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Abstract

As the number of spectral bands of high spectral resolution data increases, the capability
to detect more detailed classes should also increase, and the classification accuracy
should increase as well. Often the number of labeled samples used for supervised
classification techniques is limited, thus limiting the precision with which class
characteristics can be estimated. As the number of spectral bands becomes large, the
limitation on performance imposed by the limited number of training samples can
become severe. A number of techniques for case-specific feature extraction have been
developed to reduce dimensionality without loss of class separability. Most of these
techniques require the estimation of statistics at full dimensionality in order to extract
relevant features for classification. If the number of training samples is not adequately
large, the estimation of parameters in high dimensional data will not be accurate enough.
As a result, the estimated features may not be as effective as they could be.

This suggests the need for reducing the dimensionality via a preprocessing method that
takes into consideration high dimensional feature space properties. Such reduction should
enable the estimation of feature extraction parameters to be more accurate. Using a
technique referred to as Projection Pursuit, such an algorithm has been developed. This
technique is able to bypass many of the problems of the limitation of small numbers of
training samples by making the computations in a lower dimensional space, and
optimizing a function called the projection index. A current limitation on this method is
that as the number of dimensions increases, it is highly probable to find a local maximum
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of the projection index that does not enable one to fully exploit hyperspectral data
capabilities. A method to estimate an initial value that can lead to a maximum that
increases significantly the classification accuracy will be presented. This method leads
also to a high dimensional version of a feature selection algorithm, which requires
significantly less computation than the normal procedure.

I. Introduction

A study of high dimensional space characteristics and its implication for hyperspectral
data analysis, reported previously [1, 29], presented a number of unusual characteristics
of high dimensional data. Examples are that  the volume in a hypercube has a tendency to
concentrate in the corners, and in a hyperellipsoid in an outside shell. From these and
others, it is apparent that high dimensional space is mostly empty. Multivariate data is
usually located in a lower dimensional subspace. As a consequence, it is possible to
reduce the dimensionality without losing significant information and separability among
classes, however, to do so, one must have a means for finding the right subspace. Another
consequence of these characteristics is that local neighborhoods are almost surely empty,
requiring the bandwidth of estimation to be large and producing the effect of losing detail
upon density estimation.

There has been some empirical and analytical research to determine what are adequate
numbers of training samples for a given number of features. It is well known that the
optimum number of features for classification is limited by the number of training
samples [2]. Fukunaga [3], for example, proved that in a given circumstance, the required
number of training samples is linearly related to the dimensionality for a linear classifier
and to the square of the dimensionality for a quadratic classifier. In terms of
nonparametric classifiers, including radial basis functions neural networks, the situation
is even worse. It has been estimated that as the number of dimensions increases, the
training sample size needs to increase exponentially in order to have an effective estimate
of the multivariate densities needed to perform a nonparametric classification [4] [5].
These limitations are what has been called the curse of dimensionality [6]. This condition
has restricted severely the practical applications of statistical pattern recognition
procedures in high dimensional data. Due to the difficulties of density estimation in
nonparametric approaches, a properly designed parametric version of a data analysis
algorithm may be expected to provide better performance where only limited numbers of
labeled samples are available to provide the needed a priori information.

High dimensional space characteristics can present problems to current feature extraction
algorithms, e.g. Principal Components, Feature Subset Selection, Discriminant Analysis
and Decision Boundary Feature Extraction [7]. Principal Component Analysis assumes
that the distribution takes the form of a single hyperellipsoid such that its shape and
dimensionality can be determined by the mean vector and covariance matrix of the
distribution [4, pp. 206]. A problem with this method is that it treats the data as if it is a
single distribution. Our goal is to divide this data into different distributions that represent
different statistical classes, thus our requirement is to base this division upon class
separability, a factor that this method ignores. As a consequence this method could merge
different classes necessarily harming classification accuracy.

Some authors have proposed algorithms by which a subset of features can be chosen from
the original set [8, p. 164 ff]. A problem with feature subset selection is that it considers a
subset of all linear combinations. Consequently it can be optimum in that subset only. In
order for a feature selection algorithm to be optimal, the search for a subset of features
must be exhaustive [9]. The number of combinations of bands increases exponentially as
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the dimensionality increases and, as a result, an exhaustive search quickly become
impractical or impossible.

Discriminant Analysis is a method that reduces the dimensionality optimizing the Fisher
ratio [10]. One of the problems with this method is that if the difference in the class mean
vectors is small the features chosen will not be reliable. If one mean vector is very
different from the others, its class will eclipse the others in the computation of the
between-class covariance matrix. As a consequence, the feature extraction process will be
ineffective. Finally, it performs the computations at full dimensionality, requiring a large
number of labeled samples in order to accurately estimate parameters.

Lee and Landgrebe [7] proposed an algorithm based directly on decision boundaries. This
method also predicts the number of features necessary to achieve the same classification
accuracy as in the original space. This algorithms has the advantage that it finds the
necessary feature vectors. Its only problem is that it demands a high number of training
samples for high dimensional space. This occurs because it computes the class statistical
parameters at full dimensionality. The authors suggested, for a further development, an
algorithm that will pre-process the data in order to reduce the dimensionality before using
this algorithm [11].

Another relevant characteristic of high dimensional space is the fact that the assumption
of normality will be better grounded in the projected subspace than at full dimensionality.
It has been proved [12] [13] that as the dimensionality tends to infinity, lower
dimensional linear projections will approach a normality model with probability
approaching one. Normality in this case implies a normal or a combination of normal
distributions.

For the circumstance where there are only a limited number of training samples, a new
method is required that, instead of doing the computation at full dimensionality, it is done
in a lower dimensional subspace. Performing the computation in a lower dimensional
subspace that is a result of a linear projection from the original high dimensional space
will make the assumption of normality better grounded in reality and increase the ratio of
labeled samples per feature, giving a better parameter estimation and better classification
accuracy. Such a preprocessing method of high dimensional data based on such
characteristics has been developed based on a technique called Projection Pursuit. The
preprocessing method is called Parametric Projection Pursuit [14] [15].

Parametric Projection Pursuit reduces the dimensionality of the data, maintaining as
much information as possible, by optimizing a projection index that is a measure of
separability. The projection index that is used is the minimum Bhattacharyya distance
among the classes, taking in consideration first and second order characteristics. It is
supervised due to the fact that it does use labeled samples to estimate the Bhattacharyya
distance under a parametric assumption: the Gaussian distribution of classes. Under that
assumption we estimate two parameters: the mean and the covariances. The calculation is
performed in the lower dimensional subspace where the data is to be projected. Such
preprocessing is to be used before a feature extraction algorithm and classification
process, as shown in Figure 1.

The preprocessing method developed in this present work will take into account a priori,
problem-specific information. It will be developed after considering the characteristics of
high dimensional space geometry and the statistics of hyperspectral data mentioned. Its
objective is to linearly combine features, at the same time preserving the distance
between classes. In remote sensing data analysis, the best projection would certainly be
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the one that separates data into different meaningful clusters that are exhaustive,
separable, and of information value [8, pp. 340].

