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Preface

Thie volume was prepared as an introduction to remote gensing
stressing the importance of pattern recognition in numerically
oriensed remote sensing systems. Its specific purpose is to pro-
vide a common background and orientation for those of you who
expect to make use of the LARSYS data analysis computer software
system. It is intended that thie booklet be completed prior to
your initial meeting with LARS personnel, although we anticipate
that the materials will most likely be read "the night before"
or "on the airplane."”

For newcomers to remote sensing, this manual will introduce
concepts and terminology whieh you will need later on; remote
senging veterans will be introduced to the numerieal analysie and
automatic data processing aspects of remote sensing. The material
presented here has been drawn from two previous LARS Information
Notes: 041571, "Systems Approach to the Use of Remote Sensing,"
by D. Landgrebe and 101866, "On Pattern Recognition,"” by G.
Cardillo and D. Landgrebe, '

The format of this manual resembles that of a programmed
text. It ig not intended that you read the material from cover
to cover. You will find spread throughout the manual a series of
pretest items and "eteering"” instructions.* Do your best to answer
these questions as you come to them. Depending upon your response,
you will be directed to various sections of the manual. In that
way the material can be tailored to your individual requirements.
At the end of the material, you will find a post test. The ques-
tions are based on items important to persons preparing themselves
to use LARSYS computer programs. If your answeres to these questions
are incorrect or you feel your responge ies too weak, review the

pages indicated.

*

Test items and steering instructions are typed in a distinet
format and use italie characters ‘to offeet them from the body
of the manual.
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Pretest 1iteme

L. In the space below define remote sensing and give
an example of a remote sensing system or an objective of a
remote senging system.

2. The feasibility of remote sensing as we know it
today is dependent upon certain types of measurable varia-
tions in electromagnetic fields. These types of variations
are » and .

Are you completely satisfied with your responses to
the questions above?

If "yes," turn to page 3.

If "no,” turn to page S§.
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Judging by the confidence with which you answered
the previous two pretest questions you must have some

experience in remote sensing.

If you would like another viewpoint of what remote
senging ig and how information is conveyed turn to page
5.

If you would like to go on, turn to page 6.
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If you follow the instructions there is no way to

get to this page. Take one step backwards and return to
the page you just came from.
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WHAT IS REMOTE SENSING? HOW IS INFORMATION CONVEYED?

Imagine that you are high above the surface of the earth looking
down on it and that you want to survey the earth's surface in order
to learn about its resources and thus to manage them better. How
could this information be derived? What must the system to extract
it look 1like?

The field of remote sensing provides some of the answers. Remote
sensing is the science and art of acquiring information about material
objects from measurements made at a distance, without coming into
physical contact with the objects. In remote sensing, information may
be transmitted to the observer either through force fields or electro-
magnetic fields, in particular, through the

. Spectral,
. Spatial, and
. Temporal

variations of these fields. Therefore, in order to derive information
from these field variations, one must be able to

. Measure the variations and
. Relate these measurements to those of known objects or materials.

If, for example, one desires a map showing all of the water bodies of

a certain region of the earth, it is clear that one cannot sense the
water directly from spacecraft altitudes, rather only the manifestations
of these water bodies which exist at that height. These manifestations,
in the form of electromagnetic radiation, must therefore be measured

and the measurements analyzed to determine which points on the earth
contain water and which do not.

Of the two types of fields mentioned above, electromagnetic fields
provide perhaps the greatest potential. The remainder of these remarks
will be confined to fields of this type. Figure 1 provides a review
of the spectrum of the electromagnetic fields.*

The visible portion, extending from 0.4 to 0.7 micrometers, is the
most familiar to us as it is this portion of the spectrum to which our
eyes are sensitive; however, sensors can be built to cover a much
broader range of wavelengths. The entire portion from 0.3 to 15 micro-
meters, referred to as the optical wavelength portion, is particularly
of interest. The wavelengths shorter than 0.4 micrometers are in the
ultraviolet region. The portion above the visible spectrum is the
infrared region, with 0.7 to approximately 3 micrometers referred to
as the reflective infrared and the region from 3 to 15 micrometers
called the emissive or thermal infrared region. In this latter portion
of the spectrum, energy is emitted from the body as a result of its
thermal activity or heat rather than being reflected from it.

*
Figures appear at the end of this booklet.
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At this point we want to help you determine the level
of your background in pattern recognition,

If you have had no exposure to pattern recognition
please turn to page 10.

If you have some background in pattern recognition
try the following question:

Let the relative response at wavelength A; and A,
be the features used in a remote sensing system. Locate

the points in the X7, Ay feature plane that represent "cover
1" and "eover 2."

N Relative Response
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The answer to the question on page € is

A
2 Y Cover 1"
3or/
20 o
10} * Cover 2"
Y
0 20 30 A

If you did not obtain the correct answer go on to
page 10.

If you did get the right answer try the following
problem:

Below are shown the training samples associated
with 3 different classes of ground cover as they appear
in the X7, X2 plane. U ie an unknown data point. Using
the classification rule: "Assign any data point ©U to
that class for which the distance between U and the mean

(center of gravity) of the training samples is minimum,"
classify the unknown point U.

A2 /Pasture
X X Corn
x X o‘/
X 0 0 Unknawn Point U
X 0,0 0 @&
Z ()ZO
Z Z
z Z 74— Soybeans
Al

~

Turn to vace 8.
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The correct classification is "Corn."

If you did not classify U as "Corn" go on to page 10.

If you said "Corn" consider the following:

The diagrams below show several sets of training
samples similar to those encountered in the 1971 Corn Blight
Watch Experiment. Rate each situation as to whether the
classes are distinctly separable, marginally eseparable or

| not separable.

0
0.0
Y 4
0 Zz
J% 2z 00
) z2 0 00
ZOZOZZ 222 0 0
ZO0 z (o]
zZ 2 Z 2z 2
zZ
a) Al b) )‘l
XZ
oO O0
00 04 Z,
0 O0pg Z 0
0 zo",
z, z
zZ, 212
Al
c)

Go on to page 9.
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The correct answers are
a) not separable
b) distinetly separable

e¢) marginally separable.
If you answered correctly, please turn to page 36.

If you were not able to answer correctly, please
turn to page 10.
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To arrive at this point you either indicated that
you had no background in pattern recognition or you were
not able to answer one or more of the pattern recognition

pretest questions correctly.

This branch of the instructional materials presents
a condensed introduction to remote sensing followed by a
more detailed discussion of pattern recognition.

Please turn to page 11.
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Figure 2 is a diagram of the organization of an earth survey
system. It is necessary, of course, to have a sensor system viewing
that portion of the earth under consideration. There will necessar-
ily be a certain amount of on-board data processing. This will
perhaps include the merging of data from other sources such as
sensor calibration and data about where the sensor was pointed.

One must next transport the data back to earth for further
analysis and processing. This may be done through a telemetry
system, as is the case for the Earth Resource Technology
Satellite (ERTS), or through direct package return, as will be used
with SKYLAB. There usually then is a need for certain preprocessing
of the data before the final processing with one or more of the
data reduction algorithms. It is at this point in the system, when
the data is reduced to information, that it is usually helpful to
merge ancillary information, perhaps derived from sources on the
surface of the earth, with the remotely sensed information.

Before leaving the matter of the organization of an information
system, the necessity of having a thorough understanding of the
portion of the system preceding the sensor must be pointed out.
Consider Figure 3. This figure shows a simplified version of the
energy exchange in a natural environment. It is possible, of course,
to detect the presence of vegetation on the earth's surface by
measuring the reflected and emitted radiation emanating from the
vegetation. One must understand, however, that there are many ex-
perimental variables active. It is possible to deal with these
experimental variables in several ways. We shall touch briefly
on this point later in the discussion.

Summarizing, then, it is possible to derive information about
the earth's surface and the condition of its resources by measuring
the spectral, spatial, and temporal variations of the electro-
magnetic fields emanating from points of interest and then analyzing
these measurements to relate them to specific classes of materials.
To do so, however, requires an adequate understanding of the
materials to be sensed and, in order to make the information useful,
a precise knowledge is required about how the information will be
used and by whom.

Please turn to page 13.



N
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This page left blank intentionally.

