LARS Contract Report 112278

Stratification and Sample Selection for Multicrop Experiments

by M. M. Hixson B. J. Davis M. E. Bauer

Principal Investigator **D. A. Landgrebe**

November 1978

Prepared for National Aeronautics and Space Administration

Johnson Space Center Earth Observation Division Houston, Texas 77058 Contract No. NAS9-15466 Technical Monitor: J. D. Erickson/SF3

Submitted by Laboratory for Applications of Remote Sensing Purdue University West Lafayette, Indiana 47907 LARS Contract Report 112278

7.9 - 10.190

NR. 160154

Stratification and Sample Selection for Multicrop Experiments

by **M. M. Hixson B. J. Davis** <u>M. E. Bauer</u>

November 1978

Prepared for National Aeronautics and Space Administration

Johnson Space Center Earth Observation Division Houston, Texas 77058 Contract No. NAS9-15466 Technical Monitor: J. D. Erickson/SF3

Submitted by Laboratory for Applications of Remote Sensing Purdue University West Lafayette, Indiana 47907 STAR INFORMATION FORM

1 Report No. 112278	2. Government Access	ion No.	3. Recipient's Catalog	No		
4 Title and Subtitle Stratification and Sampl Experiments	e Selection for	Multicrop	5. Report Date 11/22/78			
		b, Performing Organiz	ation Code			
7. Author(s) Marilyn M. Hixson, Barba	7. Author(s) Marilyn M. Hixson, Barbara J. Davis and Marvin					
E. Bauer			10. Work Unit No.			
Laboratory for Applications Purdue University 1220 Potter Drive	of Remote Sensi	ng	11. Contract or Grant NAS9–15466	No.		
West Lafayette, Indiana 47	906		13. Type of Report and	d Period Covered		
J.D. Erickson/SF3 NASA/Johnson Space Center Houston, Texas 77058			14. Sponsoring Agency	Code		
15. Supplementary Notes	·····	· · · · · · · · · · · · · · · · · · ·				
16. Abstract The purpose of this eff for the 1978-79 Multicrop ex -Development and evalua for the classification	fort was to iden periments to su tion of procedu of corn and so	tify the locations pport: ures for using LACI ybeans.	of the sample E and other tea	segments chnologies		
-Identification of fact	ors likely to a	- Iffect classificati	on performance.			
-Evaluation of problems to the crop estimation	encountered an problem in for	nd techniques whic reign countries as	h are applicab] well.	le		
In order to meet these density segments were distri sample all variations of con more completely represent co density segments were select training, classification, an possible use in future Multi	requirements, t buted throughou ditions which o nditions which ed in smaller a d area estimati crop experiment	wo types of sample at corn and soybean could affect classi might be found in areas to support the con procedures on a	es were selected producing area fication accura other countries the investigation smaller scale	d. Low as to acy and to s. High n of for		
In this report, the data set and methods employed in the stratification are discussed. Rationale, methods, and results for both the low and high density segments are discussed.						
		-				
17 Key Words (Suggested by Author(s)) Stratification, Sampling, La	mdsat,	18. Distribution Statement				
Crop Inventory, Corn and soy	beans					
10. Specieum Charait (of this support)	20 Security Classif In	this nace)	21. No. of Pages	22 Price*		
Security Classif (of this report) 20 Security Classif (of this INCLASSIFIED INCLASSIFIED		ED		— ·		

~~

ï

"For sale by the National Technical Information Service, Springfield, Virginia, 22161

List of Tables

1.	Crops included in the USDA/SRS county estimates program.	5
2.	Determination of strata according to the normalized production of corn and soybeans and average farm size:	9
3.	Counties assigned to Stratum 1.	18
4.	Counties assigned to Stratum 2.	19
5.	Counties assigned to Stratum 3.	20
6.	Counties assigned to Stratum 4.	21
7.	Counties assigned to Stratum 5.	23
8.	Counties assigned to Stratum 6.	24
9.	Counties assigned to Stratum 7.	25
10.	Counties assigned to Stratum 8.	26
11.	Locations of the low density sample segments by latitude and longitude coordinates of the segment centers.	30
12.	Allocation of sample segments to counties in each of the four high density test sites.	40
13.	Locations of the high density sample segments by latitude and longitude coordinates of the segment centers.	42
A-1.	Commodity Codes.	46
	· · · ·	

.