In Figure 1 the different feature spaces have been labeled with Greek letters in order to
avoid confusion. Φ  is the original high dimensional space. Γ  is the subspace resulting
from a class-conditional linear projection from Φ  using a preprocessing algorithm, e.g.
Parametric Projection Pursuit. Ψ  is the result of a feature extraction method. Ψ  could be
projected directly from Φ  or, if preprocessing is used, it is projected from Γ . Finally Ω
is a one-dimensional space that is a result of classification of data from Ψ  space. Note
that all three procedures, preprocessing, feature extraction and classification use labeled
samples as a priori information.

The approach proposed here is to make the computations in a lower dimensional space,
i.e. in Γ  instead of Φ , where the projected data produce a maximally separable structure
and which, in turn, avoids the problem of dimensionality in the face of the limited
number of training samples. Further, a linear projection to a lower dimensional subspace
will make the assumption of normality in the Γ  subspace more suitable than in the
original Φ . In such a lower dimensional subspace any method used for feature extraction
could be used before a final classification of data, even those that have the assumption of
normality.

Class Conditioned
  Pre-processing

High Dimensional Data

Classification/AnalysisFeature Extraction

Dimension Reduced

Dimension Further Reduced

Sample Label 
  Information

Φ
Γ Ψ Ω

Fig. 1. Classification of high dimensional data including preprocessing of high dimensional data

Still, an algorithm is needed to find an initial choice for key parameters that enable it to
arrive at an acceptable, though perhaps suboptimum solution. In a non-parametric version
of Projection Pursuit, density approximation and regression, the use of a two stage
algorithm has been proposed in order to estimate the orientation with a better rate of
convergence [16]. The first stage uses undersmoothed density estimators to estimate the
orientation. The second stage uses those orientations for another estimation with a correct
amount of smoothing. An analogous idea will be developed here for Parametric
Projection Pursuit.

II. Projection Pursuit and Dimension Reduction

Projection Pursuit has been defined as [4, pp. 208-212] "... the numerical optimization of
a criterion in search of the most interesting low-dimensional linear projection of a high
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dimensional data cloud." In the original idea, Projection Pursuit was used to select
potentially interesting projections by the local optimization over projection directions of
some index of performance. Projection Pursuit automatically picks a maximally effective
lower dimensional projection from high dimensional data by maximizing or minimizing a
function called the projection index. This technique is able to bypass many of the
problems of high dimensionality by making the computations in a lower dimensional
subspace.

The idea of a projection index other than variance was discussed in the late sixties and
early seventies. The first successful implementation was done by Friedman and Tukey
[17]. The idea was extended to projection pursuit regression [18] [19], and projection
pursuit density estimation [20] [5]. Huber worked on the connection between projection
pursuit and some other fields such as computer tomography, time series, and finite
sample implementations [21].

For a mathematical interpretation, define the following vectors and functions:
• X is the initial multivariate data set (dxN). A geometrical representation will

imply that it is a set containing N data points in a d-dimensional space.
• Y is the resulting dimensionally reduced projected data (mxN).
• A is the parametric orthonormal matrix (dxm) where Y = ATX.

Projection Pursuit is the method that computes A optimizing the projection index
I(ATX). Sometimes the projection index is written in the form I(A) or I(a) in cases
having a parametric vector instead of a matrix.

The choice of the projection index is the most critical aspect of this technique. What
optimality means in this case depends on what function or projection index one uses. As
mentioned before in remote sensing data analysis, optimality would certainly imply a
projection that separates data into different meaningful classes that are exhaustive,
separable, and of information value [8, pp. 340].

III. Parametric Projection Pursuit

Many nonparametric and unsupervised indices have been proposed with the purpose of
maintaining the distance among clusters. One main advantage they have is the lack of
assumption of an specific structure in the density functions and the lack of requirement of
apriori knowledge in terms of labeled samples. That made those indices suitable for
unsupervised approaches. At the same time those indices have significant disadvantages.
There are a large number of free parameters in the estimation of the projection indices
and the exact number is not well known in advance. This could lead to the problem of
overfitting. In the case of having apriori knowledge in form of labeled samples, the
unsupervised indices are not able to exploit such information. Consequently, these
indices do not allow sufficient flexibility to the analyst in order to define what interesting
means on a case-by-case basis. Another disadvantage is related with the fact that some
authors have suggested that data must be centered at zero and spherized in order to spread
the data equally in all directions [4] . That action causes an enhanced contribution from
noisy variables.

 In the face of the disadvantages of the nonparametric and unsupervised projection
indices discussed above, a parametric and supervised model is proposed in the present
work. The analyst would use labeled samples in order to define classes explicitly,
assuming the Gaussian distribution where only two parameters are required to be
estimated. In addition, a convenient statistical distance among the classes plus some
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constraints on matrix A give sufficient flexibility for the development of a projection
index that leads to the desired optimal situation.

Discriminant Analysis and Parametric Projection Pursuit are similar processes in terms of
optimizing a criterion function I(ATX) analytically or numerically. The main difference
with Discriminant Analysis is the order of the process as shown in Figures 2 and 3.

Data

Estimation of
parameters at 
full dimensionality.
Examples:
         and M x's Σx 's

Estimation of
 A such that 
          is 
optimized.
I(ATX)

Projection

Y = ATX

Fig. 2. Discriminant Analysis process order.

Observe that Projection Pursuit starts with an a priori matrix ˆ A , then the parameters in a
low dimensional space are estimated and matrix A is recomputed by optimizing the
projection index I(ATX). Because the optimization is performed in a low dimensional
subspace, a numerical method is needed. Note that the parameters in Projection Pursuit
are functions of the parametric matrix A. Discriminant Analysis is the opposite; A is a
function of the parameters. The computations at a lower dimensional space enables
Projection Pursuit to better handle the problem of small numbers of samples, the Hughes
phenomena3 [22], high dimensional geometrical and statistical properties, and the
assumption of normality as previously mentioned. As seen in Figure 3, there is a
feedback path from the output of the projected data Y to the block where the parameters
are estimated again in the subspace. This enables the process of computing A with the
new set of parameters. This process is continued until the increment in the iterations is
below a certain level.

Estimation of
parameters at 
subspace.
Examples:
         and MY' s ΣY ' s

Recomputation
 of  A such that 
          is 
optimized.
I(ATX)

Projection

using an
initial guess
matrix

Y = ˆ A TX

ˆ A 

Output
Projection

Y = ATX

Data

Fig. 3. Organization of the Projection Pursuit process.

