LARSFRIS

PROGRAM ABSTRACTS

/L7570

—

I-1

-~

LARS Program LARS Program
Module Name Abstract Number Module Name Abstract Number
ARBASE 301 - 974 COSPEC 334 - 577
BATRD 055~ /98 COVIN 158~ 276
BCDVAL oo1 - 35~ CPFUNC 003 /2
BIPCLA 404 “49% CTLWRD 004— 45
BIPDIV 406 ~ 551 DECCLS 124 — 494
BIPELL 403 ¢ DISPLY 241 ~ 374
BIPLTR 402 - 690 DISPY1 242 ~ 783
BIPMEN 405 7 69739 DISPY2 243 ~ 396
BIPRDR 401 - 675 DIVERG 303-977
BIPSUP 400~ 4 DIVPRT 304 - 492
BISPLT 335-577 DIVRGL 305 - Y74
BLOAD 100 ~/72 DIVRG2 306 - 475
BONDSU 122 ~ 124 ERMNAM 101~
BPROFILE 056~/ ERPRNT 102-/7%
BSTCHK 302~ 476 ERRINT 103 - /786
CCHIS 181 — 314 EXCOMD 057~ /ng
CGROUP 179 =317 FILBUF 366 <52
CHANEL 002 ~4 FIXFLD | 176 - 346
CHANGE 384 ~ 659 FLDBN 244 = 3
CHASUP 271 ~435 FLDBOR 231 ~ J5L
~TSHTAPE 385 - 66/ FLDCOV 323~ 7%
_LACOM 1517257 GADLIN 005 -Z4
CLAINT 152 -A5% GADRUN 006 ~4
CLARDR 153-459 GATHER 371 — 695
CLASS 154 - 262 GBIPSUP 083- /63
CLASUP 150 -257 GCLASUP 071~-/5%
CLSCHK 123~ {%7 GCLUSUP 072-152
CLSDEC 142298 GCOL 191 - 328
CLSFY1 155 <765 GCOMSUP 084-/69
CLSFY2 156 ~Z68 GENALL 054 /26
CLSHIS 321 =545 GENALLDV 089~ /62
CLSSPC 322~549 GETDAT 307- 479
CLUCOM 171 -487 GETINV 308~ 54!
CLUMP 173 ~29Y GETSHW 309 - 594
CLUMP1 174-2%8 GGRHSUP 073-%
CLUPRO 175 ~J4¢ GHISSUP 074~ /%7
CLURDR 172~ 492 GLARSMN 069~
CLUSUP 170 - 456 GLIN 192 ~372
CMGRAY 218 GLOCOM 104192
CMSFNC 035-/03 GMERSUP 08s ~ /6
COMCOM 381~ 650 GPICSUP 076 = /7%
COMPAR 383+ 655 GPRISUP 077 ~757
COMRDR 382 - b5/ GRESSUP ' 078~ /58
COMSUP 380~ 678 GRATSUP 086 - /éé{
CONTEX 157-277 GRHIST 125 - 22
_~COPY 261~920 GRHRDR 193 ~33¢6

—~

BIRCEM Yo7 = b§5

Module Name

GRHSUP
GRPSCN
GRUNSUP
GSAMSUP
GSECSUP
GSEPSUP
GSMOSUP
GSTASUP
GTDATE
GTSERL
HEADER
HISRDR
HISSUP
HISTD
IBCD
IDNAME
INVEPNT
LAREAD
LARSMN
LARS12
“TLEARN
LINRDR
LIST
LLARSMN
LOGICOPS
LOGLIK
MCONTX
MDIST
MERCOM
MERINT
MERRDR
MERSTT
MERSUP
MEXPAN
MMTAPE
MOUNT
MOVBYT
NEWS
PACCT
PBID
PCHFLD
PCHSTA
PCTTAL
PICCOM
PICINT

LARS Program
Abstract Number

190 ~21%
126~447

079757

/60
0%l
os1 - /¢’
088~ /67
082 -/84
007 -.37
159 -277
127~ A3
201 ~.3%6
200 ~377
128-4/
025~ 74
008~ J&
180 - 3490
129-224
105~ /8/

Module Name

LARS Program
Abstract Number

PICRDR
PICSUP
PICl
POLMER
POLSET
PRACRE
PRICOM
PRIINT
PRIRDR
PRISUP
PROCES
PRTHED
PRTPCT
RATCOM
RATIO
RATRDR
RATSUP
RATTAP
RDFLDS
READMX
REDFLD
REDSAV
REDSTA
REFERENC
RESCOM
RESCOP
RESRDR
RESSUP
RTBSUP
RTMAIN
RUNCOM
RUNERR
RUNLS
RUNSUP
SAMCLS
SAMCOM
SAMINT
SAMINV
SAMRDR
SAMSUP
SECCOM
SECHO1l
SECINT
SECPRT
SECRD

233 - 7
230 ~35¢
234 ~347
340 ~ 597
ulﬂwq
252 -

216~ 375 09
247-§Zf g
248 -
240 ~ 367
105-1/57
249 — 405

LARS Program

Module Name Abstract Number
SECRDR 362«~54?
SECSUP 360 - 69
SEPCOM ' 310 ~ 557
SEPINT 311 - 50%
SEPRDR 312 - §¢/
SEPSUP 300~ 97¢
SMCLS1 285~ 96!
SMCLS2 286~ 469
SMMULT 287~ 467
SMOCOM 351 ~ 575
SMOINT 352 - 5%
SMOOTH 355 - 405,
SMORDR 353 = 592
SMOSUP _ 350 - 573
SMOTAB 356 ~ 603
SPACE 063~/%1
STACOM 326 -~ 554
STAINT 327—@%?
STARDR 328 -
STASUP 320 ~ 547
STAT 135~ 7/
STATE 032 ~/o/
STATRD 336~52ﬁ3
STATS ’ 251 -
STATS2 369 ~ 637
SUBGEN 275~ 4%
SYMSET 313 -945
TAPOP 011~45
TERMTEST 068~/%9
THRESC 160 = X80
TIMER 016-77
TRARDR 273437
TRAXEQ 274 » 443
TSPACE 136 - 147
TSTREQ 012x75
TYPEITEM 064~ ¥
UNIDAT ' 108~/97
UNMNT 121 ~ /¢
URADST : 013-77
USER 314 -~ ﬁ}g
WRTMTX 017~87

WRTTRN 137 -3¢

BCDVAL

LARS Program Abstract 001

MODULE IDENTIFICATION

Module Name: BCDVAL Function Name: SYSTEM SUPPORT

Purpose: Interprets and stores BCD and fullword numeric values.
System/Language: CMS/FORTRAN

Authors: E.M. Rodd ' Date: 10/11/72
Latest Revisor: Date:

MODULE ABSTRACT

BCDVAL will move a string of characters, separated by commas into
a vector,

IVAL converts numeric characters to integer representations and
stores the values. There may be a set of integers separated by
commas.

FVAL is like IVAL except that it works with floating point numbers.

PURDUE UNIVERSITY
Laboratory for Applications of Remote Sensing
1220 Potter Drive
West Lafayette, Indiana 47906

Copyright © 1973
Purdue Research Foundation

5

BCDVAL-2

1. Module Usage

BCDVAL
CALL BCDVAL (CARD,COL,VEC,VECSZ,*)

Input Arguments:

CARD - L*1, Card image of card being interpreted

COL - I*4, Column number preceding column contain-
ing next useable information (i.e., start
interpretation at column COL)

VECSZ - I*4, Number of values to be found, inter-
preted and stored.

Output Arguments:

VEC - I*4, VEC (I) will be returned with the I'th
character found. Note that if the card con-
tains more than one character between commas,
the first of those characters will be in
VEC (I).

VECSZ - I*4, If values less than VECSZ (as input) are
found, VECSZ will be returned with the number
of values found.

Non-Standard Return will be taken if:

a. Right parenthesis is missing

b. Right parenthesis found and no left parenthesis
was used

c. More than VECSZ values found

d. Syntax errors detected in attempt to compute COL,
which include:

1. Two commas found before next non-blank

2. Left parenthesis found before another non-
blank

3. Sequence blank followed by non-blank with
no comma

BCDVAL-3

COL I*4 is returned as the column number preceding the next
control parameter.

BCDVAL is used to get a set of single characters separated
by commas, and put them into VEC, one character per element
of VEC. The set of characters may be enclosed in paren-
thesis.
If no characters are found (i.e., COL comes in as 72, the
first character encountered is a comma or the rest of the
card is blank), VECSZ is returned as zero.
IVAL

CALL IVAL (CARD,COL,VEC,VECSZ,*)

Input Arguments:

CARD - Same as those for BCDVAL
-"COL - Same
VECSZ - Same (except integer values, not characters)

Output Arguments:

VEC - I*4,'VEC(I) will contain as an integer the I'th
integer found on the card

VECSZ - Same
COL - Same

Non-Standard Return will be taken if:

a. Same as those for BCDVAL

b. No values are found

c. A non-numeric character is found (other than the
comma used to separate values or the asterisk

used to indicate repetition)

IVAL is used to interpret a set of integer values separated
by commas and which may be in parenthesis.

BCDVAL-4

FVAL

CALL FVAL (CARD,COL,VEC,VECSZ,*)
Arguments are the same as for IVAL. The difference is that
FVAL places the results in VEC in floating point representa-
tion and can interpret numbers containing decimal points,

Note that in all three entries the form "n*value” can be
used to indicate n repetitions of the value.

Internal Description

This subroutine uses FORTRAN character manipulation consist-
ing of moving single characters from a LOGICAL*1 array (CARD)
to a fullword by equivalencing a LOGICAL*1 variable to the
first byte of the fullword. Comparisons can then be per=-

formed using the fullword variable. The internals make use
of machine representations of numbers and characters. The
program uses the same code for all entries with branches.

Program is mostly a loop:
a. Loops over the columns
b. When a comma is found, the value is placed in VEC

c. When right parenthesis is detected or the end of the
card is reached, the program returns.

d. The loop is run through until a value is found. Then
COL is updated, and the loop is reentered starting at
COL to find the next value.

3. Input Description
Not Applicable

4. Output Description
Not Applicable

5. Supplemental Information
Not Applicable

6. Flowchart '

Not Applicable

v

CHANEL

LARS Program Abstract 002

MODULE IDENTIFICATION

Module Name: CHANEL Function Name: SYSTEM SUPPORT
Purpose: Interprets channel card

System/Language: CMS/FORTRAN

Author: T. Ransom Date:

Latest Revisor: E. M. Rodd Date: 12/12/72

MODULE ABSTRACT

CHANEL interprets the channel card and returns all information con-
tained on the card in a form usable by functional programs.

