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ABSTRACT

Neural networks have been successful in image classification and have shown
potential for classifying remotely sensed data. This paper presents classifications of
multi-type Landsat Thematic Mapper (TM) data using neural networks. The Landsat
- TM image for March 23, 1987 with accompanying ground observation data for a
study area in Miami County, Indiana, U.S.A. was utilized to assess recognization of
crop residues. Principal components and spectral ratio transformations were per-
formed on the TM data. In addition, a layer of the geographic information system
(GIS) for the study site was incorporated to generate GiS-enhanced TM data. This
paper discusses (1) the performance of neuro-classification on each type of data, (2)
how neural networks recognized each type of data as a new image and (3) comparis-
ons of the results for each type of data obtained using neural networks, maximum
likelihood and minimum distance classifiers.

INTRODUCTION

Artificial intelligent networks have been applied to image classification of a variety
of remotely sensed data, including Landsat Multispectral Scanner (MSS) data
(Benedikisson, et al., 1990a), Thematic Mapper (TM) data (Hepner et al., 1990 and
Civco, 1991), Advanced Very High Resolution Radiometer (AVHRR) and Scanning
Multispectral Microwave Radiometer (SMMR) data (Key et al., 1989), synthetic aper-
ture radar (SAR) data (Decatur, 1989), and very high dimensional data - more than
20 channels (Benedikisson et al, 1990b). Most of them showed promising results
compared to traditional classification methods using maximum likelihood and
minimum distance and great potential. A major advantage of neural network
classifiers is that an assumption about distribution of data is not needed. The neural
network classifier is able to extract automatically the features of data used in training
and to apply them to the classification of data for the entire image.

For an early Spring image, classification of crop residues would involve much con-
fusion between crop residues and bare soil because of low solar angle and high soil
moisture. Crop residue is the portion of a crop that remains in the field after harvest.
It is an important natural resource — not a waste as some have termed it (Oschwalid,
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1978). The residue left in a field can reduce soil erosion and protect water quality.
Therefore, the image data have to be enhanced before classification in order to

select representative training samples. Incorporating some GIS layer information may
also help classification of crop residues.

The objective of this study was to investigate performance of neuro-classification
of muiti-type of remotely sensed data. The data inciude Landsat TM data, the
transformed Landsat TM data produced by using principal components and spectral
ratioing and the GiS-enhanced data generated by using digital land ownership infor-
mation. Comparisons of classification results by applying neural networks, minimum
distance and maximum likelihood were also made.

NEURO-CLASSIFICATION REVIEW

Benediktsson et al. (1990a) compared the classification performances of neural
networks and statistical methods on a Landsat MSS data set augmented with topo-
graphic information including elevation, siope and aspect. The neural networks used
were configured as a three-layer back-propagation network with full interconnections
between adjacent layers; the delta rule and the generalized deita rule were utilized.
Results showed that the neural network approach was more accurate than the statist-
ical methods in terms of classification accuracy of training data. in another study,
Benediktsson et al. (1990b) classified simulated high resolution imaging spectrometer
data using several neural networks and statistical methods. They used twenty-, forty-
and sixty-band data sets. The statistical approaches obtained the better results in all
cases because the simulated data used in the study were generated to have a Gaus-
sain distribution.

Hepner et al. (1990) concluded that the neural network classifier with a back-
propagation algorithm, when using a minimal training data set, performed well for ail
areas including those for which the conventional supervised maximum likeiihood
method did not. In their study, a four-band Landsat TM data set (bands 1, 2, 3 and 4)
associated with four broad land cover classes was classified using a three-layer
back-propagation network. Civco (1991) classified a Landsat TM imagery for fifteen
different land cover classes using three- and four-layer (one and two hidden layers,
respectively) back-propagation networks. The accuracy results from the lumped
seven-class land cover data showed that the maximum likelihood classifier performed
generally better than the neural networks.

A merged image of AVHRR and SMMR data for an Arctic area was classified by
Key et al. (1989) using traditional and neural network classifiers. The network was
three-layered. They found that the neural network classifier had greater flexibility than
the maximum likelihood classifier for classifying indistinct classes, such as those con-
taining pixeis with spectral values significantty different from the pixels in the training
areas. in a classification of SAR data with three classes, Decatur (1989) concluded
that the neural network classifier presented better resuits than the Bayesian classifier
when accurate assumptions about probabiiity density functions could not be make
and a priori probability could not be given. However, it should be pointed out that in

his study only three distinctive land-cover types were used and that SAR data gen-
erally do not have a Gaussian distribution. '




DATA

Site D n

A study area of approximately 10.36 km? was comprised of sections 3, 4, 9 and 10
located in T28N, RSE of Richland township, Miami County, indiana. Land cover for
these sections included comn residues, soybean residues, grassiand, forests, roads,
an abandoned railroad, farmsteads and the Eel River. Portions of the area are owned
by 58 farmers. This area is representative of much of northern Indiana and other
states of the midwestem U.S.