                                                
3 By Hughes effect is meant the effect whereby, for a fixed, finite number of training samples, as the

number of features is increased, the classification accuracy first improves to a peak value, then
declines. The decline is due to limitations on the precision of class statistics estimation resulting from
the limited training data.
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Given the objective of enhanced classification accuracy, we proposed the use of
Bhattacharyya distance between two classes as the projection index, because of its
relationship with Bayes classification accuracy and its use of both first and second order
statistics [23]. The projection index for the two class case is thus:

I(A
T

X) = 1
8 (M2Y − M1Y )

T Σ
1Y

+ Σ
2Y

2

 
 
  

 
 

−1

(Μ2Y − Μ1Y) + 1
2 ln

Σ
1Y

+ Σ
2Y

2

Σ
1Y

Σ
2Y

 

 

 
 
 

 

 

 
 
 

(1)

where MjY and ΣjY are the mean vector and the covariance matrix respectively of the jth

class in the projected subspace Y. In the case of more than two classes the minimum
Bhattacharyya distance among the classes can be used after the Bhattacharyya distance is
calculated for all combinations of pairs of two classes. Then the minimum of the
Bhattacharyya distance is chosen as in (2).
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(2)

C is the number of combinations of pairs of two classes. Assuming there are L classes
then:

C = L!
2!(L − 2)! (3)

From ancillary sources, the analyst can define the classes and estimate the mean and
covariance of each.

The computation of the parametric matrix A can lead to some problems. The columns of
A should be linearly independent to ensure redundancies in the features of the projected
data are avoided. Additionally there are obstacles such as the arrival at a local optimum
and the computation time. Such difficulties increase when the number of dimensions is
large in the original space Φ , as in the case of AVIRIS data with 220 bands. Reducing
the dimensionality directly from 220, for example, to 20 and avoiding such problems in
the process of optimization of the projection index could be difficult. In order to
overcome such obstacles, a set of constraints on the matrix A are imposed.

Projecting Adjacent Groups of Features: Sequential Projection Pursuit

In this section the special constraints imposed on the A matrix will be explained. The
approach is to divide the bands in the space Φ  into a partition of groups of adjacent
bands in order to project each group to one. A can be rewritten as: A = [A

1
  A

2
  ...  A

Col-1
A

Col
], were A

i
 is the ith column of A. Every column of A will be filled with zeroes, except

at a group of adjacent positions, i.e., Ai = [0 ...  0  ai 0 ... 0]T where ai is defined as:

a i = a1i a2i ... ani i[ ]T
. Ai will combine ni adjacent bands. In order to have a partition

of groups of adjacent bands, the columns must be orthogonal, and no two A
i
's may have

nonzeroes at the same locations. In other terms, for all i, j such that for i≠ j   AiT.Aj = 0.
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The physical interpretation of the constraints is shown in Figure 4. Every group of ni
adjacent bands is linearly combined to produce one feature. No two groups will have the
same feature. The spectral response of every element of the multispectral data is
projected to a lower dimensional subspace preserving the order of the features of the
spectral response for the purpose of human interpretation. These projections correspond
in Figure 1 to a mapping from the original space Φ  to the subspace Γ .

Fig. 4. Sequential Parametric Projection Pursuit.

Advantages that this set of constraints provide to the optimization process are (1) it is
fast, (2) it preserves the order of the features in the class spectral response, (3) it is
flexible in terms of the number of adjacent bands to be combined, (4) it can take into
consideration any available ground truth information and the interest of the analyst, (5)
the Ai columns are orthogonal, allowing the algorithm to avoid linear dependencies
among Ai's, (6) it will make easier the process to construct an initial choice for matrix ˆ A .
Still, there is an issue to be solved: how is the optimization of the projection index to be
implemented in such a scheme of linear combination of bands? The linear combinations
of adjacent bands are calculated in a way that optimizes the global projection index in the
projected subspace where the data set Y is localized.

This algorithm will project every group of neighboring bands into one feature,
maximizing the global projection index in the projected subspace Γ . The final number of
features is the dimensionality of the projected subspace. This algorithm can be time
consuming and the number of parameters that are required to be estimated is high. A
modification is performed to optimize sequentially and iteratively the projection index.
The rational of this is that at every iteration fewer parameters are estimated to perform
the optimization. This approach will be called Sequential Parametric Projection Pursuit.
The iterative procedure is as follows:

(1) An initial choice for every ai for every group of adjacent bands is made and stored.
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(2) Maintaining the rest of the ai's constant, compute a1 (the vector that projects the
first group of adjacent bands) to maximize the global minimum Bhattacharyya
distance.

(3) Repeat the procedure for the ith group where ai is calculated, optimizing against the
global Bhattacharyya distance while maintaining the aj’s constant, where i≠ j.

(4) When the last group of adjacent bands is projected, repeat the process from step 2
(compute all the aj's sequentially) until the maximization ceases increasing
significantly. The significant increment is relative to each iteration. If one iteration
(step 2 and 3) is complete and the percentage of maximization of the global
projection index is less than a threshold, then it stops the process.

Figure 5 shows the process. The arrow points to the vector that is optimized at each step
and the corresponding group of adjacent bands that are linearly combined to produce one
feature.

Fig. 5 Iterative procedure to maximize the global Projection Index.

In practice, due to the Gaussian assumption, the sequential training is faster and less
prone to local minima.

IV. Preprocessing Block Stages and the Initial Conditions

In order to avoid reaching a suboptimal local maximum instead of the desired global one,
the preprocessing block in Figure 1 is divided into two stages as shown in Figure 6. The
first one has the objective of estimating an initial choice of matrix ˆ A . That matrix is
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suboptimum with respect to the maximization of the global projection index. The
estimation of this parametric matrix is based on the initial vectors ˆ a i 's and the number of

adjacent bands ni combined in each group in the partition of features shown in Figure 4.
The second stage is the numerical optimization of the global projection index in order to
estimate A, as explained earlier it uses an iterative form of optimization.

Estimation of the Initial Choice 's for Each Group of Adjacent Bands

Each group of adjacent bands will have a set of trial values, ˆ a i 's. In this section we will

assume that the values of ni are given. The procedure to calculate these values will be

explained in the next section. The matrix ˆ A  will be constructed by choosing one trial
value, ˆ a i  from each set. Among these trial values there are two that are very significant.

The first one is based on the assumption that the mean difference is dominant in the
Bhattacharyya distance. The mean difference portion of the Bhattacharyya distance is:

Βhatt
M

=
1

8
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2
− M

1( )T Σ
1

+ Σ
2

2

 
 
  

 
 

−1

M
2

− M
1( ) (4)

The second is based on the assumption that the covariance difference is the part that is
dominant. The covariance difference portion of the Bhattacharyya distance is:
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2
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 
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This can be rewritten in the following form [23, pp. 455-457]:

BhattC =
1

4
ln Σ2

−1Σ1 + Σ1
−1Σ2 + 2I − nln4{ }

(6)



Projection Pursuit in Hyperspectral Data Analysis

Jimenez & Landgrebe -   11   - Printed November 23, 1999

O
U
T
P
U
T

Maximization

  Numerical
maximization

        of
D
A
T
A

                          First Stage

Estimation of preliminary      that maximizes:

Second Stage

Preprocessing 

ˆ A 

I ˆ A TX( )

Estimation of 
     

'sˆ a i

Estimation of
numbers of 
adjacent bands
combined

 'sni I(ATX)

Fig. 6. Preprocessing block.