PURDUE UNIVERSITY
Laboratory for Applications of Remote Sensing
1220 Potter Drive
West Lafayette, Indiana 47906

Copyright © 1973
Purdue Research Foundation

/b

CHANEL-2

1. Module Usage

CHANEL
CALL CHANEL (CARD,COL,NCR,CSEL,CSET,CHAN,*)

Input Arguments:

CARD - I*4, 18 fullword buffer containing card image
of CHANNELS card to be interpreted.

COL - I*4, The column number in CARD preceding the
beginning of channels information on the
CHANNELS card.

CSEL -~ I*2, CSEL(I) = calibration code for channel I
if channel I has been selected (by a previous
call to CHANEL). Otherwise CSEL(I) = 0. This
means that for the first call to CHANEL,
CSEL(I) = 0 for all I.

R*4, 90 fullword vector containing calibration
values for channels selected. CSET(3*I-2) = CO
for channel I, CSET(3*I~1) = Cl for channel I

and CSET(3*I) = C2 for channel I. Values for

all channels not yet selected or for values

not explicitly specified on a previous CHANNELS
card are =-50000.0. This means that for the
first call to CHANEL, CSET(I) =-50000.0 for all I.

CSET

CHAN -~ I*2, CHAN(I) = channel number of the I'th
channel selected by previous CHANNEL cards.
This means that for the first call to CHANEL,
CHAN(I) = 0 for all I.

Output Arguments:

COL - I*4, For a normal return, the number of the
last column processed. For a non-standard
return, the last column number processed before
the error was detected.

NCR - I*4, For a normal return, the number of entries
, in CHAN (i.e., the total number of channels
selected thus far). For a non-standard return,
a column number known to be after the column
containing the error.

CHANEL-3

CSEL - Same definition as for input except that
it is updated by the CHANNEL card being
interpreted.

CSET - Same definition as for input except that it
is updated by the CHANNEL card being inter-
preted.

CHAN - Same definition as for input except that it is
updated by the CHANNEL card being interpreted.

Non-Standard Return:

RETURN 1 is executed when an error is detected on the
CHANNELS card. Errors detected are for syntax, invalid
calibration codes and invalid channel number. Channel
number must be between 1 and 30 and calibration code
must be between 1 and 7.

CHANEL is called to interpret the CHANNELS card. Successive
calls can be made to CHANEL for successive CHANNELS cards

and CHANEL will add information from each card to the arrays.
This means that the arrays CSEL, CSET and CHAN must be
initialized before the first call. Invalid data in these
arrays can cause unpredictable @nd difficult to locate) errors.

CHANEL interprets the entire card. It contains an internal
subroutine beginning at statement 200 which processes the
next item and then returns to the part of the program which

The CHANNEL card is described in the control card dictionary

2. Internal Description
called it.
3. Input Description
Not Applicable
4. Output Description
Not Applicable
5. Supplemental Information
for each function which uses it.
6. Flowchart

Not Applicable

/l

/2

CPFUNC

LARS Program Abstract 003

MODULE IDENTIFICATION

Module Name: CPFUNC Function Name: SYSTEM SUPPORT
Purpose: Executes CP console functions
System/Language: CMS /ASSEMBLER

" Author: E. M. Rodd Date: 08/01/72
Latest Revisor: Date:

MODULE ABSTRACT

This program allows FORTRAN programs to execute CP console functions.
If an error occurs, an error code is passed to the caller.

PURDUE UNIVERSITY
Laboratory for Applications of Remote Sensing
1220 Potter Drive
West Lafayette, Indiana 47906

Copyright © 1973
Purdue Research Foundation

CPFUNC-2

CALL CPFUNC (NCHAR, TEXT, ERROR)

I*4 The number of characters in the CP
console function to be executed.

This is a literal containing the text of

the CP console function. It may be input

in two ways: one is as a literal in the
call (e.g. 'DETACH 181') and the other
is that TEXT may be an array containing
the text in characters.

I*4 The error code returned from CP.

If NCHAR is greater than 99, ERROR will
be returned = 100+ the error code from
CP and only the first 99 characters of
the console function will be sent to CP.

Note that if NCHAR does not match the

number of characters in TEXT, strange
results could occur.

1. Module Usage
CPFUNC
Input Arguments:
NCHAR -
TEXT -
Output Arguments:
ERROR -
2. Internal Description

CPFUNC first executes the CMS CONWAIT function to clear all
the buffered output to the terminal. This is done so that
a response from CP will appear in the correct place on the
terminal output. Then NCHAR is checked. If it is greater
than 99, it is set to 99 and R2 initialized to 100 rather .
than 0. NCHAR itself is not changed, only the register
used internally is changed. Then that number of characters

is moved from TEXT to the buffer of the CMS CPFUNCTN function.

The X'FF' fence is then added after the last character.

Then CPFUNCTN is executed via SVC 202 and R15 is added to R2

to form the final error code. This value is placed in ERROR

and CPFUNC returns.,

15

3. Input Description
Not Applicable

4. Output Description
Not Applicable

5. Supplemental Information
Not Applicable

6. Flowchart

Not Applicable

CPFUNC-3 /y

CTLWRD

LARS Program Abstract 004

MODULE IDENTIFICATION

Module Name: CTLWRD Function Name: SYSTEM SUPPORT

Purpose: READS and interprets control cards

System/Language: CMS /FORTRAN

Author: P. Spencer Date:

Latest Revisor: E. M. Rodd Date: 08/02/72

MODULE ABSTRACT

CTLWRD and its entry points are used to read and interpret control
and data cards. CTLWRD is the only entry point which reads cards.
It also interprets keywords on control cards. CTLPRM interprets
control parameters. DATCRD interprets keywords. BCDFIL moves

a character string from a control or data card to an array. LOCATE
locates a certain character CTLWRD recovers from errors wherever
possible.

PURDUE UNIVERSITY
Laboratory for Applications of Remote Sensing
1220 Potter Drive
West Lafayette, Indiana 47906

Copyright © 1973
Purdue Research Foundation

(7

CTLWRD-2

1. Module Usage

CTLWRD
CALL CTLWRD (CARD,COL,LIST,LISTSZ,CODE,READIN,ERRCOR)

Input Arguments:

LIST - L*1, Vector of character strings containing
keywords being searched (LIST is a list of
4 character strings.)

LISTSZ - I*4, Number of elements in LIST.

READIN - I*4, Unit number from which control cards
are being read.

ERRCOR - I*4, = 0 if the control card is to be read

from unit READIN

= 1 if CTLWRD has'been called to read
a corrected card from the terminal

= 3 if CTLWRD has been called to read
an additional control card from
the terminal (that is, a card to
supply required information missing
from the supplied control cards).
ERRCOR=3 differs from ERRCOR=1 only
in the value of ERRCOR returned and
in error handling.

Output Arguments:

CARD - L*1, Vector containing the card read in
EBCDIC (Card should be demensioned CARD(80))

COL ~ I*4, Column number of the column before the
control parameter. If no control parameter,
COL = 72

CODE - I*4, Character string number in LIST which
matched the keyword

I*4, = 0 if the keyword was found and

ERRCOR
' ERRCOR # 3 on input,

!
N

if EOF was read on the normal input
unit (READIN).

if ERRCOR came in = 3.

i
w

= 4 if 'KILL' is read.

Revised October 1980

/6

CTLWRD-3

CTLWRD will read a card from the unit (READIN or TYPEWR) and
determine the keyword by matching it to an element of LIST.
It does its own error recovery (see Internal Description).

CTLPRM
CALL CTLPRM (CARD,COL,LIST,LISTSZ,CODE,*)

Input Arguments:

CARD - L*1, Card image.

COL - I*4, Column number before first character of
control parameter.

LIST - Same as in CTLWRD (except LIST has control
parameters).
LISTSZ - Same as in CTLWRD.

Output Arguments:

COL - I*4, Column number before the next non-blank
after a comma, or the column number of a
left parenthesis.

CODE - I*4, Same as in CTLWRD.,

A non-standard return is made for unrecognized control
parameter or syntax error.

CTLPRM determines the identity of a control parameter.

DATCRD

CALL DATCRD (CARD,COL,LIST,LISTSZ,CODE,*)

Input Arguments:

CARD - Same as in CTLPRM.

COL - I*4, Must be input as 0.

LIST Same as in CTLWRD,

LISTSZ Same as in CTLWRD,

/7

/8

CTLWRD-4

Output Argumentsg:

COL - Same as in CTLPRM.
CODE ~ Same as in CTLWRD.

A non-standard return is taken for unrecognized keyword
or syntax errors.

DATCRD determines the identity of the keyword on a data card.

DATCRD DIFFERS from CTLWRD and CTLPRM in error detection and
recovery (see internals).

BCDFIL
CALL BCDFIL (CARD,COLST,COLEN,VEC,VECSZ)

Input Arguments:

CARD - Same as CTLPRM.

COLST - I*4, Column number in which character string
starts.

COLEN - I*4, Column number where character string ends.

VECSZ - I*4, Number of bytes of VEC to be filled.

Output Arguments:

VEC - L*1, Filled with the characters between COLST
and COLEN from CARD. If VECSZ is greater than
the number of characters from COLST to COLEN,
VEC is padded with blanks to fill VECSZ
characters.

BCDFIL is used to move a character string from an input card
to an array. No possible error conditions.

LOCATE
CALL LOCATE (CARD,COL,CHLIST,LISTSZ,CODE,*)

Input Argquments:

CARD -~ Same as in CTLPRM.

/04775/ / 74 /4 /y/j//'ﬂi CTLWRD-6

1. CTLWRD and DATCRD if a comma immediately follows
the keyword with no intervening blanks.

2. In CTLPRM if two commas are detected with no inter-

vening non-blanks.

3. In CTLPRM if a left parenthesis is detected after
a comma with no intervening non-blanks.

4. 'In CTLPRM if a non-blank is found separated from
the control parameter by blanks only and not a
comma nor left parenthesis.

Below is the action taken when an unrecognized keyword or
syntax error is detected.

CTLWRD - The card is typed and an error message is written
via ERPRNT. The terminal is unlocked to type in the cor-
rected control card. At this time, if the response is a
Carriage Return, and ERRCOR # 3 the card is ignored and the
next control card is read from unit READIN. If ERRCOR = 3
and the response is Carriage Return, error 536 is written
via ERPRNT and the terminal is unlocked to accept the card.

CTLPRM - The card is typed and an error message is written
via ERPRNT and a RETURN 1 is executed.

DATCRD ~ If the keyword is unrecognized, a RETURN 1 is exe-
cuted. If a syntax error is detected, a message is written
via ERPRNT and then RETURN 1 is executed.

Input Description

Only CTLWRD reads cards from the card reader or typewriter.

Output Description

1. CTLWRD prints the card image read in
2. CTLWRD and CTLPRM type an erroneous card
3. Messages (via ERPRNT) =

102 -~ Unrecognized keyword

103 - Unrecognized control parameter

104 - Syntax error

536 - Additional card must be supplied! Type
correct card.

