The LARSYS Educational Package: Instructor's Notes JOHN C. LINDENLAUB SHIRLEY M. DAVIS The Laboratory for Applications of Remote Sensing Purdue University, West Lafayette, Indiana 1974 # LARSYS EDUCATIONAL PACKAGE INSTRUCTOR'S NOTES by John C. Lindenlaub Shirley M. Davis ### Table of Contents A Survey of the LARSYS Educational Package An Introduction to Quantitative Remote Sensing Instructor's Notes LARSYS Software System: An Overview Instructor's Notes Student's Notes Demonstration of LARSYS on the 2780 Remote Terminal Instructor's Notes Student's Notes LARSYS Exercises Instructor's Notes Guide to Multispectral Data Analysis Using LARSYS Instructor's Notes A Case Study Using LARSYS for Analysis of LANDSAT Data Instructor's Notes This work was prepared under support of NASA Contract NAS 9-14016 by the Laboratory for Applications of Remote Sensing, Purdue University, West Lafayette, Indiana 47907. ### PREFACE The materials included in this volume have been designed to assist LARSYS instructors as they guide students through the LARSYS Educational Package. All of the materials have been updated from the previous version to reflect the changes made in the Educational Package which coincided with the technical changes brought about by putting LARSYS Version 3.1 "on line." Included in the material is "A Survey of the LARSYS Educational Package to Accompany Version 3.1," the Student Notes for Units II through V (Units I, VI and VII have been issued as separate LARS Information Notes) and the Instructor's Notes for each of the seven units now in the package. Instructor's Notes are printed on buff paper. There are many significant changes in the nature and format of the Educational Package as well as minor changes in the content which reflect changes brought about by LARSYS Version 3.1. Unit I has been reduced from 83 pages to 63 pages with no significant changes in content. Diagnostic pretests and posttests have been added to allow the student to check his progress and mastery of the materials presented. Unit II also has a new format. The earlier version was a notebook or set of slides and audio tape which the student or students viewed rather passively. The new version incorporates a set of student notes which contain activities to actively involve the students in learning. The slides and notebook have been replaced by a display book which makes the computer printouts much more readable. Three decks of computer cards allow the student to handle the materials they will be generating later in the sequence. Revisions in Units III, IV, and V include those needed for consistency with changes in LARSYS, some organizational improvements to increase ease of use by both students and instructors, and numerous smaller changes as suggested by students who had used earlier versions of the LARSYS Educational Package. response to our national resource shortages, steps were also taken to reduce the amount of computer paper needed to carry Notable additions to the Demonstration out the activities. (Unit III) include student follow-up activities, a conference with the instructor, and greater emphasis on the computer system environments and user aids. In Unit IV, students now learn to use the system to communicate with the operator and with other users, and look closely at the details of the typewriter, lineprinter and punched output. In Unit V, they get experience using the batch processor. Unit VI, <u>Guide to Multispectral Data Analysis Using LARSYS</u>, has undergone the least change. Basically only typographical errors were corrected, awkward sentence structures changed and the computer printouts updated to the format generated by LARSYS 3.1. Unit VII, A Case Study Using LARSYS for Analysis of LANDSAT Data, is a totally new addition to the Educational Package. It has been designed by Tina Cary to parallel the Guide (Unit VI) but uses data from LANDSAT for the analysis sequence. As in the Guide, the students actually complete a case study. of the Educational Package as well as misor changes in the coortant which reflect changes trought about by LARSYS Version 2.1. Unit I has been reduced inch Alpages to 63 pages with no eignificant changes in content. Utagnostic pretests and posttoble have been added to allow the suppent to check his progress and Unit IT also has a new formet. The earlier version was a notepoox or set of sides and eudic tape which the standard or students passively. The new version indopporates a set of student notes which contains activities to sortivity. been replaced by a display book which whiles the domputer printowes much none readable. Three decks of computer cards allow the student to hand a the materials they will be generating later to the temperors. Revisions to Units III, IV, and V include those meded for consistency with changes in LARSYS, some organizational improvements to intresse eare of use by loth students and instructors; and numerous skaller changes as surgested by students who had with the instructor and creter explanate on the computer system tem devisorments and user plan in Unit IV; students now learn to make the creterior and with other peers, and look plocely at the details of the typewriter; lingeprinter and punched light. In Unit. V. they get experience ### A Survey of the LARSYS Educational Package to Accompany Version 3.1 The LARSYS Educational Package is a set of instructional materials developed to train people to analyze remotely sensed multispectral data using LARSYS, a computer software system developed at LARS/Purdue. A high priority was placed on designing the materials for independent study as it was felt that this would be the most likely situation in practice. Organizations just getting started in the use of multispectral data would probably have only two or three people making initial use of LARSYS. As their experience and skills improve other workers would be expected to join the effort. Students would be starting at different times and, depending on their backgrounds and other duties, would progress at different rates. To meet these educational challenges, a series of seven units has been developed. Each unit is designed to take a student from an initial point, defined by the prerequisites, to an end point, defined by its objectives. Each unit provides informational materials, an opportunity for the student to practice and study the skills or ideas presented, and a problem or test situation to help him determine whether he has met the objectives of that unit. A variety of media is used in the educational package, the selection dependent on the nature of the material and the defined objectives of each unit. Reinforcement of certain concepts, such as the multispectral concept and the multidimensional statistical approach, is interwoven throughout the package. Essential to the effective use of the educational package is a "LARSYS expert" or "site expert." Each student should be assigned to one or two persons experienced with LARSYS who can serve as instructors. At LARS/Purdue the instructor would probably be a fellow researcher from within the same program area. At geographically remote sites, the "site expert" would be an individual who has spent anywhere from several days to several weeks at LARS learning about LARSYS. While at LARS he would have had the opportunity to go through the training materials while working with a terminal identical to his remote site terminal and to observe operations in the computer facility. As the number of experienced LARSYS users at a given remote site grows, it is expected that some of them will also assume instructional duties. Instructor notes, designed to assist those serving as instructors, accompany each unit. The function of the instructor is not to plan and preside over formal classroom sessions, but rather to serve as a tutor helping clarify troublesome points for each student. It is intended that student/instructor sessions be brief with the instructor providing the necessary corrective feedback or encouragement to enable the student to continue on his own. ### Description of the LARSYS Educational Package The LARSYS Educational Package presently consists of seven units. A flow chart of the materials is shown on the next page. It summarizes the purpose of each unit and gives a time estimate for completing each unit. Students begin with a background manual entitled An Introduction to Quantitative Remote Sensing. This is an introduction to remote sensing stressing the role of pattern recognition in numerically-oriented remote sensing systems. Its specific purpose is to provide a common background and orientation for the LARSYS computer software system. For newcomers to remote sensing, this manual introduces concepts and terminology which are needed later on. Remote sensing veterans will be introduced in this material to numerically-oriented remote sensing data analysis. The second unit entitled <u>LARSYS Software System - An Overview</u> consists of a recorded tape which accompanies a display book and student notes. It takes the viewer through a typical remote sensing data analysis sequence and illustrates the commonly used features of the LARSYS processing functions. An introduction to the computer terminal follows. The unit Demonstration of LARSYS on a 2780 Remote Terminal provides the student with an introduction to the data processing hardware that he will be using and introduces him to some additional aspects of the LARSYS software system. He will observe several LARSYS jobs run at the 2780 remote terminal. The demonstration requires an instructor to present the material and guide the student. Instructor's notes have been designed so that persons with only a modest amount of experience with the terminal can satisfactorily run the demonstration. Students are instructed in the use of the terminal by means of an audio-tutorial lesson The 2780 Remote Terminal: A Hands-On Experience. The student is guided by an audio tape on how