List of Figures

1.	Record layout of county estimates data.	4
2.	Schematic diagram illustrating the determination of strata for Multicrop experiments based on normalized production of corn and soybeans and average farm size.	8
3.	Locations of counties assigned to Stratum 1, small farms, low production of corn and soybeans.	
4.	Locations of counties assigned to Stratum 2, small farms, medium production of corn and soybeans.	11
5.	Locations of counties assigned to Stratum 3, small farms, high production of corn and soybeans.	12
6.	Locations of counties assigned to Stratum 4, large farms, low production of corn and soybeans.	13
7.	Locations of counties assigned to Stratum 5, large farms, low production of corn, medium production of soybeans.	14
8.	Locations of counties assigned to Stratum 6, large farms, medium production of corn and soybeans.	15
9.	Locations of counties assigned to Stratum 7, large farms, high production of corn and soybeans.	16
10.	Locations of counties assigned to Stratum 8, large farms, highest production of corn and soybeans.	17
11.	Locations of counties in all eight strata receiving low density sample segments.	29
12.	Locations of high density test sites.	37

STRATIFICATION AND SAMPLE SELECTION FOR MULTICROP EXPERIMENTS

1. Introduction .

In February 1978, LARS was asked to participate in the stratification and sampling tasks for the transition year experiments. The project was supported by personnel and funds from two tasks of NASA Contract NAS9-15466: "Application of Statistical Pattern Recognition to Image Interpretation" and "Application and Evaluation of Landsat Training, Classification, and Area Estimation Procedures for Crop Inventory."

The purpose of this effort was to identify the locations of the sample segments for the 1978-79 Multicrop experiments to support:

- Development and evaluation of procedures for using LACIE and other technologies for the classification of corn and soybeans.
- , other technologies for the classification of corn and soybean
- Identification of factors likely to affect classification performance.
- Evaluation of problems encountered and techniques which are applicable to the crop estimation problem in foreign countries as well.

In order to meet these requirements, two types of samples were selected. Low density segments were distributed throughout corn and soybean producing areas to sample all variations of conditions which could affect classification accuracy and to more completely represent conditions which might be found in other countries. High density segments were selected in smaller areas to support the investigation of training, classification, and area estimation procedures on a smaller scale for possible use in future Multicrop experiments.

In this report, the data set and methods employed in the stratification are discussed. Rationale, methods, and results for both the low and high density segments are discussed. 1

2. <u>Objectives</u>

In order to support the corn and soybean experiments, two types of segments were selected: low density segments and high density segments. Different issues can be addressed using each type of segment.

The low density segments were selected to cover a wide range of conditions under which areas will have to be classified in larger Multicrop efforts to allow possible problems to be examined (e.g., in algorithms, systems, data acquisition). The low density samples were located in 14 states in the U.S. corn and soybean producing areas. This region was divided into eight strata according to the level of county production of corn and soybeans and average farm size. Twenty segments per stratum were selected. The distribution of these segments permits the calculation of variability within a stratum to predict the variability of aggregated estimates of corn and soybeans in the U.S. and to determine the optimum allocation of samples for making such estimates. The allocation of these samples was not designed for, and thus does not support, making aggregated estimates.

The high density samples are located in four test sites in high production areas of the U.S. Corn Belt. Twenty segments were selected from each test site which is approximately ten counties in size. The increased density of samples permits estimation of the local variability in high production areas. These samples support the investigation of training, classification, and area estimation procedures on a smaller scale for possible use in future Multicrop experiments. Other area estimation procedures such as regression estimation can be evaluated and county level estimates can be assessed.

3. Data Set Description .

The data used in this study were acquired by the Statistical Reporting Service of the U.S. Department of Agriculture (USDA/SRS). Two types of data were available: the USDA/SRS county estimates for 1972-76 and the 1974 agriculture census data. The data were supplied by KASA/Johnson Space Center (NASA/JSC). The SRS dual county estimates program data for 1972-76 were available. Under the Federal program, county estimates are prepared for specified crops, states, and counties. These estimates include the major crops produced in most states. Some of the state statistical offices prepare county estimates for a few crops not required under the Federal program in cooperation with their respective state governments, but these estimates were not available on tape.