5. Supplemental Information
Not Applicable
6. Flowchart

Not Applicable

CTLWRD~-7?7

Al

GADLIN

005 22

LARS Program Abstract

MODULE IDENTIFICATION

Module Name: GADLIN Function Name: SYSTEM SUPPORT

Obtains a data line from a Multispectral Image Storage Tape

Purpose:

System/Language: CMS/FORTRAN

Author: T.L. Phillips Date: 01/30/70
Latest Revisor: J-S. Buis pate: 07/10/79

MODULE ABSTRACT

GADLIN reads a line of data from a Multispectral Image Storage Tape
and calibrates the data. Errors are reflected to the caller via
error codes. Entry RLCP retrieves the calibration parameters used
by the last call to GADLIN.

GADLIN determines whether the MIST tape is in Universal or LARSYS
format through common block UNIDAT and reads a line of data accordingly.

PURDUE UNIVERSITY .
Laboratory for Applications of Remote Sensing
1220 Potter Drive

West Lafayette, Indiana 47906

23

GADLIN-2

1. Module Usage

GADLIN

CALL GADLIN (BLOCK,CSEL,CSET,ID,DATUNT,NCD,NSD,BDATA,
RDATA, ROLL, ERROR)

Input Arguments:

BLOCK - I*2 Each call to GADLIN returns data
from one line of data. BLOCK(1l) defines
the desired line of data. BLOCK(2) defines
the first sample of data desired. BLOCK(3)
defines the last sample of data desired.
BLOCK (4) defines the sample interval.

CSEL - I*2 Multispectral Image Storage Tape can
contain any number of channels up to 30.
A particular run contains ID(5) channels.
If data is not desired from Nth channel,
CSEL(N) should be set to 0. Otherwise
CSEL(N) contains the calibration code.
The valid codes are defined below.

CSEL(N) Data From Channel N Calibrated on

1 co

2 Cl

3 c2

4 C0 and C1

5 CO0 and C2

6 Cl and C2

7 No Calibration

CSET - R*4 Calibration information from N channels
of data. The calibration information for
channel i must be stored for CO0 in CSET(1l,i),
for Cl1 in CSET(2,1i), and for C2 in CSET(3,1i).
The use of these variables is discussed in
the output section. CSET should be the
information taken from the 10th record of
the tape unless the values were explicitly
computed by the caller.

ID

DATUNT

NCD

NSD

BDATA

GADLIN-3

I*4 This is the ID record from the
Multispectral Image Storage Tape. It
is 200 fullwords. For the definition
of the ID array, see the data set des-
cription of the Multispectral Image
Storage Tape in the System Manual.

I*4 The unit must be defined as a
FORTRAN unit and the same as was used
in GADRUN.

I*4 NCD is the number of channels
dimensioned in RDATA and must be
greater than or equal to the number
of selected channels.

I*4 NSD is the number of samples dimen-
sioned in RDATA and must be greater than
or equal to [BLOCK(3) - BLOCK(2)]/

BLOCK(4) + 1 + 6 for calibration values.

BDATA is an array used by GADLIN as a
buffer to read the bytes of Data from
each requested channel on the tape.
BDATA must be dimensioned for NCR*ID(6)
bytes: where NCR is the number of
channels requested. (i.e., number of
non-zero entries in CSEL)

Output Arguments:

RDATA

- R*4 RDATA must be dimensioned at least

(NSD*NCD) in the calling program. The
RDATA array is used as an output to the
calling program for the samples of data
requested. The calibrated or uncalibrated
data samples requested are stored in
consecutive real fullword locations for
the channels requested. The calibration
parameters are stored in the last six

real fullwords (NSD-5 to NSD) for each
channel requested.

All data is calibrated according to the calibration
code by the equation:

RDATA(I,J) = A*RAW(I,J) + B

2%

Vhere:

RDATA (I, J)

GADLIN-4

the calibrated value for the I'th

sample requested for the J'th channel
requested. Used this way, think of
RDATA as a two-dimensional array
dimensioned (NSD,NCD).

RAW(I,J)

the raw (uncalibrated) data point

for the I'th sample requested for

the J'th channel.

This raw value

has been converted from the byte
integer format of the data tape to
floating point fullword format.

A and B are calculated according to the following
algorithm depending upon the calibra=-
tion code. A and B are calculated

for each channel.

The following notation is used in the expressions

for A and B:

CO0 = CSET(1,N) where N is the channel number.
Cl = (2,N)
C2 = (3,N)
K0 = the value of CO taken from the tape
record for this line for this channel.
KO = (ID(6)-5)th byte of data for the
channel.
K1 = (ID(6)-3)th byte of data for this
channel.
K2 = (ID(6)-1)th byte of data for this
channel.
Calibration Code A B
1 1.0 C0-KO
2 1.0 Cl-K1l
3 1.0 C2-K2
4 _Eglgl_ KO0*Cl-X1*CO
KO0-K1 - K0O-K1
5 co-C2 KO*C2-K2*C0
K0-K2 K0-K2
6 Cl-C2 K1*C2-K2*Cl
K1-K2 K1-K2
7 1.0 0.0

5

—

ROLL

GADLIN-5

- I*4, The roll parameter on the tape. (See
the Multispectral Image Storage Tape docu-
mentation in the User's Manual.)

ERROR -~ I*4, ERROR returns are as follows:

ERROR

0
1

O 0 9 O

10
11

12

13

DESCRIPTION OF ERROR

No Error exists.

Data line requested does not exist
on tape.

Incorrect byte count in data record
requested. Two read retries were
made,

Parity check error occurred.

Hardware parity error occurred on
reading tape.

Some error combination of errors 2
and 3 or 4. Data delivered is
probably in error.

Tape Unit was not asSigned.

BLOCK(l) is less than or equal to 0.
BLOCK(2) is less than or equal to 0.
BLOCK(4) is less than or equal to 0.
BLOCK(2) is greater than BLOCK (3).

A channel flag is less than 0 or
greater than 10.

26

No channels were selected or selected

channel was not run.

The number of channels requested
is greater than the number of
channels dimensioned in RDATA.

GADLIN-6 3277

ERROR DESCRIPTION OF ERROR
14 The number of samples requested

15

16

17 .

(BLOCK (3) -BLOCK (2)) /BLOCK (1) +7)
is greater than the number of
samples dimensioned (NSD).

Data in requested line does not
exist (ROLL = 0).

Data cannot be calibrated as re-
quested.

If requested line cannot be lo-
cated on tape.

NOTE: All error conditions will return very
questionable data or no data at all except for
ERROR = 12 which returns only the ROLL parameter
and no data.

RLCP

CALL RLCP (I,A,B)

Input Arguments:

I - INTEGER*4, Channel number of the channel for which

calibration values are requested.

Output Argquments:

A - REAL*4, The value of A used in the last call to

GADLIN.
B - REAL*4, The value of B used in the last call to
GADLIN.
2. Internal Description
When the MIST tape is in LARSYS format, GADLIN uses TOPRV to
read the data tape, but when the tape is in Universal format
TOPRD is used. Only those channels requested are actually

transferred into main storage. Sub-routine URADST is used

to unpack the data (and calibration) values from the byte
integer format into fullword floating point format. GADLIN
assumes only that the tape is positioned somewhere in the
correct run. It reads the line at which the tape is positioned
and determines if that is the correct line, or if the tape
must be moved backward or foward.

Revised September 1974

GADLIN-7 %

The data tape is read via a call to TOPRV or TOPRD, depending
on if the tape is in LARSYS or Universal format. The tape
is positioned to the proper line by TOPFS to move the tape
foward, or by either TOPBS or the combination of TOPRF and

If the MIST tape is of Universal format, GADRUN has created a
LARSYS formatted ID record from the information in the Universal
header record. The format of the header record is documented
under LACIE Input Tape Header Record Format, Appendix D, in

the EOD LARSYS & Universal tape format documentation notebook.

3. Input Description
TOPFS to move the tape backward.
4. Output Description
Not applicable
5. Supplemental Information
6. Flowchart

Not applicable

i
{

GADRUN \Q ?

LARS Program Abstract 006

MODULE IDENTIFICATION

Module Name: GADRUN Function Name: SYSTEM SUPPORT

Purpose: Locates data runs in the runtable and mounts tape

System/Language: CMS /FORTRAN

Author: T. L. Phillips Date: 09/09/69

Latest Revisor: J.S. Buis Date: 07/10/79

MODULE ABSTRACT

GADRUN and entry GETRUN are used to find the tape containing a given
run number and then mount the tape and position it at the correct
file and validate that the correct run is present. Entry GETRUN
differs from GADRUN only in that it first searches a user table of
runs before the system RUNTABLE.

QTGKDRUN determines whether the tape is in Universal or LARSYS format,
- and shares this information with GADLIMN through common block UNIDAT.

PURDUE UNIVERSITY
Laboratory for Applications of Remote Sensing
1220 Potter Drive
West Lafayette, Indiana 47906

Copyright © 1973
Purdue Research Foundation

)

GADRUN-2 Cjk?

l. Module Usage

GADRUN
CALL GADRUN (RUNSEL,DATUNT,ID,ERROR)

Input Arguments:

RUNSEL - INTEGER*4, The run number of the run GADRUN
is to locate and mount.

DATUNT - INTEGER*4, The DSRN to be used for the desired
data tape.

ID - INTEGER*4, On input to GADRUN ID(l) should
contain the tape number of any Multispectral
Image Storage Tape currently mounted on DSRN
DATUNT. If no tape is currently mounted,
ID(1) = 0. If a tape is mounted, ID(2) = the
file number it is currently positioned in.

Output Arguments:

ID ~ INTEGER*4, The full 200 word ID reccrd from
the desired run. This array is described in
the description of the Multispectral Image
Storage Tape. '

ERROR - INTEGER*4, The error code. See section four
for a description of these errors.

GETRUN
CALL GETRUN (RUNSEL,DATUNT, ID,ERROR,RUNTAB,IMARK)

All arguments are the same except the follow-
ing two input arguments have been added.

RUNTAB - A user runtable dimensioned (10,3). It con-~
tains up to 10 entries and is of the form:

RUNTAB (i,l) - Run number
RUNTAB (i,2) - Tape number
RUNTAB (i,3) - File number

-
GaDpRUN-3 3/

IMARK - The number of entries in the array
RUNTAB.

GETRUN and GADRUN function the same except that
GETRUN first searches the user supplied runtable
before the system runtable.

GADRUN and GETRUN locate the run in the user or system
runtable. If the run is not found, an error code is
returned. They then determine if the correct tape is
mounted. If so, it is positioned correctly. If not,
subroutine MOUNT is called to mount the correct tape with
the ring out. The tape is then positioned. When a tape
is mounted, the ID record of the first file is read to
check the tape number, and if the tape number in this
record does not agree with the tape number requested,
CPFUNC is called to send the operator a message indi-
cating the wrong tape was mounted. The tape is then
unloaded via TOPRU and MOUNT is called again.

The system runtable is read to locate tapes corresponding
to the given run. This data set is described in the data
organization section of the System Manual.

