains the performance
tables. Detailed record formats are not given since these are
identical to the printed output. 1In parenthesis after each
item is the name of the subroutine writing it. Contents of

file when it contains the map:

2.
3.
4.
5.
6.
7.
8.

Contents
1.
2.

Heading including standard LARSFRIS heading plus
the classification ID heading and list of channels

and classes. Also lines indicating the outline

syﬁbols to be used. (DISPY1)
A record with the characters 'EOF', (DISPY1)
The column number header. (DISPY1)
A record with the characters 'EOF'. | (DISPY1)
The map. (DISPLY)
A record with the characters 'EOF'. (DISPY1)
Thé number of points displayed. (DISPY1)
A fecord with the caracters 'EOF'. (DISPY]1)

of the file when it contains the performance tables:
All performance tables including headings. (DISPY2)

A record with the characters 'EOF'. (DISPY2)

ERROR MESSAGE FILE (DSRN 8)

The error message file is resident on the system M-disk, as
file ERROR MESSAGE. The file contains text for error messages,
one message text per record. The records are card image form
(RECFM = F and record length of 80). The format of each record

is:

Columns Format Description

1-5 I5 Error number

6-77 Alpha Text of error message

78-79 blank

80 Alpha - Contains 'N' if the message is to be

typed only and not printed. Otherwise
blank which means the message should

be typed and printed.

This file is maintained by the system programmer. It is used
by the subroutine ERPRNT which searches the file for the

appropriate error number and then uses the text.

RUNTABLE FILE (DSRN 9)

The Runtable is a permanent disk file called RUNTABLE FILE
residing on qhe O-disk. It is maintained by the system pro-
grammer. Th%s file contains the ID records for all Multispectral
Image Storagg Tape runs that are "cataloged" by LARSFRIS. The
first part of the file contains a directory (by run number) for
accessing the ID records. The Runtable is a FORTRAN direct
access data set. This means that it has fixed length records
(RECFM = F). The record length is 800 bytes. The Runtable is

created by the system programmer and is read by GADRUN and RUNSUP.

Each of the ID records is an exact duplicate of the ID record on
the Multispectral Image Storage Tape (for its format, see the
description of this file in this section of the System Manual).

The ten directory records are each divided into 133 six byte
entries (leaving the last 2 bytes unused), each of which identifies
a single run. The last valid entry is followed by an entry with

a run number of zero.

5-29

thes‘ Format Description
1-4 _ I*4 Run number
5-6 I*2 Record number in Runtable that contains

the ID record for the run. This
record number can be used in a
FORTRAN direct access read statement

to read the requested ID record.

TRAINING AND TEST FIELDS SCRATCH FILE (DSRN 10)

This file is used by PRINTRESULTS and SAMPLECLASSIFY to store
field description information. In PRINTRESULTS the file may
contain desbriptions of both the training fields and the test
fields. The training fields are those obtained from the
Statistics ?ile, and the test fields are input by the user in
his input deck on Field Description Cards. The training field
information is written on the file first, followed by a single
record containing only "EOF", followed by the test fields and

another "EOF".

In SAMPLECLASSIFY the file contains only the test field descrip-
tions that were input by the user on Field Description Cards.
These are followed on the file by a single record containing

only "EOF".

The file is created by RDFLDS (with the portion containing
training fields created by the entry point RDTRN). 1In
PRINTRESULTS, DISPY2 reads the file and in SAMPLECLASSIFY,

SMCLS2 reads it.

The file is accessed via FORTRAN unformatted I/0 and the record
format is RECFM = VS with a block size of 800 bytes. Eight bytes

of control information are placed at the beginning of each of

these records.

Record Format:

t

Each record is

Word

1

10-17

The format of each record is given below:

19 fullwords long and contains the following:

Format

I*4

Alpha

I*4

I*4

I*4

I*4

I*4

I*4

Alpha

Contents

Multispectral Image Storage Tape

run number for the field.

The field designation furnished

by the user.

The beginning line number for the
field.

The last line number for the field.
The line interval.

The beginning column number for

the field.

The last column number for the
field.

The column interval.

Other information taken from columns
51-80 of a fixed form Field Descrip-

tion Card.

18

19

I*4

I*4

5-32

Contains the group number for the
field. For training fields this
is the group number that was
assigned in Printresults (see

the function description for more
information). For test fields it
is the number on the 'TEST' card in
the input deck.

Contains valid information only
for training fields, in which
case it contains the pooled class

number for the field.

5-33

CLASSIFICATION RESULTS FILE (DSRN 11,12,14,17)

The Classification Results File is produced by the Classify-
points function and is the primary input to the Printresults,
Copyresults, Listresults, Compareresults, Smoothresults and
Punchstatistics functions. The file may be output on either tape
or on disk, however, the latter two functions will accept it for

input only if it is on tape.

When the file is produced on tape, special support is provided
to allow more than one results file to be placed on a single
tape reel. The last file on the tape is followed by a special
"marker" file, which contains only a single type 1 record (see
the record types below). A special file type code is then used
to indicate that this is the last file on the tape and that it

is not a true data file.

The first two parts of this description describe the file usage
and the format of the file under normal conditions. The last
part describes the temporary records that are created when the
SUSPEND command is issued. These temporary records are always

destroyed when processing of the "suspended"” file is restarted.

File Usage:

The Classification Results File is created by the Classifypoints

function. Copies of the file can be created with the Copyresults

5-34

function. Below is a list of program modules that create records

on the resﬁlts file. These are all modules in Classifypoints.