The mean difference portion (BhattM) is maximized by the vector aMmax [23, pp. 455-457]:

a
Mmax

= M
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− M
1( )T Σ

1
+ Σ

2
2

 
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 

−1

(7)

In order to compute the vector that maximizes the covariance difference element, a prior
matrix Λ  must be computed. That matrix is defined as:

Λ = Σ2
−1Σ1 (8)

The vector that maximizes BhattC, aCmax, is the eigenvector of Λ that corresponds to the
eigenvalue that maximizes the function f(λi):

arg
λ i

maxf λ i( ) = arg
λ i

max λ i +
1

λi

+ 2
 

  
 

  
(9)

where λi is the ith eigenvalue of Λ. That vector optimizes the following linear
transformation:

J(d) = ln aT Σ2a( )−1
aTΣ1a + aTΣ1a( )−1

aTΣ1a + 2Id (10)

where d is the dimensionality of the data. It follows that aCmax maximizes BhattC.

These vectors and parameters are estimated to maximize the projection index in the one
dimensional projected feature where each group of adjacent bands will be projected. The
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vectors must be estimated for every combination of two classes. Those estimates depend
only on the groups of adjacent bands and are independent of the estimates of the other
groups. All these vectors are stored as a set of trial values for the a’s vectors. Each group
of adjacent bands will have a set of these trial values as a form of bank of possible a’s
vectors. Also in each bank a vector that averages all the features and vectors that select
only one feature in that group of bands will be stored. Assuming there are K classes and
ni bands in each group of adjacent bands, then the total number of initial choices ˆ a i 's in

the ith group of adjacent bands are:

Total = 2
K!

2!(K − 2)! + ni + 1 (11)

The first element corresponds to twice the number of every combination of two classes,
corresponding to aMmax and aCmax. The second corresponds to choosing one feature
from the ni possible ones and the third to averaging.

The process of building the initial choice of matrix ˆ A  from the estimated ˆ a i  stored in

each bank that belongs to each group of adjacent bands is similar to the iterative
procedure of the numerical optimization of the Sequential Projection Pursuit algorithm.
The procedure is as follows:

(1) Choose one ˆ a i  from each bank for every group of ni adjacent bands. Every

ˆ a i  belongs to the proper place in the ith column of ˆ A  that corresponds to the

ith group of adjacent bands.
(2) Maintaining the rest of the ˆ a i 's constant, choose the ˆ a 1 from the first bank of

samples that maximizes the global projection index.
(3) Repeat the procedure for each group such that the ˆ a i  is chosen from the ith

bank of samples, meanwhile the ˆ a j s for i ≠ j  will be held constant.

(4) Once the last ˆ a i  is chosen, repeat the process from step 2 until the

maximization converges or stops increasing significantly.

This process produces a suboptimal matrix ˆ A  that will be used with the numerical
optimization stage of the preprocessing block.  Note that the value of the ni's could not be
larger than the minimum number of samples per class. That will ensure a nonsingular
matrix Σi  for each class.

Observe that in the case of storing in each bank that belongs to each group of adjacent
bands only vectors that select one feature in that particular group, we would have a
Projection Pursuit version of feature selection for high dimensional data.

V. Estimation of the Number of Adjacent Bands ni
Combined in Each Group in the Partition of Features

The second block of stage one in Figure 6, which estimates the values of the ni's, will be
based on well-developed techniques of binary decision trees. Decision trees have been
used in machine learning systems for some time [24]. Also they have been applied in
pattern recognition and remote sensing image analysis [25]. An example of their
application is the design of decision tree classifiers where they have been used to
partition the space in developing decision rules [26]. Some authors have applied them in
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the design of hierarchical classifiers that decide at each node to which class a particular
sample belongs [27]. The basic idea of the decision tree is to break a particular complex
problem into a number of simpler ones that can be more easily solved. It is assumed that
when the solutions are combined an approximately optimum global solution results.

It has been demonstrated that an optimal decision tree is an N-P complete problem [28].
In terms of pattern classification, four heuristic methods of decision tree classifiers have
been developed in order to overcome that problem: (a) top-down, (b) bottom-up, (c)
hybrid and (d) tree growing-pruning. Top-down methods begin by separating the samples
into different groups until the final number of classes of information value is reached.
Bottom-up methods have the opposite approach; starting with a group of classes, they
combine classes until the root node is reached. In the hybrid approach the bottom-up
procedure is used to aid the top-down approach. Finally, in the tree growing-pruning
approach, the tree is allowed to grow to its maximum size and then the tree is pruned.

Top-Down
This algorithm starts to construct the feature space as a partition of groups of adjacent
bands. Each group of adjacent bands will be projected to one feature in the projected
subspace.

The procedure is repeated successively in the following steps:

(1) Divide independently each group of adjacent bands into two new groups, creating
new independent sets of groups of adjacent bands.

(2) For each set compute the global Projection Index and compute the increment in the
Projection Index ∆ Bi . ∆ Bi  is the increment in Bhattacharyya distance with respect
to the previous division.

(3) Choose the set that produces the larger increment in the global Projection Index if the
percentage increment is larger than a threshold τ T−D . The percentage of increment is
defined as:

∆BIi =
max ∆Bi( )

PIi−1 (12)

In the equation PI is the Projection Index value. The index i represents the current value,
while i-1 represents the previous one. These steps are repeated until the increment in
minimum Bhattacharyya distance is not significant, below a certain threshold,  or until
the algorithm reaches a maximum number of features establish by the analyst or by the
number of label samples.

Bottom-Up
This algorithm starts with a number of features in the projected subspace where each one
corresponds to one group of adjacent bands in the partition of the high dimensional space.
The goal of this procedure is to reduce the number of dimensions of the lower
dimensional subspace without reducing the Projection Index significantly.

Every two adjacent groups of adjacent bands are joined into one producing an
independent set of groups of adjacent bands. For each set the preliminary optimum ˆ a i 's
will be calculated. Then for each independent set the decrease in Projection Index ∆ Bi is
computed. It is important to note here that ∆ Bi is an absolute value measure always
positive in the equations. The algorithm chooses the set that produces the minimum
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reduction in the Projection Index if the percentage of decrease is smaller than a defined
threshold τ D−T . The percentage of decrease is defined as:

∆BDi =
min ∆Bi( )

PI i−1 (13)

where PI is defined as in top-down procedure. The procedure can be repeated, creating
new sets of dimensionally reduced spaces by combining adjacent groups of adjacent
bands, including those previously.

In both, Top-Down and Bottom-Up methods there are two basic assumptions that will be
explained here.
• As the Top-Down method increases the dimensionality of the projected sub-space,

the Global Projection Index used does not decrease. This ensures that ∆BIi is less than
100%.

• As the Bottom Up method decreases the dimensionality of the projected sub-space,
the Global Projection Index does not increase. This ensures that ∆BD i is less than
100%.

 For the case of using the Bhattacharyya distance as the Global Projection Index both
assumptions were proved in [1].