The Multispectral Image Storage Tape is read to obtain

Tf the MIST tape is in Universal format, GADRUN will con-
struct a LAPSYS formatted ID record from the information in
the Universal header record. The format of the Universal
header record is documented under LACIE Input Tape Header
Record Format, Appendix D, in the EOD LARSYS and Universal
tape format documentation notebook.

2. Internal Description
3. Input Description

the ID record of the desired run.
4. Output Description

Both entries will produce the messages:

10035 SEARCHING FOR RUN nnnnnnnn
10036 DESIRED RUN FOUND nnnnnnnn

Depending on which format the tape is, GADRUN will produce
one of the following messages:

If data tape is in LARSYS format,
INMN Datz is in' LARSYS format.
If data tape is in Universal format,

INNNN Data is in universal- format.

i}
/

94

GADRUN-4

0 - No errors
1 - EOF was detected where ID record was expected.

2 - The correct ID record was read with a wrong
length indication.

3 - The expected ID record was read but with a
tape parity error.

4 - The expected ID record was read but with a
hardware parity error.

5 - The expected ID record was read but with a
parity error and wrong length count.

6 - The DSRN passed to GADRUN is invalid.
7 - The ID record was read from the expected
tape and file number but contains the

wrong run number.

8 - The requested run number was not found.

GADRUN uses the routine MOUNT to request the operator
to mount the tape. All positioning and mounting of the

If the data is in Universal format, the user must supply a

run number. If the data is in LACIE Universal format, the
user-supplied run number must consist of the acguisition
number, followed by three zeros, where the acquisition # is the

5. Supplemental Information

tape is done using TAPOP.

Julian date the data was collected.
6. TFlowchart

Not Applicable

27

LAY Progran Y-stract 007

NHDIL™ INVNITIFICATIONY
“iodule Mame: GTDATE Function Mare: _ SYSTEM SUPPORT

Purnose: Fetches date and time of davy

svstem/Language: CMS/ASSEMBLER

suthor: P. E. Anuta Date:__ 09/09/68

P. W. Spencer Nate:_ 02/26/75

Latest ™evisor:-

SODULE A3CTRACT

GTDATE and IGTDAT fetch the date and entry point GETIME fetches
the time of day. Both GTDATE and GETIME return 12 character
EBCDIC strings ready for printing by 3A4 format. IGTDAT returns
the month, day and year in 3 successive locations as integers.
The OS TIME macro is used to get the time of day and date.

PURHUN (F1IVERSITY
Laoratory for Inplications of “emote %Sensing
12203 Potter brive
lest Lafavette, Indiana 479935

GTDATE-2

1. Module Usage

GTDATE
CALL GTDATE (DATE)

Output Argquments:

DATE - This is a 3 fullword area. The date is re-
turned in characters ready for printing with
3A4 format. The format is 'MMMM dd,yyyy'.

IGTDAT
CALL IGTDAT (DATE)

DATE - This is a 3 fullword area. The date is
returned as month in word 1, day in word 2,
and the last 2 digits of the year in word 3.

GETIME
CALL GETIME (TIME)

Output Arguments:

TIME - This is a 3 fullword area. The time is re-
turned in characters ready for printing with
3A4 format. The format is 'hh mm ss g M.
The time is on a 12 hour clock, and
the PM or AM is specified.

2. Internal Description

All 3 entries use the 0S TIME macro to access the date and
time. See the IBM reference manual 'SUPERVISOR SERVICES'
for the description of this macro. (IBM manual GC28-6646-6).
GTDATE and GETIME then manipulate this information into the
desired format.

3. Input Description

Not Applicable

4. Output Description

Not Applicable

5. Supplemental Information
Not Applicable
6. Flowchart

Not Applicable

GTDATE-3

—

74

IDNAME jé

LARS Program Abstract 008

MODULE IDENTIFICATION

Module Name: IDNAME Function Name: SYSTEM SUPPORT

Purpose: Obtain USERID and USERNAME from CP UTABLE

System/Language: CMS/ASSEMBLER

Author: Howard Grams Date: 11/10/72

Latest Revisor: Date:

MODULE ABSTRACT

IDNAME is a fortran callable routine used to obtain the 8-character
USERID and l6-character USERNAME from the CP UTABLE and return them
to the caller.

PURDUE UNIVERSITY
Laboratory for Applications of Remote Sensing
1220 Potter Drive
West Lafayette, Indiana 47906

Copyright @ 1973
Purdue Research Foundation

IDNAME-2

A7

USERID - Is an 8-character array (e.g. REAL*8, or
INTEGER*4 dimensioned 2).

NAME - Is a l6-character array (e.g. REAL*8 dimen=-
sioned 2, or INTEGER*4 dimensioned 4).

Upon return, USERID and NAME will be filled in with infor-

A diagnose instruction is issued with code 100. Code 100
is a LARS~-defined code to extract USERID, ACCTNG, and
VMUSER1-4 (which at LARS contains the user's name) from CP.
See LARS system file 9010 for more details.

This routine depends on the non-standard CP module PRIVLGED
which supports LARS-defined diagnose codes.

1. Module Usage
IDNAME
CALL IDNAME (USERID,NAME)
Output Arguments:
mation extracted from the CP UTABLE.
2. Internal Description
3. Input Description
Not Applicable
4, Output Description
Not Applicable
5. Supplemental Information
6. Flowchart

Not Applicable

LARS12

LARS Program Abstract 009

MODULE IDENTIFICATION

Module Name: LARS12 Function Name: SYSTEM SUPPORT

Purpose: Interprets fixed form field description card

System/Language: CMS/FORTRAN

Author: W. Simmons Date: 03/24/69

Latest Revisor: E. M. Rodd Date: 12/12/72

MODULE ABSTRACT

LARS12 interprets the fixed format field description card.

PURDUE UNIVERSITY
Laboratory for Applications of Remote Sensing
1220 Potter Drive
West Lafayette, Indiana 47906

Copyright © 1973
Purdue Research Foundation

1.

Module Usage

LARS12

LARS12~-2

CALL LARS12 (CARD,INFO,*)

Input Arguments:

CARD

L*l, An eighty character vector (usually
I*4 and 20 fullwords in the calling rou-
tine) containing a card image of the field
description card to be interpreted.

Output Arguments:

INFO

INFO(1)

INFOR(2-3)

INFO(4)

INFO(5)

INFO(6)

INFO(7)

INFO(8)

INFO(9)

INFO(10-17)

]

I*4, 17 fullword array of following
format.

number from columns 1-8 of card (run
number)

8 character description from columns
11-18 of card.

number from cols 21-25 of card (first
line)

number from cols 26-30 of card (last line)

number from cols 31-35 of card (line in-
terval)

number from cols 36-40 of card (first
sample)

number from cols 41-45 of card (last
sample)

number from cols 46-50 of card (sample
interval)

30 characters from columns 51-80 of card
and two blanks at the end.

RETURN 1 is executed if any non-numeric character is found in
columns 1-8 or 21-50. When RETURN 1 is executed, INFO({(1l)
and INFO(2) contain the column numbers of the field (or

fields) in error,

,/:

J7

LARS12-3

The numbers in the numeric fields need not be right or
left justified and can contain blanks between significant
digits.

LARS12 uses FORTRAN LOGICAL variables to manipulate and
examine each byte of the card it is decoding. If any non-
numeric is found in a field which should be numeric,

2. Internal Description
RETURN 1 is executed.

3. Input Description
Not Applicable

4, Output Description
Not Applicable

5. Supplemental Information
Not Applicable |

6. Flowchart

Not Applicable

4p

LARS Program Abstract 0010

MODULE IDENTIFICATION

Module Name: MOUNT Function Name:

Purpose: Auto wait for tape program

SYSTEM SUPPORT

System/Language: CMS/Assembler

Author: E. M. Rodd Date:

Latest Revisor: William C. Zurney Date:

08/08/72

08/14/75

MODULE ABSTRACT

This program is a FORTRAN callable subroutine for requesting and

waiting for a tape to be mounted.

PURDUE UNIVERSITY

Laboratory for Applications of Remote Sensing

1220 Potter Drive
West Lafayette, Indiana 47906

Copyright @©
Purdue Research Foundation

74

MounT 2

72

1. Module Usage

Syntax:
CALL MOUNT (tape, dsrn, ringflag, unittype)

Required Paramecters:

tape -~ Integer *4 - tape number
or 8 character- tape numher
dsrn -—- Integer *4 - FORTRAN data set reference
number on which the tape is to mou
ringflag - 2 characters - 'RI' - Request tape with
ring in.
'RO' - Request tape with

ring out.
Optional Parameter:

unittype -- characters
'ANY' - Request any tape drive
'9TRK' - Request a 9-track tape drive
'7TRK' - Reguest a 7-track tape drive
'800' - Reqguest a 800BPI 9-track tape drive
'1600' - Reguest a 1600BPI 9-track tape drive
'6250"'" - Request a 6250BPI 9-track tape drive

The default is the unittype corresponding to
the mode parameter of the FILEDEF issued for
this fortran DSRN. If no mode parameter
exists, '9TRK' is assumed.

Example:

CALL MOUNT (1000, 12, 'RO‘, '800')
This requests the operator to mount tape 1000 with the ring
out on the unit corresponding to FORTRAN data set 12. The
tape drive to be used is requested to be a 9-track drive with
800BPI capability. '

2. Internal Description

. MOUNT is a routine which is fortran callable: MOUNT
takes the parameters passed to it and forms a parameter 1list
to be used in calling the LARS routine TAPMOUNT.

MOUNT does very little error checking. It does, however,
insure that the dsrn argument is legal. By legal, it is meant
that the dsrn is a valid fortran unit number and that the dsrn
is a tape unit. TIf this error occurs, or TAPMOUNT detects
an error; then MOUNT terminates the job by calling the fortran
exit routine EXIT.

MOUNT 3
73

To insure that the fortran I/0 routines are aware that
a new tape is to be present, MOUNT calls the entry point
TOPRU in the LARS subprogram TAPOP to unload the old tapes.
At this time an interface is required between MOUNT and the
LARS routine TAPMOUNT to have TAPMOUNT type the informational
messages with (MOUNT) at the end. This was done to maintain
compatability with the pre-existing LARSYS error and infor-
mation message document, because MOUNT has been rewritten to
call TAPMOUNT to do the work. The interface consists of the
added parameter (MOUNT), which follows the unittype parameter
in MOUNT's TAPMOUNT parameter list.

As described in the Internal Description section, MOUNT dele-
gates most message writing and error detection to TAPMOUNT.
MOUNT does check for a valid dsrn and produces the follow-
ing message, if an error is found, on both the user's ter-

EO331 BAD DATA SET REFERENCE NUMBER xXxX (MOUNT)

3. Input Description

Not Applicable
4. Output Description

minal and the printer.
5. Supplemental Information

FORTRAN Library Subprograms Required:

1) EXIT - Service subroutine to terminate execution.