All records of COPYRESULTS output file are created by the module

COPY.

Record Type Module writing
I

1l MMTAPE writes this record if the file is
! on tape and is being initialized. Other-

wise, CLAINT writes it.

The form of this

record with filetype = 1 is written by
CLSFY2 (or by CLSFY1l in the case of an

error termination).

2 CLAINT
3: CLAINT
4 CLSFY1
5 CLSFY2
6 CONTEX
7 CONTEX
8 CLSFY2

The Listresults, Punchstatistics, Copyresults, Compareresults,

Smoothresults and Printresults functions all

read the results

file on tape. Only COPYRESULTS, COMPARERESULTS, SMOOTHRESULTS and

PRINTRESULTE can read the results file on disk. All the results

functions leave the results tape positioned at the beginning of

the next file after the one they processed.

disk is left positioned at the end.

The results file on

All functions that read the results file use MMTAPE to mount
and position it if the file is on tape. MMTAPE reads the
first record of the file and then repositions it back at the

beginning of the file.

For Listresults, Punchstatistics and Copyresults, all records
are read by the module COPY and RESCOP initially reads the

first two records.

In Printresunlts, record types 1 and 2 are read by PRIINT. Record
type 3's are read via a CALL to RDTRN. Record type 4 is read by
STATS and by DISPYl. DISPYl may also read over record types

6 and 7 in order to get to the next record type 5. Record types

6 and 7 are read by DISPLY. Record type 8 is read by DISPY1l.

The File Format

The Classification Results File contains eight different types
of records. The format, size, and content of each entry in each
of these records, and the number of records of each type that
occur in a single file, is described below. All records are
written using Fortran unformatted I/0, a variable spanned

(RECFM = VS) record form and a block size of 1500. This record
format is described in detail in IBM reference manual
GC28—6817-3, Fortran IV (G and H) Programming Guide, pp 69-70

("Unformatted Control”). The records are unblocked. Briefly,

5-36

if the logidal record is 1492 bytes or less, the physical
record consﬁsts of 8 bytes of control information plus the
logical record. If the logical record is 1493 bytes or more,
it is spanned onto additional physical records each beginning
with 8 bytes of control information. The final physical record

written mayvbe less than 1,500 bytes.

Each recordlbegins with a two word prefix which precedes the
data described below. The first word contains the record type
as a fullword integer. The second word is set to zero for
record types l1l-4 and record type 8. For record types 5-7, it
contains the area number as a fullword integer. The first
area classified in the file is area 1, the second area
classified is 2 and so forth. The record sizes shown below do
not reflect this additional 8-byte prefix, which should be

added to determine record size.

RECORD TYPE 1

This record contains identification information for the file.
Each results file has one record of type 1 and it is always

12 fullwords (48 bytes) long.

Format Size Description

I*a 1 fullword Tape Number (zero if file is
on disk) A scratch tape
is number 0.

I*4 1 filullword File Number (zero if file is
: on disk)

I*4 1 fullword LARSYS Version Number (currently
b the value is 3)

I*4 1 fullword Filetype (0 for a results file,
: 1l for a restart file, and
-1 for a file containing
only record type 1)

I*4 1 fullword Serial number in the form
’ "ydddsssss", where y = the
last digit of the year,
ddd = the day of the year,
and sssss = the number of
seconds since midnight.

I*4 1 fullword Level flag (0 for LARSYS Version
3, 1 for modified classi-
fication results file)

I*4 6 fullwords Not currently defined though may
: be in the future. All six
words are now zeroes.

RECORD TYPE 2

Each file has one variable length record of type 2. It contains
a number of entries relating to the channels, classes and pools
that were used in the classification and varies in size with the
number of each of these that were used.

Format Size Description

1*4 1 fullword Number of classes used in cal-
culating statistics before
grouping into pools.

I*4 1 fullword Number of channels used in
the classification.

I*4 1 fullword Number of training fields
used in the classification

I*4 1 fullword Number of classification pools

The size of the next segment varies with the number of
channels (represented by a ch in the size column).

I*2 (1 x ch) halfwords A vector of the channel numbers
‘ for all channels used in
the classification. Channel
numbers are in ascending
sequence, and each is stored
as a half-word integer.

I*2 (1 x ch) halfwords A vector containing the calibra-
tion codes for the channels
used in the classification.
(See LARS Information Note
071069). Same format as
above.

R*4 (1 x ch) fullwords A vector containing the upper
wavelength band limits of
all channels (in micrometers)
used in the classification.

R*4 (1 x ch) fullwords A vector containing the lower
wavelength band limits of
all channels (in micromete:irs)
used in the classification.

The size of the next segment varies with the number of pools
and the number of classes (represented by po and cl in the
size column).

Alpha (8 x po) bytes A list of the eight byte names
for all of the pools, in
ascending order by pool
number.

I*2 (2 x po) halfwords Pool Pointer Matrix (POLPTR).

: A 2 by j matrix where j =
the number of pools. POLPTR
(1,j) = the number of
classes in pool j, and
POLPTR (2,3j) = the location
of the first class for
pool j in the Pool Stack
Vector (POLSTK) below.

5-39

I1*2 (1 x cl) halfwords Pool Stack Vector (POLSTK).

‘ This is a vector contain-
ing the class numbers of
all classes used in the
statistics deck grouped
by classification pool.

R*4 (1*po) fullwords Weight vector (PROB). This
: vector contains the
weights assigned to each
pool in the classification.