Landsat TM Data

A Landsat TM scene acquired 23 March 1987 was used in this project, along with
accompanying ground observation data for section 9. Aerial photographs from 1987
for this study area were available. The U.S. Geological Survey 1:24,000 topographic
map of the Roann, Indiana Quadrangle was used as a referencs. Principal com-
ponents and spectral ratioing transformations were performed on the TM data, and
two transformed image data sets were produced. The corresponding ownership map
was digitized using ERDAS (ERDAS, 1988), and an ownership boundary data layer
registered to 30-meter TM data was generated.

Transformed Data

Principal components transformation was performed to enhancs images for max-
imum contrast and to make images visually more interpretable. Although principal
components transformation does not enhance separability for the traditional
classification techniques (Richards, 1987), it was employed to investigate whether
neural network classification techniques perform differently after such a transforma-
tion. Moreover, considering the awareness of the lower-order principal components
(Mather, 1987), all seven components were included.

An enhanced image can be generated from the division of digital values in one
spectral band by the corresponding values in another band. These ratios clearly por-
tray the variations in the slopes of the spectral reflectance curves between the two
bands involved. In this study the difference between crop residues and bare soil was
greater in band 5 than in band 6 for March data. Therefore, spectral raticing was
applied for crop residue discrimination. The function of this computing procedure was
a modification of Normalized Difference Vegetation Index (NDVI) (Mather, 1987) and
was defined as:

Xs - X,
—X5+X-, x 255

The symbols X and X, refer to values of Landsat TM bands 5 and 7, respectively.
The transformed data were used to replace. the thermal infrared band of data (band
6) of the original TM data.

GIS-Enhanced Data

The GIS data layer used in this study was the ownership map assodiated with the
four sections studied. The map was added as an eighth band to the Landsat ™
image data called GiS-enhanced TM data. The reason for choosing the ownership




layer were that the ownership boundaries matched field boundaries. Each enclosed
region represented one owner and was coded with a digital number (l.e., each was
numerically uniform), and thus the classification results may be improved because of
the unique digital number inside each ownership polygon. It is assumed that each
owner would apply the same residue management techniques to each field with an
ownership unit.

METHODS

Neural Networks

The neural network used in this study, as shown in Figure 1, was configured as a
three-layer back-propagation network, including input, hidden and output layers, with
full interconnections between adjacent layers. The input layer was composed of an
Nx8 array of binary-coded units corresponding to N bands (N =7 or 8 in this study) of
the 8-bit Landsat TM data. Thirty-five units were assigned to the hidden layer, and
seven thermometer-coded units in the output layer referred to seven land cover
classes. With thermometer coding, for example, class 4 of the seven categories
would be represented as 1 in four most-significant bits and 0 in the remaining three
bits (e.g. 4 =1 1 1 1 0 0 0). For the training of a neural network, the TM data were fed
to the input layer and propagated through the hidden layer to the output layer, and
then the differences between the computed outputs and the desired outputs were cal-
culated and fed backward to adjust network parameters. This process continued until
the training arrived at a desired error. Additional details of the network are given in
Zhuang (1990).

The neural networks simulator used was NASA NETS (Baffes, 1989), which runs
on a variety of machines including workstations and PCs. The simulator provides a
flexible system for manipulating a variety of neural network configurations using the
generalized deilta back-propagation learning algorithm. The NETS software used for
image classification was run on SUN SPARC workstations. Interface routines were
developed to make NETS suitable for image classification (Zhuang, 1990).

Classification

The neural network (NN), minimum distance (L1) and maximum likelihood (ML)
classifiers were applied to the Landsat TM data. The minimum distance classifier
used in this study classified an unknown pixel by computing the L1 distance
(Richards, 1986) between the value of the unknown pixel and each of the information
class means, and then assigned the unknown pixel to the "closest” information class.
Under the assumption of normality, the maximum likelihood classifier categorized a
given pixel by computing the statistical probability of the pixel being a member of par-
ticular information class. The neural network classified an unknown pixel by applying
the knowledge leamed from a training data set to the pixel. For the study area, train-
ing fieids were selected for seven different land cover classes based on the
corresponding ground observation data and spectral features. The classes were:
corm/50% (com residue, 50% ground cover), com/83% (com residue, 83% ground
cover), forest, pasture/grass, river, soybeans/64% (soybean residue, 64% ground
cover) and bare soil. The training data for class river were obtained by unsupervised
classification (clustering) of the portion of the images containing the river.




For the principal components transformed data set, a classification using a neural
network was performed. The neural network classifier recognized the transformed
data, which was uncorrelated after transformation in the multispectral vector space,
as a new image and determined the features from the transformed training data. For
the spectral ratioing transformed data set, the classification using maximum likelihood
and minimum distance were executed in addition to a neuro-classification. For the
GIS-enhanced data set, it was not possible to complete the maximum iikelihood
classification because the second-order statistics of the land ownership layer were
not meaningful. The neural network classifier was utilized because it need not
address the second order statistic, covariance. Since the minimum distance classifier
considers only the first order statistic, mean, it was possible to use this classifier for
classification of the GiS-enhanced data set.

