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ABSTRACT

This paper introduces a method for comb‘ining multispectral and ancillary data in
remote sensing and geographic information processing for improvement in digital
classification and accuracy of extracting information. The method has the capabilities
of representing the uncertainty associated with observed data and providing plausible
reasoning in data analysis. This method is viewed from the standpoint of knowledge
engineering, and each source is considered as a piece of evidence which provides a cer-
tain measure of support to hypotheses. Each body of evidence also has a degree of reli-
ability which represents the relative quality of the corresponding data set in data
analysis. The degree of reliability and measures of support of the respective pieces of
evidence need to be represented numerically in order for multiple bodies of evidence to
be pooled. This paper focuses on formal approachs to the quantitative representations
of the degree of reliability and measure of support, and examines existing combining

functions of evidence.
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1. Introduction

As remote sensing and other data acquisition technologies have advanced in recent
years, there has been a trend towards exploiting remotely sensed data in conjunction
with other ancillary data in geographic information systems to extract more reliable
information {rom multi-attribute data bases. For instance, digital elevation data and
slope data make it possible to utilize topographic information together with remotely
sensed data for the purpose of land cover analysis. Climatic and meteorological data are

used as inputs for crop production estimates [1].

However, ancillary data in geographic information systems present several prob-
lems when combined with remotely sensed data in an automated classification. To
begin with, since spatial variation of the factor in ancillary data, such as vegetation
cover, soil type, or slope aspect, has an effect on the spectral responses obtained from
remote sensors, there must be significant but unknown interactions among multiple
data sources. So, while it is often reasonable to use the multivariate Gaussian distribu-
tion to represent multispectral data alone, this statistical model cannot be extended to
accommodate geographic or topographic data combined with remotely sensed data. As
well as these unknown interactions, there is a difficulty in describing the various data
types which have different units of measurement. The types of data to be combined
cannot be assumed to be commensurable. Moreover, some types of data may even be
nonnumerical. Such data cannot be treated jointly with other types of data by the con-
ventional multivariate methods. Because of the fact that the quantitative representa-
tion of the quality of these data depends on the expertise and intuition of the human

analyst, the methods for the analysis of multisource data may be ad hoc [1][2].

The initial purpose of this paper is to introduce a new method for combining mul-

tispectral data with other ancillary data in remote sensing and geographic information




processing. The traditional classification methods for the analysis of data in remote
sensing are based on Bayesian probability theory. Bayesian theory cannot represent the
uncertain state between TRUE and FALSE because it requires the constraint that the
sum of probabilities of an event and its complementary event should be equal to unity.
The method described here has the capabilities of representing the uncertainty associ-

ated with observed data and providing plausible reasoning in data analysis.

From the standpoint of knowledge engineering, each source of data can be con-
sidered as a piece of evidence providing a certain measure of support to each
hypothesis. Each piece of evidence also has a degree of reliability which represents how
reliable the corresponding data source of the evidence is for data analysis. If degrees of
reliability and measures of support are represented numerically, multiple bodies of evi-
dence can be pooled by using combining functions which already exist. The focus of
this paper is on a formal approach to the quantitative representation of degrees of relia-
bility and measures of support on the basis of statistical separability and the probabil-
ity density function of a feature, respectively. By this approach, we present a way of
modeling human reasoning under uncertainty - where the problem data or the decision

rules are not completely reliable - in pattern recognition and data classification.

2. Functions for Combining Evidence

This section describes various combining functions of evidence which already exist,
such as Dempster’s rule for combining evidence, the combining function of the measure
of belief in MYCIN, and the AND operator in fuzzy logic, and shows how they can be
applied to classification of the data in remote sensing and geographical information pro-
cessing. These functions must be able to combine multiple pieces of evidence in a con-

sistent manner.