to use the terminal off-line as a card lister, login to the computer and initiate the LARSYS system, run sample LARSYS jobs and transmit data to and receive data from the main computer. The audio tape is accompanied by a set of student notes. LARSYS Exercises, Unit V, are short problems which the student solves by using the computer terminal and LARSYS processing functions. The purpose of these problems is to increase the student's experience in the use of LARSYS for multispectral data analysis and to help him develop an appreciation for the capabilities and limitations of the LARSYS software system. ### THE LARSYS EDUCATIONAL PACKAGE UNIT I Title: An Introduction to Quantitative Remote Sensing Purpose: Orientation to remote sensing terminology, principles and pattern recognition. Time estimate: 4 hours UNIT II Title: LARSYS Software System - An Overview Purpose: Summary of LARSYS data analysis capabilities. Time estimate: 1 hour UNIT III Title: Demonstration of LARSYS on the 2780 Remote Terminal Purpose: Orientation to terminal hardware and terminal procedures. Time estimate: 1.5 hours UNIT IV Title: The 2780 Remote Terminal: A "Hands-On" Experience Purpose: Experience in transmitting cards, receiving punched and printer output, and running a LARSYS program when given the control card listings. Time estimate: 4.5 hours UNIT V Title: LARSYS Exercises Purpose: Practice in using the terminal, writing and executing simple LARSYS programs. Time estimate: 5 hours Title: Guide to Multispectral Data Analysis Using LARSYS (with accompanying Example and Case Study) Purpose: Analysis of a detailed example and a case study using aircraft data. Time estimate: 40 hours Title: A Case Study Using LARSYS for Analysis of LANDSAT Data Purpose: Analysis approach of a detailed example and a case study. Time estimate: 45 hours At this point in learning to use LARSYS, the student has a choice between Unit VI, Guide to Multispectral Data Analysis Using LARSYS and Unit VII, A Case Study Using LARSYS for Analysis of LANDSAT Data. Both units provide a detailed breakdown of the philosophy of the analysis methods — describing the steps in the analysis, why they are necessary and how they are carried out. A detailed example parallels the description, and the student has the opportunity to carry out an analysis of his own by means of a case study. Unit VI is geared toward a supervised analysis approach and uses aircraft data. Unit VII combines techniques from both supervised and unsupervised approaches and applies these techniques to data collected by the Earth Resources Technology Satellite, now known as LANDSAT. If the student has the time, resources and interest, a study of both units is recommended. ### Other Educational Resources A Site Library containing selected LARS Information Notes, the <u>LARSYS User's Manual</u>, "An Analysis of Run 71053900" (an analysis example for Unit VI), "An Analysis of Run 73033802" (an analysis example for Unit VII), and copies of <u>Focus</u> is included in the support materials accompaning the <u>LARSYS Educational Package</u>. Two documents in particular are referenced frequently in the LARSYS Educational Package. They are the LARSYS User's Manual edited by T. L. Phillips, and Pattern Recognition: A Basis for Remote Sensing Data Analysis by P. H. Swain. The former document provides a detailed documentation of the LARSYS system from the user's viewpoint; the latter provides a theoretical framework. for the algorithms used in the LARSYS processing functions. Newcomers to the field are encouraged to do some background reading. The kind and amount of reading will vary according to the specific application of remote sensing in which they are interested. There is a large quantity of technical literature available in remote sensing. However, reading most of it requires a thorough understanding of the technology. Persons new to remote sensing find it most helpful to look at one or more of books written to provide an overview of the field. Generally they discuss the various sensor types, data characteristics, analysis procedures, and applications. We especially recommend five that are currently available. - Committee on Remote Sensing for Agricultural Purposes (1970). Remote Sensing with Special Reference to Agriculture and Forestry. National Academy of Sciences, Wash., D. C. 424 p. - Estes, J. E. and Senger, L. W. (1974). Remote Sensing: Techniques for Environmental Analysis. Hamilton Publishing Co., Santa Barbara, Calif. 340 p. - Holz, R. K. (ed.) (1973). The Surveillant Science: Remote Sensing of the Environment, Houghton, Mifflin Co., Boston. 390 p. - Johnson, P. L. (ed.) (1969). Remote Sensing in Ecology. Univ. of Georgia Press, Athens, Ga. 244 p. - Rudd, R. D. (1974). Remote Sensing: A Better View. Duxbury Press, North Scituate, Massachusetts. 135 p. Readings from the remote sensing literature may be selected to emphasize the discipline orientation of the student. Those interested may contact Technology Transfer at LARS to determine other educational materials that are available. Many different types of materials are presently in preparation including additional Focus items, minicourse (which include student notes, slides and audio tapes), and video tapes with viewing notes. Many people have contributed to the development of the LARSYS Educational Package. Valuable suggestions have come from students working with earlier versions of the educational package. You, as a student, can aid in the further development and improvement of the materials by sending any comments and suggestions to: John C. Lindenlaub Technology Transfer Laboratory for Applications of Remote Sensing 1220 Potter Drive West Lafayette, Indiana 47906 ### Special Note to Instructor Each terminal site has one or more Multispectral Image Storage Tapes assigned to it. The person charged with the responsibility of coordinating educational activities at the site should dedicate one of these tapes to educational purposes. In particular, students will need access to runs 73033802,66000600,66005200,71053900 and 72072302 at one or more times as they go through the educational materials. Each site expert is responsible for generating a tape with these runs on it. This may be accomplished by means of the following LARSYS run: *DUPLICATERUN FROM RUN (73033802) TO TAPE(TTT), FILE(1) END *DUPLICATERUN FROM RUN(66000600) TO TAPE (TTT), FILE (2) END *DUPLICATERUN FROM RUN(66005200) TO TAPE(TTT), FILE(3) *DUPLICATERUN FROM RUN (71053900) TO TAPE (TTT), FILE (4) *DUPLICATERUN FROM RUN (72072302) TO TAPE(TTT), FILE (5) END where TTT is the tape number used for educational purposes at your particular site. ¹This particular order was chosen so as to place the run expected to have heaviest use at the beginning of the tape. This results in fewer file forward requirements and hence more efficient operation. Local conditions or case study preferences may dictate a different order at your remote terminal site. Instructor's Notes Materials Required: Student's personal copy of An Introduction to Quantitative Remote Sensing (LARS Information Note 110474) Estimate of Instructor time required: Briefing time: 5 to 10 minutes ### Important Notes: An Introduction to Quantitative Remote Sensing is written like a programmed text. Urge your student to read the Preface first. The material is self-contained and the reader should require no external assistance. Each student should be provided with a personal copy. The booklet is divided into three sections: I. An Introduction to Remote Sensing, II. Multispectral Analysis and III. The Role of Pattern Recognition in Remote Sensing. Each section is preceded by Objectives and a Pretest (blue page) and followed by a Posttest (yellow pages). The answers for all of the Pretest and Posttest questions are given in the Appendix (pink pages). Encourage the student to actually write out each answer in the spaces provided in the booklet. On the basis of the "correctness" of his answers to these questions, he will be directed to various parts of the text. Instructors who have used this booklet feel that debriefing students after the <u>Introduction</u> is very important, especially to be sure that they understand the basic concepts such as decision rules. If your student is a newcomer to remote sensing, you might suggest additional reading from the Site Library. Select materials that emphasize the discipline orientation of the student. Instructor's Notes Materials Required: Audio tape and tape player Booklet of displays Three decks of computer cards (A,B and C) Student Notes handout (which student will keep) Estimate of Instructor time required: Briefing time: 5 to 10 minutes Students should be briefed on the operation of the tape player. You should emphasize this is an <u>overview</u> and that it is not intended that the students absorb all the details. Have them pay close attention to the set of instructional objectives stated at the beginning of the Student Notes. # Student Notes for # LARSYS software system: An Overview *LINEGRAPH *SEPARABILITY *HISTOGRAM LARSYS *IDPRINT *STATISTICS *CLASSIFYPOINTS *PRINTRESULTS Developed by James D. Russell and John C. Lindenlaub Laboratory for Applications of Remote Sensing Purdue University, West Lafayette, Indiana 47907 NOTE TO THE STUDENT: This set of notes is designed to accompany an audio tape, a set of display materials and three sample decks, labeled A, B and C. The presentation runs about 45 minutes and is intended as an overview or introductory treatment of the LARSYS software system. If you have not done so already, begin this minicourse by listening to the audio tape and following the instructions given on the tape. Music on the tape will be your cue to turn off the tape and perform some activity. PREREQUISITES: Some background in remote sensing and pattern recognition is assumed. Specifically you should be able to: - 1. Define "remote sensing." - 2. Identify three types of measurable
electromagnetic field variations that are used in remote sensing. - 3. Given a graph showing relative spectral response vs. wavelength for various ground covers, plot their associated points on the λ_1 , λ_2 plane. - 4. Given a plot of training samples associated with different classes of ground cover, classify an unknown point using a specified decision rule. - 5. Outline and/or discuss the basic operation of an airborne multispectral scanner. - 6. Given a block diagram of a pattern recognition system, discuss the following terms: receptor, feature vector, categorizer, and decision rule. - 7. State two conditions a class must meet in order to be useful. This background material is included in Unit I of the LARSYS Educational Package, entitled An Introduction to Quantitative Remote Sensing. If you do not feel you have met these prerequisites, you may want to reread sections of the Introduction or get additional suggestions from your instructor. OBJECTIVES: When you have completed this minicourse, you should be able to: - 1. List, without regard to the particular format used, the information contained on a multispectral image storage tape. - 2. Name the three types of control cards used in running LARSYS programs. - 3. Describe the output of at least four of the LARSYS processing functions which are described in this overview. RETURN TO THE TAPE ### WHAT IS LARSYS? LARSYS - A GROUP OF COMPUTER PROGRAMS DESIGNED TO: Access Manipulate Manipulate Manipulate Analyze a very high volume of data. The LARSYS Organization Figure 1 #### TYPES OF INFORMATION ON MULTISPECTRAL IMAGE STORAGE TAPE - Identification Information - · Calibration Information - · Data Addresses - · Data Values for each element of the ground scene LARSYS can be used to obtain ID Information from a Multispectral Image Storage Tape LARSYS can produce Alphanumeric Pictorial Printouts Figure 2 ### Control Cards used in running LARSYS Programs: - Function Selector Card (with * in column 1, tells which processing function is desired) - Function Control Cards (key word begins in column 1, card contains data addresses, computation options, type of output desired, etc.) - · Initialization Function (with hyphen in column 1, used for "housekeeping" functions such as putting identification comments on output) #### THE ANALYST USES REFERENCE DATA TO - - Locate Training Fields (typical data samples) and Test Fields (to evaluate accuracy of classification results) - Establish Field Boundaries (by comparing gray scale printout with aerial photograph) SAMPLE OF FIELD DESCRIPTION CARD Figure 3 ### *LINEGRAPH to produce graphs of specified lines (or columns) of data -- see Display 8 # Function Selector Card for LINEGRAPH Function Figure 4 ### *CLUSTER to determine whether or not all of the candidate training class data is homogeneous or whether it should be divided into a number of subclasses # Function Selector Card for CLUSTER Function Figure 5 LARSYS can be used to CLUSTER data sets. The typical output includes: - Maps of candidate training fields - Statistics for candidate training classes - Information about separability of candidate training classes - Histograms of data points associated with a cluster (optional) ### *STATISTICS to calculate the statistics for data fields and data classes in any set of channels ## Function Selector Card for STATISTICS Function ### Figure 6 LARSYS can provide means, standard deviations, and correlation matrices of data fields and classes. The STATISTICS processing function produces the statistics deck needed for the SEPARABILITY and CLASSIFYPOINTS processing functions. LARSYS can provide Histograms of data from individual fields of data and from classes (groups of data fields). The STATISTICS processing function provides: - · Mean and standard deviation vectors - · Correlation matrices - · Statistics decks - · Histograms - · Coincident spectral plots LARSYS assists in determining the degree of SEPARABILITY of classes. Figure 7 LARSYS helps select the best set of features. LARSYS can be used to classify data. Results are displayed in map or tabular form. Figure 9 ### SUMMARY LARSYS uses three types of control cards - Initialization cards - · Function Selector cards - Function Control cards Multispectral Image Storage Tapes contain: - · Data Values - · Data Addresses - · Identification Information - · Calibration Information CLASSIFYPOINTS PRINTRESULTS | LARSYS Function | LARSYS Output Examples | | | | | | |-----------------|---|--|--|--|--|--| | IDPRINT | Identification Records | | | | | | | PICTUREPRINT | Grayscale Printouts | | | | | | | COLUMNGRAPH | Graphs of Columns | | | | | | | LINEGRAPH | Graphs of Lines | | | | | | | CLUSTER | Maps | | | | | | | | Statistics | | | | | | | | Separability Information | | | | | | | | Histograms (optional) | | | | | | | STATISTICS | (Histograms | | | | | | | | Spectral Plots | | | | | | | | Mean and Correlation