Go on to page 13.
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THE DUALITY OF SYSTEM TYPES

When we consider the state-of-the-art of remote sensing today,
a duality of system types becomes readily apparent. Development
in the field has had two major stems because it originated from two
somewhat different types of technology. These two types of systems
will be referred to here as those with
) . Image orientation, and
( . Numerical orientation.
~ An example of an image-oriented system might be simply an
aerial camera and a photointerpreter. The photographic film is
used to measure the spatial variations of the electromagnetic fields,
and the photointerpreter relates these variations to specific classes
of surface cover. Numerically oriented systems, on the other hand,
tend to involve computers for data analysis. Although the photo-
interpreter and the computer, respectively, tend to be typical in the
two types of systems, it would be an oversimplification and indeed
incorrect to say that they are uniquely related to these system
types. This becomes clearer upon further examination.

Figure 4 compares the organization of the two system types.
Both types of systems need a sensor and some preprocessing; however,
the distinction between the types can perhaps be brought out most
clearly by noting the location of the form image block in the two
diagrams. 1In the image-oriented type, it is in line with the data
stream and must precede the analysis block. Numerically oriented
systems, on the other hand, need not necessarily contain a form
image block. If they do, and in earth resources studies they usually
do, it may be at the side of the main data stream, as shown. It may
thus be used to monitor the operation of the system and perhaps to
do some special purpose analysis as needed. An image is, of course,
the most efficient way to convey a large amount of information to a
human operator. As seen, this is its principal use in both types of
systems, but the use is different in the two cases.

The technology for image-oriented systems is relatively
well-developed. Sensors best suited to this type of system have
been in use for some time, as have appropriate analysis techniques.
This type of system also has the advantage of being easily under-
standable to the layman or neophyte to remote sensing, an advantage
important in the earth resources field since many new data users
are anticipated. Similarly, it is well-suited for producing sub-
jective information and is especially suited to circumstances where
the classes into which the data are to be analyzed cannot be pre-
cisely decided upon beforehand. Thus, man with his superior
intelligence is or can be deeply involved in the analysis activity.
Pictorially oriented systems also have the possibility of being
relatively simple and low-cost. On the other hand, it is difficult
to use them for large-scale surveys over very large areas involving
very large amounts of data.
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In the case of numerically oriented systems, the technology

is much newer and not nearly so well-developed, though very rapid
progress is being made. Because the various steps involved tend to
be more abstract, they tend to be less readily understandable by
the layman. This type of system is best suited for producing ob-
jective information, and large-scale surveys covering large areas
are certainly possible. Numerically oriented systems tend to be
generally more complex, however,

I In summary to this point, the state-of-the art is such that

there are two general types of systems; this duality exists
primarily for historical reasons and because of the different
origins from which technology development began. One type is
based on imagery, and therefore a key goal of an intermediate
portion of the system: is the generation of high quality imagery.
In the other case imagery is less important and indeed may not

\
} be necessary at all. It is not appropriate to view these two

types of systems as competitive with one another since they

have different capabilities and each has advantages under certain
_Circumstances. As a matter of fact, these two stems of tech-

nology are approaching one another so that the differences

between them are becoming less distinct.

We will proceed now to further consideration of numerically
oriented systems since this type may be less familiar. In particular
we shall examine a type of data analysis useful in this case.

Please turn to page 165.
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MULTISPECTRAL ANALYSIS AND PATTERN RECOGNITION

In recent years considerable effort has been devoted to what is
referred to as the multispectral approach for data analysis. An
initial understanding of what is meant by the term "multispectral
approach" may be obtained by considering Figure 5., Shown here in
the upper left of the figure is a reproduction of a conventional
color photograph of a set of color cards. The remainder of the
figure shows photographs of the same color cards taken with black
and white film and several different filters. The pass band of
each filter is indicated beneath the particular color card set.

For example, in the .62-.68 micrometer band, which is in the red
portion of the visible spectrum, the red cards appear white in the
black and white photo, indicating a high response or a large amount
of red light energy being reflected from these cards. [ In essence
the multispectral approach amounts to identifying any color by
noting the set of gray scale values produced on the black and white
photographs for that particular color rectangle;]

As a very simple example of the approach, F}ggge 6 shows images
of an agricultural scene taken in three differemt portions of the
spectrum. Note that in the three bands alfalfa has responses which
are dark, light, and dark, respectively, whereas bare soil is gray,
dark, and white. Thus, alfalfa can be discriminated from bare soil
by identifying the fields which are dark, light, dark in order in
these three spectral bands.

One may initially think of the multispectral approach as one

in which a very quantitative measure of the color of a material is

'used to identify it. Color, however, is a term usually related to

' the response of the human eye; the terminology of spectroscopy,

,which is more precise, is more useful in understanding the multispectral
lapproach and is applicable beyond the visible region of the spectrum.

In order to understand this approach and to see how a numerically
oriented system may be based upon it, consider Fiqure 7, Shown at
the left is a graph of relative response (reflectance) as a function
of wavelength for three types of earth~-surface cover material:
vegetation, soil, and water. Let two wavelengths marked Al and
A2 be selected. Shown at the right side of this figure are the
data for the three materials at these two wavelengths, plotted
with respect to one another. For example, in the left-hand
graph, soil has the largest response at wavelength Al; this mani-
fests itself in the right-hand plot in the fact that soil has
the largest abscissa value (the greatest displacement to the
right).
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ion of wavelength are different will lie in different portions
i of the two-dimensional space.* When this occurs one speaks of the
| materials involved as having unique spectral signatures. This
' concept will be pursued further shortly; however, at this point
Iit is important to recognize that the concept of a spectral
\|signature is a relative one--one cannot know that vegetation has a
unique spectral signature:]for example, until one sees the plots
resulting from the spectral response of other materials within the
scene to be analyzed. Note also that a larger number of bands can
be used. The response at A3 could be used and the data plotted in
three dimensions. Four or more dimensions indeed have meaning and

utility even though an actual plot of the data is not possible.

T”’ It is readily apparent that two materials whose response as a
. funct

So far, no spatial or temporal information has been involved,
only spectral. Temporal information can be utilized in several
ways. Consider Figure 8. Time is always a parameter of the
spectral response of surface materials. As an example, consider
the problem of discriminating between soybeans and corn. Under
cultivation, these two plants have approximately 140-day growing
cycles. Figure 8 illustrates what the two-dimensional response
plot might be for fields of these two plants with time as a para-
meter. Upon planting and for some period thereafter, fields of
soybeans and corn would merely appear to be bare soil from an ob-
servation platform above them. Eventually though, both plants
would emerge from the soil and in time develop a canopy of green
vegetation, mature to a brownish dry vegetation, and diminish.

~Thus, as viewed from above, the fields of soybeans and corn_would,

in fact, always be mixtures of green vegetation and soil. | In
addition to the vegetation of the two plants having a slightly

, different response as a function of wavelength, the growing cycles
; and plant geometries are different; thus, the mixture parameters

I might (and in fact do) permit an even more obvious difference be-

| tween the two plants than the spectral response difference of the

i*plant leaves themselvest? This is the implication in Figure 8 as
“shown by the rather large difference between them 30 EZ%?E??bm
lanting date (partial canopy) as compared to 75 days (full canopy).
Thus, one way in which temporal information is used is simply in

jdetermining the optimum time at which to conduct a survey of given
materials.

* ¥ [} .
This space is referred to as feature space in pattern recognition

terminology.
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Let us move now to consider how one may devise a procedure
for analyzing multispectral data. In the process, one further
facet of the multispectral approach must be taken into account.
The radiation from all soybean fields will not have precisely the
same spectral response, since all will not have had the same
planting date, soil preparation, moisture conditions and so on.
Indeed, response variation within a class may be expected of any
earth-surface cover. The extent of response differences of this
type certainly has an effect upon the existence of a distinct spectral
signature, that is, the degree of separability of one material from
another. Consider, for example, a scene composed of soybeans, corn
and wheat fields; if five samples of each material are drawn, the
two-dimensional response patterns might be as shown in Figqure 9
indicating some variability exists within the three classes. Sup-
pPosé now an unknown point is drawn from the scene and plotted, as
indicated by the point marked U.