In the sequel, it will be seen that the basic belief measure such as the basic proba-
bility measure in Dempster-Shafer theory, the measure of belief (MB) in MYCIN, or the
measure of membership in fuzzy set theory must be defined before applying one of

these combining functions of evidence to real-life problems.

Dempster’s rule for combining evidence {3

Let A represent the hypothesis that an observation X belongs to a certain class w.
Since we are interested only in whether X belongs to w or not, we can have a frame of
discernment © which has a single focal element A. This implies that the evidence sup-
ports precisely and unambiguously the hypothesis which is a single non-empty subset A
of ©. In this case, we can say that the evidence is limited to supporting A with a cer-

tain degree of support.

The degrees of support provided by such evidence are easily specified by formulat-
ing a simple support function. If s is the degree of support for A, where 0 < s < 1,

then the degree of support for a set B C O is given by;

0 if B does not contain A
S B) = {s if Bcontains A but B # © (1)
1ifB=6 ‘

The function S : 28 — [0, 1] defined above is called a simple support function
focused on A. S is also a belief function with basic probability measures m(4) = JA),
m©) =1 - JA), and m(B) = 0 for all other B CO. Now, we are ready to apply

Dempster’s rule of combination to simple support functions.



Let S; and S, be simple support functions based on different pieces of evidence, E;
and E,, respectively. Both S; and S, are focused on A. Assume that S has the basic
probability measure m;(A) = 8 and m(©) =1 ~ &, while S, has the basic probability
measure mo(A) = 85 and my(©) =1 -8, Figure 1 is a graphical interpretation of
Dempster’s rule of combination for these two simple support functions. Ouly the upper

right-hand rectangle, of measure (1 — 8;)/(1 = ), fails to be committed to A.

Based on Dempster’s rule of combination, the result of orthogonal sum S = 5@ S,

is another simple support function with basic probability measure as follows:

m(A) =1 - (1= 8)(1 - %) (2.a)
=4 t(1-9)s (2.b)
m(6) = (1 — 8)(1 — ) (3)

m(A) is the degree of support for A based on the combined evidence.

Combining function of MB in MYCIN

MYCIN is a computer-based medical consultation system devised by E.H. Shortliffe
[4]. MYCIN uses measures of belief and disbelief (MB, MD) to quantify degrees of belief
and disbelief of human experts in a hypothesis given a piece of evidence. There are
several types of combining functions in MYCIN, one of which combines measures of
belief (or disbelief) in a hypothesis given multiple bodies of evidence into the combined

measure of belief (or disbelief) in the same hypothesis given the combined evidence.




This subsection introduces the combining function for measure of belief.

Let MB|A,E|] and MB{A,E,] represent the measures of belief on the hypothesis A
given two bodies of evidence, E| and E, respectively. The combined measure of belief

in A based on the new evidence £,&FE, is given as:
MB[szl&EZI =MB[AaEl] +(1 - MB[ArEl]yMB[A’EZ] (4)

This function states that the combined measure of belief is stronger than any measure
of belief based on a single piece of evidence. This implication accords with our intui-

tion that several concordant indicators reinforce each individual indicator.

Comparing Eq. (2.b) and Eq. (4), it is seen that they produce exactly the same
result. The combining function used in MYCIN is a special case of Dempster’s rule of

combination when Dempster’s rule is applied to simple support functions.

AND operation in fuzzy logic

Fuzzy set theory was invented by L.A. Zadeh (5] by generalizing classical set
theory. This theory has been shown to have a much wider scope of applicability than
the ordinary set theory, particularly in the fields of pattern recognition and information
processing. Whereas a set in classical set theory is a collection of precisely specified ele-
ments in a sample space, a fuzzy set is a collection of objects which do not have a pre-
cisely defined criterion of membership. The elements in a fuzzy set are characterized
by a membership function, that assigns to each element a grade of membership which is
a real number in the interval [0, 1]. When we deal with a set in the ordinary sense of

the term, its membership function can take on only two values, 0 and 1.
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As fuzzy set theory was evolved from classical set theory, fuzzy logic is an
extended version of Boolean [6]. Fractional values of a membership function in fuzzy
set theory are interpreted as partial truth values in fuzzy logic. To combine non-
integer truth values, fuzzy logic defines the equivalents of the logical operators in ordi-

nary Boolean algebra. We examine in this subsection the AND operation in fuzzy logic.