LARS Support Routines Used:

1) TAPMOUNT - Request and wait for tape mount.

LARS Subprograms Used:

i) TAPOP - A multifunctional program to read, write, and
position tape files. Entry point TOPRU is used to
unload a tape..

CMS Support Routines Used:

1) TYPLIN - Types message on user's terminal

2) PRINTR ~ Prints message on printer

CMS Tables Used:

1) FCB - File Control Blocks

CMS Macros Used:

1) CMSYSREF -~ CMS general information

MOUNT 4

177

2) CMSCB - DSECT for FCB organization

6. Flowchart

Not Applicable

. e

TAPOP 2;;

LARS Program Abstract 011

MODULE IDENTIFICATION

Module Name: TAPOP Function Name: SYSTEM SUPPORT

Purpose: A multifunction program to read, write, and position tape files.

System/Language: CMS/ASSEMBLER

Author: Paul E. Anuta Date: 11/9/69

Latest Revisor: Howard L. Grams Date: 01/28/74

MODULE ABSTRACT

TAPOP is a subroutine callable by FORTRAN for reading and writing
records on tape, reading tape records specially formatted for multi-
spectral data, positioning tape files, and acquiring information about
the tape drive being used. The entry points are:

TOPRD - to read a record of any length

TOPRV - to read a variable number of channel records from one
physical block as defined for the multispectral data tape.

TOPWR - to write a record of any length

TOPRW - to rewind the tape

TOPRU - to rewind and unload the tape

TOPEF - to write a tape mark (end of file)

TOPFF - to forward file 1 file beyond.current file

TOPRF - to refile to beginning of current file

TOPBF - to back file 1 file before current file

TOPBS - to backspace a specified'number of records

TOPFS ~ to forward space a specified number of records
TCLOSE - to logically disconnect tape unit from program

RINGIN ~ to determine if tape file-protect ring is in or out of
the tape reel

GTUNIT - to determine the device address of the tape drive being used.

PURDUE UNIVERSITY
Laboratory for Applications of Remote Sensing
1220 Potter Drive
West Lafayette, Indiana 47906

Revised September 1974

TAPOP-2

Module Usage

Function

The program is to be used for reading and writing data blocks

of arbitrary length on tape. Rewind, rewind and unload, back-

space, forward space, backspace and forward space file, and
write end of file mark functions are also implemented.

Parameters

General definitions pertinent to all TAPOP calls - (all
scalar arguments are integer full words).

UNIT = FORTRAN data set reference number on which the
operation is to be performed. Standard unit
assignments are available from the LARS Data
Handling Staff or in the CMS User's Guide.

COUNT Exact byte count of record to be written or

read for the TOPRD, TOPWR read/write calls,

For backspace and forward space it is the

number of physical tape records to be passed

over. The program tests to see if this count
was actually read or written. For read, two
modes of wrong count response are provided

(see TOPRD). If the block size is unknown for

read, COUNT can be set larger than the expected

record size. The true count will be returned.

The particulars of each function are discussed

in detail below.

]

ERROR Return codes as defined in Table 1.

Data buffer where record is read into or from
for read/write operations. It must be dimen-
sioned at least COUNT bytes for TOPRD and TOPWR.
For read variable (TOPRV) it must be dimensioned
(NSC)x(NC) (see discussion of TOPRV below).

IDATA

This program utilizes input/output functions supplied by CMS
and interaction between the two systems exists., Specifically
the mode set function for 7-track tape units and dual-den-
sity 9-track units controlled by the CMS FILEDEF command.

The FILEDEF command may be used in order to override the

‘standard unit assignments. Also, TAPOP tries to maintain

compatibility with FORTRAN I1/0 processing. However, there
are some restrictions for mixing FORTRAN I/O0 functions and

{7

TAPOP functions. (See the section on Supplemental Information).

P

76

TAPOP-3

47

Internal Description - TAPOP Entry Point

READ
CALL TOPRD (UNIT,COUNT,ERROR, IDATA,NRTRY,WLF)

Input Arguments:

UNIT -~ Fortran Data Set Reference Number

COUNT - Number of bytes to be read

IDATA - Buffer to hold data to be read

NRTRY - Number of retrys to be executed if an
error occurs

WLF - Wrong length flag

Output Arguments:

ERROR - Error Code
COUNT - Count Transmitted (if WLF = 0)
Data in IDATA Array

One record of COUNT bytes in length is read from the FORTRAN
tape unit defined by UNIT. Data is placed in core starting
in the first byte of the IDATA array. Table 1 describes the
error codes returned in ERROR. NRTRY defines the number of
retrys which will be attempted in case a read parity error
is detected or a wrong length condition is encountered. The
WLF (wrong length flag) controls handling of wrong length
conditions, i.e., the block size encountered differs from
that specified by count. Note that the NRTRY capability may
or may not be applicable depending on the use of WLF and
whether a parity error or a wrong length condition is en-
countered. It is expected that in normal use the wrong
length flag will be off (WLF=0) and two retries for parity
error will be desired; thus, these default options are supplied.
If WLF is omitted from the argument list, WLF=0 is assumed.
If NRTRY is omitted, NRTRY=2 is assumed and WLF must be
omitted; that is, the program takes the first argument after
IDATA to be NRTRY and the second to be WLF. A table of
block, count and error code returns for TOPRD is presented
in Table 2 on page 11.

If WLF=0, no retrys are carried out if the block size en-
countered differed from that specified by COUNT. If the
block is transmitted to core and the block size is returned

TAPOP-4
74

in COUNT; error code 2 is returned or code 5 when a parity
error is also encountered. If the block was longer than
COUNT, only COUNT bytes are transmitted to core and code 2
is returned or code 5 for parity error.

If WLF#0, NRTRY retries are executed if the block size is
not equal to that specified by COUNT., If a parity error
also occurred reading the record, the retry process for the
parity error is carried out and the retrys for wrong count
are not carried out. If the block was shorter than COUNT,
the operation is the same as for WLF=0 except for the retrys.
If, however, the block was longer than COUNT, the true long
count is returned in COUNT but only COUNT bytes are trans-
mitted to core and the rest of the record is skipped. This
feature is implemented by backspacing over the record and
rereading it to count the number of bytes in the long block.
This feature supplies information on the long block size to
the programmer without requiring a buffer to hold the data
beyond COUNT bytes.

If the length of a block is unknown, COUNT can be set to the
full size of the buffer IDATA before TOPRD is called and the
actual block size is returned in COUNT. Also, as long as
COUNT is not larger than the buffer, the core space above
the buffer can never be wiped out by a read.
WRITE

CALL TOPWR (UNIT,COUNT,ERROR,IDATA)

Input Arguments:

UNIT - Fortran Data Set Reference Number
COUNT - Number of bytes to be written
IDATA - Data block to be written

Output Arguments:

Data record on tape

ERROR - Return code

COUNT - Bytes actually transmitted
One record of COUNT bytes in length is written on the FORTRAN
tape unit defined by UNIT. Data is fetched from core start-

ing at the first byte of IDATA. The ERROR returns are dis-
cussed in Table 1.

TAPOP-5

vg

READ VARIABLE

CALL TOPRV (UNIT,NSC,ERROR,IDATA,NRTRY,NC,CSEL,LNID)

Input Arguments:

UNIT - Fortran Data Set Reference Number
NSC - Number of samples per channel

NRTRY - Number of parity error retrys

NC Number of channels in tape record

CSEL

Halfword channel flag array

Output Arguments:

Requested data in IDATA
ERROR - Return code

LNID - 4 byte line ID record (line number and roll
angle)

This entry expects the tape to be formatted for multispectral
data (see Data Organization section V of the LARSYS System
Manual). Data from 1 to 30 channels in a tape record can be
read. This function expects a tape record format of 2 bytes
for line number and 2 bytes for roll angle, then NC sets of
NSC bytes each. Each channel must have NSC bytes. NC (Number
of Channels) must be less than or equal to 30. CSEL is a half~
word integer flag array that indicates which of up to 30
channels are to be read. That is, if CSEL is non zero, the
ith set of NSC bytes in the tape record is read into core.

If CSEL (i)=0, that channel is skipped. If all CSEL (i)=0,
only the line number and roll angle are read into core.

Data is read into consecutive core locations starting with
the first byte of IDATA. Data from consecutive or non-
consecutive tape channels are read into consecutive core
locations. This allows the programmer to dimension his in-
put array only as large as necessary for the number of
channels he wishes to read. For example, if an l8-channel
tape is to be read and channels 1,6,12, and 18 are desired,
IDATA would have to be dimensioned at least NSC*4 bytes,
NC=18, CSEL(l)=1, CSEL(6)=1, CSEL({12)=1, CSEL(18)=1, all
other CSEL(i)=0, CSEL would be dimension Integer*2 18. The
first four bytes of the record are read and placed in LNID.
Channel data starts in IDATA(l). NRTRY = the number of re-
trys which will be attempted in case a read error is detected
(see Table 1). .

TAPOP-6

Jo

BACKSPACE
CALL TOPBS (UNIT,COUNT,ERROR)

Input Arguments:

UNIT - Fortran data set reference number
COUNT - Number of physical records to be backspaced

Output Arguments:

ERROR - Return code

COUNT - Number of physical records actually backspaced
The number of physical records indicated by COUNT are back-
spaced on FORTRAN unit defined by UNIT. An EOF mark counts
as one record. Backspace is halted if an EOF is passed and
the number of records backspaced at this point are output in

COUNT. Only error codes 0,1, or 2 can be returned (see
Table 1).

REWIND
CALL TOPRW (UNIT).

The tape on the FORTRAN unit indicated is rewound to the
load point. The file is not closed.

REWIND AND UNLOAD

CALL TOPRU (UNIT)

The tape on the FORTRAN unit indicated is rewound and un-
loaded. The file is closed. No wait is issued.

FORWARD SPACE

CALL TOPFS (UNIT,COUNT,ERROR)

Input Arguments:

UNIT -~ FORTRAN Data Set Reference Number
COUNT - Number of physical recorxrds to forward space

Output Arquments:

ERROR - Return code

COUNT - Number of physical records actually forward spaced

TAPOP-7

91

The tape on the FORTRAN unit is forward spaced COUNT physi-
cal records. If an EOF mark is passed, forward space is
halted. Error return codes 0, 1 can occur.

END FILE

CALL TOPEF (UNIT,ERROR)
A tape mark (end-of-file) is written on the tape on the indi-
cated unit. Error codes 0 or 1 can be returned. The ERROR

argument is optional.

FORWARD FILE

CALL TOPFF (UNIT)

The tape on the FORTRAN unit given in the argument is advanced
to the next file. The tape ends up positioned past the next
end-of-file mark on the tape. No indication is given of
hitting an end-of-file mark or the end-of-tape mark.