[&he design of an analysis system in this case comes down to
partitioning this two-dimensional feature space in some fashion,
such that each such possible unknown point is uniquely associated
with one of the classes. The engineering and statistical lit-
erature of the world abounds with algorithms or procedures by which

_this can be done. One very simple one is shown in Figure 10.__)In this

case the conditional centroid or center point of each class is
first determined. Next the locus of points equidistant from these
three centroids is plotted and results in the three segments of
straight lines as shown.* These lines form, in effect, decision
boundaries. 1In this example the unknown point "U" would be
associated with the class soybeans as a result of the location of
it with respect to the decision boundaries.

T This technique of analysis is referred to as pattern recog-

nition, and there are many more sophisticated procedures resulting
in both linear and nonlinear decision boundaries. However, the

| procedure of using a few initial samples to determine the decision

boundaries is common to a large number of them. The initial samples
are referred to as training samples, and the general class of
classifiers in which training samples are used in this way is

*
When more than two dimensions (spectral bands) are being used,

this locus would become a surface rather than a line.
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referred to as supervised classifiers. Pattern recognition will be

examined in more detail in a later section.
—

Pretest question

Imagine you are to brief a group of vieitors on
the operation of an airborne multispectral scanner.
Figure 11 of these notes is available for reference.
List in outline form the main pointe that you would
include in your briefing.

Go on to page 19.
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Are you satisfied with the work you just did?

If 8o, turn to page 20.

If not, continue reading below.

A TYPICAL AIRBORNE MULTISPECTRAL SCANNER SYSTEM

Up to this point, the implication has been that photography
or multispectral photography is the sensor to be used in generating
data for this type of an analysis procedure. While this data source
can be used, a perhaps more appropriate one is a device known as
a multispectral scanner. . Figure 11 diagrams such a device as might
be mounted in an aircraft.

Basically, the device consists of a multiband spectrometer

whose instantaneous field of view is scanned across the scene. The

scanning in this case is accomplished by a motor-driven scanning

mirror. At a given instant the device is gathering energy from a

single resolution element. The energy from this element passes

| through appropriate optics and may, in the case of the visible
portion of the spectrum, be directed through a prism. The prism
spreads out the energy from different portions of the spectrum.
Detectors are located at the output of the prism. The output of

i the detectors can then be recorded on magnetic tape or transmitted

~directly to the ground. Gratings are commonly used as dispersive

, devices for the infrared portion of the spectrum.

l A most important property of this type of system is that all
energy from a given scene element in all parts of a spectrum pass
through the same optical aperture. Thus, by simultaneously
sampling the output of all detectors one has, in effect, determined

' the response as a function of wavelength in each spectral band for
the scene element in view at that instant.

The rotating mirror causes the scene to be scanned across the
field of view transverse to the direction of platform motion; the
motion of the platform (aircraft) provides scanning of the scene in
the direction of the flight so that in time every element in the
scene has been in the instantaneous field of view of the instrument.
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As an example of the use of a multispectral scanner system of
the type shown in Figure 11 and the multispectral analysis
procedure, results of the analysis of a flight line will be present-
ed in brief form. The particular example involves the classification
of a one-mile by four-mile area into classes of agricultural
significance. Four-dimensional data (four spectral bands) were
used for classification. The data are shown in Figure 12
along with a conventional panchromatic air photo of the scene
in which the correct classification of each field has been added
to the photo by hand. The symbols on the air photo and their
associated classes are as follows: S-soybeans, C-corn, O-oats,
W-wheat, A-alfalfa, T-timothy, RC-red clover, R-rye, SUDAN-sudan
grass, P-pasture, DA-diverted acres, and H-hay.

Figure 13 shows the results of the classification. Two sample
classes are shown. All points of the scene classified as row crops
(either corn or soybeans) are indicated in the center of the figure.
On the right are indicated all points classified as cereal grains
(either wheat or oats).

A quantitative evaluation of the accuracy was conducted by
designating for tabulation the correct class of a large number of
fields in the flight line. The result of this tabulation is shown
in Figure 14. It is seen that all results for all classes are
above 80% correct.

The same procedures using aircraft data have been utilized
for a wide number of classification tasks in addition to crop
species identification. Some of these are as follows: tests cf
agricultural and engineering soils; mapping and delineating soil
types, mineral content, organic content and moisture content of the
soil; geologic feature mapping; water quality mapping and men-
suration using both reflective and emissive spectra; forest cover
identification and tree species delineation; and delineation into
geographic and land-use mapping categories.

\Before examining the ideas of pattern recognition in more
detail it is desireable to make an important point concerning the
{ choice of classes. There are two conditions that a class must
jmeet in order to be useful. The class must be geparable* from all
others and it must be of informational value.”| For example, it does
no good to define a class called iron ore deposits if the spectral
response which iron ore provides is not sufficiently distinct from
all other earth-surface materials over which data are to be
gathered. On the other hand, if no one is interested in locating
the iron ore deposits within the region to be surveyed, there is
no reason to define such a class. One may name classes of informa-
tional value and then check their separability, or vice versa.

*
Spectrally discriminable
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An opportunity ies now provided for a deeper examina-
tion of pattern recognition concepts. To determine the
best starting point for you, consider the following

pretest item:

A block diagram of a pattern recognition system
i8 shown in Figure 26. With this figure as an atd,
explain the meaning of the terms receptor, feature vec-
tor, categorizer and decision rule.

|
|
, Turn to page 22. |



T
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You will have to judge yourself on this one. If
you feel comfortable with your answer to the last ques-
tion go on to page 29.

Otherwige, turn to page 23.
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What is automatic pattern recognition?

Generally, the term pattern recognition as used in the
technical literature refers to techniques and equipment for the
automatic recognition'of patterns. The emphasis here is on automatic,
since this field has been developed to handle problems in which the
large quantity of data requires complete reliance upon a machine for
classification.

There appear to be similarities between pattern recognition
and photointerpretive techniques. As with photointerpretation,
pattern recognition requires the development of a key, a set of
tests which are to be carried out on a candidate pattern to determine
its correct classification. The similarity ends at this point,
however, due to the nature of the sets of tests in the two cases and
the way they must be implemented. In the case of photointerpretation,
the tests are usually relatively sophisticated and require human
attention. On the other hand, the purpose of pattern recognition is
to permit the complete removal of man from the process in order to
be able to process data faster.

Thus, in comparing pattern recognition and photointerpretation,

' it may be said that photointerpretation is generally more suited

- for problems of higher sophistication involving lower data quantities,
while just the reverse is true of pattern recognition.

In order to further clarify what is meant by the terms pattern
and pattern recognition, a number of examples of current and impor-
tant problems are presented.

Probably the first thing that comes to mind upon hearing the
term pattern recognition is the problem of automatically recogniz-
ing various geometrical patterns. Examples of this type of problem

are:
1) Reading of typed, printed, or handwritten text

2) Recognition of a person from his handwriting



|
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Distinguishing manmade from natural objects on aerial
photographs.

But pattern recognition is not limited to these cases, as
evidenced by the following examples:

4)

5)

6)

7)

8)

9)

10)

Recognition of the spoken word, for various speakers, e.g.
human voice-to-computer communication

Recognition of a speaker regardless of the words spoken

Recognition of an environment or situation in which a
system is placed. (Important for adaptive automatic con-

trol and learning systems)

Recognition of the location of faults in complex electronic
systems

Character or signal transmission recognition over lines of
communication, e.g. communication between computers

Target identification of aircraft, submarines, and missiles,
and distinction from decoys using radar, sonar, etc.

Recognition of fields of agricultural crops, their condition,
and state of growth from aerial observation.

The pattern recognition device

f— The problem of designing devices which classify patterns requires
! two main investigations. The first investigation involves the prob-
lem often referred to as feature extraction, i.e., operations on

the pattern which determine its significant characteristics. The
second investigation involves the decision-making device which
classifies the pattern on the basis of the comparison of its charact-
) eristics (both similarities and differences) with those of a

eference set of patterns.‘}we will now look at each of these problems
in more detail.

Generally, in a pattern recognition problem a number of measurable
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quantities exist which are used to characterize the patterns. The
optimum choice of these quantities (called features) represents
the feature selection problem mentioned above. This problem,

by no means a trivial one, is as yet unsolved, and, in fact, is the
major stumbling block to the total unlflcatlon of all the applica-
tions of pattern recognltlon. Often the designer must use his
intuition based on some prior experience to choose what seems to
be a suitable set of features. On the basis of these features,
studies are undertaken to determine the best decision or classify-
ing strategies to employ.

l‘ In accordance with this subdivision of the pattern recogni-
‘tion problem into two subproblems, the recognition device is gen-
erally designed in two parts, one part being called the receptor
and the second being the gategorizer. A simple block diagram is
shown in Figure 26.