Let A represent the same hypothesis as above, and let u;(A) and u,(A) represent
the truth values of an unclassified observation X on A given two different bodies of evi-
dence, E, and E,, respectively. By the definition of the AND operator in fuzzy logic, the

truth value of X on A based on the combined evidence, ©{A), is obtained as:
w(A) = uy(A) AND ug(A) = MIN{u\(A)u3(4)} (5)

where MIN is the ordinary minimum operator.
This operator has the following properties:

(1) The truth value based on the combined evidence depends on the truth values

based on each single piece of evidence.

(2) Commutativity, and associativity.

(3) A small increase in either of the component truth values cannot induce a strong
increase in the combined truth value.

(4) Complete certainty based on the combined evidence is implied only by complete
certainty based on both bodies of evidence.

(5) Complete uncertainty based on either body of evidence implies complete uncer-

tainty based on the combined evidence.




The combining functions of evidence reviewed in this section are applicable only
when the basic belief measures which they contain can be defined. The next section
shows a possible way of defining those measures based on a feature in data

classification.

3. Measure of Support

The term ‘‘measure of support” used in this paper refers to general measures
including the basic probability measure in Dempster-Shafer theory, the measure of
belief in MYCIN, and the degree of membership in fuzzy set theory. The measure of
support is not necessarily constrained to obey Bayesian probability theory. To apply
the combining functions of evidence described in the previous section to real problems,
the measure of support based on each piece of evidence must be represented in a
mathematical expression, either parametric or non-parametric. In this section, we
present a formal approach to the quantitative representation of the measure of support

given data sets in remote sensing and geographic information systems.

In our application, Euclidean distance can be used as a feature in data
classification to determine the degrees of support based on various data sets such as
multispectral, digital elevation, and digital slope data. Euclidean distance is one of the
simplest and most intuitive features in pattern classification. More importantly, it is a

good feature as a unifier of various types of numerical data to be combined.
Let d; be a random variable representing the Euclidean distance from the mean
vector to the observation vectors in w;. Then, we define the measure of support for the

class w; as




Bi(d) =1-P4{d;<d} =1-F4(d) (6)

where d denotes the Euclidean distance from the mean vector to a given observation
vector X, Pd'{digd} is the probability of the event {d;<d} for samples in w;, and
F4(d) is called the cumulative distribution function of d; Since the probability distri-
bution function is the integration of probability density function, the function B{-) has

the following properties:

(1) B;: [0, oo] -> [0, 1]

(2) Nonincreasing.

(3) B{0) =1, and B{oo) = 0.

Given an observation X, d is obtained by the definition of Euclidean distance. As d
increases to infinity, Fq(d) increases to unity. This corresponds to the human intuition
that the disbelief in the hypothesis of X belonging to w; increases as the Euclidean dis-
tance between the mean and X increases. Therefore, if the reciprocal of Euclidean dis-
tance is interpreted as the weight of evidence, then 1 — F (d) may be considered as the
measure of support for the hypothesis of X belonging to w; Although B{‘) is a non-
probabilistic measure, it cannot be interpreted as a purely heuristic measure because it

is derived from the probability density function.

Euclidean distance is a useful distance measure by which satisfactory results in
data classification can be produced when the measurement vectors of each class tend to
cluster tightly about a typical or representative vector for that class. In most practical
cases, however, this method does not seem promising because the measurement vectors
of each class are correlated (between components) and dispersed (within components) to

various degrees. We need another measure which accounts for correlations and




-10-

dispersions. The Mahalanobis distance from an observation vector X to the mean vec-

tor M; of w; is defined as {7]

dy = (X -M)TT7HX - M) (7)

where I; is the covariance matrix of the class w; This measure is very useful when it is

desired to incorporate statistical properties in a distance measure.