REFILE
CALL TOPRF (UNIT)

The tape on the indicated FORTRAN unit is backed up to the
beginning of the file in which the tape is presently posi-
tioned. If the present file is the first file on the tape,
the tape is positioned at the load point. If it is the se-
cond or a succeeding file, the tape ends up just past the
end-of-file mark at the beginning of the file.

BACKFILE
CALL TOPBF (UNIT)

The tape on the indicated FORTRAN unit is backed up to the
beginning of the file preceding the one in which the tape

is presently positioned. If the present file is the first,
then the result is the same as TOPRF (i.e., at the load point).
Calling TOPBF from file 2 puts the tape at the load point.
From file 3 or more the final position is just past the tape
mark at the beginning of the previous file.

TCLOSE
CALL TCLOSE (UNIT)

This routine should be called after the caller is finished
using the specified unit. It must be called once for each

TAPOP-8

unit used. This function will disconnect the specified unit
from the user's program and will prevent FORTRAN from closing
the unit (this prevents FORTRAN from repositioning the tape
or writing a Tape Mark for an output file). TCLOSE performs
no tape positioning.

RINGIN
CALL RINGIN (UNIT,FLAG)

Input Arguments:

UNIT - FORTRAN Data Set Reference Number

Output Arguments:

FLAG - 0 if the file-protect ring is in

1l if the file-protect ring is out

o

This entry allows the FORTRAN programmer to check whether
or not a file-protect ring is inserted in the tape mounted
on the specified unit.
GTUNIT

CALL GTUNIT (UNIT,ADDR)

Input Arguments:

UNIT - FORTRAN Data Set Reference Number

Output Arguments:

ADDR - The tape unit address (i.e. 180) that is
currently assigned to UNIT is returned.
If the unit is not assigned, the results
are unpredictable. ADDR must be printed
or used in Z format (it's a hexadecimal
number) .

This entry determines the tape unit address (the virtual
device address) currently associated with the specified
FORTRAN Data Set Reference Number.

97

TAPOP-9

53

Table 1

Tape Operations Program (TAPOP) error return codes for read,
write, backspace, forward space, and end-of-file calls.

Code
0
1

Meaning

Operation was successful.

Read: End-of-File mark was read.

Write: End-of-Tape mark encountered. The
write operation was carried out past end-of-
tape mark.

Backspace and Forward Space: End-of-file
mark encountered at some point during backup.
EOF mark is counted as a block. Backup or
forward space was halted when EOF was passed.

End File: End-of-Tape mark encountered. EOF
record past the EOT marker.

Read (TOPRD): The byte count of the block read
is not the same as that specified by calling
program. The indicated number of retrys was
carried out only if WLF # 0. The count for

the block is always returned in the COUNT ar-
gument. The number of bytes transmitted is
never more than the number requested. That

is, if the block was shorter than requested,
all the data is transmitted and the short count
is returned. If the block was longer, only

the number of bytes requested is transmitted
and the rest of the record is skipped. The
total length of the long record is returned

in COUNT if WLF # 0. If WLF = 0, the return
COUNT is never more than the initial value
supplied. The return counts and codes for
TOPRD are indicated in Table 2.

Read Variable (TOPRV): For read variable, the
count is the individual channel count and there
can be up to 30 channels. Wrong count in this
case indicates that the last channel did not
have the correct count, but the error could be
due to a wrong count in any of the previous
channels. Results in this case are unpredic-
table. NSC in the argument list is not changed.

Write: Code 2 should never be observed for
writeo ’

TAPOP-10

Ty

Backspace: The load point was reached before back-
space of the number of blocks specified was com-
pleted. The number of blocks actually backspaced
is returned in COUNT.

Forward Space: Code 2 is not returned for forward
space. No program indication is available if tape
is forward spaced to the end-of-the reel. Only the
tape indicator (T1l) light is illuminated on the unit
in this case. '

3 A vertical, longitudinal, cyclic, or skew read or
write parity check error was sensed. For read the
specified number of retries were carried out. Tape
is positioned past the block. The data from the
bad record is in core for read. For write the bad
parity data is on the tape. Retry for write was
as follows: the tape was backed up over the bad
record and an attempt was made to rewrite the re-
cord. This was done 10 times, after which the tape
was backed up over the bad record, a 2l-inch gap
was erased and a new set of ten retires to write
the record was made.

4 Any one or more of a set of "special" error condi-
tions cause a code 4 return. For 9 track units,
the error is in the I/0 interface and is due to a
channel data check, bus out check, equipment check,
data check for control operation, or chaining check.
These are all hardware parity errors on read or
write and occur very rarely.

The above errors also apply to the 7 track unit,
however, frequent Code 4 errors may occur for the

7 track unit when reading tapes written by the LARS
A/D System. This is due to data convertor check
errors. Details of the data convertor error are
explained on page 20 of the 2400 series tape unit
manual A22-6866. It occurs when the number of
characters in a record is not divisible by four and
the recovery procedure is not applicable (see above
reference). This can be due to bad A/D operation,
bad tape, or faulty reading. Wrong length will
usually accompany this error.

5 Both wrong length and parity or data convertor check
errors occurred during the operation.

6 The I/0 request was invalid for the unit specified,
This can be due to using a FORTRAN unit number for
a tape unit not defined by FILEDEF command or perma-
nently assigned. Also, the device may not be at-
tached or the file-protect ring may be out for a
write operation.

Revised September 1974

27

TAPOP-11

SI0xXIXYH hﬂﬂkﬂ& pue 3uno) qYdol JI03 suanj}IR asjsweaed

¢ 91qey
S [4 A001d LNNOD T
INNOD* 1D * AD01IL
S [4 LNNOD LNAO0D 0
g Z N0014 10014 T
INNOD* LT 0014
S [4 a001d A001d 0
p a0 ¢ 0 10014 Aa001d T
INQOD = ¥MDO01Id
p 10 € 0 N001d A001d 0
2100 03
- 113 A3Taeg | 1033z A3Taed ON Jusumbay so3kg po3sonboy=
L 5pos uanyay -8p0) uaniysy Ut pauaniay @muww%wmmua M 349 pe3 ¥=IN0O0D
Io0xxd Ioxxg INNOD 3O enfeA Jo aequmN paooay ut s934g=4D01d
Q4oL 03 TTed I9IFV 3ITNSAY UOT3TPUOD TeTITUI

TAPOP-12

Jé

TAPOP may be used to read tapes of almost any format. It
is especially designed to read multispectral data tapes
formatted as defined in the Data Organization Section of the

TAPOP may be used to write tapes with any number of files

and with any size records (no automatic blocking/deblocking
of logical records from a physical record is performed).
TAPOP usually returns an error code which the calling program
may use to produce a message. As a result, TAPOP does not
normally produce any messages when used with LARSYS. TAPOP
does send a message to the user for TOPRV and RINGIN calls
that determine the tape is not ready or not attached to the

"Ig5¢ TAPE UNIT 181 NOT ATTACHED OR NOT READY (TAPOP)"

If the user receives this message, he should notify the CP
operator. The program will wait until the tape is ready

and then proceed automatically. (Note: When TAPOP is used
within LARSYS, all ‘tapes will be attached and ready before
TAPOP is called). TAPOP uses the CMS function TAPEIO for
most of its operations. As a result, for TOPRW only, the
following messages may appear if TAPOP is used without LARSYS:

"TAPn NOT READY YET" - if the tape is attached but not
ready (the program will wait)

"{OK - READY NOW)" - when the tape becomes ready

"TAPn NOT ATTACHED" - if the tape has not been attached
(TAPOP will return ERROR=6)

3. Input Description

LARSYS System Manual.
4. Output Description

virtual machine. This message is:
5. Supplemental Information

All parameters used by TAPOP are supplied via the calling
parameter list. No variables in any COMMON are used. TAPOP
does not call any other LARSYS subroutines. However, it

does utilize several CMS and FORTRAN functions such as TAPEIO,
WAIT, TYPLIN, HNDINT, SYSREF, NUCON and IHCUATBL.

Revised October 1980

TAPOP-13

57

6. Flowcharts

(TOPRV > { TOPRD } (TOPWR ’ (RINGIN)

Set up
sense
CCW .
Set up CCW Set up Set up
string TAPEIO TAPEIO
for for
Read WRITE
1))
Set Flags: Set Flags: Set Flags: .
RV - ON EOT - OFF EOT - OFF Set Flags:
EOT - OFF SI0 - OFF SI0 - OFF RINGIN-ON
WLP - ON RV -~ OFF WLP - OFF
SIO = ON RV - OFF
WRT - ON

\L

TAPOP-14

Jd

EXEC

GETUNIT

Relate DSRN !
to TAPN, Dev.
Addr., & Tape

- oy e)

mode]
Y
RINGIN
Insert
« mode bits
in CCW
Y
Has HNDINT Set HNDINT 1st
HNDINT Set Int. _ﬂ,flag on CCW a
Level I/0 been se Handling P\\ﬁgs\mod
_— __“\\ N
‘4‘ > 2C) d
as v HNDINT : Issue
HNDINT 4 | clear STARTIO
been/is;/// Int. Handling
N /
TAPEIO
Do Req. 2D
Operation
- hd
OKSOWAIT TESTCSW| TBUSY NOTOPE

RDWRTERP WAIT | 5C @ ! 5a !

A

SIOERP

— iGA I

N\ /

TAPOP-15%

4

INTHND - HANDLES TAPE INTERRUPTS ASYNCHRONOUSLY FOR

INTHND

SIO LEVEL

CHECKIT 4A>

Set
Ri1§ =1

Set ERCOD
=0

(RETURN)

« 3

Requijfii//

N

Set
ERCOD =201

N

I/0

RETURN

[set

Not
Ready? ERCOD=200
WV
Set
ERCOD = 7 RETURN :>
K
— 3y Set
Set
ERCOD =203~%
Ringi
Request?
Set
ERCOD = 7

Upon Exit:

ERCOD

[" I I
w

N

100

200

201

202

203

Successful
EOF or EOT

Permanent I/(
Error

Tape is file
protected

Serious Tape
Error

Incorrect
Length Recorc

Intervention
Required

Permanent I/C
Error, but
should retry
it

Sense Opera-
tion is
Recommended
Ringin Test
(sense has
been issued)

CHECKIT

Unit
Exceptio

Set ERCOD

TAPOP-16

40

Retries

> ¢

Set ERCOD
= 100

Set ERCOD

Set ERCOD
=7

9

| Set ERCOD

Set ERCOD

= 202

< RETURN >

NOTOPER

STARTIO ERROR ANALYSIS

5B ' SC‘
TBUSY TESTCSW

N

SET ERROR
=6 for
Tape not
attached

J
o
RETURN

ERR200

@

TAPOP-17

Set
ERCOD

3

6/

SIOERP

Set Up
Sense
CCW

Lo

WAIT

B

CKEOFEOT

B

Unit
Exceptior

Device
End

AT [P\

Set ERCOD
= ¢; (An
Immed. Op.
= 0k)

SIOERP

6A

OKSOWAIT

B

| 6a

SIOERP

Get ERCOD
in R15

ANALYZE RESULTS OF SUCCESSFUL STARTIO

Set Up
Sense
CcCw

A

RDWRTERP

Reducefret

by 1; Set u
BSR chained

ies

TAPOP-18

62

to,gghgipal
TYPLIN
Send "Int. WAIT
1Req." msqg.
to USER
Set
FLAG = 0
Set
FLAG =1

2C > STARTIO

% RETURN)

A

RDWRTERP

TAPOP-19 :
63

ERROR RECOVERY PROCEDURE FOR READS/WRITES

Inval |

Y. set

Requesté§>>—% -

| “(Rl5-1or4) -—CRROR =6
5026

NXTCK1 N
““
£OF

(R15=2)
N
Set EOT
flag on
Turn flag

WRGLTH1
Wrong v >
Length? >~—) 9A
Rlij;ﬂﬁf)
N
7C

Calculate
Bytes ‘
Transmitted

o e?Ztio N | Set
3 COUNT=byteg
_m;an§§i;;gg

Set
ERROR

.

operation

RV
=
NYOFF; Calcu-; /6;;:;::;;\w§————%§et Long Block
late Long
Block Size

A 7 RETURN

Set
Count = ¢

pize in COUNT

CKEOT2

Set

ERROR = 1

Revised September 1974

RDWRTERP

TAPOP-20

RV N

op.