The input to the receptor is the pattern to be recognized.
The receptor, using various sensors, performs the task of measur-
ing the chosen features. The output of the receptor is a vector
(called the measurement or feature vector) whose components de-
note the various feature measurements.

|

The categorizer portion of the recognition device is responsi-

fble for assigning a given input pattern to a class, on the basis
- of the measurement vector. The designer constructs the categorizer

- to obtain the "best" possible recognition of the patterns to be
+classified. The term "best" used here refers to the best perfor-
‘"mance as indicated by the measure chosen by the designer. It

- should be noted that the optimum design of the categorizer in a

|
I

particular problem is carried out with respect to a given set of
features. To obtain the best operall system it is necessary to
then optimize over all sets of possible features.
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An example problem

Perhaps the following example will be helpful in visualizing
the operation of a pattern recognition device, and the function
played by its components.

Consider the problem of remotely sensing whether a given field
contains wheat, corn, or alfalfa. Assume we have decided that the
percentage reflectance of electromagnetic energy in certain select-
ed regions of the spectrum are the features. This choice of features
could have been chosen, for example, by examining the characteristics
of the various crops as they would appear from the air. The recep-
tor portion of the pattern recognition device then measures the
percentage reflectance in the selected frequency bands.

Let xj; be the percentage reflectance in band one, x, in band
two...xn in band n where n is the total number of features measured.

The ordering of these features forms a measurement vector x =
(x3, Xp....xp), and on the basis of this vector the categorizer is
then to decide if the field is wheat, corn, or alfalfa.

We will examine this example further to introduce the concept
of a measurement, or feature space, and then show how some of the
common decision criteria can be represented in this space.

In order to represent a feature space easily on the plane of
the paper, let us consider the situation in which we only measure
two features (Z.e., reflectance in two spectral bands). Thus, the
feature vector contains only two components x = (xj, Xj3).

The receptor then represents each field examined (at its input)
by two numbers (at its output). To start the process we might
examine 10 fields each of wheat, corn, and alfalfa, then plot and
label the classification of each field.
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Figure 27 shows a set of results which might be obtained. These
patterns of known classification then constitute the reference

set of patterns to which the patterns of unknown fields are com-
pared. Obviously this reference set must be large enough and care-
fully selected, so that the set is typical of all future patterns
to be classified. 1In practice, the selection of this set is
crucial, and requires great care and judgment. The point labeled
U in Figure 27 represents the feature vector of an unknown field
whose classification is to be determined.

The job of the categorizer begins at this point. That is, to
classify the unknown field on the basis of its representation in
the chosen feature space. Many decision rules for making the classifi-
cation have been proposed and studied in the technical literature.
We will mention only a few here to illustrate the approach.

l. Minimum distance to the means criterion - According to
this approach the mean vector of each known class is found and
representated as a point in the feature space. See Figure 28. The
pattern is classified into the class whose mean is closest. This
criterion divides the space into three regions for classification
as shown in Figure 28. Then, depending on whether the feature
vector for the unknown field falls in regions A, C, or W, it is
classified as alfalfa, corn, or wheat, respectively.

2. Minimum distance to the nearest member of a class -
According to this criterion, the distance from the unknown pattern
to each reference pattern for each class is determined, and the
minimum distance found. The unknown pattern is then classified
into the same class as that of the reference pattern nearest it.
As before, this decision criterion divides the feature space into
decision regions. A graphical representation of this is shown in
Figure 29.
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In these first two classification schemes, the assumption
is made that the classes are sufficiently represented (character-
ized) by the limited number of known reference patterns. Specifi-
cally, in the example being considered it is assumed that the 10
reference patterns of each class are sufficient to characterize
the various classes. The justification of this assumption is a
problem in its own right. As will be seen, this same assumption
is employed in the third method of classification to be discussed,
but in a slightly different way.

Continue by turning to page 29.
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3. Statistical pattern recognition - Assume for the moment
that we have three joint probability density functions, one each
for the classes wheat, corn, alfalfa. Let each represent the
probability that the representation in feature space of a pattern
of the particular class falls in a given region of the feature
space. We might have the three density functions shown in Figure
3). For each category of interest, a set of likelihood ratios
can be computed which express the relative probabilities that
a candidate pattern belongs to the category of interest rather than
to any of the others. Thus, points in the feature space are
assigned to the class for which the probability of occurrence
of that point is the largest. Figure 31 shows decision regions
which might be obtained by this approach. It should be noted
that most, if not all, optimum statistical decision criteria can
be put in the form of ratio criteria such as this.

We return for a moment to the problem of obtaining the joint
distribution functions, and see how this is connected with the
basic assumption discussed above. The knowledge of the density
functions could come about in one of two ways: 1) the probabil-
ity densities are actually known, say through some theoretical
study; 2) if the probability densities are not known, this know-
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ledge must be gained by taking samples of each class. Again, a
basic assumption employed is that the samples are sufficient

to characterize the classes. 1In this case this means that the
sample size is large enough to construct the probability den-
sities required.

Using the geometrical interpretation of making classifica-
tion decisions outlined above, we can summarize the discussion
of the operation of the categorizer as follows. The feature
space in which patterns are represented by points is divided
into non-overlapping regions, one region corresponding to
each of the categories. A classification decision consists of
assigning to each candidate pattern the name of the category
associated with the region in which the pattern is located.

Again, in practice, considerable judgment and experimenta-~
tion are usually required to select the best categorizer approach
for a given recognition task. A given categorizer may work well
on one problem and not on another. Or two different ones may
have the same error rates, but one may make different types
(more costly) of errors and for different reasons.

A more realistic example

The above example was a hypothetical one designed to illustrate
the approach. Let us now consider a more realistic situation. It
is not usually possible in pattern recognition problems to conceive
and design a receptor which is so effective that the various pattern
classes are as obviously separable as they appear to be in Figure 27,
at least not in only two dimensions.

Figure 32 illustrates a more typical situation, but again only
in two dimensions in order to preserve the illustrative simplic-
ity. The data for this illustration was obtained from actual
measurements of the reflectance of wheat and oats in two spectral
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bands. These two bands, numbered 6 and 8, were selected from nine
for which data happened to have been available. Notice that the
two pattern classes are somewhat overlapping in two dimensional
space, indicating that perfect classification will not be possible.

An even worse situation is illustrated in Figure 33. The
data plotted here is that from spectral bands 3 and 5 of the same
wheat and oat reflectance measurements used in the previous figure.

In order to design a pattern recognition system, it is neces-
sary to have a quantitative measure of the effectiveness of the
receptor. For example, in the above case data is available from
nine spectral bands. Suppose that we are limited to the use of
only two of the nine bands. A limitation of this type could come
about due to limits in computer speed or memory size.* The ques-
tion then arises: what pair of features would be the best to use?

A few such measures of receptor effectiveness are already
available in the technical literature. One, the divergence cri-
terion, was used in the generation of this example. Divergence
is a quantity defined for pairs of probability density functions.

It yields a number which is a function of the distance or separation
between two densities; that is, the larger the separation, the
greater the divergence.

In preparing this example, the divergence for each possible
pair of the nine available features was computed. The feature
pair with the highest divergence (bands 6 and 8 ) and a feature
pair with a somewhat lower divergence (bands 3 and 5) were select-
ed for presentation here.

*
Actually, the size and speed of the average commercially available
computer usually permits maximum dimensionalities of from 30 to

several thousand, depending upon the particular categorizer algorithm.
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To complete this example, patterns of oats and wheat were
classified using a maximum likelihood ratio categorizer with the
above two feature pairs, and assuming Gaussian statistics. The
results are shown in Tables I and II, and the decision boundaries
(which turned out to be two-sheeted hyperbolas) are shown in Figure
32 and 33. To improve the classification performance over that
of Table I, the designer could (a) further optimize the receptor
in some fashion, (b) find a categorizer more suited to this spe-
cific problem, and/or (c) go to a higher dimensionality. Actually,
all nine features could easily have been used.