Matrices | | | | | | | | Statistics Deck | | | | | | | SEPARABILITY | Statistical Distances between class pairs | | | | | | Classification File Classification Maps and Performance Tables Remember, this is an "overview." You are not expected to learn the details of the data processing procedure at this stage in your study. ### Self-Check - A. The data source for the LARSYS processing functions is the Multispectral Image Storage Tape. It contains the following information: - 1. - 2. - 3. - 4. - B. What are the three types of control cards used in running LARSYS programs? - 1. - 2. - 3. - C. Briefly describe the output of at least four of these Processing Functions. - *IDPRINT - *PICTUREPRINT - *COLUMNGRAPH, *LINEGRAPH - *CLUSTER - *STATISTICS - *SEPARABILITY - *CLASSIFYPOINTS - *PRINTRESULTS Instructor's Notes ### Preface to the Instructor This instructor's quide is designed to help you give a "first time" demonstration of the 2780 remote terminal. have assumed that you are already familiar with the terminal and use the terminal in your daily activities. If you are a knowledgeable but infrequent user of the terminal, go through a "dry run" of the demonstration before presenting it to your students. For your convenience, the three decks used in the demonstration are listed in the Appendices to these notes. Materials required: Student Notes > Control card decks (3) Instructor's Notes The demonstration can be completed in one Time Estimate: hour if the demonstrator doesn't talk too much. One and a half hours is typical. Terminal sign-up and tape drive requirements: Insure your access to the terminal; reserve the terminal according to local procedures. Observe current LARS procedures for reserving tape drives. STEPS IN CARRYING OUT THE DEMONSTRATION ### I. Before you meet the student - 1. Read the Instructor's Notes and Student Notes; locate the required control card decks. - 2. Check to see that one of the Multispectral Image Storage Tapes assigned to your terminal site has a copy of run 66000600 on it. If it does, enter the tape number and file number below for easy reference: Tape TTT = _____; File F = _____. If it does not, see page 6 of "A Survey of the LARSYS Educational Package" at the front of these Instructor Notes. 3. Check the control card decks used with this demonstration. Make sure each deck includes a RUNTABLE initialization function to call into use your tape with run 66000600 on it. The deck setup should be: -RUNTABLE DATA RUN(66000600), TAPE(TTT), FILE(F) END where TTT and F are the tape and file number determined in step 2 above. ### II. Preliminary Talk with Student - 1. Talk to the student and determine what he knows about remote sensing, pattern recognition and LARSYS. See if he has any questions as a result of going through the LARSYS Software System An Overview. (Unit II) - 2. If the student is already somewhat familiar with the hardware, he may find this unit more interesting if you let him do as much of the demonstration himself as he can; as you tell him each step that needs to be demonstrated, he can carry out the demonstration for you. - 3. If the student is unfamiliar with the hardware, assure him that he is not expected to run LARSYS unaided at the conclusion of this demonstration. The "Hands-On" experience in the next unit will teach him one-by-one the steps he needs to know. ### III. The Demonstration Details of each step are on pages 4 and 5. - Step 1. Orient student to the physical setup. - a. point out terminal documentation, <u>LARSYS User's</u> <u>Manual</u>, bulletin board, etc. - b. describe sign-up procedures for terminal and tape drives, when applicable. - c. point out and show controls, on/off switches on: card reader/punch printer typewriter data modem Refer student to Figure 1 in Student's Notes. d. give student the name of the terminal coordinator and the person to see if a malfunction occurs. For your own reference, fill in the blanks below: Terminal coordinator at this site is ______ Person to contact if the printer is out of paper or if a malfunction occurs is ______ - Step 2. Demonstrate use of the 2780 off-line as a card lister. - a. using the deck labeled "for listing" demonstrate: card loading mode switch (use off-line position) printer operation - b. give listing to student - Step 3. Demonstrate LARSYS Control Commands. - a. login (getting "on the air"); and enter name - b. i larsys (initiate LARSYS) - c. news (this is the system bulletin board) - d. reference all (mention that system has numerous user aids such as NEWS, REFERENCE, and LIST control commands. Student will need the LARSYS control card listing to do his future assignments. Point out how easily control card listings are obtained.) - e. msg operator I'm demonstrating system; if you get this message, please respond. - Step 4. Demonstrate how cards are read. Use deck labeled STATISTICS. - a. point out need for ID card and what happens if you forget the ID card (cards won't read). - b. point out need to hit End-of-File
before last card is read and how to recover if forgotten (load a blank card, hit EOF and read blank card). - c. point out computer response to a successful transfer of cards (typewriter message). - Step 5. Run the STATISTICS job read in above (type 'run larsys'). - a. While STATISTICS is running, read in all the remaining control cards (CLASSIFYPOINTS and PRINTRESULTS). Point out that you can read in cards for another job while running one job. - b. Demonstrate receiving printer output. - c. Demonstrate receiving punched output. Point out why you should use plenty of cards (if you run out of cards you can load more and START again but you may get some duplicate cards). - Step 6. Run the CLASSIFYPOINTS AND PRINTRESULTS jobs (type 'run larsys'). - a. Point out progress messages; they let one know that the program is running. - b. Point out how you can receive output from one job while running a second job. - Step 7. Correct (intentional) control card error in PRINT-RESULTS deck. - a. An error was deliberately made on a control card in the PRINTRESULTS program. When asked to type the correct card type: #### threshold 6*0.1 - b. If you have not already done so, this is a good time to demonstrate how to recover from a typing error. (@ to delete a single character, ¢ to delete a whole line.) - c. You might also point out that by using the initialization card -TYPE in the card deck, you can enter control cards from the typewriter. - Step 8. Logout (type 'quit'). Obtain printer and punched output. ### Points to emphasize during the demonstration: LARSYS progress messages LARSYS error messages and diagnostics The three environments: Control Program (CP) Command Environment LARSYS Command Environment LARSYS Processor Environment (See Figure 2 in Student Notes) How to send messages to the computer operator ### At the end of the demonstration: -If more than one student is witnessing the demonstration, supply each student with a copy (either original or Xerox) of the following: - 1) listing of control cards used - 2) the typewriter output - 3) the printer output Note: it would be reasonable for students to share the same output deck -Be sure the student understands what he is to do with the output. Schedule a follow-up conference with him. #### IV. Follow-up Conference Go through the objectives with the student to: - help him find answers to questions he has - reinforce the material presented in the unit Be certain that the student feels satisfied with the work he did with the output from the demonstration. Make plans for doing the next unit, the "Hands-On Experience." ### Appendix I: For Listing #### DEMONSTRATION OF REMOTE TERMINAL ``` -COMMENT DEMONSTRATION OF THE 2780 REMOTE TERMINAL DATA RUN(66000609), TAPE(TTT), FILE(F) Note: TTT and F should be replaced by the *STATISTICS PRINT HIST(C), CORRE(C) PUNCH CHARACTERS CHANNELS 1,2,3,4,5,6,7,8,9,10,11,12 OPTION HIST(1,8,12) appropriate tape and file numbers for your CHANNELS 1.2.3,4 CHANNELS 1.2.3,4 CHASS SOYBEANS 66000600 36-7 CLASS CORN 66000600 36-8 CLASS COATS 66000600 6-2 66000600 1-11 CLASS WHEAT 66000600 6-14 CLASS RED CLVR 66000600 1-1 CLASS RED CLVR 66000600 1-1 CLASS RED CLVR 66000600 1-1 CLASS ALFALFA 66000600 7-24 END location. SOYBN SOYBN 237 253 327 CORN 267 319 373 455 11 DATS WHEAT 303 495 439 447 565 183 195 731 737 1 129 177 ALFALFA END OF FIRST DEMONSTRATION JOB. -COMMENT DEMONSTRATION OF THE 2780 REMOTE TERMINAL -RUNTABLE -RUNTABLE DATA DATA RUN(66000600), TAPE(TTT), FILE(F) END *CLASSIFYPOINTS RESULTS DISK CHANNELS 1,6,10,11 CARDS READSTAT DATA * STATISTICS DECK IN THIS LOCATION DATA RUN(66000600), LINES(271,711,2), CCL(1,222,2) END ``` ``` *PRINTRESULTS RESULTS DISK PRINT OUTLINE(TRAIN, TEST), TRAIN(F,C), TEST(F,C,P) SYMBOLS S,C,O,W,R,A BHRESHOLD6*.01 ERROR IN THRESHOLD CARD. CORRECTION ENTERED FROM TYPEWRITER. * TEST 1 66000600 66000600 66000600 66000600 12-3 36-7 6-9 7-27 12-7 12-2 12-3 705 291 489 643 647 705 797 341 519 663 699 675 797 69 43 115 125 51 93 33 SOYBN E PRT PR SOYBN SOYBN VOLUNTR CORN SOYBEANS SOYBEANS 111 2222222 2222222 161 197 87 66000600 66000600 66000600 TEST 2 66000600 SOYBEANS SOYBEANS 111 SOYBN W. PRT PLT ERL 36-9 261 287 2 39 65 2 CORN 66000600 307 401 589 349 421 35 199 43 222 36-8 CORN 6-11 111 CORN 66000600 TEST 3 66000600 66000600 CORN DIFF VARIETIES 327 365 413 583 31-11 6-2 1-11 7-1 335 377 467 605 109 131 45 121 197 183 93 193 OATS OATS OATS OATS 2222 2222 DITCH W END 66000600 66000600 TEST 4 66000600 66000600 66000600 66000600 TEST 5 66000600 285 347 385 459 581 649 317 353 393 509 689 699 109 107 109 167 203 199 205 203 211 211 31-12 222222 222222 WHEAT 6-1 6-1 6-14 7-2 WHEAT WHEAT WHT 2 WHEAT VARIETIES 12-10 WHEAT 2 VAR LODGING 43 357 433 521 559 613 629 RED CL HAY RED CL HAY RED CL PASTURE RED CL PASTURE RED CL PASTURE RD CL DIVERTED ACRES RED CL HAY 1-1 6-10 6-7 1-6 12-8 7-29 7-28 399 453 561 581 95 197 215 109 109 61 113 173 49 49 2222222 66000600 66000600 633 619 637 66000600 66000600 66000600 183 FND ``` *****END OF DEMO LISTING DECK**** ## Appendix II: Statistics | -RUNTABLE DATA RUN(66700600), TAPE(END -COMMENT DEMONSTRAT | | | | PENC | TE TE | RMINA | See note in | Appendix I | |---|------------|------------|---|------------|---|---------|----------------------|------------| | *STATISTICS