Alpha 20 bytes The date the classification
: was performed in EBCDIC,
For example Sept. 11, 1972
would be represented as
"SEPT,11b1972bbbbbbbb".

RECORD TYPE 3

These records provide a copy of the Statistics File that was
used in the classification run. There is one logical (and
physical) reco?d of type 3 created for each "card" in the
Statistics File. The record consists of the exact 80-column
image of the card. See the description of the Statistics File

in this section for more details on its organization and content.

RECORD TYPE 4

This record contains the covariance matrices and the mean vectors
for the reflectance values of the channels for each of the
classification pools. The record is of variable length, varying
with the number of pools and number of channels used in the

classification. (Represented by po and ch in the size column).

Format |Size Description

The covariance matrices for all of the pools are written first:
R*4 '(ch2+ch) po fullwords The Covariance Matrix for each
2 classification pool is

placed in the record in
ascending pool number
sequence. Only the lower
triangular "half" of the
symmetrical matrix is
stored and the individual
elements (values) are
stored as floating point
numbers in "column by row"
sequence. Hence each
element Cij of each matrix

is stored according to the
sequence; Cll' Czl. C22,

C31'C32,C33,C41, etc.

The mean vectors for all of the pools follow the covariance —
matrices:

R*4 (1 x ch)po fullwords The Mean Vector for each
3 classification pool is

then placed in the record
in ascending pool number
sequence. Each individual
vector has the mean value
for each channel used in the
classification ordered in
ascending channel number
sequence.

RECORD TYPE 5

This is the area identification record. There is one such record
at the beginn?ng of the results records for each area considered
in the classification run. It is followed by the series of
results records (record type 6) which contain the classification

results of each line in the area; and by a single "end-of-the-area”

—

5-41

record (record type 7) following the last results record. Record

Type 5 is fixed length and is always 309 fullwords long.

Format Size Description
I*4 -1 fullword The number of points classified
in each line of record type
6.
I*4 "1 fullword The number of lines classified
in the area.
I*4 - 17 fullwords The INFO array used in Classify-
points (in CLACOM)
INFO(1l) = run number
INFO(2) = field designation
(first four
characters)
INFO(3) = field designation
(last four
characters)
INFO(4) = line number of
first line of field
INFO(5) = line number of
last line of field
INFO(6) = line interval
INFO(7) = column number of
first column
INFO(8) = column number of
last column
INFO(9) = column interval

INFO(10-11]) = class name -

eight charac-
ters

INFO(12-17) = user informa-

tion that was
contained in
card columns
59-80 of the
Field Descrip-
tion Card
(fixed form)
that defined
this area.

The last two
characters are
blank.

I*4

R*4

RECORD TYPE 6

; 200 fullwords

90 fullwords

The Multispectral Image Storage

Tape Identification Record
for this area.

The Calibration Set Array. This

is the same as the array
CSET3 from CLACOM. The array
is dimensioned three by
thirty, providing an element
for each possible calibration
value for each possible
channel. Entries that are
not specified by the user
are set to the values con-
tained on the Multispectral
Image Storage Tape ID record.
The elements are ordered such
that:
CSET3(1,J)=the value of CO
for channel J
CSET3(2,J)=the value of Cl
for channel J
CSET3(3,J)=the value of C2
for channel J
The array is stored on the
file row by column, i.e.,
CSET3(1,1), CSET3(2,1),
CSET3(3,1), CSET3(1,2)...etc.

There is one record type 6 for each line in each area that was

classified.

were classified in the line.

column).

Its length will vary with the number of points that

(represented by pt in the size

Format Size Description

I*4 1 fullword The line number from the Multi-
spectral Image Storage Tape.

Following the line number there is a series of entries, one
for each point in the line.

I*2 (1 x pt) halfwords The entry contains two items of
data. The first byte of
the halfword contains a
likelihood code which repre-
sents the probability of the
point belonging to the
class in which it was
classified. The larger the
code, the greater the
probability of correct
classification. The code
is an integer ranging from
1 to 234. See the Classify-
points algorithm descrip-
tion in the 1arsrrisUser's
Manual for information on
how the code is calculated.
The second byte of the
halfword contains an integer
identitying the number of
the pooled class in which
the point was classified.

RECORD TYPE 7

At the end of each area that was classified is a single type 7
record to identify the end of the area. It is the same length
as the preceeding type 6 record and is distinguished from it by
the fact that the line number (first fullword) is set to zero.

Only the first fullword of the record is currently used.

5-44

RECORD TYPE 8§

At the end of the results for the last area that was classified
in the run{(following its type 7 record) is a single type 8
record. This record is the same length as the type 5 record
and is distinguished from it by the fact that the "number of
points"” fiéld (first fullword) is set to zero. Only the first

fullword of the record is currently used.

The file is then terminated by a file mark.

Implementation of the Suspend Command

When the Suspend command is issued, CLASSIFYPOINTS terminates
processing in such a way that the classification may later be
restarﬁed at the point at which it was suspended. To enable

the function to do this, special restart information must be
appended to the Classification Results File. If the Results
File is on tape, CLASSIFYPOINTS simply writes a special "restart
file" (containing four types of records) directly after the
suspended classification results. If the results file has been
initially written to disk, it is first copied to a tape
designated by the user and then the same restart file is written
‘behind it. Prior to this disk-to-tape copy some vital information

from main storage is temporarily saved on the disk file.

There is no difference in the final suspended Classification
Results File, regardless of whether it was initially written to
disk or to tape. When the classification is later restarted,

however, it can only use the tape for output results.