Table I. Feature 6 & 8

No. of No. classed as Percent Correct
True Class Samples Oats Wheat Classification
Oats 99 76 23 76,8
Wheat 78 11 67 85.9
Overall 80.1

Table II. Features 3 & 5

No. of No. classed as Percent Correct
True Class Samples Oats Wheat Classification
Oats 99 73 26 73.7
Wheat 78 33 45 57.7
Overall 66.6

Please turn to page 33.



-33~

You have finished the reading materials prepared
to provide a background in remote sensing and pattern
recognition. The post teat given below will help de-
termine your mastery of the material. Where unique
ansvers exigt they are given. Page references direct
you to the sections of the reading material should
review be necessary.

la. Define remote sensing.
P (”//u///;/, /, o % (/ /////*// "‘ /(/) '/4/,{// l»_/’;f/w
/, & e //v (/ 4(’// "'1’/ /f,g,\ .

b. Give an example of a remote sensing application.

- Jen 4 2. Ik Flreesl ///'4/} v
Crlas i V4 % g / g V

(Reference for question 1, page §5.)

2. Remote sensing systems depend on one or more of
several types of variations in electromagnetic
fields. List at least 3 of these variations.

a. W/y»ﬂ”

b.J/ﬁzcﬂz”
e. /iﬁfr 7

(Reference for question 2, page 5.)
Continue by turning to page 34
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Pogt Test (continued)

3. As they have developed to date, remote sensing
systems tend to fall into ome of two categories:
image-oriented systems and numerically oriented
8ystems.
Cite an example of each type of system.
a./w4u4jf@bf4 4 plolots bfielydso
b. & cerioens

(Reference for question 3, page 13, 14.)

4. Select two wavelengths A7 and A, to serve as features
for distinguishing "cover 1" from "cover 2"
and plot the "cover 1" and "ecover 2" pointe on the
A1, A2 plane.

Relative Response

A
20 |
10}
l | I 1 i =
3 30 10 Wavelength um
/( /L
>\2
20
! S &
1 1 1 —>
10 20 30 A

(Reference for question 4, pagee 1§ and 16.)
Please turn to page 52.
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To reach this point You must have a reasonable back-
ground in pattern recognition. Thig braneh of the
instructional materials discusses remote sensing
8Yystems emphasizing the important role played by
pattern recognition.

WHAT IS REMOTE SENSING? HOW IS INFORMATION CONVEYED? (continued)

In addition to the optical wavelengths, the microwave range
is also useful in remote sensing. Preliminary results using both
passive microwave and radar sensors indicate considerable promise
for this microwave portion of the spectrum. For reasons of sim-
plicity and in the interest of time, however, we shall limit our
considerations in the remainder of this discussion to the optical
portion of the spectrum,

Figure 2 is a diagram of the organization of an earth survey
system, It is hecessary, of course, to have a sensor system view-
ing that portion of the earth under consideration. There will

One must next transport the data back to earth for further
analysis and processing. This may be done through a telemetry
system as is the case for the Earth Resource Technology
Satellite (ERTS), or through direct package return as will be
used with SKYLAB. There usually then is a need for certain pre-
pProcessing of the data before the final processing with one or
more of the data reduction algorithms. It is at this point in
the system, when the data is reduced to information, that it is
usually helpful to merge ancillary information, perhaps derived
from sources on the surface of the earth.

An important part of the system which must not be overlooked
is indicated by the last block in Figure 2, that of information con-
sumption, for there is no reason to go through the whole exercise
if the information produced is not to be used. 1In the case of an
earth resource information system, this last portion can prove to
be the most challenging to design and organize since many potential

from a space System and may indeed know very little about the
‘information-providing capabilities.

Before leaving the matter of the organization of an information
system, the necessity of having a thorough understanding of the
portion of the system Preceding the sensor must be pointed out.

Consider Figure 3. This figure shows a simplified version



-36-

of the energy exchange in a natural environment. It is possible,
of course, to detect the presence of vegetation on the earth's
surface by measuring the reflected and emitted radiation emanating
from the vegetation. One must understand, however, that there
are many experimental variables active. For example, the sun
provides a constant source of illumination from above the atmos-
phere, but the amount of radiation which is reflected from the
earth's surface depends upon the condition of the atmosphere, the
existence of surrounding objects, and the angle between the sun
and the earth's surface as well as the angle between the earth's
surface and the point of observation. Even more important is the
variation which will exist in the vegetation itself. It is pos-
sible to deal with these experimental variables in several ways.
We shall touch briefly on this point later in the discussion.

Summarizing, then, it is possible to derive information about
the earth's surface and the condition of its resources by measuring
the spectral, spatial, and temporal variations of the electromagnetic
fields emanating from points of interest and then analyzing these
measurements to relate them to specific classes of materlials. To
do so, however, requires an adequate understanding of the
materials to be sensed and, in order to make the information useful,
a precise knowledge is required about how the information will be

used and by whom.

Go on to page 37.



THE DUALITY OF SYSTEM TYPES

When we consider the state-of-the-art of remote sensing to-
day, a duality of system types becomes readily apparent. Develop-
ment in the field has had two major stems because it originated
from two somewhat different types of technology. These two types
of systems will be referred to here as those with

. Image orientation, and
. Numerical orientation.

An example of an image-oriented system might be simply an
aerial camera and a photointerpreter. The photographic film is
used to measure the spatial variations of the electromagnetic
fields, and the photointerpreter relates these variations to
specific classes of surface cover. Numerically oriented systems,
on the other hand, tend to involve computers for data analysis.
Although the photointerpreter and the computer, respectively,
tend to be typical in the two types of systems, it would be an
oversimplification and indeed incorrect to say that they are
uniquely related to these systems types. This becomes clearer
upon further examination.

Figure 4 compares the organization of the two system types.
Both types of systems need a sensor and some preprocessing; how-
ever, the distinction between the types can perhaps be brought
out most clearly by noting the location of the form image block
in the two diagrams. In the image-oriented type, it is in line
with the data stream and must precede the analysis block. Numer-
ically oriented systems, on the other hand, need not necessarily
contain a form image block. If they do, and in earth resources
studies they usually do, it may be at the side of the main data
stream, as shown. It may thus be used to monitor the operation
of the system and perhaps to do some special purpose analysis
as needed. An image is, of course, the most efficient way to
convey a large amount of information to a human operator. As
seen, this is its principal use in both types of systems, but
the use is different in the two cases.

In considering the design of information gathering systems, it
is of great importance that the type of sensor as well as the means
of analysis to be used are well-mated to the type of system ori-
entation. Thus, let us briefly consider the types of imaging space
sensors available,

. Perhaps the single most distinguishing characteristic of

earth resources information systems is that a very large amount

of data can be, and indeed must be, gathered in order to derive

the desired information. Since an image is a very efficient way
to communicate large quantities of data to man, let us arbitrarily
restrict ourselves to sensors which are capable of creating images.
Shown in the table on the next pPage is a categorization of imaging
sensors into three broad classes: photographic, television, and
scanner. The table also provides examples of the advantages and

disadvantages of each.
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Table III

Sensor Type Advantages Disadvantages
Photography Spatial Resolution Data Return
Television Size/Weight Spectral Range
Scanner Spectral Range Mechanical Complexity

Types of imaging space sensors

In the case of photography, the great advantage, of course,
is the very high spatial resolution which can be achieved, but
to maintain this high resolution, data return by direct package
return is required. Also, photography as a sensor is useful only
in the visible and in a small part of the reflective infrared
portion of the spectrum.

Television has the advantage that the signal occurs in
electrical form and thus is immediately ready to be transmitted
back to the earth; storage of the data, however, is not inherently
present in the system in a permanent form, as it is in the case
of photography. Thus, for space systems purposes one is not
necessarily faced with the task of carrying along a large quantity
of the storage medium (photographic film for the photography case)
when using a television sensor. One may view this either as an
advantage of size and weight or as one of efficiency in that a
satellite may be operated a very long time with a single servicing.
Television sensors are restricted to approximately the same spectral
range as photography, however.

Scanners can be built to operate over the entire optical
wavelength range. They can also provide a greater photometric
dynamic range. In order to achieve these advantages, however, they
tend to be more mechanically complex.