&1

Store

actnal
count

{ RETURN

Set
Exrror =
Set
Exrror =
NXTCK4A
Set
SETERR3 Error =
(R15=3) d
Set
X Error =
ape Erroyp”
(R15=7)
N
No Error:;
Set

Erroxr = 0

Revised September 1974

RETURN

Decrement

¥

Retries?

Residual
COUNT=0

8B

C)

Set-up CCW's
to Backspace
& chain Long
Block Read (skip)
to Read CCW
with SILI ON

et ﬁong
Block Flag
ON

Count

4
Set-Up
Backspace
CCW chained
to original
request

N
[ZB]

STARTIO

o

TAPOP-21

22

Set up for

N
{ TOPRU)

N -

TAPOP-22

44

(TOPEF ’) (TOPBS) (TOPFS)

’

~/

7

Set up for| [Set up for Set up for Set up for
TAPEIO TAPEIO TAPEIO TAPEIO TAPEIO
REWIND RUN WM BSR FSR
, L L L B |
Set Flags: Set Flags: Set Flags: Set Count; Set Count,
WREOF - ON RUN - ON WTM - ON Set Flags: Set Flags:
RW -~ ON WREOF -~ ON WREOF-ON Space ~ ON
SPACE - ON
EXECNTRL
B 4
S GETUNIT
Get DSRN
Information
CKFOREQF

Determine if
EOF should be
written; Do

it if req.
flag N
v
CLOSEIT
Disconnect
unit from
FORTRAN
HNDINT
g o ¥ | Clear
Int.
Handling

N

10B

TAPEIO
Issue
Request

N

y

"

2

A
: CNTRYT.EFRD

(TOPFF) < TOPRF) (TOPBF)

N4

TAPOP-23

‘ TCLOSE >

GETUNIT

Get DSRN
Information

Set up for Set up for Set up for
TAPEIO TAPEIO TAPEIO
FSF BSF BSF
13
Set Flag Set Flags Set Flags
FF - ON RF - ON BF - ON
WREOF - ON WREOF - ON

N

CLOSEIT

10A

Disconnect
Unit from

FORTRAN

(RETURN)

&7

12a TAPOP-24

24

- CNTRLERP
Control Operations Error Recovery Procedure

1’N

Set ERROR
=0 if in

arameter 11

v

st

~Set ERROR=1
if in para-
meter list

T

N__[Decrement ﬂ
\\to be spaced from § reei
=g? to spac
Y
Decrement ﬁ Set Set 10B
from # of } ERROR = 2 ERROR = .0
records to
be spaced '
v
— h
'Calculate
records 7 RETURN
L spaced —J
Set up
. TAPEIO Set "2nd
Operation? BSF opera- time" Flag 108
tion L _ +o-ON— !
Set-up
§2§Exo .[Set Flags:
operation BF - OFF i
Set-up Set
TAPEIO RF flag OFF
FSF
operation

TAPOP-25

Intermixing of FORTRAN and TAPOP I/0 Functions

Use of FORTRAN 1I/0 statements with TAPOP functions can
successfully be accomplished; however, certain precau-
tions must be observed. The only time TAPOP should be
used with FORTRAN 1/0 is when the file positioning ca-
pabilities of TAPOP are required. Otherwise, standard
CMS/FORTRAN capabilities can be used to read or write

any size record (also blocking/deblocking) and, also,
handle limited multiple file requirements. Refer to the
proper CMS documentation for details. General guidelines
for successful intermixing follow:

* Use TOPRW as the first operation on any tape unit.

* Use only FORTRAN Reads/Writes with TOPEF, TOPRW, TOPFF,

TOPRF, TOPBF, TOPRU, RINGIN and TCLOSE as required.
Do not use TOPBS or TOPFS with FORTRAN created files.

* Multiple FORTRAN created files on the same tape must
have the same record characteristics as specified by
the FILEDEF command for that tape unit.

* In order to process two or more files sequentially
(i.e. read all of file 1, then read file 2) a call
to TCLOSE or TOPRF must be executed after reading
one file and before reading the next file in order
to prevent FORTRAN from incrementing the file ID
(i.e. FT11F@g@l to FT11F@g2). °*

* Use TOPRU or TCLOSE when you are finished with the
tape so that FORTRAN will not try to close the tape
unit when it processes the STOP statement.

Automatic Writing of a Tape Mark (End-of-File)

TOPRW, TOPRU, TOPRF, and TOPBF examine the last operation
performed on the specified unit and if it was a write or
a write end-of-file, then a tape mark (end-of-file) will
be written on the tape prior to the execution of the
called function. If the last operation was not a write
or write end-of-file, then the tape mark will not be
written. For either case, the tape will be positioned

6. Supplemental Information
A.
B.
the same.
C. System Dependencies

TAPOP is very system dependent in that it interfaces
quite closely with CMS and with the FORTRAN library
modules IHCUATBL, IHCECOMH (IBCOM#) and IHCEFIOS (FIDCS).

Revised October 1980

7

TAPOP-26

0

CMS Dependencies:

* All tape control operations and normal reads/writes
are handled by using the TAPEIO function.

* The read variable function, RINGIN, and retry opera-
tions for reads use STARTIO level I1I/0 utlllzing the
HNDINT function of CMS.

* The TYPLIN function is used to type a message.

* The CMS module TAPEIO was modified to support a vari-
able number of retries and to allow wrong length re-
cord detection.

* TAPEIO will normally produce error messages at the
typewriters. This is not desirable for use within
TAPOP since TAPOP returns error codes and allows the
caller to provide his own error messages. To inhibit
messages from TAPEIO, the KT (Kill Typing) flag in
the CMS nucleus is turned on prior to invoking TAPEIO
and then turned off after TAPEIO completes. This is
identical to the user issuing the KT command of CMS.
(The coding is dependent on the KT flag being located
X'SE2' bytes beyond the beginning of NUCON.) The one
exception to the above is for TOPRW which does not use
the KT flag since TOPRW is often the first call to
TAPOP and TAPEIO REWIND can produce only messages re-
lated to a tape not being attached or ready. This
allows the user to be informed if these conditions
are present.

* The GETUNIT section of code associates the given DSRN
(Data set reference number) to a TAPN for use with
TAPEIO and to a device address for use with SIO. This
section was written such that entry GTUNIT (UNIT, ADDR)
is used as an externally callable routine and GETUNIT
is used internally within TAPOP.

LARSYS, as well as FORTRAN, issues CMS FILEDEF's for
all DSRN's. The FILEDEF builds a FCB (file control
block) with entries of FTXXF00l for the DD name and
TAPn for the data set name. Therefore, GETUNIT can
simply search the FCB's for the desired DSRN within
the DD name field and, if there is a match, pick up
the corresponding TAPn from the data set name field.
The TAPn is returned to the caller. Also, the mode
of the tape unit (in FCBMODE) is returned to internal
caller.

Revised October 1980

TAPOP=-27

At this point, the actual device address of the tape
(required for SIO) is determined by searching the de-
vice table (DEVTAB) in the CMS nucleus. The search
can be made on TAPn and, when a match is found, pick
up the corresponding device address. The device ad-
dress is returned to the caller.

Both DEVTAB and FCBTAB have their addresses in SYSREF.
The CMS macro NUCON is used to reference these
pointers and the macro CMSCB is used to reference
fields within the FCB's.

The error and I/0 completion handling routines are
dependent on TAPEIO return codes and I/0 control
blocks. There are four distinct sections of code in-
volved with error handling. There are two sections
to provide the interrupt handling routine for the
HNDINT function. The third section starts at RDWRTERP
and performs unique TAPOP error recovery for Read/
Write operations (i.e., handling the "Wrong Length
Record" condition) and, also, converts TAPEIO return
codes into TAPOP error codes. The fourth section of
code performs error analysis for control operations;
plus, for record spacing controls looping for the
number of records specified. This section is labeled
CNTRLERP. For all error codes, the TAPEIO form of
error code is converted to TAPOP ERROR codes.

With CMS, the routine specified by HNDINT SET is exe-
cuted asynchronously of other TAPOP code and must per-
form all basic interrupt handling and error recovery.
This routine (called INTHND) is branched to and must
return to CMS nucleus module IOINT. As a result, a
section of code labeled SIOERP must be executed im-
mediately after the WAIT (after a SIO) is satisfied.
Since the interrupt handling code, INTHND, is executed
prior to the WAIT being satisfied, these two routines
interact closely with each other. Several exits from
this code continue into the RDWRTERP routine. The
RDWRTERP will be entered immediately after completion
of TAPEIO. Likewise, the CNTRLERP code is entered
immediately after a TAPEIO for a control operation.

Revised October 1980

7

TAPOP-28

v

CMS (and 0S) FORTRAN Dependencies:

* FORTRAN I/O status bits are not maintained by TAPOP.
TAPOP will always close (go to CLOSEIT) any unit re-
ferenced in a TAPOP call. This allows FORTRAN 1/0
operations to cause the unit to be opened properly
(input or output) as required.

For CMS, the data set assignment table is IHCUATBL., It
contains entries for each DSRN among which is a pointer
to a Unit Block. The Unit Block has the I/0 status bits,
DCB, buffer addresses, etc. The Unit Block for DSRN only
exists if FORTRAN has OPENed the unit; otherwise, the
Unit Block pointer is an odd number (invalid address).
For reference on this subject, consult pages 239-242 of
the 0OS FORTRAN PLM (GY28-6638).