Variables which were included in the county estimates data set were: state, crop reporting district, county, year data was punched, crop year, commodity code, acres planted, acres harvested, yield per harvested acre, and production(Figure 1). Counties from the entire U.S. were represented. The commodities for which information was available are listed in Table 1. Some problems encountered with this data set are discussed in the appendix.

The 1974 agriculture census data were supplied for 14 states in the U.S. corn and soybean producing regions. These data included: number of acres in each county, average farm size by county, and the land in farms for each county.

4. Stratification

The first step in selection of sample segments was the stratification of the area to be studied. The variables used in the stratification, the rationale and methods employed, and the results of the stratification will be discussed in this section.

Variables Used in Stratification.

The variables available were those contained in the USDA/SRS county estimates program (Figure 1) and the selected variables from the 1974 agriculture census which were supplied by NASA/JSC. The variables which were considered for use were: acres planted, acres harvested, yield, and production for the crops listed in Table 1; acres in a county; percent agricultural area (land in farms) in a county; and average farm size by county. From these variables, the

Γ			<u> </u>	I	D				-		DAT	<u> </u>			
	CARD NO.	SURVEY CODE	DISTRICT STATE	COUNTY	YEAR PUNCHED	CROP YEAR	COMMODITY CODE	(1) ACRES PLANTED ALL PURPOSES	(2) ACRES PLANTED FOR HARV. OR NET ACRES SEEDED OR ACRES ABANDONED	(3) ACRES HARVESTED	(4)	S VIELD PER	(6) PRODUCTION	(7 PRODUC (COTTC OF 1 0F 1) TION N LBS .INT) 7

.

.

.

٠.

Figure 1. Record layout of county estimates data.

.

.

.

.

Winter Wheat Durum Wheat Other Spring Wheat Wheat, All Rye, All Rice, All Corn for Grain Corn For Silage Oats, All Barley, All Sorghum, All Cotton, All Cotton, Upland Cotton, American Pima Tobacco Flaxseed Peanuts Soybeans Dry Edible Beans - Pea (Navy) - Great Northern - Flat Small White - Pinto - Red Kidney - Pink - Small Red Dry Beans (All Mich.) Dry Peas - Smooth Green Kinds, All - Yellow and White Kinds, All Wrinkled Peas for Seed Lentils, All Austrian Winter Peas Green Peas for Processing, All Tomatoes for Processing, All Bush Garden Seed Beans (Idaho)

number of agricultural acres in a county was computed by multiplying the percent agricultural area by the county acreage. Normalized production of a crop for a county was computed by dividing the fiveyear average production of that crop by the agricultural acres in the county.

In order to fulfill the objectives, the stratification was performed using three variables: normalized production of corn, normalized production of soybeans, and average farm size. The first two variables were selected to make strata which are homogeneous with respect to the relative importance of corn and soybeans in the agricultural scene. The average farm size was selected to represent problems which might be encountered in Landsat data classifications with different field sizes.

Methods of Stratification.

The rationale for the stratification method was based upon the objective of creating eight strata in the United States corn and soybean producing regions which were relatively homogeneous with respect to the relative importance of corn and soybeans in the agricultural scene and the average farm (or field) size. These strata, then, represent several conditions under which Landsat data will have to be classified in Multicrop studies. Samples selected from these strata will be representative of conditions found throughout the corn and soybean producing regions.

The first step in the stratification was a reduction of the data set size. Only the 14 states for which the agriculture census data were supplied were considered. Counties with neither corn nor soybeans were omitted.

The joint distributions of normalized corn and soybean productions and average farm size were examined. The average farm size was represented in two groups: small farms (average size less than or equal to 190 acres) and large farms (size greater than 190 acres). About one-third of the counties were in the small farms category and about two-thirds were in the large farms category. The division into these two groups was somewhat arbitrary although there was a break in the continuum of data at about 190 acres.

For each farm size, the normalized corn and soybean productions were displayed in deciles to look for broad clusters of data. The strata were determined by examining tables of the distributions of these variables. Three strata of small farm counties and five strata of large farm counties were selected to represent the two farm sizes approximately proportionally to the number of counties in them.