RESULTS AND DISCUSSION

Tables 1 through 9 show accuracy data obtained by using minimum distance (L1),
maximum likelihood (ML) and neural networks (NN) for the Landsat TM data set, prin-
cipal components (PC) and spectral ratioing (SR) transformed data sets and the
GIS-enhanced TM data set. Separate testing data were selected from each muiti-
type of image. As listed in Tables 1, 2 and 3, L1, ML and NN achieve for the entire
testing data overall dassification accuracies of 73%, 96% and 91%, respectively.
Table 4 presents the results for the PC transformed data set obtained using a neural
network. The accuracy was 90%. Tables 5, 6 and 7 illustrate the results with 84%,
96% and 91% accuracies for the SR transformed data set obtained using L1, ML and
NN. The testing resuits with 71% and 95% accuracies for the GIS-enhanced TM
data, which were classified by using L1 and NN, are listed in Tables 8 and 9.

The neural network classifiers used in this study not only presented promising
classification results for the muiti-type Landsat TM data sets but also did recognize
each type of image data as a new data set. The accuracies of entire testing data set
for four neural network classifications are all more than ninety percent, as shown in
Tables 3, 4, 7 and 9. Therefore, it can be conciuded that NN could classify a variety
of different format images and provided great accuracy to each of them.

Compared with the performances of minimum distance and maximum likelihood,
the neural network used for each individual type of image in this study performed
consistently well. For the Landsat TM data and the SR transformed data, the NN
presented 91% accuracy though it was five percent less than the accuracy obtained
by ML. In addition to 90% accuracy for the PC transformed testing data set, NN
achieved higher accuracies for crop residue classes in which we were interested than
those of the Landsat TM data. For the GiS-enhanced TM data, ML could not work
because of the reason described before. However, NN performed 95% accuracy for
the entire testing data set and more than 88% for each individyal class. Moreover, it
can be noticed that the performance of neural network classification was improved
when incorporating the digital land ownership data, compared to the performances
exhibited from other three type of data sets (Landsat TM, PC and SR). Of all nine
classifications done in this study, the neural network classifiers presented less confu-
sion between the bare soil class and any other class.




The map resulis for each type of image are collectively depicted in Figure 2.
These map results show clearty the comparisons among classifications of each type
of images and the four neural network classifications. Confusions for each image
reflected in its confusion matrix listed in Tables 1 through 9 are aiso illustrated in Fig-
ure 2. The improvement with neural network classification on the GIS-enhanced TM
data mentioned above is clearly shown in the corresponding map print-out.

Maximum (Max) and Root Mean Square (RMS) errors are two parameters to mon-
itor and adjust the training for neural networks in this study. A Max error was the
maximum among the differences between each actual output and desired output in
the output layer, whereas a RMS error referred to the root mean square of the differ-
ences. The training performance for each type of data set is illustrated in Figure 3
and 4. Each training stopped at a Max error of 10%. As shown in Figure 3 and 4, it
took more than two times as long to train the transformed data sets than the Landsat
TM data set, while the training for the Landsat TM data was slightly different from that
for the GiS-enhanced TM data. In terms of the training convergency, it can be seen
that the neural network trainings for the PC and SR transformed data were less
smooth than that for the Landsat TM data. Moreover, the training of the neural net-

work used to classify the GiS-enhanced TM data converged faster than other three
trainings.

CONCLUSION

Neural networks can be used to classify multi-type images and provided very
promising results. A neural classifier recognized each of multi-type images as a new
data set no matter whether it was transformed or generated. By incorporating the
digital land ownership data, the classification for crop residues using a neural network
achieved better accuracy than those from other types of data sets. The neural net-

work classifiers in this study presented less confusion between the bare soil class
and any other class.
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Figure 1. The back-propagation neural network structure.
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Table 1. Confusion matrix for the Landsat
TM testing data classified using minimum
distance (L1) aigorithm.

Table 4. Confusion matrix for the PC
transformed testing data classified
using neural network (NN) approach.
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Table 2. Confusion matrix for the Landsat
TM testing data classified using maximum
likelihood (ML) aigorithm.

Table 5. Confusion matrix for the SR
transformed testing data classified
using minimum distance (L1) algorithm.
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Table 6. Confusion matrix for the SR
transformed testing data classified
using maximum likelihood (ML) algorithm.
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Table 7. Confusion matrix for the SR

transformed testing data classified
using neural network (NN) approach.
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Table 8. Confusion matrix for

the GIS-enhanced TM testing data

classified using minimum distance (L1)
algorithm.

™ Ground obeervation classes | Total
classes comect C/50% Caa% F P
Conmvso% 81% | 580 2 0 2 4| S
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Table 9. Confusion matrix for
the GiS-enhanced TM testing data
classified using neural network (NN)
approach.
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Figure 3. Root Mean Square errors
for all neural trainings.

Figure 4. Maximum errors
for all neural trainings.
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Flgure 2. Landsat imagery and the classification results of multi-type images.
(Legends are associated with the classification resuits.)