PRINT HIST(C), CORRE
PUNCH CHARACTERS
CHANNELS 1,2,3,4,5,
OPTIONS HIST(1,8,12
DATA | (C) | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ANI EMA | VE | | | CLASS SOYBEANS
66000600 31-13
66000600 36-7
CLASS CORN | 237
307 | 253
327 | 1 | 141
59 | 167
81 | 1 1 | SOYBN
SOYBN | | | 66000600 36-9
66000600 36-8
CLASS DATS | 267
319 | 283
341 | 1 | 45 21 | 61
31 | 1 1 | CORN
CORN | | | 66000600 6-2
66000600 1-11
CLASS WHEAT | 365
421 | 373
455 | 1 | 145
63 | 185
83 | 1 1 | OATS
OATS | | | 66000600 31-12
66000600 6-14
CLASS RED CLVR | 295
471 | 303
495 | 1 | 134
177 | 175 | 1 | WHEAT | | | 66000600 6-10
66000600 1-1
CLASS ALFALFA | 439
539 | 447
565 | 1 | 139
175 | 183
195 | 1 | RED CLVR
RED CLVR | | | 66000600 7-24
END | 731 | 737 | 1 | 129 | 177 | 1 | ALFALFA | | ### Appendix III: Classifypoints; Printresults ``` -COMMENT DEMONSTRATION OF THE 2780 REMOTE TERMINAL -RUNTABLE DATA RUN(66000600), TAPE(TTT), FILE(F) See no See note in Appendix I *CLASSIFYPOINTS RESULTS DISK CHANNELS 1,6,10,11 CARDS READSTATS 0 141 SOYBN 167 81 45 CORN 61 145 63 185 DATS 1 175 WHEAT 134 177 1 RED 139 183 1 29 177 1 ALFALFA LS 1 CHANNEL CODE 64 CODE 68 CODE 69 C2 63.05 C2 67.30 C2 67.305 C2 128.40 C2 139.35 C2 129.40 C2 232.30 C2 221.40 C2 214.50 343 0.8450848E 41.05 42.45 41.85 44.90 59.10 66.25 59.45 96.80 31.00 0000000000000000 31.00 1111111111111111 31.00 31.00 31.00 31.00 CODE 1 CO 00 C1 94.80 00 C1 96.90 00 C1 126.40 00 C1 100.50 00 C1 85.30 972 0.6182059E 02 0.6880997E 02 02 02222222222222222222311111 02 0.5969740E 0.6091144E 02 0.8178966E 0.7201476E 0.5952582E 0.7562915E 02 0.5916666E 0.7283694E 02 0.8139764E 0.8925452E 0.5837680E 0.8686322E 02 0.5884346E 0.8157127E 02 0.7857527E 0.9231604E 0.5720239E 0.9016550E 02 0.5394341E 0.5501337E 02 0.7136830E 0.7507304E 0.5415123E 0.6816151E 02 02 02 0.5583382E 0.5524197E 02 0.7608162E 0.7898833E 0.557G845E 0.7060349E 02 02 03 01 0.4498446E 0.28899219E 0.58699219E 0.5869719E 0.34589301E 0.69716752E 0.6644647E 0.35976657E 0.514694052E 0.2742392E 0.2742392E 0.1736052E 0.7870337E 0.43117314E 0.5540514E 0.5540514E 0.5540514E 0.5540514E 0.4861828E 0.4861828E 0.9735908E 0.9735908E 0.4284496E 0.3585127E 0.4284496E 0.3793545E 0.4818825E 0.1498525E 0.1498525E 0.1294161E 0.6591715C 0.7375128E 0.4144777E 0.3726546E 0.1330864E 0.1330864E 0.1049431E 0.3472991E 0.5685491E 0.5685491E 0.6402748E 0.6988630E 0.67518899E 0.4363844E 0.11481C2E 0.9578767E 01 01 02 02 01 01 01 OI 01 01 001 01 02 01 01 01 01 01 01 01 01 010001 ŎĪ 01 0100100 01001 01 01 02 0.7160851E 0.3695445E C.7193171E 01 .4669827E .1565623E 01 000 01 ``` ``` 01 0.5703589E 01 0.3504378E 01 0.1000204E 02 0.9547868E 01 0.4390461E 01 0.1039963E 01 0.4616303E 01 0.4616303E 01 0.462867E 01-0.4962867E 01-0.1405999E 02 01 0.1052970E 01 0.3652427E 02 0.1034029E 01 0.6161450E 01 0.5152451E 02 0.1042837E 01 0.8369099E 01 0.1019941E 00 0.2200019E 01-0.2748640E 00-0.1390823E 01-0.2676115E 01 01 01 01 01 01 01 01 02 01 02 01 01 02 01 02 01 01 00 0.4475633E 0.2105762E 0.4494862E 0.4726201E 0.3293087E 0.3293087E 0.3293087E 0.3293087E 0.3293087E 0.3293087E 0.3293087E 0.1026780E 0.1026780E 0.1163719E 0.1517075E 0.1140808E 0.448190E 0.348C8C9E 0.29368387E 0.1285987E 0.1285987E 0.128598650E 0.2972650E 0.5398932E 0.3299968E 0.1299968E 0.5575939E 0.5731563E 0.7311563E 01 01 01 01 0122211121211001 01 01 01 02 02 02 01 02 0.2952166E 0.2694386E 0.5238840E 0.4854597E 0.3233793E 0.6021020E 0.1250486E 0.6152723E 0.1970175E 0.9256107E 0.9256107E 0.2738612E 0.5247262E 0.1613800E 0.3951147E 0.1300011E 0.3375486E 0.3609261E 0.1152801E 0.8869050E 0.3386306E 0.8113420E 0.9112176E 0.912176E 0.2126711E 0.1740831E 0.3924631E 0.1004111E 0.2354033E 0.1244751E 01 01 01 01 01 02 01 01 01 02 01 02 01 02 01 02 02 02 01 0.2640245E 01 0.3286567E 01 0.3286567E 01 0.2113466E 01 0.2113466E 01 0.6356266E 01 0.6356266E 01 0.2466564E 01 0.7301647E 01 0.3853810E 01 0.4925824E 02-0.1749741E 00-0.8218681E 0.2197982E 0.2498340E 0.8199942E 0.5941545E 0.2180375E 0.51868396E 0.4563396E 0.7059553E 0.7059553E 0.7723806E 0.7723806E 0.723806E 0.723806E 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 02 01 0.7765417E 01 0.8783097512E 00 0.5200757E 00 0.7574122E 01 0.1472030E 01 0.1472030E 01 0.1472030E 01 0.4429560E 01 0.4429560E 01 0.2017449E 01 0.2017449E 01 0.2017449E 00 0.9766252E 00 0.1881660E 01 0.3876357E 00 0.9926005E 00 0.8659062E 01 0.2704584E 01 0.1186571E 01 0.2057874E 01 0.5610864E 00 0.1702708E 01 0.3637290E 01-0.4369375E 01-0.2969805E
01-0.5509905E 001 ÕÕ 0011011001 DECK ``` | | | | | | ,P) | | |---|--|--|---|---|--|--| | 705
291
489
643
647
647
705 | 797
341
519
663
699
675
797 | 222222 | 69
43
115
125
51
93
33 | 111
97
161
197
87
111
63 | 222222222222222222222222222222222222222 | SOYBN E PRT PR SOYBN
SOYBN VOLUNTR CORN
SOYBEANS
SOYBEANS
SOYBEANS
SOYBEANS
SOYBEANS
SOYBEANS
SOYBN W. PRT PLT ERL | | 261
307
401
589 | 287
349
421
643 | 2222 | 39
19
111
3 | 65
35
199
43 | 2 2 2 2 | CORN
CORN
CORN
CORN DIFF VARIETIES | | 327
365
413
583 | 335
377
467
605 | 2 2 2 2 | 109
131
45
121 | 197
183
93
193 | 2
2
2
2 | OATS
OATS DITCH W END
CATS
OATS | | 285
347
385
459
581
649 | 317
353
393
509
689
699 | 222222 | 109
107
109
167
203 | 199
205
203
211
211
43 | 2 2 2 2 2 2 2 | WHEAT WHEAT WHEAT WHT 2 VARIETIES WHEAT WHEAT WHEAT 2 VAR LODGING | | 357
433
521
559
589
613
629 | 399
453
561
581
633
619
637 | 222222 | 61
113
173
49
49
121
123 | 95
197
215
109
109
183
191 | 2 | RED CL HAY RED CL HAY RED CL PASTURE RED CL PASTURE RED CL PASTURE RED CL PASTURE RD CL DIVERTED ACRES RED CL HAY | | | 724644775 1719 7531993
72466470 23019 75333458 848584 35355813 2333458 233346 23346 | 705 797
291 341
489 5663
647 6757
261 3421
589 3357
401 421
589 347
327 349
413 467
589 347
583 353
4581 605
285 317
385 5089
649 353
4581 689
357 461
589 649 399
353 561
5613 6619 | 705 797 2 291 341 2 489 5619 2 643 663 647 699 2 647 675 797 2 261 287 2 307 349 2 261 349 2 327 335 2 327 335 3 327 327 329 2 3413 467 2 285 317 2 385 393 2 285 317 3 385 393 2 285 317 3 385 393 2 285 317 3 385 393 2 293 393 2 294 395 395 395 2 295 395 395 395 2 295 395 395 395 395 395 395 395 395 395 3 | 705 797 2 69 291 341 2 43 489 519 2 115 643 663 2 125 647 699 2 51 647 675 2 33 261 287 2 39 307 349 2 111 589 643 2 111 589 643 2 111 589 643 2 111 589 643 2 111 589 643 2 121 285 317 2 109 365 377 2 131 413 467 2 131 413 467 2 131 413 467 2 131 589 649 2 203 649 699 2 3 357 399 2 61 357 399 2 61 3589 633 2 49 589 633 2 49 589 633 619 2 121 | 705 797 2 69 111 291 341 2 43 97 489 519 2 115 161 643 663 2 125 197 647 675 2 93 111 705 797 2 33 63 261 287 2 39 65 307 349 2 111 199 589 643 2 111 199 589 643 2 111 183 327 335 2 109 197 365 377 2 131 183 467 2 45 93 583 605 2 121 193 285 317 2 109 199 347 353 2 107 205 385 393 2 109 203 347 353 2 107 205 385 393 2 109 203 345 393 2 109 203 345 393 2 107 211 581 689 2 203 211 649 699 2 3 43 357 399 2 61 95 581 689 633 2 199 581 689 633 2 199 581 689 633 2 49 109 589 633 2 49 109 581 689 633 2 49 109 581 689 633 2 49 109 581 689 633 2 49 109 | TRAIN(F,C), TEST(F,C,P) 705 | # Student Notes for DEMONSTRATION of LARSYS on a 2780 REMOTE TERMINAL DEVELOPED BY: TECHNOLOGY TRANSFER LABORATORY FOR APPLICATIONS OF REMOTE SENSING PURDUE UNIVERSITY, WEST LAFAYETTE, INDIANA 47907 Student's Notes # Prerequisites: - a) List the four kinds of information (without regard to format) contained on a multispectral image storage tape. - b) Name the three types of cards used in running LARSYS programs. - c) Describe the output of at least four of the LARSYS processing functions discussed in the LARSYS Software System: An Overview General Description: This demonstration introduces you to the computer hardware and provides an opportunity to increase your familiarity with the LARSYS system of programs. You will witness the running of several LARSYS jobs from a 2780 terminal. During the demonstration you will see: the 2780 used off-line as a card lister login procedure user information obtained from
LARSYS control commands messages sent to the computer operator from the typewriter card information transmitted from the 2780 to the computer line-printer output being received card-punch output being received logout procedure The demonstration takes about 1 to 1½ hours. You will have ample opportunity to discuss the operations with your instructor during the demonstration. At the end of the demonstration you will be given a listing of the control cards used, the typewriter output and the printer and card-punch output. Examine these materials in some detail to reinforce the basic concepts presented. After you have completed this step, arrange a conference with your instructor. EYERAL our on which of may and bedonaine door at the charles Objectives: Upon completion of the demonstration you should be able to: - 1. Explain the local sign-up procedures. - 2. Name the person who acts as terminal coordinator and the person to be contacted if the printer is out of paper or if another malfunction occurs. - 3. While standing in the remote terminal area, point to: the printer (and the printer control panel) the card reader/punch (and the mode switch) the typewriter terminal the LARSYS User's Manual 4. Describe in a few words: the use of the 2780 as an off-line card lister the use of the typewriter for input and output the use of the card reader/punch for input and output the use of the line printer for receiving output 5. Explain in general terms the use of LARSYS Control Commands to: log in, log out initialize LARSYS control system start processing LARSYS control cards obtain user assistance information (e.g., latest system news, listings of control commands). - 6. Using the typewriter output, point out when the system was in CP command environment, LARSYS command environment, or LARSYS processor environment. - 7. Using the typewriter output, name two kinds of user assistance information provided by LARSYS without being requested by the user. - 8. With the listing of the control cards used in the demonstration: - correctly identify each control card as an Initialization Function Card, a Function Selector Card or a Function Control Card. - compare the listing against the REFERENCE ALL output to verify the completeness of the control card decks. - 9. Locate typical information in the line-printer output. - 10. Locate the ID card in the card-punch output. - Note: It is not intended that you be able to run LARSYS jobs unaided at the completion of this demonstration. The next unit in the LARSYS Educational Package, the "Hands-on" exercise, will help you learn the necessary steps for doing that. LARSYS Demo Student's Notes During your preliminary talk with your instructor, fill in the following information for future reference. 