The Restart File

When CLSFY2 detects the Suspend Command (or upon copying the file
to tape if it was on disk), it completes the results file on tape
by writing the normal record types 7 and 8 followed by a tape
mark. It then writes the special restart file, which contains

one record each of the first three types described below and a

5-46

variable number of the fourth type. When a classification is
later restarted, this restart file is read in by CLASUP and

CLSFY2.

Only record!| type 1 of the restart file contains the two word
prefix that'is common to all of the normal Classification Results

File records.

Restart Record Type 1

This record is identical to the normal Classification
Results File record type 1 except that the filetype is
set to one rather than zero. The record is written by

CLSFY2 and read by CLASUP.

Restart Record Type 2

There is one such record. It is written by CLSFY2 and
read by CLASUP. This record contains a core image dump
of the common area CLACOM (Refer to the program module
documentation) in the Classifypoints function plus three
additoﬁal words containing (as fullword integers):

l; The first element of the array ARRAY in GLOCOM to
be used for storing covariance matrices (base
address of array COVMTX in CLSFY2).

2. The first element of the array ARRAY to be used
for storing mean vectors (base address of array

AVEMTX in CLSFY2).

3. 'The first element of the array ARRAY that is free
for use for buffers (base address of array RDATA

in CLSFY2).

Restart Recq;d Type 3

There is one restart record type 3. It is written and read by

CLSFY2.

(Refer to the program module documentation for GLOCOM

and CLSFY2 for a precise definition of variables.) It contains

the following data:

1.
2.
3.
4.

The array HEAD from GLOCOM.

The arr&y RUNTAB from GLOCOM.

The ;ariable IMARK from GLOCOM.

The array AVEMTX from CLSFY2 (the array of mean
vectors for the classes).

The array COVMTX from CLSFY2 (the array of inverse
covariance matrices for the classes).

The variable BLOCK from CLSFY2. This describes the
current position in the area being classified.

The variable GADLIN from CLSFY2 which contains the
number of lines in the area being classified which
could not be classified because data from the Multi-
spectral Image Storage Tape was not available.

The variable JLINER from CLSFY2 which contains the
number of lines actually classified in the area being

classified at the time of suspension. This is used

in restarting to position the tape.

5~-48

9, The variable IAREA from CLSFY2 which contains the area
ndmber (the second word of the prefix of record type

6) of the area being classified at the time of suspension.

Restart Record Type 4

There is one such record for each area remaining to be classified.
Each record%contains the INFO array for the area to be classified.
Thus the form of these records is the same as the file CLASSIFY
SCRATCH. The first of these records describes the unclassified
part of the area which was being classified at the time of
suspension. The remaining type 4 records are generated by

reading the records from the CLASSIFY SCRATCH file and writing

them to the restart file.

Special Disk Record

When SUSPEND is detected and the results are on disk, they are
first transferred to a tape and then the normal restart file

is written on the tape. This transfer requires reading the

data into main storage and then writing it onto tape. Doing so
destroys the variables COVMTX and INFO in CLSFY2, which must be
saved on the tape as part of the restart file. To save this
information until after the results are copied, they are written
on the disk immediately after the last results record. The

disk file is‘the 'rewound' and copied to the tape. The extra
record is then read back into main storage for incorporation

into the restart file. It contains:

The current value of the prefix which indicates record
type 7 and the area number.

The array COVMTX from CLSFY2. (Inverse covariance
mafrices)

The vector INFO from CLACOM which describes the area

currently being classified.

SEPARABILITY SCRATCH FILE (DSRN's 11,18)

The Separability scratch file can reside on disk or tape. 1If
the D-disk has sufficient space for the file, disk is used;
otherwise, tape is used. The disk file is SEPAR SCRATCH. The
file is usedlonly by the Separability function, where it is
created and read once for each COMBINATIONS request to the
Separability function and reread for each new set of options
typed in by the user. The file is created by subroutine DIVRG2

and is read by subroutine GETDAT.

All records are written using FORTRAN ﬁnformatted I/0 with a
record format of variable spanned (RECFM = VS), thus each record
also contains 8 bytes of control information. If the file is

on disk the blocksize is 800; if on tape, the blocksize is 1500.
With variable spanned records, this blocksize has no effect on
the source program I/0 statements. (The record format is
described in detail in IBM reference manual GC28-6817-2,

S/360 Operating System, Fortran IV (G&H) Programmer's Guide,

pp 69-70 "Unformatted Control").

As noted above the file is created once for each COMBINATIONS
request. The file is rewound before each new request. Every
record in the file has the same format and length. The number

of records is k! + 1 where k is the total number of

r! (k-x) !

channels available and r is the number of channels in the

COMBINATIONS request.

(i.e., the user has requested a separa-

bility study to find the best r out of k channels). This

provides one record for each combination of r channels out of

the possible k channels plus one trailer record. The format

of an individual record is described below.

Format Size

R*4

I*2

R*4

1l fullword

ir halfwords

(Eoz-go) fullwords
‘ 2

(po=number of
pools (classes)
considered)

Description

The sum of the divergences for
all class combinations for this
channel combination. On the
trailer record, this value is
-1.0 which serves as a flag in-
dicating the trailer record.

Channel combination used for
this record. The ith element
in this vector is the channel
number of the i'th channel used
for divergence calculations
recorded in this record. On
the trailer record, this vector
is the same as for the last
normal record.

The vector of divergences for
all class combinations com-
puted using the set of channels
listed earlier in this record.
The order of these divergences
is:
divergence for class pairs
1-2,1-3,1-4,...1-po0,2-3,
2-4,...2-po,3-4...3-po,...
(po-1) -po. On the trailer
record, this vector is the
same as for the last normal
record.