A binary tree algorithm will be used here to estimate the suboptimum number of adjacent
bands that should be linearly combined in order to reduce the dimensionality. The
heuristic approach used is that of a hybrid decision tree. The following explains how a
hybrid heuristic approach can be applied in an algorithm to accomplish the objective of
the second block in the first stage of Figure 6  [29]. There are two types of hybrids or
combinations of these two groups:

Hybrid I
Starting with the top-down procedure the present algorithm allows the tree to grow until
it reaches its maximum number of features. There are two ways to decide when the
algorithm arrives at a maximum: the maximum number is supplied by the analyst taking
into consideration the number of labeled samples and other factors, or until the
percentage of growth of the global projection index is less than a threshold τT −D . Then
apply the bottom-up procedure in order to reduce the number of features. This last step is
allowed to reduce the dimensionality until it reaches a minimum number of features
supplied by the analyst or until its percentage of reduction of the projection index is
larger than the threshold τD− T .

Hybrid II
This procedure results by interchanging both algorithms: top-down and bottom-up.
Starting with the top-down procedure, increase the dimensions of the subspace by 1.
Then use bottom-up to verify that it can reduce by one dimension without decreasing the
projection index significantly. In order to avoid an infinite loop, the relationship between
the thresholds should be τD− T ≤ τ T−D . This algorithm should stop when both algorithms
sequentially fail to meet the requirements with respect to the thresholds or when it arrives
at a maximum or minimum number of features provided by the analyst or limited by the
number of training samples. Hybrid I is significantly faster, however Hybrid II is more
efficient especially when the number of labeled samples is quite small.
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High Dimensional Projection Pursuit Feature Selection

Henceforth we will call the Parametric Sequential Projection Pursuit algorithm just
Projection Pursuit. It will use the methods described previously, equivalent to stage 1 in
Figure 6, in order to estimate ˆ A . Then it uses a numerical optimization algorithm
equivalent to stage 2 in Figure 6 to finally compute A. This algorithm can easily be
modified for a Projection Pursuit version of a supervised band subset selection algorithm
(also named Feature Selection). Projection Pursuit Feature Selection (PP-Opt-FS) uses
the method explained for constructing ˆ A  with a significant transformation. Every bank
described of stored ˆ a i 's will only contain vectors that choose one band in every group of
adjacent bands. It follows the procedure described in that section to choose which vectors
will maximize the global minimum Bhattacharyya distance. Through the feedback shown
in Figure 6, it also estimates a suboptimum width of each group of adjacent bands. In this
method there is no second stage, i.e., numerical optimization of the projection index. The
normal feature selection is an exhaustive procedure that searches for the best combination
of bands. If such method were applied to obtained the best subset of 20 bands in a set of
200, one would have to make a number of computations in the order of 1026. Projection
Pursuit Feature Selection has significantly less computation for high dimensional data
than a normal supervised feature selection algorithm.

Computational Complexity of the Binary Decision Trees

In this section the complexity of the decision trees used in the First Stage of Figure 6 is
computed. Due to the binary nature of the decision trees, the branching factor is 2. If the
Top-Down method is used at level i the number of nodes that are further expanded is 2i.
At level 0 there is only one node (the root node), at level 1 two nodes are expanded, at
level 2 there are four, etc. If the solution is located in level d then there are:

1 + 2 ⋅ i
i=1

d

∑ = 1 + 2 i
i=1

d

∑ = 1 + 2 ⋅
1

2
d d +1( ) 

 
 
 

= 1 + d + d2 (14)

Due to the nature of the Bottom-Up method that will be used as an aid to the Top-Down
scheme, its complexity will be discussed as part of the hybrids.  It is important to realize
that if there are B groups, then the Bottom-Up method will produce B-1 combination of
nodes.

The hybrid II method is more complex than the hybrid I. At level i the Top-Down method
expands to 2 i nodes and grows only by a factor of i + 1 nodes. Then using the Bottom-Up
method the number of nodes that are combined is i + 1 - 1 = i. If the solution is at a level
d of the binary decision tree then the total number of nodes that are expanded and
combined is:

1 + 2 ⋅ i + i( ) = 1 + 3 ⋅ i
i =1

d

∑ = 1 + 3 i
i =1

d

∑ =
i= 1

d

∑ 1 +
3

2
d d +1( )[ ] (15)

As shown by equation (11) assuming there are K classes and ni bands in each group of

adjacent bands, then the maximum number of initial choices ˆ a i 's in the ith group of

adjacent bands is:
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TotalMax = max(Total) = max 2
K!

2!(K − 2)!
+ n i + 1

 
  

 
  = K(K − 1) + MNB +1

(16)

where MNB is the maximum number of band analyzed. TotalMax is the maximum number
of initial choices per node. Then the total number of initial choices ˆ a i 's produced in the

decision tree is the total number of nodes times the total number of initial choices.

For the Top-Down method that amount is bounded by the following amount:

TNIC ≤ (1+ d + d2 ) ⋅ K K − 1( ) + MNB +1[ ] = O d2 K2 + MNB( )[ ] (17)
where TNIC is the total number of initial choices.

For the hybrid II method the amount is bounded by the following amount:

TNIC ≤ 1+
3

2
d + d2( ) 

 
 
 

⋅ K K − 1( ) + MNB +1[ ] = O d2 K2 + MNB( )[ ] (18)

Observe that both algorithms solve the problem in polynomial time.

VI. Experiments

A series of experiments was developed to demonstrate the algorithm. The hyperspectral
data used in these experiments is a segment of one AVIRIS data scene taken of NW
Indiana's Indian Pine test site. Figure 7 shows the AVIRIS scene used in the experiments.
From the original 220 spectral channels 200 were used, discarding the atmospheric
absorption bands4. The training samples required for classifying data and the testing
samples use to estimate the classification accuracy were obtained from available ground
truth.  The estimated parameters were based on the spectral responses, and the
classification was performed on a pixel by pixel basis.

Fig. 7. AVIRIS NW Indiana's Indian Pine test site.
The procedure of the experiments is to use the first stage algorithm to calculate ˆ A  for
Projection Pursuit and Projection Pursuit Feature Selection. Then A is calculated with a

                                                
4 The atmospheric absorption bands are channels that are opaque, due to constituents of the atmosphere

such as water vapor, CO2 and O3. Principal opaque bands in this range are near 0.9 and 1.4 µm. Since
radiation measured by the sensor at these wavelengths originates from within the atmosphere and not
the surface, it does not carry information relevant for classification purposes.
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numerical analysis stage for Projection Pursuit. The results are compared with direct use
of a feature extraction process in terms of classification accuracy. Two different
experiments explore two cases: having a small number of classes and training samples
and having a somewhat larger number of classes and training samples.

Experiment 1: Small number of classes and training samples.

Several different projection pursuit methods were compared with a more conventional
feature extraction approach. In the present experiment four classes were defined: corn,
corn-notill, soybean-min, and soybean-notill. These classes in this data set form a
particularly challenging classification problem. The data were collected in early season
when the corn and soybean vegetation had only about 5% ground cover. The notill and
min designations indicate that these fields had undergone no or minimum tillage before
planting so that substantial debris from the previous year crop was still present on the
surface. Combine this with the natural variation in the soil patterns, and one has a very
significant background variation against which to attempt to distinguish between corn
and soybeans, which themselves are not greatly different spectrally. The total number of
training samples is 179 (less than the number of bands used) and the total number of test
samples is 3501. Table 1 shows the number of training and test samples for each class.