1. Describe the local sign-up procedures: - 2. Terminal coordinator at this site is_____ - Person to contact if the printer is out of paper or if a malfunction occurs is LARSYS Demo Student's Notes Assessment was also granted by a supplied to the state of Figure 1 Typical Layout of the Terminal Area Figure 2. LARS Computer System Environment Diagram DOTTED LINES SHOW ALTERNATE TRANSITION PATHS LARSYS Demo Student's Notes #### After the demonstration Go over the output that you have received: - 1. Using the typewriter output: - a) mark on the output when the system was in CP (Control Program) command environment, LARSYS command environment, or LARSYS processor environment. - b) locate each of these six steps Step 1: log in Step 2: enter password Step 3: enter your name Step 4: initiate LARSYS Step 5: run LARSYS Step 6: log out - c) point out an example of a progress message - d) point out an example of an error message - 2. Using the line-printer output: - a) Identify each control card on the card listing as an Initialization Function Card, a Function Selector Card or a Function Control Card. - b) Compare the listing for STATISTICS, CLASSIFYPOINTS, and PRINTRESULTS with the deck specifications in your REFERENCE ALL output. (You might find it useful to trim the REFERENCE ALL output, separate the pages, and staple them together for future use.) - c) Locate in the output from STATISTICS where the training fields are identified, the mean and standard deviation vectors and correlation matrices, and the histograms for soybeans, for corn, for oats, for wheat, and for red clover. - d) Locate in the output from CLASSIFYPOINTS and PRINT-RESULTS the classification map with training and test fields outlined; locate performance percentages for training and for test fields. - 3. Using the card-punch output: - a) Identify the ID card, which appears with all LARSYS punched output. It can be recognized by the solid punching in columns 69-80. It is not considered part of the deck and must be removed before the deck is used as input to other processing functions. When you have completed the above steps, make an appointment to meet with your instructor. Materials required: Student's Notes Instructor's Notes Audio tape, cassette tape recorder Punched Cards for listing LARSYS User's Manual # Estimate of Instructor Time Required: Briefing student on the preparation of his control cards: 5 min. Checking control cards: 5 to 10 min. Getting the student set up, explaining the use of the tape recorder and general procedure to be followed: 10 Min. You will need to be available for help during the time the student is at the terminal. # Terminal Sign-up and Tape Drive Requirements: Have student sign up for two hours of terminal time. One tape drive is needed; follow current policy for reserving it. #### Instructional Objectives: The student will obtain a copy of the instructional objectives for this unit when he lists the punched cards provided. For your information, this listing is included on page 3 of these Instructor's Notes. # Before going to the terminal: 1. Check to see that one of the Multispectral Image Storage Tapes assigned to your terminal site has a copy of run 66000600 on it. If it does, enter the tape number and file number below for easy reference: | Tape | TTT | = | ; | FILE | F | = | • | |------|-----|---|---|------|---|---
--| | | | | State of the last | | | | Restricted to the Committee of Commi | If it does not, see page 6 of A Survey of the LARSYS Educational Package. - 2. Give student the notes which accompany this unit and check to see that he meets the prerequisites. - 3. See if your student has a user ID and password assigned to him. If not, assist him in getting them assigned. - 4. Tell him where he can find the LARSYS User's Manual. - 5. Give student the computer tape number and file number used at your remote site for run 66000600, and suggest he record them on page 1 of his notes. Have him punch the control card decks shown on pages 2-3 of the student's notes. (Show student how to punch and duplicate cards on the key punch if he is not familiar with it). - 6. Check over the student's control card decks for errors. #### At the terminal - 1. Make sure the terminal is powered up. - 2. Explain to the student the general procedure for using the audio tape and notes at the terminal and help him get set up. The student will be more comfortable doing the exercise if his tape recorder has earphones and batteries so that he can move around in the terminal area and not bother others working there. - 3. Reassure student that malfunctions caused by the hardware may occur; he should not feel that when things go wrong it is necessarily his fault. - 4. Start student on his way; answer questions as they arise. Watch long enough to see that he can load cards into the hopper, 9-edge down, using card weight. (See Figure 2 in Student's Notes) - 5. If others are using the terminal, explain to them that your student is using the terminal for the first time and that, while it is nice to "help out," the student should be allowed to push all the buttons and retrieve all the output himself. #### After the exercise - 1. Talk with the student to determine how he did and his reaction to his "Hands-On" experience. - 2. Make plans for working on the next unit in the sequence, the LARSYS Exercises. ***** LISTING DECK FOR 2780 HANDS-ON EXPERIENCE **** OBJECTIVES FOR 2780 HANDS-ON EXPERIENCE BY THE TIME YOU FINISH WITH THE TERMINAL TODAY YOU SHOULD BE ABLE TO USE THE 2780 OFFLINE AS A CARD LISTER LOGIN USE THE LARSYS CONTROL COMMANDS TO A) OBTAIN THE LATEST NEWS FILES FOR ANY OF THE FOLLOWING SYSTEM LARSYS SCHEDULE B) OBTAIN THE LATEST CONTROL CARD LISTINGS FOR THE LARSYS FUNCTIONS RECEIVE PRINTER OUTPUT TRANSMIT A DECK OF CARDS RECEIVE PUNCHED OUTPUT COMMUNICATE WITH THE COMPUTER OPERATOR OR A USER VIA THE REMOTE TERMINAL NETWORK *****END OF HANDS-ON LISTING DECK**** # Student Notes for THE 2780 REMOTE TERMINAL -- A "Hands-on" Experience-- Developed by: Technology Transfer Staff Laboratory for Applications of Remote Sensing Purdue University, West Lafayette, Indiana 47907 Student's Notes #### Prerequisites: - a) Satisfactory completion of Units 1, 2 and 3 of the LARSYS Educational Package. - b) Access to the terminal through the assignment of a user ID and a password. - c) Basic ability to punch and duplicate control cards on a key punch. Objectives: You will obtain a copy of the objectives of this minicourse early in your work at the terminal. Estimated time: Including preparation time, time at the terminal and follow up, most students spend about 4½ hours on this unit. #### Before going to the terminal: a) Find out from your instructor what tape and file numbers to use for data run 66000600: | Tape | TTT | = | ; | F | ile | F | - | | |------|-----|---|---|---|-----|---|---|--| | | | | | | | | | | - b) In order to survey the system capabilities from a "user" point of view, skim Section 2 of the <u>LARSYS</u> <u>User's Manual</u>, Volume I. - c) Punch the 2 decks of cards described on pages 2 and 3 and let your instructor check them for accuracy. The annotations on the right briefly explain the purpose of the cards. Details may be found in the LARSYS User's Manual. - d) Sign up for 2 hours of terminal time at a time when your instructor will be available; reserve one tape drive according to current policy. your first LARSYS job. #### Control Cards for First LARSYS Run #### Punched on Card Comment (10) indicate columns 1 and 10 on the ID card. All LARSYS control cards begin in column 1. ID your ID -COMMENT DEMONSTRATION OF STATISTICS FUNCTION This comment will appear at the top of your printer output. -RUNTABLE These four cards create a special runtable which allows you to access the Multispectral Image Storage DATA Tape assigned to your remote ter-RUN (66000600), TAPE (TTT), FILE (F) minal site. See your instructor for tape and file numbers. END *STATISTICS Tells LARSYS monitor you will run a job using the STATISTICS processing function. Indicates that histograms and PRINT HIST(C), CORRE(C) correlation matrices are desired for each class (C). Requests punched statistics file PUNCH CHARACTERS in character (not binary) format. Designates channels for which CHANNELS 1,2,3,4,5,6,7,8,9,10,11,12 statistics are to be computed. Designates channels for which OPTIONS HIST(1,8,12) histograms are desired. Signals that a data deck will DATA follow next. Indicates that cards following CLASS SOYBEANS define soybean training fields. SOYBN 66000600 81 1 SOYBN 59 307 66000600 36 - 7Punch these field description cards using the columns indicated. The following cards define the corn training fields; use the same columns. CLASS CORN CORN 66000600 36-9 283 45 61 267 21 CORN 31 319 341 1 36-8 66000600 Signifies end of function END Put a rubber band around the above deck of cards. They will be used in Hands-On Student's Notes #### Control Cards for Second LARSYS Run (1) (10) ID -COMMENT DEMONSTRATION OF IDPRINT AND PICTUREPRINT FUNCTIONS -RUNTABLE DATA RUN (66000600), TAPE (TTT), FILE (F) Use same tape and file number you used before. END *IDPRINT PRINT RUN (66000600) Requests ID record of run 66000600. END *PICTUREPRINT Requests gray scale map of area defined on next card. DISPLAY RUN (66000600), LINE (1,199,2) COL (1,222,2) HISTOGRAM COMPUTE Requests that histograms be computed. PUNCH HISTOGRAM Punch histogram file in binary format. BLOCK RUN (66000600), LINE (1,1001,2), COL (1,222,4) Gives area for histogram. CHANNEL 6 Signifies channel desired. END Signifies end of function. Put a rubber band around this deck. It will be used to run your second set of LARSYS functions. #### Materials required at the terminal: - 2 decks of punched cards you prepared as specified on pages 2 and 3. - 1 deck of punched cards supplied in the unit box. - l audio tape "The 2780 Remote Terminal a 'Hands-On' Experience." - 1 cassette tape recorder, preferably equipped with earphones and batteries. - l experienced instructor to start you off and to be available if you run into difficulties - l copy of LARSYS User's Manual there should be one near the terminal. #### Outline of Terminal Session - Part 1. Introduction and Orientation to terminal layout - Part 2. Using the 2780 off-line as a card lister - Part 3. "Login," enter name, and initiate the LARSYS system. - Part 4. Run sample LARSYS jobs Normally students can complete their work at the terminal in an hour, although that time may be doubled during the "heavy use" hours. Begin the exercise by having your instructor explain the use of the tape recorder and general procedure to be followed during the unit. He should let you know where he can be reached while you are at the terminal, and you should not hesitate to ask him for help. Stand in the remote terminal area and start the tape recorder Part 1 - Introduction and Orientation to hardware layout Figure 1 Typical Layout of the Terminal Area # Part 2 - Using the 2780 off-line as a card lister Standing in front of the card reader/punch unit: push STOP button on card reader/punch control panel set mode switch to "off-line" load "listing deck" cards as directed on tape (see Figure 2). Heed the warning on tape: if you get a card reader malfunction, try the procedure given in Appendix A. If