MULTISPECTRAL IMAGE STORAGE TAPE (DSRN 11,12)

The format of this file requires that each data run be completely
identified, énd that each data sample be stored as an eight-bit
integer. This permits the sample data value stored on the tape
to range bet&een 0 and 255. The data samples and calibration
measurements from all channels for each scan line, along with

the line number, is stored in a data record. The linear cali-
bration procedure used in rarsrris can be used to restore the

tape data values back to the irradiance. (Refer to Appendix

IV of the IARSFRIS User's Manual for details on calibration.)

The file is often positioned for use through the TAPOP module.
GETRUN (which uses TAPOP) positions the tape to the correct

file and always reads the identification information.

GADLIN, also using TAPOP, is then used to read the data record
for each line and to calibrate the data. GETRUN and GADLIN are

used by 11 of the 23 LARSFRIS Processing Functions.

There are three types of physical records on the file. They are:
1. ID record - 200 fullwords, fixed length
2. Data record - variable length

3. Endﬁof-Tape record - 200 fullwords, fixed length

A single tape may contain one or more data runs, each of which
consists of an ID record, multiple data records and a Tape
Mark (a special record written by the I/0O control software,
which indicdtes end of file). After the last data run on the
tape, a single End-of-Tape record and two Tape Marks are

written.

Figure 5-1, on the following page, graphically illustrates the
format of the file. At the bottom of the figure the overall
tape containing several runs (files) is depicted. The format
for the data of an entire run, a single line, and a single
channel of a line are shown in three successive "exploded"
views as the reader proceeds up the figure. Each "exploded"
area is shaded on the figure. This figure shoﬁld be referenced
in conjunction with the descriptions of all of the individual
fields. Note that the notation ID(n) is used on the figure to

reference the nth word in the ID record.

ID(6) Bytes

1 Byte 1 Byte 1 Byte
Sample| Sample _ Sample| °
1 2 LA ID(6) | CO- vCco cl RAES €2 Ve2-
~6
~ __ e
\\ -_—
~— —
~— — —
2 Bytes 2 Bytes =~ -
[asatnsn WY cosetioun v sl
Line |Roll |Data from / béta/frpmgf/ Data from
Num- |Par- iChannel 1 for ,//Channel/z //// ¢ 0. Channel ID(5)
ber amet- |[Line 2 or/Lin for Line 2
2 er /55'/45/9342 /;
-~ _ ’_,/—’
— —
\\ ”’
,;;”“"-800 Bytes - - ID(5)*ID(6)+4 bytes
7
ID Record I Data RecordI';Daté/ﬁ;co/é Data Record
for R for R/ for/, for
Run Y G | Line 1 G,C}ine/Z 7 Line ID(20)
.y =
~ . —
\\ . -
ID(20)+1 Records__ — 800 Bytes
A~ ~ - T (P
Beginning | File 1 171 @m 2/// 1T File NI [| IlFile I [T|I (T
of containing |R|M R |“containing RiMl ¢ o o Contain [R M| R N+l |R|{M|R|M
Tape Run X G G :?Run‘z//// G ing |G G| (End ofG G
g Run 2 Tape.
Record)

(IRG = Inter~Record Gap)
(TM = Tape Mark)

Figure 5.1 Multispectral Image Storage Tape Format

vS-¢

ID record (200 fullwords, fixed length)

Word

1
2

7-10

11
12
13
14
15
16
17-19

Format

I*4
I*4

I*4

I*4

I*4

I*4

Alpha

I*4
I*4
I*4
Alpha
I*4
I*4

Alpha

Description

LARS Tape Number (e.g., 102, etc.)
Number of the file on this tape

Run number (8 digits aabbbbcc)

aa - last 2 digits of the year

bbbb - serial number for the year
data was taken

cc - uniqueness digits for runs
which would otherwise have
the same number

Continuation Code
A value of 0 means the first
line of data follows this ID
record. A value of X means
that the data following this
ID record is a continuation of
a flightline started on tape X.

Number of Data Channels (Spectral
Bands) on tape (30 maximum)

Number of Data Samples per channel
per line

Flightline Identification (16
characters)

Month Data was Taken

Day Data was Taken

Year Data was Taken

Time Data was Taken
Altitude of Aircraft
Ground Heading of Aircraft

Date Data Run was Generated on this
Tape (12 characters)

20 | I*4 Number of Lines in this Run
21-50 I*4 All zero (to be defined later)
51 . R*4 Lower Limit in Micrometers of the

first Spectral Band on Tape

52 R*4 Upper Limit in Micrometers of the
first Spectral Band on Tape

53 1 R*4 The suggested Value of "CO"
: calibration pulse for the first
spectral band. -

54 : R*4 The suggested value of "Cl"
calibration pulse for the first
spectral band

55 R*4 The suggested Value of "C2"
calibration pulse for the first
spectral band

56-200 R*4 Repeat of words 51-55 for the
number of channels shown in word
5, in order of appearance in
Data Records.

NOTE: words 51-200

= 0.0 if Data Channels do
not exist

Data Record

Each data record will contain one scan line of data from
ID(5) (see ID Record) channels. The first halfword (2
bytes) of the record will be the line number. The second
halfwofd (2 bytes) will be the roll parameter which is a
number indicating relative position of the roll of the
aircraft for this line of data. If the roll parameter is

-32,767, the data for the given line does not exist. 1If

the roll parameter has not been calculated, it will be set
to 32,767. The fifth byte will be the first sample from
the first channel. The sixth byte will be the second
sample from the first channel, and so on through ID(6)
samples and ID(5) channels. A data record will be ID(5)*

ID(6)+4 bytes long.