It is important to realize that the advantages and disadvantages
here must be considered only as examples since the advantages and
disadvantages in any specific instance will depend upon the precise
details of the system. General statements are also difficult
relative to the type of sensors which will be best for image-orient-
ed and numerically oriented systems. There is a clear tendency to
favor photography for image-oriented systems due to its high spatial
resolution capability, while multiband scanners tend to be favored
for numerically oriented systems since they make available greater
spectral and dynamic ranges.

The technology for image-oriented systems is relatively
well-developed. Sensors best suited to this type of system have
been in use from some time, as have appropriate analysis techniques.
This type of system also has the advantage of being easily under-
standable to the layman or neophyte to remote sensing, an advant-
age important in the earth resources field since, as it was pointed
out above, many new data users are anticipated. Similarly, it is
well-suited for producing subjective information and is especially
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suited to circumstances where the classes into which the data
are to be analyzed cannot be precisely decided upon before hand.
Thus, man with his superior intelligence is or can be, deeply
involved in the analysis activity. Image-oriented systems also
have the possibility of being relatively simple and low-cost.

On the other hand, it is difficult to use them for large~scale
Surveys over very large areas involving very large amounts of
data.

In the case of numerically oriented Systems, the technology
is much newer and not nearly so well-developed, though very rapid
progress is being made. Because the various steps involved tend
to be more abstract, they tend to be less readily understandable
by the layman. This type of system is best suited for producing
objective information, and large-scale surveys covering large
areas are certainly possible. Numerically oriented systems tend
to be generally more complex, however.

In summary, the state-of-the-art is such that there are two
general types of systems; this duality exists primarily for his-
torical reasons and because of different origins from which tech-
nology development began. One type is based on imagery, and
therefore a key goal of an intermediate portion of the system is
the generation of high quality imagery. In the other case imagery
is less important and indeed may not be necessary at all. It is
not appropriate to view these two types of systems as competitive
with one another since they have different capabilities and each
has advantages under certain circumstances. As a matter of fact,
these two stems of technology are approaching one another so that
the differences between them are becoming less distinct.

We will proceed now to a further consideration of numerically
oriented systems since this type may be less familiar. 1In par-
ticular we shall examine a type of data analysis useful in this

case,

Please turn to page 40




THE MULTISPECTRAL APPROACH AND PATTERN RECOGNITION

In recent years considerable effort has been devoted to what
is referred to as the multispectral approach for data analysis.
An initial understanding of what is meant by the term "multi-
spectral approach" may be obtained by considering Figure 5. Shown
here in the upper left of the figure is a reproduction of a con-
ventional color photograph of a set of color cards. The remain-
der of the figure shows photographs of the same color cards taken
with black and white film and several different filters. The
pass band of each filter is indicated beneath the particular color
card set. For example, in the .62-.68 micrometer band, which is
in the red portion of the visible spectrum, the red cards appear
white in the black and white photo, indicating a high response or
a large amount of red light energy being reflected from these cards.
In essence the multispectral approach amounts to identifying any
color by noting the set of gray scale values produced on the black
and white photographs for that particular color rectangle.

As a very simple example of the approach, Figure 6 shows images
of an agricultural scene taken in three different portions of the
spectrum. Note that in the three bands alfalfa has responses which
are dark, light, dark respectively whereas bare soil is gray, dark,
white. Thus, alfalfa can be discriminated from bare soil by

‘ identifying the fields which are dark, light, dark in order in
these three spectral bands.

One may initially think of the multispectral approach as one
in which a very quantitative measure of the color of a material is
used to identify it. Color, however, is a term usually related to
the response of the human eye; the terminology of spectroscopy
which is more precise is more useful in understanding the multi-
spectral approach and is applicable beyond the visible region of
the spectrum.

In order to understand this approach and to see how a numer-
ically oriented system may be based upon it, consider Figure 7.
Shown at the leftis a graph of relative response (reflectance) as
a function of wavelength for three types of earth-surface cover
material: vegetation, soil, and water. Let two wavelengths marked
\ A1 and A be selected. Shown in the righthand part of this figure is
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the data for the three materials at the two wavelengths, plotted
with respect to one another. Por example, in the left graph
soil has the largest response at wavelength Ay; this manifests
itself in the righthand plot in the fact that soil has the
largest abscissa value {the greatest displacement to the right).

It is readily apparent that two materials whose response as
a function of wavelength are different will lie in different portions
of the two-dimensional space.* When this occurs one speaks of the
materials involved as having unique spectral signatures. This
concept will be pursued further presently; however, at this point
it is important to recognize that the concept of a spectral
signature is a relative one--one cannot know that vegetation has
a unique spectral signature, for example, until one sees the plots
resulting from the spectral response of other materials within the
scene to be analyzed. Note also that a larger number of bands can
be used. The response at A3 could be used and the data plotted in
three dimensions. Four or more dimensions indeed have meaning and
utility even though an actual plot of the data is not possible.

So far no spatial or temporal information has been involved,
only spectral. Temporal information can be utilized in several
ways. Consider Figure 8. Time is always a parameter of the
spectral response of surface materials. As an example, consider
the problem of discriminating between soybeans and corn. Under
cultivation, these two plants have approximately 140-day growing
cycles. Figure 8 illustrates what the two-dimensional response
plot might be for fields of these two plants with time as a para-
meter. Upon planting and for some period thereafter, fields of
soybeans and corn would merely appear to be bare soil from an ob-
servation platform above them. Eventually though, both plants
would emerge from the soil and in time develop a canopy of green
vegetation, mature to a brownish dry vegetation, and diminish.
Thus, as viewed from above, the fields of soybeans and corn would,
in fact, always be mixtures of green vegetation and soil. 1In
addition to the vegetation of the two plants having a slightly
different response as a function of wavelength, the growing cycles
and plant geometries are different; thus, the mixture parameters
might (and in fact do) permit an even more obvious difference be-
tween the two plants than the spectral response difference of the
plant leaves themselves. This is the implication in Figure 8 as
shown by the rather large difference between them 30 days from
planting date (partial canopy) as compared to 75 days (full canopy),
Thus, one way in which temporal information is used is simply in
determining the optimum time at which to conduct a survey of given
-materials.

A second use of temporal information is perhaps less obvious.
Consider the situation of Figure 8 at the 75- and 100-~day point.

*
This space is referred to as feature space in pattern recognition

terminology.




-48-

In this case, the separation of the two materials is relatively
slight. However, if this data is replotted in four dimensional
space, A] and A3 at 75 days as dimensions one and two and A1
and A at 100 days as dimensions three and four, the small
separabilities at the two times may augment one another.

A third use of temporal information is simply that of change
detection. 1In many earth resources problems it is necessary to
have an accurate historical record of the changes taking place in a
scene as a function of time.

Let us move now to consider how one may devise a procedure
for analyzing multispectral data. In the process, one further
facet of the multispectral approach must be taken into account.
The radiation from all soybean fields will not have precisely the
same spectral response, since all will not have had the same
planting date, soil preparation, moisture conditions and so on.
Indeed, response variation within a class may be expected of any
earth-surface cover. The extent of response differences of this
type certainly has an effect upon the existence of a distinct
spectral signature, that is, the degree of separability of one
material from another. Consider, for example, a scene composed
of soybean, corn and wheat fields; if five samples of each material
are drawn, the two dimensional response patterns might be as shown
in Figure 9 indicating some variability exists within the three
classes. Suppose now an unknown point is drawn from the scene
and plotted, as indicated by the point marked U.

The design of an analysis system in this case comes down to
partitioning this two dimensional feature space in some fashion,
such that each such possible unknown point is uniquely associated
with one of the classes. The engineering and statistical lit-
erature of the world abounds with algorithms or procedures by which
this can be done. One very simple one is shown in Figqure 10. In this
case the conditional centroid or center point of each class is
first determined. Next the locus of points equidistant from these
three centroids is plotted and results in the three segments of
straight lines as ghown.* These lines form, in effect, decision
boundaries. In this example the unknown point "U" would be
associated with the class soybeans as a result of the location of
it with respect to the decision boundaries.

This technique of analysis is referred to as pattern recog-
nition, and there are many more sophisticated procedures resulting
in both linear and nonlinear decision boundaries. However, the

‘procedure of using a few initial samples to determine the decision

boundaries is common to a large number of them. The initial samples
are referred to as training samples, and the general class of
classifiers in which training samples are used in this way is
referred to as supervised classifiers.