that doesn't work, get your instructor to help. Go to the printer controls and press the START button. Go back to card reader unit; press and hold the START button until the green light comes on. WARNING: When the printer is in operation, the user must avoid moving the mode switch. To halt operation of the printer, press the CARRIAGE STOP button on the printer. After the cards have finished, remove the cards from the card reader and press the NPRO (Non-Process Run Out) button to "clear" the card reader. Then walk over to the printer and push CARRIAGE STOP button, press CARRIAGE RESTORE button on printer a few times, remove the printer output, and read over the Objectives for this unit. They have just been printed from the cards. The above steps are summarized in Appendix B, page 17. Loading Cards into the Card Hopper Hands-On Student's Notes #### Part 3 - "LOGIN" and initiate the LARSYS System Sit in front of the keyboard; locate these notes so they will be handy If you make a typing error, see Appendix A. press ATTN you type (and press RETURN) computer responds type password (and press RETURN) type your name (and press RETURN) login userid ENTER PASSWORD: → 官官官官官官官官 ENTER NAME: your namek OPERATORS ARE: MIKE, BOB, AND WAYNE. ***NEXT SHUTDOWN: SATURDAY AT 15.00 HOURS*** READY AT 08.26.47 ON 12/05/74 CP i larsys (and press RETURN) LARSYS (Version 3.1) READY; T=1.55/2.32 08.27.15 type 'news' (and press RET URN) news REVISED 09/11/74 A NUMBER OF MINOR ERRORS WERE FIXED IN LARSYS. THESE INCLUDE PROBLEMS WITH -COMMENT, A FIX IN IDPRINT TO VERIFY THAT THE CORRECT TAPE IS MOUNTED, AND CHECKING FOR CORRECT COLUMNS IN LINEGRAPH. USE THE COMMAND 'NEWS LARSYS' FOR MORE DETAILS. T=0.81/1.08 08.27.57 Note: response to the NEWS command changes frequently. You will get a different message than the one shown here. (continued on next page) Hands-On Student's Notes news larsys (RET URN) T=0.83/1.13 08.33.08 Listen for the beep tone, indicating output is ready to come out. Stand up and: press the STOP button on the card reader/punch control panel set mode switch to REC press START button on printer. When printer is finished: press the STOP button on the card reader/punch move mode switch to OFF LINE Press CARRIAGE STOP on printer press CARRIAGE RESTORE a few times. Remove printer output. Return to typewriter terminal. type 'reference statistics' (RET URN) reference statistics ← T=0.93/1.39 08.34.20 To obtain printer output, repeat the same steps you used to obtain "news LARSYS" output. #### Part 4 - Sample LARSYS jobs Review the objectives of this unit. Locate your first LARSYS control deck (*STATISTICS) and move to the card reader. Press the STOP button and set mode switch to TSM/TRSP (transmit/transparent) Load cards into hopper Press END OF FILE Press START, holding it until the READY light comes on, cards should read in. After cards have been read: press the STOP button to stop the beep clear reader by pressing NPRO remove cards from the reader (RET URN) type 'run larsys' (RET URN) **CARDS XFERED BY FLEXLAB1*** T=1.90/3.76 08.38.31 run larsys EXECUTION BEGINS... 10198 STATISTICS FUNCTION REQUESTED (STASUP) 10034 ALL CONTROL AND DATA CARDS HAVE BEEN READ (STAINT) 10200 TRAINING FIELDS NOW BEING PROCESSED. (STAINT) 10201 STATISTICS BEING CALCULATED FOR CLASS SOYBEANS (LEARN) 10002 TAPE 0445 HAS BEEN REQUESTED ON UNIT 0181 (MOUNT) DEV 181 ATTACHED 10003 TAPE READY...EXECUTION CONTINUING (MOUNT) 10036 DESIRED RUN FOUND...66000600 (GADRUN) CP← press ATTN type on one line - - 'msg operator I am learning to use the terminal. Please respond when you get this message.' (RETURN) msg operator I am learning to use the terminal. Please respond when you get this message. sleep ← type 'sleep' (RET URN) (operator will respond) press ATTN type 'begin' (RET URN) begin 10201 STATISTICS BEING CALCULATED FOR CLASS CORN (LEARN) 10209 COINCIDENT SPECTRAL PLOT(S) PRINTED, (MULSPC) 10208 STATISTICS BEING PUNCHED (PCHSTA) 10199 STATISTICS FUNCTION COMPLETED (STASUP) 10004 END OF INPUT DECK - RUN COMPLETED (LARSNN) T=13.19/16.81 08.45.57 Get your printer output by: pressing STOP button and setting mode switch to REC press START on line printer. After output stops: press CARRIAGE STOP press CARRIAGE RESTORE several times remove printer output from printer. Get your punched output by: loading blank cards into hopper press and hold START until cards start through the punch after punching stops, press STOP to stop beep remove and store excess blank cards press and hold NPRO to clear reader punch unit remove punched cards. There is one more function to be run run larsys← type 'run larsys' (RET URN) Notice appearance of "beep tone." Secure your printer output. Discussion - why the error occurred. For E-messages (error messages) and I-messages (information messages) refer to Appendix III in Volume 3 of LARSYS User's Manual To correct the error Locate your second deck (*IDPRINT and *PICTUREPRINT), load into the card reader, and read in. ``` **CARDS XFERED BY FLEXLAB1** T=14.50/18.31 08.50.31 ____type 'run larsys' (RET URN) run larsys← EXECUTION BEGINS... 10065 IDPRINT FUNCTION HAS BEEN REQUESTED. (RUNSUP) 10002 TAPE 0445 HAS BEEN REQUESTED ON UNIT 0181 (MOUNT) DEV 181 ATTACHED 10003 TAPE READY...EXECUTION CONTINUING (MOUNT) 10114 IDPRINT FUNCTION COMPLETED. (RUNSUP) 10092 PICTUREPRINT FUNCTION REQUESTED (PICSUP) 10237 ALL CONTROL CARDS FOR PICTUREPRINT HAVE BEEN READ (PICRDR) 10082 100 LINES HISTOGRAMMED. (HISTD) 200 LINES HISTOGRAMMED. (HISTD) I0082 300 LINES HISTOGRAMMED. (HISTD) I0082 400 LINES HISTOGRAMMED. (HISTD) I0082 10091 END OF FILE REACHED ON MULTISPECTRAL IMAGE STORAGE TAPE. (LINEI !) 10084 HISTOGRAM(S) READY TO BE PUNCHED. (HISTD) __ press ATTN media or posts steel been re- __type 'msg yourid this is a test message' (RET URN) msq yourid this is a test message FROM YOURID: THIS IS A TEST MESSAGE -type 'begin' (RETURN) begin - 100 LINES DISPLAYED FOR CHANNEL 6 (PIC1) 10093 PICTUREPRINT FUNCTION COMPLETED (PICSUP) T=31.83/46.17 09.14.56 ``` (continued on next page) type 'quit' (RET URN) quit CONNECT= 00:51:40 VIRTCPU= 000:32.26 TOTCPU= 000:46.74 LOGOUT AT 09.18.23 ON 12/05/74 cp-67 online xd.65 qsyosu Obtain your printer output. See Appendix D if you need more detailed instructions. Obtain your punched output. See Appendix D if you need more detailed instructions. #### After the session at the terminal - 1. Save these notes, your typewriter output and your printer output for future reference. - 2. There are some features of the punched output decks you received that you should be familiar with: - First take the ID card off the front of each deck; it is not considered part of the deck. Duplicate it on the keypunch and check that your ID and name are on the card. - Next duplicate (using the key punch) the first and last card of each deck; now you will be able to "read" the punches. Write down what you find there. | Statistics Deck: lst card | | |---------------------------|--| | last card | | | Histogram Deck: | | | lst card | | | last card | | The two punched decks serve as examples of two types of deck format: character and binary. The first card in the Statistics deck identifies the format chosen by the user. If column 44 contains a 0, the deck is a character deck. If column 44 contains a 1, the deck is a binary deck. This Statistics Deck is in _____ format. The Histogram Decks are in binary format. - The decks are numbered so that they can be reassembled if they are dropped. - -The cards in the Statistics Deck have sequence numbers in columns 73 80 beginning with number 1. - -The cards in the Histogram Deck are also numbered in ascending order, but they are not numbered consecutively. - 3. After examining your typewriter, printer, and punched output, let your instructor know how you did on the unit and make plans for doing the LARSYS Exercises, Unit 5. #### Appendix A: MALFUNCTION RECOVERY PROCEDURES #### Cards Won't Read | <u>Condition</u> | Probable Cause | Recovery | |---|----------------------------------|--| | A few cards read then reader stops; no additional lights come on and there are no beeps | No ID Card | Remove cards from hopper Press NPRO* button and hold for a few seconds Gather any cards that have come out of the reader Reassemble your deck with your ID card on the front, reload the hopper, and try again | | Cards start reading and the "hopper" light comes on | Cards bent,
torn or
uneven | Remove cards from the hopper Press the NPRO* button and hold for a few seconds Put a blank card in hopper, press EOF** button, read in blank card | | THE STATE STATE OF STATE STATE STATES | THE TOTAL SERVICES | Go to typewriter, push RETURN (you should receive a message that cards have been transfered) Type 'clear reader' RETURN (these steps remove the partial deck that had already been read in) Check original deck for bent or torn cards and make new cards where needed Read deck in again. If you still can't get the cards to read after three attempts, check with your instructor | In all other cases, see your instructor # System Error Messages ?CP-system is in the CP command environment; you have just typed an invalid CP command. Ell6-'COMMAND' IS NOT A VALID CONTROL COMMAND (EXCOMD) System is in the LARSYS command environment; you have just typed an invalid command. All system error messages are identified in Appendix III (Vol. 3) of the LARSYS User's Manual. ^{*}NPRO stands for non-process run out. ^{**}EOF stands for end-of-file. #### Typing Errors One (or up to several) letter(s) in
error. type an @ symbol for each letter in error, then continue with your message. Example: run larty@@sys would be interpreted as: run larsys Deletion of a whole line. type ¢, then the desired line. Example: news larys¢ reference larsys would be interpreted as: reference larsys #### No EOF sent when Transmitting Cards If you neglect to press the EOF button before the last card is read, you can recover in the following way: put a blank card in the hopper press EOF, START To verify successful transmission, press RETURN # Appendix B: USING 2780 AS A CARD LISTER press STOP on reader/punch unit turn mode switch to OFF LINE load cards press START on printer press START on card reader and hold until READY light comes on cards will be listed clear card reader (NPRO) remove cards press CARRIAGE STOP on printer press CARRIAGE RESTORE on printer remove listing # Appendix C: SENDING MESSAGES # Send message to operator press ATTN type 'msg cp' and your message press RETURN # Send message to another user press ATTN type: 'msg' id of user being addressed the message you are sending press RETURN Note: messages sent as described above are limited to one line on the typewriter. Hands-On Student's Notes Appendix D: TRANSMITTING DATA TO AND RECEIVING DATA FROM THE MAIN COMPUTER #### To transmit cards load cards in hopper; ID card must be first card press STOP; turn mode switch to TSM/TRSP press END OF FILE press and hold START until READY light comes on wait until all cards are read press STOP; move mode switch to OFF LINE press NPRO pickup your cards press RETURN to get message verifying transfer of cards #### To receive printer output press STOP; turn mode switch to REC or PRINT press START on printer wait for output to finish press CARRIAGE STOP hit CARRIAGE RESTORE a few times remove printer output from back of printer press STOP; put mode switch in OFF LINE position # To receive punched output press STOP; turn mode switch to REC or PUNCH load blank cards in hopper press START wait for punching to stop, pick up your cards press STOP; turn mode switch to OFF LINE remove extra cards clear punch by pressing NPRO pick up your cards LARS Computer System Environment Diagram DOTTED LINES SHOW ALTERNATE TRANSITION PATHS SOLID LINES SHOW NORMAL TRANSITION PATHS #### Materials Required Problem statements for students Instructor's Notes #### General Instructional Procedure It is suggested that you assign these problems one at a time and interact with the student between problems. For each problem the recommended approach is to: - a) Go over the problem statement with the student. Discuss which processing function he will be using. - b) Have student punch the control cards. - c) Check over the control cards, point out errors or alternative approaches if you wish. - d) Have student run program. - e) Discuss results. Encourage your students to use the <u>LARSYS User's Manual</u> and the LARSYS system features themselves as references. The student may find it helpful if you instruct him how