The data from each channel will be from the field of view
of the scanner except the last six bytes. The last six are

calibration data in the order of appearance.

1. bo "0" or dark level

2. VCo Variance of Co

3. Cl Calibration source ¢y
4. Vcl Variance of Cqy

5. Cz Calibration source c,
6. VCZ Variance of C2

where Ci3= Calibration value i and VCi = calculated variance

of calibration value i

During the reformatting process a record may be bad due to
tape or other errors. When this happens, the data roll
parameter and calibration points will all be set to zero.

On good data records all data and calibration values will

be in the range of 0 to 255 (bit form) with no sign included

in the eight bits. A data value of 0 to 255 means that the

data point was cut off during the digitization process.
Data values then range between 0 and 255 with 0 indicating

low relative irradiance and 255 indicating high relative

irradiance.

End-of-Tape Record

The End~of-Tape Record is very similar to the ID Record

with 200 fullwords in the following format:

Word Format Description

1 I*4 LARS tape number

2 I*4 File number on this tape
3 I*4 Set equal to 0

4 I*4 Continuation Code

A value of 0 means the end of
data. A value of X means the
data in the previous file is
continued on tape X.

5-50 I*4 All zero (may be defined later)

51-200 R*4 0.0 (may be defined later)

TRANSFERDATA OUTPUT FILE(DSRN13)

The Transfer@ata function converts Multispectral Image Storage
Tape data to a more easily read FORTRAN format in order to
simplify the use of this data in other than the ILARSFRIS pro-
grams. It can both punch the data into cards and write it

on a magnetic tape. In either case, however, the record

format is identical. The records are formatted in "card image",
i.e., in 80 byte records. The three types of records for each

module of data are described below.

Field Idgntification Record
One of these records is produced as the first record for
each module of data that is copied. The record identifies

and describes the field.

Card Columns Format Description

1-8 I8 Run number from the Multispectral
Image Storage Tape

11-18 Alpha Name of the data module.

21-25 I5 Line number for the first line of
the module.

26-30 ! I5 Line number for the last line of
the module.

31-35 I5 Line interval for the module.

36-40 15 Sample number for the first sample

on each line.

41-45 15 Sample number for the last sample
on each line

46-50 15 Sample interval for the module

51-58 Alpha Class name of the class to which

the module has been assigned

59~-80 Blank

Calibration Records

There is one calibration record for each channel that was
requested. They immediately follow the Field Identifica-
tion Record. The information in columns 7 through 54 is
taken from the ID record on the Multispectral Image

Storage Tape.

Card Columns Format Description

1-3 I3 Channel number

4-6 I3 Calibration code used to calibrate
data

7-12 F6.2 Lower spectral band limit for this
channel

13-18 F6.2 Upper spectral band limit for this
channel

19-30 2PEl2,2 Calibration value for CO

31-42 2PE12.2 Calibration value for Cl

43-54 2PEl2.2 Calibration value for C2

55-72 Blank

73-76 14 Module number

77-80 I4 Card sequence number

Data Reéords
These récords contain the calibrated data values in integer
form. They follow the channel records. All the values
requested for a field are punched consecutively, 24 to a
record, in order by line, column, and channel in the
following manner:

L1C1K1,L101K2,...,LlclKn,LlCZKl,

ceor Llchn'L Clxl,lll, LkaKn

‘where L = line, C = column, K = channel, n = number of
channels requested, m = samples per line and k = number
of requested lines. Note that k.m is the number of samples

per channel in the module (columns 64-69 on first card).

Card Columns Format Description

1-72 I3 24 calibrated data values
73-76 I4 Module number

77-80 14 Card sequence number in modulé

after Field Identification
Record.

FIELD BOUNDARIES FILE (DSRN 19)

The Field Boundaries file is created and used by the Picture-
print function. It has a record format of VS (variable spanned) ,
a blocksize of 800 bytes, and is stored on the D-disk as file
FIELD BNDRIES. Pictureprint calls BONDSU to add records to

the file when the BOUNDARY STORE option is used. If BOUNDARY
DELETE is specified, the BONDSU calls the ERASE FORTRAN library
subroutine to erase the file. PICl reads the file if BOUNDARY
OUTLINE is specified. Before attempting to read they call

STATE to be certain that the file exists. There is one record
written onto the file for each field stored. Each record is 7
words in length (28 bytes). Note that when using variable
spanned format, FORTRAN places eight bytes of control information

in front of each record.

Each record has the form:

Word Format Description
1 I*4 Run number
2 I*4 First line number of field.
3 I*4 Last line number of field.

4 I*4 First sample number (column) in field.

5 I*4 Last sample number in field.

6 - I*4 Flag indicating whether the field
is a training or test field. A
value of 0 indicates a training
field and a value of 1 indicates a
test field.

7 I*4 A sequence number starting at 1
and incremented by 1 (thus it is

the record number).

The last record of the file contains 'EOF' in bytes 1-4 and
a sequence number in the seventh word. Words 2-6 are undefined

for this redord.

CLASSIFYPOINTS SCRATCH FILE (DSRN 20)

The Classify#oints Scratch File is used to store field descrip-
tion informaﬁion defining areas to be classified. The file is
written and read by the Classifypoints function. The file is
stored on disk as CLASSIFY SCRATCH. It is created by CLAINT

and is read by CLSFY2.