Table 1

Classes Training Samples Test Samples

Corn-notill 52 620
Soybean-notill 44 737
Soybean-min 61 1910

Corn 22 234
Total 179 3501

This experiment will enable us to compare the direct use of Discriminant Analysis at full
dimensionality, Projection Pursuit with only an iterative and sequential numerical
optimization stage, Projection Pursuit with a first stage that estimates the initial matrix ˆ A 
and a numerical optimization stage, and the Projection Pursuit Feature Selection
algorithm where a subset of bands was chosen. All of these are under the condition of
having a small number of labeled samples.

The methods used are as follows.

• (DA 100-20) The multispectral data was reduced in dimensionality from 200
dimensions in Φ  space to a subspace. Using Discriminant Analysis at full
dimensionality the data was reduced from 100 bands (one in every two bands
from the original 200) to a 20 dimensional subspace Ψ . From the original
number of bands, 100 were used because of the limited number of training
samples (179).

• (PP) Iterative Sequential Projection Pursuit with only a numerical optimization
stage, the second stage in Figure 6, applied to the data in order to reduce the
dimensionality, maximizing the minimum Bhattacharyya distance among the
classes. It is iterative in the sense that  the numerical optimization is performed in
the iteration form explained in section III and shown in Figure 5. In this approach
the number of adjacent bands combined in each group was 10 and the initial
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vector for maximization was chosen to be a vector that averages the adjacent
bands on a group. This method does not use the decision tree to find the number
of bands required to be combined. It is also named uniform band selection.

• (PP-Opt) Optimum Projection Pursuit with the first stage that estimates matrix ˆ A ,
and the numerical optimization stage, used to project from 200 to a 20
dimensional subspace Γ . The algorithm estimates the dimensionality of the data
as 20.

• (PP-Opt-FS) Projection Pursuit Feature Selection was used to project the data to a
subset of bands that is suboptimum in the sense of maximizing the Bhattacharyya
distances among the classes. This algorithm uses the feature selection procedure
described in section V and is also named as subset selection. The dimensionality
of the subspace where the data was projected, Γ , was estimated as 16 by this
algorithm.

The dimensionality of Ψ was estimated by Discriminant Analysis in the (DA 100-20)
method. Iteratively Sequential Projection Pursuit (PP) arbitrarily reduces the
dimensionality of Γ to 20 (20 groups of adjacent bands, projecting every group to 1
feature). This is due to the fact that it only uses the numerical maximization stage (second
stage in Figure 6). Projection Pursuit Feature Selection (PP-Opt-FS) and the optimum
version of Sequential Projection Pursuit (PP-Opt) were used as described previously.
Both use the hybrid II heuristical approach to construct the a priori matrix ˆ A  with
thresholds τT− D  and τD − T  equal to .005. Both procedures chose the dimensionality of the
subspace Γ  by the empirical estimation procedure described in section V. Estimating the
ni’s the dimensionality is estimated as well ( ni

i
∑ = 200  = Total number of bands).

In the Projection Pursuit based algorithms, after the dimensionality of the data is reduced,
Discriminant Analysis is used as a feature extraction algorithm in order to project the data
from Γ  to Ψ . Two types of classifiers were used. The first one is a ML classifier and the
second is a ML with 2% threshold. In the second, a threshold was applied to the standard
classifier whereby, in case of normal distributions of the class data, 2% of the least likely
points will be thresholded. In other words, this is a rejection criterion were the pixel x is
rejected by the following rule:

x − Mi( )T
Σ i

−1 x − Mi( ) > T (19)
where Mi and Σi are the mean and covariance of class i to which the ML classifier assign
pixel X. T is obtained in a Chi Square distribution table. When a pixel is rejected it is
labeled as a thresholded pseudo class. In the case of having a normal distribution, the
percentage of accuracy should drop 2% of the values in the ML classifier (without
threshold). These 2% thresholds provide one indication of how well the data fit the
normal model and how well the data is maintained in clusters. All of these classifiers
performed a projection from Ψ  to the resulted space Ω .

The minimum Bhattacharyya distance among the classes was calculated for the three data
sets at a 16 dimensional space for PP-Opt-FS, and in a 20 dimensional space for DA 100-
20, PP, and PP-Opt. The results are shown in Table 2.

Observe that the Projection Pursuit based algorithms preserved more information in terms
of the minimum Bhattacharyya distance than direct use of Discriminant Analysis at Φ
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space. The result is based on the fact that Discriminant Analysis makes the computation
at full dimensionality (100 dimensions) with a small number of labeled samples (179
samples). Meanwhile the Projection Pursuit based algorithms make the computation and
directly maximize the projection index in the 16 or 20 final dimensional space. Another
factor is that Discriminant Analysis calculates the features maximizing another index
than Bhattacharyya distance, i.e., the Fisher criterion. Observe that Projection Pursuit
Feature Selection compares favorably with Discriminant Analysis. Also Projection
Pursuit optimization using the first stage loop before the numerical optimization (PP-
Opt), as described in section IV, has the best performance. It has an improvement of 83%
over Projection Pursuit which only has a numerical optimization stage (PP). It avoids,
better than the others, the problem of reaching a small local maximum. Tables 3 and 4
show the number of bands in adjacent groups for PP-Opt and PP-Opt-FS.

Table 2
Minimum Bhattacharyya Distance among the classes

DA 100-20 PP-Opt-FS PP PP-Opt
Min. Bhatt. Dist. 7.53 8.33 10.73 18.30

Table 3.
Number of bands in adjacent groups for PP-Opt

n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14 n15 n16 n17 n18 n19 n20

Number of
adjacent
bands/
group

20 10 5 5 10 10 20 5 5 10 10 5 5 20 5 5 10 20 10 10

Table 4.
Number of bands in adjacent groups for PP-Opt-FS

n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14 n15 n16

Number
of

adjacent
bands/
group

6 6 7 6 9 10 6 6 3 4 12 12 13 25 25 50

Figure 8 and 9 will show the results of classification accuracy, comparing the results of
direct projection from Φ  space to Ψ  using Discriminant Analysis (DA 100-20) with
projecting the preprocessed data from the Γ  subspace to Ψ . The comparison is in terms
of test field classification accuracy. The Discriminant Analysis method was used to
project data from the Γ  subspace to Ψ  after the Projection Pursuit based methods were
applied. This provides a direct comparison against direct projection from Φ  to Ψ  (DA
100-20) because the same feature extraction procedure was used at Φ  space and at Γ
subspace. After Discriminant Analysis was applied to data sets preprocessed by the
Projection Pursuit based algorithms, they were classified and the test fields classification
results can be seen in Figures 8 and 9.
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Fig. 8. Test fields classification accuracy comparison between direct use of Discriminant Analysis
(DA 100-20) and the use of Discriminant Analysis after different methods based on
Projection Pursuit (PP, PP-Opt, PP-Opt-FS) for ML classifier.