to cancel a job and how to cancel output. #### Instructor Time Estimate Interaction with students before and after each exercise: 10 to 15 minutes per exercise. #### Data Source In all exercises requiring access to a Multispectral Image Storage Tape, the student should be encouraged to use a personal runtable using the card sequence: -RUNTABLE DATA RUN(XXXXXXXXX), TAPE(TTT), FILE(F) END See "Special Note to Instructor" on page 6 of A Survey of the LARSYS Educational Package at the beginning of this volume for instructions on how to create the data tape for your site. #### Exercise 1: Reference All This exercise is intended for all students who did not previously get a complete listing of LARSYS Control Commands, Initialization Function Control Cards, and Processing Function Selector and Control Cards. Log in to the computer, and, after taking care of your ID, password and name and initiating LARSYS, type the command: #### reference all Keep the printer listing for future reference. #### Instructor's Notes - 1. Check with your student to see that he has a 'Reference All' listing. If he already has one, skip this problem. - 2. No control cards are required. Student merely has to review how to login, get his listing and quit. #### Exercise 2: LARSYS Control Commands The purpose of this exercise is to reinforce the login procedure, to give you practice in getting printer output, and to illustrate use of some of the LARSYS Control Commands. #### Login and: - a) obtain the NEWS file pertaining to the system - b) obtain the SCHEDULE for computer operation - c) type the command LIST - d) obtain the RUNTABLE entry for run 72050700 (use your "Reference All" listing to find out which LARSYS Control Command you need to use) #### Instructor's Notes 1. No control cards are required for this exercise. It is designed to give the student practice in the login procedure, issuing control commands and obtaining printer output. #### Exercise 3: Gray Scale Printouts The purpose of this exercise is to provide experience building an input deck and running a LARSYS job in order to acquire specific output. (See page 2-29 in Volume 1 of the LARSYS User's Manual for general information about card format.) This LARSYS output also illustrates the informational value of multispectral data. Set up the control card deck needed to obtain a single-width gray scale printout of lines 750-949, run 66000600, showing channels 1 through 12. Use a COMMENT card so that the output will be labeled. List your deck off-line and check the listing for errors in card preparation. Correct any such errors. Run the job. #### Instructor's Notes - Your student will probably need help in deciding which processing function to use. Try to get him to discover the answer himself, direct him to his REFERENCE ALL output and the LARSYS User's Manual. - 2. If you have two students doing the exercise at the same time, the output could be reduced by having one run the even channels and the other the odd ones. - 3. Explain the set-up for a user runtable so that your student will use the tape that has been reserved for instructional purposes at your remote terminal location. | For | ea | sy | reference | run | 66000600 | is | stored | on | Tape | TTT = | ; | |------|----|------|-----------|-----|----------|----|--------|----|------|-------|---| | File | E | 7 == | | | | | | | | | | 4. After your student has completed this exercise, you can use his output to illustrate the value of multispectral data. Show how some field boundaries are more easily detected in certain channels. Instructor's Notes Exercise 3, page 2 - 5. Point out how you might want to use the PUNCH control card if you expect to make additional gray scale printouts of the same area. (Saves computing the histograms again.) - 6. Ask your student if he used the BLOCK card and find out why or why not. Discuss the BLOCK card's function. - 7. This exercise creates a lot of output. Discuss with your student the need for restricting output requests so that they call for only what is needed. #### Exercise 4: Graph Columns This exercise and the next are designed to give you more experience with LARSYS and added familiarity with the power of LARSYS for utilizing the multispectral characteristics of the data. Graph columns 49, 59, 69, lines 408 to 503, of run 66000600. Show data from the .44-.46, .62-.66 and .80-1.00 micrometer channels. Punch the control card deck and run the job. #### Instructor's Notes - 1. The problem statement emphasizes the wavelength bands of the channels. Student will have to refer to IDPRINT output to find the corresponding channel numbers. - 2. Let the student set up the control card deck. As long as it will work, let it run. Afterwards you may want to point out various ways of setting up the control cards so as to get desired types of graphs (not too many plots on one set of axes, etc.) | For | easy | reference, | run | 66000600 | is | stored | on | Tape | TTT | = | | |------|------|------------|-----|----------|----|--------|----|------|-----|---|--| | File | F = | | _• | | | | | | | | | #### Exercise 5: Graph Lines The purpose of this exercise parallels that of the previous one with added experience in using a LARSYS diagnostic feature. Graph line 708 of run 66000600. Punch the control card deck. Use the -CHECKOUT procedure to check for control card errors. See pages 5-15 through 5-18 (Volume 1) of the LARSYS User's Manual for a description of this initialization function and pages 3-14 through 3-19 for a step-by-step description of how to use it. Run the job. #### Instructor's Notes - 1. Students will have to decide which channels they want. - 2. A common blunder is to plot all 12 channels on the same graph. This results in a mass of symbols. Three or four channels per graph works out better. | For | easy | reference | run | 66000600 | is | stored | on | Tape | TTT | = | | |------|------|-----------|-----|----------|----|--------|----|------|-----|---|--| | File | F = | | | | | | | | | | | #### Exercise 6: Color Panels The purpose of this exercise is to acquaint you with the batch processing mode and to further your understanding of the nature of multispectral data. Run 66005200 is a low-level flight over a set of color panels on the ground. These panels are used to obtain data which help in calibrating the aircraft scanner data. The panels, located between lines 400 and 1000 and columns 315 and 425, are arranged in two strips. The strip on the left is made up of three colored rectangular panels; the right-hand one is a series of gray panels. Using the batch processing mode, obtain some representative gray scale printouts of this area and determine the row and column boundaries of the color panels. See pages 2-45 through 2-46 and pages 3-38 through 3-39 of the LARSYS User's Manual (Volume 1) for information on how to submit a batch run from the terminal. After you get your gray scale printouts, select a particular panel and obtain
lineprinter output of the data values for all points within the panel boundaries. Show the data for a representative set of channels. Can you tell from the multispectral data the color of each of the three colored panels? # Instructor's Notes 1. Before starting student on this problem be sure a copy of run 66005200 is on the tape dedicated to instructional use at your remote terminal location. If a copy is not available you can make one by running *DUPLICATERUN FROM RUN(66005200) TO TAPE(TTT), FILE(F) END For your future reference: TTT =_____, F =_____ at this location for run 66005200. Student should be encouraged to use a personal runtable when running this exercise. Instructor's Notes Exercise 6, page 2 - 2. This run has only 6 channels. I suggest you let the student stumble into this himself; then point out the value of the ID record (IDPRINT) when working with a new run. - 3. Student must decide for himself what a "representative" set of channels is. Channel 5 shows the panels quite well. - 4. The data for line 431 does not exist and, if the parameters selected by the student call for this line, a message to this effect will appear on the gray scale printout. Let the student discover this for himself and use the opportunity to point out the many diagnostic features built into LARSYS. - 5. Panels are in the vicinity of lines 687-726, columns 340-378. The degree to which the panels show up on the gray scale printouts depends on the size of the area histogrammed. - 6. The color panels are red, green, and blue in that order. At this point in learning to use LARSYS, the student has available two case study units. One case study is geared toward a supervised analysis approach, analyzing aircraft data. The other case study combines techniques from both supervised and unsupervised approaches and applies these techniques to data collected by the Earth Resources Technology Satellite, now known as LANDSAT. If a student has the time, resources, and interest, a study of both units is recommended. If not, you should help the student decide which one will be more useful. The philosophy taken in preparing these case studies is described in the "Preface to the Student" section of each document. Please read this material. In working through either case study, it is important that the students state clearly the objectives of their analyses. Discuss the chosen objectives with the student. A number of readings are suggested from the site library. Make sure that your student knows the local procedures for gaining access to the materials. We recommend that you monitor the progress of your students frequently. Try to arrange frequent student/instructor conferences of short duration, since experience has shown they are more beneficial than lecture sessions of longer duration. These conferences are particularly important in the case study analyzing LANDSAT data. Included in the site library is one solution to each case study. "An Analysis of Run 71053900" is the aircraft data analysis, and "An Analysis of Run 73033802" is the satellite data analysis. These solutions are NOT presented as "the correct solutions" but rather as example solutions. Since the analysis of remotely sensed multispectral data is a developing science, you should not expect your student's analysis to match the results of the solution we have provided. Also provided as part of your "instructor's kit" are decks of Field Description Cards for the test fields used in the solutions provided. The test deck for the aircraft data analysis is not intended to replace student-selected test fields, but rather to serve as an additional evaluation tool if, for instance, several students are going through at once and you want a comparison test deck. The test deck for the satellite data analysis is provided for use by all students, to save them the time they would spend selecting their own test fields. #### Materials Required - 1. Student copy of Guide to Multispectral Data Analysis using LARSYS by J.C. Lindenlaub (LARS Information Note 062873) - 2. Student copy of <u>Pattern Recognition Notes</u> by P.H. Swain (LARS Information Note 111572) Reference copy of <u>LARSYS User's Manual</u> Reference copies of LARS Information Notes: - 120371 The Importance of Ground Truth Data in Remote Sensing by R.M. Hoffer - 102670 Random Noise in Multispectral Classification by S. Whitsitt - O62273 Analysis Research for Earth Resource Information Systems: Where Do We Stand? by D.A. Landgrebe - 020871 Comparison of the Divergence and β-Distance in Feature Selection by P.H. Swain, T.B. Robertson and A. Wacker - 5. "An Analysis of Run 71053900" with