* The CKFOREOF section of code depends on a flag being
set to indicate if a TOPWR or TOPEF was the previous
operation for the specified DSRN. In the current
TAPOP, an unused byte (the 6th byte), in the IHCUATBL
entries is used for this flag. If this byte is used
by FORTRAN in the future (unlikely), then a modifica-
tion will be required.

* The CLOSEIT section of code is used to logically dis-
connect the tape from FORTRAN. This is accomplished
by making the Unit Block pointer in IHCUATBL an odd
number (invalid address) and then freeing the storage
occupied by the Unit Block.

* IBCOM/FIOCS use double buffering of input. As a re-
sult, the buffers are usually primed one record ahead.
This causes a problem if FORTRAN READ's are being used
and then a TOPRW, TOPFF, TOPBF, or TOPRF is issued and
then more FORTRAN READ's are executed. Therefore, for
each of the TAPOP functions, a branch to CLOSEIT is
used in order to force the erasure of the buffers., .

Use of Base Registers

TAPOP essentially uses one base register to cover all of
TAPOP. This simplifies the addressability within TAPOP.
However, TAPOP currently is almost 4096 bytes; as a re-
sult, if any significant additions are made to TAPOP in
the future, the base register usage may need to be altered.
TAPEIO Modifications

The TAPEIO module of CMS was modified for two reasons:

TAPOP-29

77

(1) TAPEIO must handle a variable number of retries so
that the NRTRY parameter of TAPOP can be supported and
(2) TAPEIO must recognize the "Incorrect Length" condi-
tion and then return a code indicating the condition.

Both of these new features are activated by the use of a
modified parameter list. If the current unmodified para-
meter list is used with the new TAPEIO, it will function
exactly as the unmodified TAPEIO would do. A new return
code of 100 in R15 will indicate "Incorrect Length®.

The TAPEIO UPDATE listing is included. The revised call-
ing sequence (for READ's only) is unchanged except for
the use of the high-order byte in the "number of bytes
read"” field to signal TAPEIO that the two new features
are desired. If this byte contains X'@l', then an addi-
tional parameter containing the desired number of retries
must be added. The revised parameter list is shown below:

PLIST DC CL8'TAPEIO'
DC CL8'READ'
DC CL4'TAP1"*
DC XL'93"' mode set
DC AL3 (BUFFER) I/0 buffer address
DC F'buffer size' buffer length (in bytes)
DC X'o1l’ Indicates optional "number of retries"
DC XL3'00' parameter is used. Upon return, the

full word will contain the number of
bytes actually read.
DC F'number of retries!

The attached TAPEIO UPDATE listing is for CMS Release 3.1
TAPEIO with PTF A28836CA applied.

©
™
1
[}
o
)
<
=

-

<

w

=

<

0

o

-

(=

[]

w

a

L= 4

[

‘e

L]

.

w

-

i

ke

TAPOOO])
APOOO/

3
C
O
o]
a
LS

~
c
[
D
=S

VIO NNME ADMICO~NNTNOMOCO~NMINNOMNOQ PO N
OO OO D ot v b ot et 1ot ot vk et =4 (NN NN NN NN NN N A NN AN AN NS S
D200000Q0COO0OOOCCOCOOOOQOO0O00O00COOO0O0DO200
olololelolelalalolololololololololololalololololslololololololololololololole)
AlnaAldacsaArANCAIAIALCACAAALAALALAAANSAQAAAAAR
LI ALII I LI LI L LA LL I LTI L AL LI L LI LT L L L T T

VIO NNENR NN
e el ad S
T T2
DDODOZ DIOIDODHDID
S99 MHTHTINON

RN

INNN NN NNNNAN
MY LY LXXYNLXX

«S TuPRU

A
K
L

BUFFER STt

I CCw

- ()

PRECSZ#X*'01°"
CKBUFSZ

00103000
cLl

o/

CBNETT

1

RDWRCCW+4,43S1L1

LTI

|
I

- pd o ‘L.L.LL*\,.LL

TOPRD CALL— 7
Ry

Ry

STORE ST

© 1S THIS
U
LET VAR
START THc

~-RE

LARS=-JUNTZ

{
NN
P~

™
BO

®

LZ?ZZAT¢2
et ey e
P2 EIZETZZ
DDDDDDDDD
MITIITIIITINND
NEEREEER
NNNNNNNANN
ALY LY
AAAAHA7HA
e T B e S B

TBl1TsST T T

POV ¥

JUNT NOT READ

]
1
I
3

I
N
S
= S
AM
i

i AT Y
N b= e T e 2 et
LS e
o > I Vo BV

FFSZ
KtLb[

00 et
.D,DD.RD.O
pd et ™ 1.71
o o000 »
TNNNI E NS
) et g vt LLILLS LD ot e
0L L bm bom b X O

RCCW+4,SILI
yCSH+6

U

5

R
R

LH
SCUC
SRL
SR
ST
LA
BR

./ 1 00264000

WRUNGLTH Ol

NV N
[e
3 et bt
DO5DoDDD
JJJJJJ
NEREREK
NNNN NANN
XXX
1T g g
i d

ADLITIONAL
=S FUR
1 T1S

Git ORUER BYTE
r1

Is

Al
RE
CE OF

NGTH CONCITIONS

T TU CALTERLY -

T

!
IF
3

o

A

L
3t 3¢ 3¢ 3 3%
ﬂ ﬁ A

TTYTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

“

Z N

LARS=-JUNTZ

NUMBER UFf RETRIES ——— — LARSZJUNTZ"

MASK FOR NO SILI

FYovY—
XYDF?*
WRONGLTH

00302000
EQU

00343000
B

I

SIL1
1

'!‘"‘;" [

FANDCE I NCORRECT LENGTH —LARS=JUNT

.~

TSTREQ ;25”

LARS Program Abstract 012

MODULE IDENTIFICATION

Module Name: TSTREQ Function Name: SYSTEM SUPPORT

Purpose: Checks status of STOP/SUSPEND flaq

System/Language: CMS/ASSEMBLER

Author: E. M. Rodd Date: 08/01/72

Latest Revisor: Date:

MODULE ABSTRACT

TSTREQ is called by FORTRAN to return the contents of a switch in
the CMS USERSECT area and clean the switch.

PURDUE UNIVERSITY
Laboratory for Applications of Remote Sensing
1220 Potter Drive
West Lafayette, Indiana 47906

"Copyright € 1973
Purdue Research Foundation

Revised October 1980 .

TSTREQ-2

74

1. Module Usage

TSTREQ
CALL TSTREQ (ICOMD)

Output Arguments:

ICOMD - INTEGER*4, Returned with the content of a half-
word switch in the CMS USERSECT area. This switch
is set by the 'STOP' and 'SUSPEND' commands.

If the 'STOP' command has been issued since
last call to TSTREQ, ICOMD is returned = 1.

If the 'SUSPEND' command has been issued,
ICOMD = 2. 1If both have been issued, the most
recent one is reflected to TSTREQ.

The call to TSTREQ clears the switch so that any call after
the switch is cleared will return ICOMD = 0 if neither 'STOP'
nor 'SUSPEND' has been issued. The value of ICOMD for the
first call to TSTREQ after ipling CMS is unpredictable.

2. Internal Description

TSTREQ uses the second halfword of the word called USER4
which is referenced by the CMS USERSECT macro. The first
halfword of USER4 is unchanged. TSTREQ sets ICOMD = second
halfword of USER4 and then sets this halfword = 0.

3. Input Description

Not Applicable

4, Output Description

Not‘Applicablé

5. Supplemental Information

Not Applicable

6. Flowchart

Not Applicable

Revised October 1980

URADST

77

LARS Program Abstract 013

MODULE IDENTIFICATION

Module Name: URADST Function Name: SYSTEM SUPPORT

Purpose: Unpacks data from Multispectral Image Storage Tapes

System/Language: CMS/ASSEMBLER
Author: Paul Anuta Date: 09/09/69
Latest Revisor: E. M. Rodd Date: 09/07/72

MODULE ABSTRACT

URADST takes input data in the format of the Multispectral Image
Storage Tapes, unpacks it and converts to floating point full words.

PURDUE UNIVERSITY
Laboratory for Applications of Remote Sensing
1220 Potter Drive
West Lafayette, Indiana 47906

Copyright © 1973
Purdue Research Foundation

1. Module Usage

URADST

URADST-2 /

Z

CALL URADST (RDATA,BDATA,NCR,NS,NSD,ISAM,LSAM,SINT)

Input Arguments:

BDATA -

NCR

NS

NSD

IsaM

LSaM

SINT

Raw data from the Multispectral Image Storage
Tapes. This area is assumed to contain the
data from the Multispectral Image Storage Tape
for one line for NCR channels. The data for
each channel is exactly as it appears on the
Multispectral Image Storage Tape (including

the last six bytes of calibration data). BDATA
is as output from a call to TOPRV and thus does
not contain the four bytes of line id informa-
tion.

INTEGER*4, The number of channels in BDATA.

INTEGER*4, The number of bytes per channel in
BDATA (the number of data samples per channel
+ 6 for the calibration data).

INTEGER*4, Number of words available in the
output array (RDATA)/NCR. NSD must be at least
as large as the number of samples per line

[(LSAM-ISAM) /SINT+1] + 6 for the calibration
values.

INTEGER*4, First sample number (column number)
in a line requested.

INTEGER*4, Last sample number (column number)
requested in a line.

INTEGER*4, Sample interval.

Output Arguments:

RDATA - REAL*4, The output array to contain the unpacked

data values and calibration values. RDATA(l) =
sample ISAM from the first of the NCR channels.
RDATA [(LSAM-ISAM)/SINT+1] = sample LSAM from
the first of the NCR channels.

URADST-3

77

RDATA [(LSAM~ISAM)/SINT+2) = first of the six calibra-
tion values. RDATA(NSD+l) = sample ISAM from the
second of the NCR channels etc.

If LSAM is greater than the last data sample in RDATA,
it is assumed to be equal to the last data sample on
the tape. The value of LSAM returned to the caller
is unchanged.

If ISAM is greater than the last value in BDATA, only
the calibration data will be returned in RDATA.

URADST operates by use of an internal subroutine (the loop
beginning with label LOOP) which converts from integer to

floating point. The code from NEXTCHAN to DONE is used

simply to manipulate various indices to use this internal

subroutine to read the 6 calibration values.

The code is not the most compact or efficient. Much effort
is taken to use the four statement internal subroutine to
read calibration values when it would be better to simply

2. Internal Description
3. Input Description
Not Applicable
4. Output Description
Not Applicable
5. Supplemental Information
repeat those instructions.
6. Flowchart

Not Applicable

Revised October 1980

LOGICOPS

g0

LARS Program Abstract 014

MODULE IDENTIFICATION

Module Name: LOGICOPS Function Name: SYSTEM SUPPORT

Purpose: Provides logical operations for FORTRAN programs

System/Language: CMS/ASSEMBLER

Author: L. E. England <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>