The record format is variable spanned (RECFM = VS) with a
block size of 800. This record format is described in detail
in IBM reference manual GC28-6817-2, S/360 Operating System,
Fortran IV(G&H), Programmers Guide, pp 69-70, "Unformatted
Control”. Each record has 8 bytes of control information
followed by 17 fullwords describing the field. There is one
record for each area to be classified. The layout of a record

is given below:

Word Format Description
1 I*4 Run number
2-3 Alpha Name of area taken from a fixed form

Field Description Card. (Col. 11-18)

4 I*4 First line number of field

5 I*4 Last Line number of field

6 I*x4 Line Interval

7 I*4 First column number of field

10-11

12-17

I*4
I*4

Alpha

Alpha

Last column number of field
Column interval

A class name taken from columns
51-58 of the fixed form Field
Description Card.

Other information (comments and
identification) taken from columns
59-80 of the fixed form field
description card. The last two
bytes of the record are always
blanks since columns 59-80 can

supply only 22 bytes.

5.3 LARSFRIS $YSTEM INFORMATION

System Documentation files are files that are created and/or
maintained bf the system programmer as part of the process of
updating theiLN%ERISsystem. They constitute "data" for the
operation of the IARSFRIS 'news', 'reference' and ‘'list' com-
mands. See the program documentation for these routines for
more informaﬁion on the use of these files. The files are
maintained oﬁ the LARSFRIS 19C system disk as CMS files having
various filenames and filetypes of NEWS, REFERENC or INDEX.
Each of them consists of 80 character card images (with the
exception of RUNTABLE REFERENC, which consists of 120

character lines).

NEWS Files

The first card in any NEWS file is required to have 'REVISED'
appearing in columns 2-8, followed by the revision date in the
format 'MM/DD/YY' in columns 10-17. The remainder of the first
card may be blank or may contain any other desired information.
This revision date is the one that appears in the file LARSFRIS

INDEX and is printed as a result of entering the 'list' command.

The remainder of any NEWS file content is arbitrary, and the

file may be of variable length.

REFERENC Files

The first card of any REFERENC file is required to have a 'l°
in column 1 and the remainder of the card must have the same
format as the first card of a NEWS file. In REFERENC files,
the first column of each card is a carriage control position
that does not appear on the printed output from the REFERENC
command. Columns 2-80 contain arbitrary information, and the

file may be of variable length.

The file ALL REFERENC is a suitably ordered concatenation of
all the other REFERENC files (excluding RUNTABLE). Its first
line has blanks in place of 'MM/DD/YY' in columns 10-17 and

has the legend 'LARSYS VERSION 3 REFERENCE FILES' appearing
centered on the remainder of the card. ALL REFERENC is created
by the system maintenance routine CREFALL as a standard part of

the LARSFRIS uypdate procedure.

The file RUNTABLE REFERENC is created as a standard part of the
LARSFRIS update procedure by the RTUPDT system maintenance routine.
Each of the lines containing a run number must have the run
number appear in columns 2-9 to enable the 'reference runtable

nnonnnnnn' command to work.

The File ILARSFRIS INDEX

The file IARSFRIS INDEX is automatically created by the system

maintenance routine CRINDEX as a standard part of the LARSFRIS

update procedure. Like the NEWS and REFERENC files, it carries
the 'REVISED MM/DD/YY' legend in columns 2-17 of the first line.
The lines in the file which carry information about the specific
NEWS and REFERENCE files must have the filename in columns 50-57,
the number of lines in the file in columns 61-64, and the revi-
sion date in columns 69-76. Other lines (headings, etc.) may

be arbitrarily interspersed.

PRIORITY NEW§

This file is used to advise the user of important news. It only
exists when there is news of importance to pass to the user.
When it does exist, it is resident on the N~disk and has 80-byte
card image records. When EXCOMD is entered, it will print the

file automatically.

5.4 OTHER LARSFRIS FILES

ACCT BATCH

This file contains one 80-byte record. It is created by BATRD
on the A-disk to store the userid, account number, and starting
time of the current job. BATEND reads the file when the job is

completed. The format of the record is:

Byte Contents
1-12 Starting time for the job in EBCDIC characters

ﬁsing the format MMDDYY.

13-16 Milliseconds of CPU time used by the batch
virtual machine at the time the current job was
started. Format is a fullword integer.

17-24 The userid.

25-32 The user's account number.

33-40 The time limit being used for this job. This is
in character format and is in seconds. The number

is right justified and passed with zeroes.

BATCH STOP

This file exists on the A-disk of the batch machiné. It has
80-byte card image records. All records contain the characters
'KILL'. The batch machine normally uses the FILEDEF command

to FILEDEF unit 15 (usually the keyboard) to BATCH STOP. This
means that any program attempting to read from the terminal

on the batch machine will read the characters 'KILL'. This

allows LARSFRIS to terminate the function rather than log out the

batch machine (which is disconnected). The file has 10 of
these records in case one function reads a record and then

another read is made without rewinding the file.

EOSTAT INIT

This file is‘on the M-disk. It contains one record containing
the characters 'EOS'; When EXCOMD is entered (and when
BPROFILE begins), just after the D-disk is cleared, this file
is copied onto the D-disk and into the file STATS DATA. Thus,
if IARSFRISattempts to read statistics from disk and no such
file has been created during the terminal session, IARSFRIS will

read 'EOS' and can give the user an appropriate error message.