Field Description Cards for test fields. - 6. Multispectral Image Storage Tape: Check to see that one of the data tapes assigned to your terminal site has a copy of run 71053900 on it. If it does, enter the tape number and file number below for easy reference: Tape TTT = ; File F = If it does not, see page 6 of A Survey of the LARSYS Educational Package. # Additional References Examples of results analysis and the extraction of useful information from multispectral data classifications may be found in journals such as: Remote Sensing of the Environment IEEE Transactions on Geoscience Electronics Remote Sensing in Ecology Journal of Soil and Water Conservation Photogrammetric Engineering and Remote Sensing Agronomy Journal Applied Optics as well as in a number of LARS Information Notes, and published proceedings of remote sensing conferences. The philosophy taken in preparing this part of the LARSYS Educational Package is described in the "Preface to the Student" section of the document. Please read this section. It is suggested that you monitor the progress of your student frequently - you should plan on talking to him at least once during each step of the analysis sequence. Experience indicates that frequent student/instructor conferences of short duration are more beneficial than longer duration lecture sessions. Students need to state their objectives clearly for the case study. Each remote terminal site has been provided with a copy of "An Analysis of Run 71053900." The analysis of remotely sensed multispectral data is a developing science and you should not expect your student's analysis to match the results of the "school solution" we have provided. There is no single "correct" analysis. In particular, it is doubtful that a person analyzing a flightline for the first time would obtain as high a degree of correct classification as has been achieved on the analysis provided to you. Consider our solution a "crutch" but not an "authority." #### Materials Required - 1. Student copy of A Case Study Using LARSYS for LANDSAT Data by Tina K. Cary and John C. Lindenlaub (LARS Information Nore 050575) - 2. Student copy of Pattern Recognition: A Basis for Remote Sensing Data by Philip H. Swain 3. (LARS Information Note 111572) - 3. Reference copy of LARSYS User's Manual - 4. Reference copies of LARS Information Notes: - 120371 The Importance of Ground Truth Data in Remote Sensing by R.M. Hoffer - 011069 Ecological Potentials in Spectral Signature Analysis by R.M. Hoffer and C.J. Johannsen - 042673 Two Effective Feature Selection Criteria for Multispectral Remote Sensing by P.H. Swain and R.C. King - 062873 Guide to Multispectral Data Analysis Using LARSYS by J.C. Lindenlaub - 110474 An Introduction to Quantitative Remote Sensing by J. Lindenlaub and J. Russell - 072473 Emission and Reflectance from Natural Targets by R. Kumar and L. Silva - 100771 The Minimum Distance Approach to Classification by A.G. Wacker and D.A. Landgrebe - 5. "An Analysis of Run 73033802" with field description cards for test fields. - 6. Reference Data: Three kinds of reference material are needed for the case study: - six U.S. Geological Survey 7.5 minute quadrangle maps covering the area analyzed in the case study. These are not provided as part of the site library. The site techniques specialist should be responsible for ordering these maps. Three or more sets of maps per site are recommended. The maps may be ordered from Distribution Section, U.S. Geological Survey, 1200 South Eads Street, Arlington, Virginia, 22202. The names of the sheets required are: Oolitic, Indiana Bartlettsville, Indiana Clear Creek, Indiana Allen's Creek, Indiana Bloomington, Indiana Unionville, Indiana A set of the USGS maps should be loaned to the students during their study and collected from them afterward. - b) Monroe County, Indiana highway maps. Ten of these are provided per site. They are to be lent to the students during their study and collected from them afterward. - c) Color infrared aerial photograph in 35 mm slide format. Ten slides are provided for each site. Again, they are intended to be loaned to the students and collected from them upon completion of the case study. - 7. Multispectral Image Storage Tape: Check to see that one of the data tapes assigned to your terminal has a copy of runs 73033802 and 72072302 on it. If it does, enter the tape number and file number below for easy reference: 73033803 Tape TTT = ____; File F ___; File F = ____; File F = ___; __; #### Additional References Examples of results analysis and the extraction of useful information from multispectral data classifications may be found in journals such as: Remote Sensing of the Environment IEEE Transactions on Geoscience Electronics Remote Sensing in Ecology Journal of Soil and Water Photogrammetric Engineering and Remote Sensing Agronomy Journal Applied Optics as well as in a number of LARS Information Notes and published proceedings of remote sensing conferences. # Instructor's Notes As mentioned earlier, student/instructor interaction is an important part of this case study. It is recommended that you meet with your students after each step in the analysis. At the beginning of the case study you will want to make sure that each student knows about the various reference materials and their availability.
Refinement Traing Figure 2. Flowchart indicating the sequence of steps undertaken in the analysis procedure described in this manual. The following comments relate to the analysis flowchart for the case study which is reprinted on page three for your convenience. In the examination of data quality and coordination of the multispectral scanner data with reference data, the student is told in the case study that the data tape he will be working with has been geometrically corrected and scaled to match the scale of the USGS 7.5 minute quadrangle maps. However, no mention has been made of the fact that in order to get proper matching a double printout employing every line and column should be used. It might also be helpful for you to know that if every other line and column is used, the scale approximates the scale of the Monroe County highway map. The case study material suggests in the section on selecting training areas that each training area should contain more than one cover type. Some students will perhaps inquire why you can't select areas that are "pure" in the sense that they contain only one cover type. An obvious example here is to select an area from the middle of the reservoir which is certain to contain only the water cover type. Although this procedure can be used to carry out the case study, it is suggested that you encourage students to include more than one cover type. The reason for doing this is: when the clustering algorithm uses all four channels of data, the cluster map which is produced may be thought of as an enhanced image. That is, a map obtained by using data from all four bands might be expected to do a better job of delineating boundaries between cover types than any single-channel gray scale map. An area which includes a fairly large portion of the reservoir along with some shoreline area should illustrate this point. It is suggested that you place the burden of decision upon your students in selecting candidate training areas. There are a number of approaches, and some work better than others, but we have found that students gain by their mistakes and seldom make the same mistake twice. Examples of typical blunders in selecting candidate training areas are the following: - a) Selecting areas on gray scale printouts and then discovering later on that the areas that they selected happened to fall in the cloud shadow area of the aerial photograph, thus making it impossible to establish cluster-class/information-class associations. - b) Not selecting areas with distinctive geometric features, such as a bend in the river or a penninsula jutting out into the reservoir, thereby making the process of overlaying the aerial photograph and the cluster maps more difficult. Here again, it is suggested that you let students discover these errors for themselves. If they don't use the best techniques the first time, you can point out some of their weaknesses and suggest improved techniques for use in future analyses. It would be a good idea to discuss with your students the analysis flowchart after they have completed the clustering operation. As the case study is written, students are encouraged to make cluster-class/information-class associations working from the output of the cluster maps and reference data before running the STATISTICS and SEPARABILITY processors. You might want to point out that it would be possible to proceed on the right-hand branch of the analysis flowchart, that is the statistics, separability diagram construction prior to the time that they make the spectral class/information class associations. Experience with pilot groups of students has indicated that until the students have actually pursued both paths they don't have a full appreciation of the interdependency of these operations. Although the case study points out that the students should take care in keeping track of the symbols used in SEPARABILITY and being able to relate them to the original cluster symbols, it would not hurt to emphasize this point with them before the SEPARABILITY processor is run. Interpretation of the separability diagram and final training sample selection will be one of the most frustating experiences for the students. Your encouragement at this point would be helpful. It must be realized however, that there are no clear-cut, crisp rules that can be used in this part of the analysis. Also, take this opportunity to state that part of the purpose of the case study is to develop experience. If there were strict rules available, it would not be necessary to have highly trained analysts. In discussing the classification and results display operations with your students, point out that the case study suggests storing the classification results on disk and hence, it is suggested that the students chain several PRINTRESULTS runs immediately after the CLASSIFYPOINTS algorithm has been run. One possibility is to do a PRINTRESULTS which does not group any of the subclasses which they may have defined. This allows students to see the interdependency between the various subclasses. Then follow this with a second PRINTRESULTS operation which groups subclasses into the major cover types so that the test deck which has been provided as part of the case study materials may be used. Out of seven groups of students that have field-tested this study most of them achieved training data performance results in the low to mid 90% range. Most of the groups achieved test results percentages in the low to mid 80's with considerable confusion between the urban and agricultural classes and to a lesser extent confusion between the forest and agricultural classes. These numbers are given simply as guidelines. It is certainly possible that a student who achieved only 60% accuracy could learn as much about the case study as a student who achieved an 87% accuracy. The interpretation of classification results should be discussed with your students. When low accuracies and confusion between certain cover types are evident in the results, this could also arise because the training sets that were finally chosen were not representative of the area being classified. If the situation warrants it and time permits you may wish to have your students iterate through portions of the analysis again.