The classification accuracy results on the test fields using the Maximum Likelihood
classifier can be seen in Figure 8. Observe in Figure 8 that Projection Pursuit's
classification accuracies are much better than using direct Discriminant Analysis (100-
20). Projection Pursuit Optimum becomes the best method as the number of dimension
increases. It better overcomes the Hughes phenomena and deals with the geometrical and
statistical properties of high dimensional space. Projection Pursuit without the first stage
of optimization (PP) did not handle the Hughes phenomena as well as PP-Opt or PP-Opt-
FS as the number of dimensions increases. From Figure 9 it can be seen that the
Projection Pursuit approaches performed significantly better, with a difference as much
as 45%, compared to Discriminant Analysis directly applied to 100 dimensions, when a
threshold is applied in a classifier. This may be due to the fact that in all approaches the
computation is made in a small dimensional space where the assumption of normality is
more suitable. This allows the computation to deal more effectively with the Hughes
Phenomena, preserving more information and enabling Discriminant Analysis to make
the computation at lower dimensionality with the same number of label samples.
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Fig. 9. Test fields classification accuracy comparison between direct use of Discriminant Analysis
(DA 100-20) and the use of Discriminant Analysis after different methods based on
Projection Pursuit (PP, PP-Opt, PP-Opt-FS) for ML with 2% threshold.

Experiment 2: Large number of classes and training samples.

The hyperspectral data used in these experiments is the same segment of AVIRIS data
used in experiment 1. As before, from the original 220 spectral channels, 200 were used,
discarding the atmospheric absorption bands. In the present experiment, eight classes
were defined. The total number of training samples was 1790 and the total number of test
samples was 1630. Table 5 shows the defined classes and their respective number of
training and test samples.

Table 5

Classes Training
Samples

Test Samples

Corn-min 229 232
Corn-notill 232 222

Soybean-notill 221 217
Soybean-min 236 262
Grass/Trees 227 216

Grass/Pasture 223 103
Woods 215 240

Hay-windrowed 207 138
Total 1790 1630

Four types of dimension reduction algorithms were used. The methods used are as
follows.

• (DBFE) The multispectral data was reduced in dimensionality from 200
dimensions in Φ  space to a subspace. Using Decision Boundary Feature
Extraction at full dimensionality the data was reduced from 200 to a 22
dimensional subspace Ψ .
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• (DAFE) The multispectral data was reduced in dimensionality from 200
dimensions in Φ  space to a subspace. Using Discriminant Analysis Feature
Extraction at full dimensionality the data was reduced from 200 to a 22
dimensional subspace Ψ .

• (PP-Opt) Optimum Projection Pursuit with the first stage that estimates matrix ˆ A ,
and the numerical optimization stage, used to project from 200 to a 20
dimensional subspace Γ . The algorithm estimates the dimensionality of the data
as 22.

• (PP-Opt-FS) Projection Pursuit Feature Selection was used to project the data to a
subset of bands that is suboptimum in the sense of maximizing the Bhattacharyya
distances among the classes. This algorithm uses the feature selection procedure
described in section V. The dimensionality of the subspace where the data was
projected, Γ , was estimated as 22.

In the third and fourth methods Projection Pursuit (PP-Opt) and Projection Pursuit
Feature Selection (PP-Opt-FS) were used to reduce the dimensionality from 200 to 22.
These methods linearly project the data from Φ  to Γ  subspace. After the Projection
Pursuit preprocessing method was applied, a feature extraction algorithm follows in order
to project the data once more from Γ  to Ψ  subspace. Decision Boundary and
Discriminant Analysis were used with the advantage of doing the computation with the
same number of training samples in less dimensions. Two types of classifiers were again
used: ML classifier and ML with 2% threshold.

The results of the minimum Bhattacharyya distances for Decision Boundary,
Discriminant Analysis, Projection Pursuit (PP-Opt), and Projection Pursuit Feature
Selection (PP-Opt-FS) are shown in table 6 for Γ  in 22 dimensions. Tables 7 and 8 show
the number of bands in adjacent groups for PP-Opt and PP-Opt-FS.

Table 6

Method DBFE DAFE PP-Opt PP-Opt-FS
Minimum

Bhattacharyya
Distance

2.64 1.52 2.75 1.90

Table 7.
Number of bands in adjacent groups for PP-Opt

n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14 n15 n16 n17 n18 n19 n20 n21 n22

Number of
adjacent
bands/
group

7 6 6 6 6 3 3 7 6 6 6 7 6 25 12 6 7 6 6 13 25 25

Table 8.
Number of bands in adjacent groups for PP-Opt-FS

n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14 n15 n16 n17 n18 n19 n20 n21 n22

Number of
adjacent
bands/
group

25 4 3 3 1 1 1 12 6 3 3 13 13 12 25 3 3 6 13 13 12 25
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Projection Pursuit (PP-Opt) was able to have a larger projection index than the other
methods. The next sections will apply the feature extraction techniques after the use of
Projection Pursuit-based algorithms and compare their results with direct application of
Decision Boundary and Discriminant Analysis in Φ .

Decision Boundary Feature Extraction

The following experiments have the objective of testing how Projection Pursuit based
algorithms enhance test field classification accuracy in the use of Decision Boundary
Feature Extraction at 22 dimensions in Γ  in comparison with direct use of Decision
Boundary at full dimensionality in Φ  space. Figures 10, 11, 12, and 13 show the results
for ML classifications. The results of direct use of Decision Boundary at 200 dimensions
are labeled DBFE, results of Decision Boundary applied after PP-Opt preprocessing are
labeled PPDBFE and the results of Decision Boundary after PP-Opt-FS are labeled
PPFSDBFE.

Fig. 10. Training fields classification accuracy comparison between direct use of Decision
Boundary Feature Extraction (DBFE) and the use of Decision Boundary Feature
Extraction after different methods based on Projection Pursuit (PPDBFE and PPFSDBFE)
for ML classifier.
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Fig. 11. Test fields classification accuracy comparison between direct use of Decision Boundary
(DBFE) and the use of Decision Boundary after different methods based on Projection
Pursuit (PPDBFE and PPFSDBFE) for ML classifier.

In terms of training fields, Projection Pursuit (PPDBFE) and Projection Pursuit Feature
Selection (PPFSDBFE) increase in classification accuracy faster as a function of the
number of features than direct use of Decision Boundary Feature Extraction (DBFE). As
expected in a significant range PPFSDBFE results are in between PPDBFE and DBFE.
At 22 dimensions the performance of PPDBFE and DBFE are close and both of them are
superior to PPFSDBFE in accordance with the values of the minimum Bhattacharyya
distance at 22 dimensions as shown in Table 4. In terms of test fields classification
accuracy PPDBFE performs better with a difference from 25% to 30% with respect to
DBFE. PPFSDBFE results are closer to PPDBFE than DBFE. Observe in Figures 12 and
13 that PPDBFE and PPFSDBFE maintain the data more in clusters with the assumption
of normality better supported. At 22 features there is a difference of 65% between
Projection Pursuit based algorithms and direct application of Decision Boundary Feature
Extraction in the test fields classification accuracy with the use of a 2% threshold.