SAVED HISTDECK

This file is on the user's A-disk. 1Its content and form are
identical to the file HISTO DATA (DSRN 2). It is created by

the HISTDECK SAVE command and read by the HISTDECK USE command.

SAVED STATDECK

This file is on the user's A-disk. 1It's content and form are
identical to the Statistics file (DSRN 1). It is created by
the STATDECK SAVE command and it is read by the STATDECK USE

command.

BATCH DATA

This file is a temporary file on the D-disk. The BATCH command
reads a data deck from the virtual reader into this file. The
fiie is then placed in the reader of the batch machine and

offline printed. The BATCH command finishes by erasing this
file.

APPENDIX I

LARSFRIS SYSTEM PROGRAM MODULES

Module Name

ARBASE
BATRD
BCDVAL
BIPCLA
BIPDIV
BIPELL
BIPLTR
BIPMEN
BIPRDR
BIPSUP
BISPLT
BLOAD
BONDSU
BPROFILE
BSTCHK
CCHIS
CGROUP
CHANEL
CHANGE
CHASUP
CHTAPE
CLACOM
CLAINT
CLARDR
CLASS
CLASUP
CLSCHK
CLSDEC
CLSFY1
CLSFY2
CLSHIS
CLSSPC
CLUCOM
CLUMP
CLUMP1
CLUPRO
CLURDR
CLUSUP
CMGRAY
CMSFNC
COMCOM
COMPAR
COMRDR
COMSUP
CONTEX
COPY

LARS Program

Abstract Number

301
055
001
404
406
403
402
405
401
400
335
100
122
056
302
181
179
002
384
271
385
151
152
153
154
150
123
142
155
156
321
322
171
173
174
175
172
170
218
035
381
383
382
380
157
261

Module Name

COSPEC
COVIN
CPFUNC
CTLWRD
DECCLS
DISPLY
DISPY1
DISPY?2
DIVERG
DIVPRT
DIVRG1l
DIVRG2
ERMNAM
ERPRNT
ERRINT
EXCOMD
FILBUF
FIXFLD
FLDBN
FLDBOR
FLDCOV
GADLIN
GADRUN
GATHER
GBIPSUP
GCLASUP
GCLUSUP
GCOL
GCOMSUP
GENALL

GENALLDV

GETDAT
GETINV
GETSHW
GGRHSUP
GHISSUP
GLARSMN
GLIN
GLOCOM
GMERSUP
GPICSUP
GPRISUP
GRESSUP
GRATSUP
GRHIST
GRHRDR

I-1

LARS Program
Abstract Number

334
158
003
004
124
241
242
243
303
304
305
306
101
102
103
057
366
176
244
231
323
005
006
371
083
071
072
191
084
054
089
307
308
309
073
074
069
192
104
085
076
077
078
086
125
193

LARS Program LARS Program
Module Name Abstract Number Module Name Abstract Number
GRHSUP 190 PICRDR 233
GRPSCN 126 PICSUP 230
GRUNSUP - 079 PICl 234
GSAMSUP 080 POLMER 340
GSECSUP 087 POLSET 341
GSEPSUP 081 PRACRE 252
GSMOSUP 088 PRICOM 246
GSTASUP 082 PRIINT 247
GTDATE 007 PRIRDR 248
GTSERL 159 PRISUP 240
HEADER 127 PROCES 106
HISRDR 201 PRTHED 249
HISSUP 200 PRTPCT 250
HISTD 128 RATCOM 391
IBCD 025 RATIO 394
IDNAME 008 RATRDR 392
INVPNT 180 RATSUP 390
LAREAD 129 RATTAP 393
LARSMN 105 RDFLDS 131
LARS12 009 READMX 354
LEARN 324 REDFLD 337
LINRDR 194 REDSAV 133
LIST 058 REDSTA 134
LLARSMN 070 REFERENC 061
LOGICOPS 014 RESCOM 262
LOGLIK 368 RESCOP 264
MCONTX 161 RESRDR 263
MDIST 177 RESSUP 260
MERCOM 331 RTBSUP 107
MERINT 332 RTMAIN 028
MERRDR 333 RUNCOM 272
MERSTT 338 RUNERR 120
MERSUP 330 RUNLS 062
ME XPAN 339 RUNSUP 270
MMTAPE 130 SAMCLS 367
MOUNT 010 SAMCOM 281
MOVBYT 015 SAMINT 282
NEWS 059 SAMINV 283
PACCT 029 SAMRDR 284
PBID 060 SAMSUP 280
PCHFLD 178 SECCOM 361
PCHSTA 325 SECHO1 370
PCTTAL 245 SECINT 363
PICCOM 232 SECPRT 365

PICINT 235 SECRD 364

Module Name

SECRDR
SECSUP
SEPCOM
SEPINT
SEPRDR
SEPSUP
SMCLS1
SMCLS2
SMMULT
SMOCOM
SMOINT
SMOOTH
SMORDR
SMOSUP
SMOTAB
SPACE
STACOM
STAINT
STARDR
STASUP
STAT
STATE
STATRD
STATS
STATS2
SUBGEN
SYMSET
TAPOP
TERMTEST
THRESC
TIMER
TRARDR
TRAXEQ
TSPACE
TSTREQ
TYPEITEM
UNIDAT
UNMNT
URADST
USER
WRTMTX
WRTTRN

LARS Program
Abstract Number

362
360
310
311
312
300
285
286
287
351
352
355
353
350
356
063
326
327
328
320
135
032
336
251
369
275
313
011
068
160
016
273
274
136
012
064
108
121
013
314
017
137