For any unclassified measurement X, the measure of support for the hypothesis of
X being classified into w; is computed by B{d,,) instead of B{d), where djs and d are as
defined above. In this manner, correlations and dispersions of samples are taken into

account in this method.

The results of applying this measure for the classification of multispectral data
combined with digital elevation and slope data will be demonstrated during the presen-

tation.

4. Degree of Reliability

Degree of reliability is a relative quality factor for a source of data. Since all the
data sets from different sources are in general not equally reliable, we have to represent
degrees of reliability numerically to take into account this data quality in data
classification. The numerical value of the degree of reliability for a source may be taken
as the maximum value of measure of support for a hypothesis based on the body of evi-
dence obtained from the source. The measure of support is a maximum when the

hypothesis is absolutely certain based on the body of evidence.
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Ideally, we would like to quantify the degree of reliability on the basis of probabil-
ity of error. But it has been observed that computing probability of error is often not
feasible. Statistical separability is an alternative. Using separability information for the
quantitative representation of degree reliability seems to be natural if we keep in mind

that we are assigning reliability factors for data classification.

For example, the Jeffries-Matusita (J-M) distance is a measure of statistical separa-

bility of pairs of classes. Formally, it is defined as [ollows [8]:

1
= {,[([\/IT(X[“’:) - Vp(X[w;) PdX ’ (8)

where p(X]w;) is the probability density function for class +. When the classes are

assumed to have normal density functions, Eq.(8) reduces to
i = Vig -] (%)

where « is the Bhatacharyya distance which is defined as [9]

E;+ E; -1

a = ‘;‘(M;‘ DT(

[ | (Z; +EJ)| /2]

(10)

The average J-M distance over class pairs is computed by




N N
Jave = 3 3, Plwi)P(wy) Jij (11)

i=15=1

where N is the number of classes, and P(w;) is a priori probability of class w;. J,,, has a
maximum value of V2. Therefore we define the degree of reliability by dividing J,,, by
V2 as follows:

R=22 =33 Au)Pu)Vi- (12)

The effect of the negative exponential term is to give an exponentially decreasing
weight to increasing differences between the class density functions, which coincides
with human reasoning in quantifying the relative quality of the respective data sources.
As a result, the degree of reliability proposed here has a saturating behavior. As a
matter of fact, in formulating the degree of reliability from the statistical separability,
we may employ any separability measure which has the saturating behavior, such as

the average transformed divergence.

5. Summary

In this paper we have presented a new method for combining multispectral and
ancillary data in remote sensing and geographic information processing. The method is
viewed from the standpoint of knowledge engineering so that it has the capabilities of
representing the uncertainty associated with observed data and providing plausible rea~

soning in data analysis. Each source of data is considered as a piece of evidence which
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provides a certain measure of support to hypotheses concerning data classification. The
key aspects of this method are the quantitative representations of measure of support

and degree of reliability of the respective data sources.

The function of measure of support is derived from the probability density func-
tion of a feature selected for classification purposes. Therefore, although the measure
of support is not a probabilistic measure, it need not be interpreted as a completely
heuristic measure. Several combining functions of evidence have been examined that
pool multiple bodies of evidence into a combined evidence. The degree of reliability is
the relative quality of each source of data. It has been proposed that this quality factor
can be numerically represented on the basis of the statistical separability information

over class pairs.

In conclusion, the method described in this paper is intended to suggest a way of
modeling human reasoning under uncertainty in pattern recognition and information
processing, especially where the observed data or the decision rule are not 100% reli-
able. This technique is under implementation, and the result of classification experi-
ments with Landsat MSS data combined with digital elevation and slope data will be

demonstrated during the presentation.
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