Fig. 12. Training fields classification accuracy comparison between direct use of Decision
Boundary Feature Extraction (DBFE) and the use of Decision Boundary Feature
Extraction after different methods based on Projection Pursuit (PPDBFE and PPFSDBFE)
for ML with 2% threshold.
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Fig. 13. Test fields classification accuracy comparison between direct use of Decision Boundary
(DBFE) and the use of Decision Boundary after different methods based on Projection
Pursuit (PPDBFE and PPFSDBFE) for ML with 2% threshold.

Observing figures 10, 11, 12 and 13 we can see the relative behavior of the performance
curves for training and test sets. The training set accuracy keeps improving with the
increasing features. The difference is that Projection Pursuit's methods keep growing
faster relative to direct use of Decision Boundary at 200 bands.

In terms of the test sets the direct use of Decision Boundary increases the accuracy until 5
features, then it starts to decrease due to the limited number of training data causing
overfitting. Projection Pursuit's based methods have classification accuracies that
overcome the problem of overfitting. These classifiers keep increasing the accuracy until
11 features, and adding more features then produces only a slow reduction of it.

Discriminant Analysis

In this experiment three procedures were used to project the data to a 22 dimensional
subspace. The first was direct application of Discriminant Analysis (DAFE) on the 200
dimensions at the Φ  space. The second procedure used was Projection Pursuit to project
the data from Φ  to Γ . The third used was Projection Pursuit Feature Selection to project
the data from Φ  to Γ . After Projection Pursuit's based algorithms were used
Discriminant Analysis was applied in the Γ  subspace in order to compare the test fields
classification results (PPDAFE and PPFSDAFE) with direct use of Discriminant
Analysis (DAFE). Figure 14, 15, 16 and 17 show the results with the ML classifier.
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Fig. 14. Training fields classification accuracy comparison between direct use of Discriminant
Analysis Feature Extraction (DAFE) and the use of Discriminant Analysis Feature
Extraction after different methods based on Projection Pursuit (PPDAFE and PPFSDAFE)
for ML classifier.

Fig. 15. Test fields classification accuracy comparison between direct use of Discriminant
Analysis Feature Extraction (DAFE) and the use of Discriminant Analysis Feature
Extraction after different methods based on Projection Pursuit (PPDAFE and PPFSDAFE)
for ML classifier.

In terms of the training fields, the classification results are very similar. In the test fields
Projection Pursuit's algorithms perform better. The difference there is significant. It is not
as dramatic as in Decision Boundary Feature Extraction because this last method of
feature extraction requires more training samples per feature than Discriminant Analysis.
Note in Figure 15 that PPDAFE and PPFSDAFE are able to grow after 7 features. This is
due to the fact that the minimum Bhattacharyya distance, which is a bound of Bayes
classification accuracy, is maximized for the entire Γ  subspace. Independent of the fact
that for K classes Discriminant Analysis only calculates K-1 independent features that
maximize the Fisher criterion, the addition of more features of the Γ  subspace will
contribute more to the separation of classes. As expected PPDAFE has the best
performance and reaches an accuracy above 90%. Meanwhile DAFE stops growing after
7 features and stays at 85% accuracy. With the use of the 2% threshold the ML's results
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of test fields classification accuracy of Projection Pursuit's procedures are better than
direct use of Discriminant Analysis. This is due to the fact that the assumption of
normality is better supported with the Projection Pursuit' algorithms.

Fig. 16. Training fields classification accuracy comparison between direct use of Discriminant
Analysis (DAFE) and the use of Discriminant Analysis Feature Extraction after different
methods based on Projection Pursuit (PPDAFE and PPFSDAFE) for ML with 2%
threshold.

Fig. 17. Test fields classification accuracy comparison between direct use of Discriminant
Analysis Feature Extraction (DAFE) and the use of Discriminant Analysis Feature
Extraction after different methods based on Projection Pursuit (PPDAFE and PPFSDAFE)
for ML with 2% threshold.

VII. Conclusion

The increasing number of features in modern data sources augment the amount of
information that should be extractable from multispectral data. At the same time, since
there is usually a limit on the number of labeled samples, the effects of degrading factors
such as the Hughes phenomena and other characteristics of high dimensional data are
exacerbated as the number of dimensions increases. The challenge is to reduce the
number of dimensions avoiding the obstacles posed by the above mentioned
phenomenon, and while preserving maximum information and using a priori data.
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A modified scheme of supervised classification had been proposed. Such modification is
the result of an addition of a preprocessing algorithm with the purpose of reducing the
dimensionality of the data, projecting it to a subspace where Feature Extraction or
Selection is more effective. Projection Pursuit is the method used to accomplish such
preprocessing. A parametric version was developed and used based on the use of a
projection index that uses labeled samples as a priori information.

A first stage of preprocessing has been proposed in order to estimate a preliminary matrix
ˆ A  for the numerical optimization process that Projection Pursuit requires. The first stage

preprocessing algorithm was based on binary tree techniques. Its purpose is to avoid
arriving at a nonoptimal local maximum, and this helps preserve information from the
high dimensional space. The technique developed for the first stage pre-processing
enables also the development of a Projection Pursuit feature selection algorithm for high
dimensional data where it overcomes the problem of large numbers of computations.
Both of these techniques also estimate the dimensionality of the projected subspace.

The experiments performed in this chapter show that Projection Pursuit enables feature
extraction algorithms to extract more information from the training samples. That is
shown in the enhancement of their training and test fields classification accuracy using
the ML classifier. This is the case for small or relative large numbers of training samples
and classes. This is due to the fact that Projection Pursuit contains the properties that a
high dimensional reduction algorithm should have as explained in the Introduction. It
mitigates the difficulties of high dimensional data by making the computations in a lower
dimensional projected subspace, enabling the feature extraction algorithms to have more
accurate estimations of the statistical parameters. At that feature subspace the assumption
of normality is better supported, permitting the classifier to have better results in terms of
classification accuracy.

Additional details about Projection Pursuit in this context and high dimensional spaces
are available in [29]. Further, as multispectral sensor systems continue to develop and do
so in the direction of producing higher dimensional data, analysis algorithms for such
more complex data necessarily become more complex. This tends to limit the availability
of such more powerful algorithms to practitioners who might need to apply them and to
researchers who wish to build upon them. To overcome this problem, we began several
years ago to construct an application program for personal computers which contains a
basic capability to analyze multispectral data, and then as new algorithms emerge from
our research program to add these new algorithms to the program. The program, called
MultiSpec, and its documentation is made available without charge to anyone who
wishes it via the world wide web at

http://dynamo.ecn.purdue.edu/~biehl/MultiSpec/

The algorithms used in this paper are available in the Macintosh version of MultiSpec at
that location. It is planned that Projection Pursuit, along with Discriminate Analysis and
Decision Boundary Feature Extraction will be available in the Windows version as well
in the coming months.
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