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Feature Space Dimensionality Reduction
Using Orthogonal Polyacmlals

et us consider a pattern recongition problem with j classes:

(Wi E igl, ecoy J

- ~th
et x!;i. be the £

to bave m components resulting from an m-tuple of measurements:

X.Eli @f-—lﬂ% (fl, (RN ] fm}

sample from class w,. Each sample is assumed

We may consider the coamponents of Xzi as having resulbed from the

gampling of & sample curve :Em( x).
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Thus, our basic set of features (f}.” - fm) syan a space of
dimension m.

If ¢ 2 is well sampled, m may be hrge,r leading to date storage
and processivg problems. It Vi.a then advantagecus to reduce the dimen-
sion of the feature space.

We consider feature space dimensionality reduction by curve fitiing
using oxrthogonal po]_.ynomials.

Suppose we desire to f£it the sample points of £,, (x), (fp, v8 xuj)
by a polynomial:

L

Ykﬂ‘xi} = ﬂopocx) 4 ces & SkPk('J’l,’J k<m

where
oolx) =1
Py(x) = xp () -y
pp{x) = xp(x) - aopy - Byp ()

Pyaa () = zp (%) = 0y op,(x) - Bywy o (x)

and, in.addition, the polynomials are pointwlse orthogonal; L.e.:

m
Z- py(x,) pylx)) = o 13
it g
Foraybhe[l] has shown ‘i;ha‘t thz coefficients cai ¥ Bi » 8y can be
determined in a simpie, iterative fashion.
If we now let our semple curve be vepresented by yk(x), then we
obtain a new set of fgatuﬁrez; -given by the coefficients (s o? 2003 sk) >

and the dimension of our new feature space is k + 1.



A further vestriction on the polynondal yk(x} is that k be reatricted
such taht k + 1 < mj this then insures a reduction in dimensionality.
To apply this to the patﬁern recognition problem we may proceed
as follows:
Find & aamber k.t such that all members of the ith pattern class
may be represented to within a prescribed error by a polynomial of
degree kin Also, find a numbexr kixﬁx such that kmax > ki 1wl eoey Jo

Thus we have

fﬂi = sf,o?o o Bms;ipkl
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As an exemple, suppose we have @, , @, U‘)3 and we £ind thet for any
sample in class @y avd a certain prespecificd error, we can repregent
all elements in oy by polyacmials of proper degree < kl Here we may

Limit ourselves to k . = 25, then k) may be 16
kz may be 18
k3 may be 23

This does not mean that all elements of @y require polynomials of degree

16, and hence for £,y some 8, 4 WAY be 0; i.e.
é?:i.
- T By Jp 4 where soue 8y 5 xay be O for some members of
,j::O

clasg . Thus our new set of features for the patitern recognition
problem are to coefficlents: s 207 °°°? Egeg which are in feature space

of dimensionk, <k . < m.



Some Experimental Results

The procedure degcribed above vas applied to 100 samples of Dk-2
Spectrophotometer Ref].éetance curves taken frcm the leaves of Oats.
The variety within the species was not restricted in aﬁy way. The data
was normalized to en absolute scale O to 1, corresponding to 0 to 100%

reflectance.

(I) Aversge Mean Squave Error

Flgure I is a plot of the average m.s. error obitained for a glven
polynomial degree, The average is taken over all 100 samples. (The
m.8. error is actually smaller; four place accuracy was used and other
caleulations give a m.s. error of .00006:k at £6.)

(IX) Maximum Polynomial Degree

It was Tound that no sample regquired a polynomial of degree greater
than 30 for a m.s. exvor less than 6.4 x 1077,

(IXI} Maximsm Polynosiel Deviation

Although the m.s. error calculations themselves do not expliciﬂy
show it, inspection of plots of the difference between the actual curve
and the fitted curve bas shown a m deviation of 2% veflectance.
Furthemc;re the deviatibn is lavgest where the curve amplitude is largest.

(IV) "Comvergence" Properties

It was also found that, for a given m.s. error, most samples required

the same poiyanomial degree. Flg JT 1llustrates this for 2 m.s. error =

2.5 x 10'“"’.
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Two subsequent procedures may now be taken after we have accome
plished the sbove:

{1) Fezture Improvement Method

We may rank the features (fl, — fm) by some criterion
such as the Divergence Criterion of Marill end Gree ‘;3] The features
in m-spacé then have a certein rank. By date £itting we transform these
m dimensional features into Ky dimensional features for w;. We can
now compare the rank of our transformed features.

(2) Berarability Improvement

Suppose we take n semples for each of the classes ay and ma.,
These semples now occupy a portion of the m-dinensicnal space, and,
furthermore, the two classes may overlap. If we now apply the feature

reduction method we may be able to reduce this overlap.
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