* ’ .
When more than two dimensions (spectral bands) are being used,

this locus would become a surface rather than a line.
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Pretest question

Imagine you are to brief a group of visitors on
the operation of an airborne multispectral scanner.
Figure 11 of these notes is available for reference.
List in outline form those points that you would

include in your briefing.

Go on to page 44
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Are you satisfied with the work you just did?

If so, turn to page 45.
If not, continue reading below.

A TYPICAL AIRBORNE MULTISPECTRAL SCANNER SYSTEM

Up to this point, the implication has been that photography or
multispectral photography is the sensor to be used in generating
data for "this type" of an analysis procedure. While indeed this
data source can be used, a perhaps more appropriate one is a device
known as a multispectral scanner. Figure 11 diagrams such a device
as might be mounted in an aircraft.

Basically, the device consists of a multiband spectrometer
whose instantaneous field of view is scanned across the gcene. The
scanning in this case is accomplished by a motor-driven scanning
mirror. At a given instant the device is gathering energy from a
single resolution element. The energy from this element passes
through appropriate optics and may, in the case of the visible
portion of the spectrum, be directed through a prism. The prism
spreads out the energy according to the portion of the spectrum;
detectors are located at the output of the prism. The output of
the detectors can then be recorded on magnetic tape or transmitted
directly to the ground. Gratings are commonly used as dispersive
devices for the infrared portion of the spectrum.

A most important property of this type of system is that all
energy from a given scene element in all parts of a spectrum pass
through the same optical aperture. Thus, by simultaneously
sampling the output of all detectors one has, in effect, determined
the response as a function of wavelength in each spectral band for
the scene element in view at that instant.

The rotating mirror causes the scene to be scanned across
the field of view transverse to the direction of platform motion,
and the motion of the platform (aircraft) provides scanning of
the scene in the direction of the flight so that in time every
element in the scene has been in the instantaneous field of view
of the instrument.
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As an example of the use of a multispectral scanner system
of the type shown in Figure 11 and the multispectral analysis
procedure, results of the analysis of a flight line will be pre-
sented in brief form. The particular example involves the clas-
sification of a one-mile by four-mile area into classes of agricul-
tural significance. Four-dimensional data (four spectral bands)
were used for the classification. The data are shown in Figure 12
along with a conventional panchromatic air photo of the scene in
which the correct classification of each field has been added to
the photo by hand. The symbols on the air photo and their
associated classes are as follows: S-soybeans, C-corn, O-oats,
W-wheat, A~alfalfa, T-timothy, RC-red clover, R~rye, SUDAN-sudan
grass, P-pasture, DA-diverted acres, and H-hay.

Figure 13 shows the results of the classification. Two sample
classes are shown. All points of the scene classified as row crops
(either corn or soybeans) are indieated in the center of the figure.
On the right are indicated all points classified as cereal grains
(either wheat or oats).

A quantitative evaluation of the accuracy was conducted by
designating for tabulation the correct class of a large number of
fields in the flightline. The result of this tabulation is shown
in Figure 14. It is seen that all results for all classes are
above 80% correct.

The same procedures using aircraft data have been utilized
for a wide number of classification tasks in addition to Ccrop
species identification. Some of these are as follows: tests of
agricultural and engineering soils: mapping and delineating soil
types, mineral content, organic content and moisture content of the
soil; geologic feature mapping; water quality mapping and men-
suration using both reflective and emissive spectra; forest cover
identification and tree species delineation; and delineation into
geographic and land-use mapping categories.

Please turn to page 46
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SOME PROCEDURAL DETAILS IN THE USE OF PATTERN RECOGNITION IN REMOTE
SENSING

With the basic concept of pattern recognition in mind, it is
possible to proceed to some further details on how it may be
applied. One of the more important of these details is the defi-
nition of the classes into which the data are to be categorized.

There are two conditions that a class must meet in order to
be useful. The class must be separable* from all others and it
must be of informational value. For example, it does no good to
define a class called iron ore deposits if the spectral response
which iron ore provides is not sufficiently distinct from all other
earth-surface materials over which data are to be gathered. On
the other hand, if no one is interested in locating the iron ore
deposits within the region to be surveyed, there is no reason to
define such a class. We shall see presently that one may name
classes of informational value and then check their separability,
or vice versa.

A second matter is determining the point at which a class
actually becomes defined. In an agricultural survey, simply
naming a class soybeans does not define it precisely enough.

For example, what percent ground cover is required before a given
resolution element should have its classification changed from bare
soil to soybeans? What percent of a resolution element may be
covered with weeds and so on? The fact of the matter is that the
class becomes precisely defined only by the training samples to be
used for it. Thus, an important step in the procedure is the
selection of training samples which are sufficiently typical of

the whole class in question.

Spectrally discriminable




T

One must also recognize that the definition of a class is
always a relative matter. That is, it is relative to the other
classes used in the same classification. The effect of the
| decision boundaries is to divide up the feature space (see Figure
9) into non-overlapping regions depending on the relative location
of the class training sets relative to one another.

It should also be noted, however, that as a result, every
point in the space automatically becomes associated with one of the
named classes. It is therefore necessary that the list of classes
be exhaustive so that there is a logical class to which every point
in the scene to be analyzed may be assigned.

As a result of these factors, it is apparent that the se-
lection of training samples is especially important. There are
two approaches to obtaining training data; we shall refer to them
here as the signature bank approach and the extrapolation mode.

Using the signature bank approach, the researcher first de-
cides on a list of appropriate classes and then draws from a
signature bank previously collected data on the classes of
material identical to those selected. This approach has a con-
siderable amount of aesthetic appeal. Presumably one could
accumulate a very large bank of data from typical classes and
thereafter always have training data available for any situation
without further effort.

However, such an approach would place stringent constraints on
the sensor system since absolute measurements of scene radiance
would be necessary if they are to be referenced to a future data-
gathering mission. Further, the extent to which detailed and
sophisticated classes could be utilized would be limited by the
ability to determine and adjust for the instantaneous values of all
the other experimental parameters, such as the condition of the
atmosphere, the sun and view angle, possible seasonal variations in
the vegetation, the natural statistical distribution of the data
for various classes, etc. In short, while such a procedure is
possible, it will result in more stringent requirements on the
sensor system and considerable data preprocessing in order to
achieve this maximum utility. Alternatively, it would have to be
restricted to cases in which only relatively simple classes were
necessary.

The extrapolation mode, on the other hand, has somewhat dif-
ferent characteristics. 1In this case, training data for each of
the classes are obtained by locating within the data to be analyzed
‘specific examples of each of the classes to be utilized. The
classification procedure, therefore, will amount to an extrap-
olation from points of known classification within the scene to the
remaining portions of the data. This approach has the advantage of
requiring less exactness in the calibration capability of the
sensor system and in the knowledge of the other experimental
variables since only variation of these factors within the data-
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gathering mission, and not variations from mission to mission

must be accounted for. On the other hand, it has the disadvantage
of requiring some knowledge about the scene to be analyzed before
the analysis can proceed. In the case of populated or accessible
areas, this knowledge usually comes from ground observations. 1In
the case of inaccessible areas as well as accessible and/or pop-
ulated ones, it could perhaps also come from a very limited, low-
altitude aircraft mission. The relative cost of this additional
information often turns out to be relatively low. The extrapolation
mode was used in both the preceding example and the one to follow.

To illustrate these details and procedures, an example follows
in which a pattern-recognition system was trained and then used to
classify a relatively large amount of data. Data for this experi-
ment were collected aboard the Apollo 9 space vehicle as a part of
an experiment known as S065. This example was selected because
in addition to illustrating the steps described above, it provides
the first indication of how these techniques may perform on space
data. Both the ground resolution and the spectral resolution of
these data are similar to those which will be obtained by the Earth
Resources Technology Satellite; however, since the S065 experiment
involved photographic sensors, the results obtained may be on the
conservative side of those from ERTS since, as previously indicated,
photography does not ordinarily provide the optimal type of data
for this analysis procedure. Further, since the sensors were
photographic, some preliminary processing steps to prepare the data
for analysis were necessary. These steps involved first scanning
the photography (on a rotating drum microdensitracer) to convert
it to digital form, then bringing the images gathered over the same
scene in the different spectral bands into spatial alignment with
one another. These steps are not typical and are beyond the scope
of the discussion at hand. We will proceed from the point at which
the preprocessing steps provided four dimensional (four spectral
bands) data for analysis. The four spectral bands involved were
.47 to .61 micrometers, .59 to .71 micrometers, .68 to .89 micro-
meters, and .51 to .89 micrometers. These bands were determined
by the film and filter combinations used on the four cameras.

Figure 15 shows a black and white print of a color infrared
version of the particular frame used, a portion of Southern California,
Arizona, and Northern Mexico. 1In the lower left of the frame is the
Imperial Valley, an irrigated area of very great importance agricul-
turally. Also shown in the figure is a computer-generated gray scale
printout of one band of the data. The scene covers about 10,000
square miles and contains about five million points.

In order to test the separability of various classes, two
analysis tasks were carried out. The first, involving agricultural
classes, was carried out in the area designated by the small rec-
tangle in the lower left of the printout. Figure 16 shows a high
resolution printout of this same area. The individual fields of
the scene are clearly evident in this printout. To begin, some
relatively simple classes were defined. These were green
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vegetation, bare soil, water, and salt flats. Figure 17 shows the
result of classifying the data into these categories. The accuracy
of this classification was judged to be very high and as a result
it was decided to attempt a classification with more detailed
categories., The result of this classification is shown in

Figure 18. It is seen that the classes used were barley, alfalfa,
sugar beets, bare soil, salt flat, and water. A quantitative
assessment of the accuracy in this case indicated an average
accuracy of approximately 70%.

The second analysis task carried out on this data set was

done over the whole frame. Classes of geologic interest were
! defined in this case and an attempt was made to achieve what

amounts to a geologic map of the area. The result of this
i classification is shown in Figure 19. Some, but not all, of the
| classes used are indicated at the bottom of this figure. The
result of this classification was compared with existing geologic
maps of the area by a professional geologist, and again the results
were judged to be highly satisfactory.

Now, with an overview of the experiment and the results achieved
in mind, let us examine the procedures used to obtain the results.
In the case of an agricultural problem the classes of interest
usually exist in well-defined fields. It is thus, relatively easy
to locate sample fields of each class from which to draw training
samples. In this case, ground observations from a relatively small
region on the ground can be used to derive a sufficient number of
training samples for each class. The number of training samples
necessary for each class depends upon the number of spectral bands
to be used among other things. But generally no more than a few
hundred are required, fewer in simpler situations. Thus, Figure 20
depicts a typical situation for this type of classification. The
fields outlined here are a typical set of training fields for such
a classification task.

The classification of a natural area presents a slightly dif-
ferent situation, however, In this case it may be more difficult
to manually locate training samples since boundaries between dif-
ferent materials will be more difficult to locate. Over the last
year or two research has been directed towards devising some ]
machine-aided procedures for deriving training samples in this cir-
cumstance. One such procedure involves the use of a type of
classifier not utilizing training samples and thus referred to as
a nonsupervised classifier. The basic idea behind nonsupervised
classifiers becomes apparent by considering the next several
‘figures.

Assume that one has some two-dimensional data as shown in
Figure 21. Assume also that one knows there are three classes of
material represented in this data, but the correct association
of the individual points with the three classes is unknown. The
approach is to initially assume that the three classes are
separable and check this hypothesis subsequently.
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There are algorithms (computational procedures) available
which will automatically associate a group of such points with
an arbitrary number of mode centers or cluster points. These pro-
cedures, known as clustering techniques, can be used to so divide
the data and the result of applying such a procedure might be as
shown in Figure 22. There remains, then, the matter of checking
to be sure that the points assigned to a single cluster all belonged
to the same class of material. 1In passing it is worth noting a
comparison between supervised and nonsupervised classifiers. 1In
the supervised case, one generally names classes of informational
value and then checks to see if the classes are separable. The
reverse is the case in the nonsupervised scheme. One separates
the data and then checks to see if the clusters resulting are indeed
associated with the classes of informational value.

Figure 23 shows the result of applying such a clustering
technique to some multispectral data. The algorithm was instructed
to form five cluster points. Comparison of the clustering results
with the data in image form shows that the clusters indeed were
associated with individual fields. Cluster four, for example, was
associated with fields in the upper left and lower right, clusters
two and three with the field in the lower left, and so on. Such a
technique is used to speed the training phase of the classifier by
aiding the human operator in obtaining points grouped according
to the class that they came from; the statistics of each cluster
point can be immediately computed from the clustered results so
that decision boundaries are located. The operator is thus re-
lieved of the necessity of locating and separating individual
fields for training each class.

The value of such a procedure is even greater in cases where
the boundary between classes is not so distinct in the data.
Figure 24 shows the result of clustering data for a soils mapping
classification. Here it would be more difficult to select samples
associated with specific soil types. As a result of the clustering,
the operator has only to associate the soil type with each cluster
point and training samples are immediately available for further
processing.

It was this latter procedure which was used in deriving
training for the geologic map in the Apollo 9 data. Figure 25
shows the outline of cluster plots from which training was derived.
In this case it was only necessary to quickly mark regions con-
taining at least the samples of the classes desired, thus greatly

simplifying and speeding the training of the classifier in this

case. The specific steps to be followed then are:

1) decide upon the list of classes, and determine the general
locality of examples of these classes based on limited
ground observation. This information may be from a low-
altitude aircraft pass, information available from a
perhaps out-of-date or inaccurate map or a limited ground
survey.
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2) designate these regions to the clustering algorithm and
after clustering identify the specific clusters
associated with the classes of interest.

3) compute the statistics of each class from appropriate
clusters and proceed with the classification.

It must be emphasized that the techniques are still evolving
and are very experimental in nature. Many questions about the
utility of the extrapolation mode and machine-aided training
procedures remain to be answered. Not the least of these is the
extent over which a given classifier can generalize or extrapolate
from its training areas and the extent to which machine-aided
training procedures do make the training of classifiers fast for
practical situations. The Earth Resources Technology Satellite
will, for the first time, provide a data base with which answers

to these questions may be sought.

Please turn to page 21.




You have just come from page 34
Post Test (continued)

5. A fictitious pattern recognition system using
two features uses the elassification rule "assign
data points to the class for which the distance
between the point being classified and the closest
training point ie minimized."” A typical situation
showing training points for 3 classes and an unknown
data point U are shown below. Using the classifi-
cation rule just stated prediet vhieh class the
pattern recognition system would asgign to U,

HEWE 1470 TImATOF s

A2 ‘/_—Big Betsy Tomatoes

x X v 80
x X X 700 O Oe——Cherry Tomatoes
o)

Xz
0]
Z
X X y4 y4

2 Z 74— Heinz 1420 Tomatoes

Please turn to the next page.
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The correct answer to question § is8 Heinz 1420 tomatoes.
If you did not get this answer refer to
pages 17 and 26 through 28.

6. Figure 11 of these notes is a diagram of an
airborne multigpectral scanner system. Could you

prepare a S-minute talk on how this system works?

If your answer is a confident "yes" turn to
the next page.

If your answer is no, reread page 19, then turn
to page &4.
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Post Test (continued)

7. The success of a pattern recognition system
18 highly data-dependent. Below are three
examples of data. Predict the relative success
of a pattern recognition system subjected to
these data sets by rating the data as clearly
separable, marginally separable or not separable.
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Please turn to page 55
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The answers to question 7 are

a) not separable
b) clearly separable
e) marginally separable,

8. What are the conditions one looks for in order

for a class to be considered a useful class?

/ ot ,(/// e 4

Please turn to page 56
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The answer to question 8 is

a) the class must be 8pectrally distinguishable
from all other classes
b) it must be of informational value.

References for question 8 are pages 20 or 46.

Explain the meaning of the terms receptor, feature
vector, feature space, categorizer and decision rule
ag they apply to the system shown in Figure 26 of
these notes.

Please turn to page 57.
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Pages 23 to 28 serve as reference for question 9.
If you have answered all of the post test questions

you have completed this portion of the training
materials.
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(Left) Black and white print of Color Infrared Frame 3698A (Apollo 8) and
(Right) Gray Scale Panchromatic Computer Printout of the Imperial Valley,
California.
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Figure 16. High Resolution Printout of a Section of the
Digitized Apollo 9 Frame 3698A, Imperial Valley,
California.
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Samples in Two-Dimensional Feature Space.
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