Counties which fell in the lower 10% of all counties in both corn and soybean production were omitted from consideration. Counties which fell outside the broad clusters of data were not included in any stratum. Thirteen counties satisfying all other selection criteria were outliers from the clusters and were not included. A schematic diagram (Figure 2) shows the methodology employed in the stratification. Table 2 gives the definitions of stratum boundaries.

Results of Stratification.

Eight strata covering 14 states in the U.S. corn and soybean producing region were determined. The counties in each of these strata are shown in Figures 3 to 10 and are listed in Tables 3 to 10.

The large farm, highest production stratum (stratum 8) is geographically located at the center of the Corn Belt. Strata 7, 6, and 4 are located around its perimeter outward according to decreased production. In these strata of large farms, corn and soybeans are of approximately equal importance.

Stratum 5 is located geographically apart from the other strata with large farms. This stratum, in which soybeans have a greater

Figure 2. Schematic diagram illustrating the determination of strata for Multicrop experiments based on normalized production of corn and soybeans and average farm size.

Stratum	Average	Normalized	No. of	
Number	Size	Corn	Soybeans	Counties
	(acres)	(deciles)	(deciles)	
1	<u><</u> 190	0-40	0-40	149
2	<u><</u> 190	40-60	30-70	109
3	<u><</u> 190	60-100	50-100	126
4	>190	0-40	0-30	192
5	>190	0-40	30-70	102
6	>190	40-60	30-70	126
7	>190	60-80	50-90	147
8	>190	80-100	70-100	213

Table 2.Determination of strata according to the normalized production
of corn and soybeans and average farm size.

Figure 3. Locations of counties assigned to Stratum 1, small farms, low production of corn and soybeans.

Figure 4. Locations of counties assigned to Stratum 2, small farms, medium production of corn and soybeans.

Figure 5. Locations of counties assigned to Stratum 3, small farms, high production of corn and soybeans.

Figure 6. Locations of counties assigned to Stratum 4, large farms, low production of corn and soybeans.

Figure 7. Locations of counties assigned to Stratum 5, large farms, low production of corn, medium production of soybeans.

Figure 8. Locations of counties assigned to Stratum 6, large farms, medium production of corn and soybeans.

Figure 9. Locations of counties assigned to Stratum 7, large farms, high production of corn and soybeans.

Figure 10. Locations of counties assigned to Stratum 8, large farms, highest production of corn and soybeans.

Table 3. Counties assigned to Stratum 1.

Arkansas	Kentucky	Michigan
Benton	Knox	Alpena
Bradley	Laurel	Benzie
Calhoun	Letcher	Crawford
Cleburne	Lewis	Gogebic
Cleveland	McCreary	Leelanau
Columbia	Madison	Manistee
Crawford	Magoffin	Oceana
Garland	Martin	Wexford
Grant	Menifee	
Hot Springs	Montgomery	Mississipp
Howard	Morgan	
Johnson	Nicholas	Choctaw
Montgomery	Owen	Clarke
Pike	Owsley	Covington
Saline	Pendleton	Forrest
Union	Perry	Greene
	Pike	Harrison
Kentucky	Powel1	Itawamba
	Robertson	Jackson
Adair	Rockcastle	Jasper
Allen	Rowan	Jeff Davis
Anderson	Scott	Jones
Bath	Trimble	Leake
Boone	Washington	Lincoln
Boyd	Wayne	Neshoba
Bracken	Whitley	Newton
Breathitt	Wolfe	Perrv
Bullitt	Woodford	Pike
Campbell		Pontotoc
Carroll	Louisiana	Scott
Carter		Simpson
Clay	Bienville	Smith
Cumberland	Grant	Stone
Flliott	Jackson	Tippah
Estill	Lafavette	Tishoming
Favotte	La Salle	Union
Floyd	Lincoln	Walthall
Franklin	Livingston	Wayne
Callatin	Sabine	Winston
Garrard	St. Helena	
Crant	St. Martin	Missouri
Greenup	St. Tammany	
Varlan	Tangipahoa	Barry
Harrison	Union	Christian
Inakson	Vernon	Cole
Jackovi	Washington	Greene
Johnson	Webster	Jefferson
Konton	Winn	Lawrence
Knott		Newton
NHULL		

lichigan pena nzie awford gebic elanau nistee eana exford ssissippi octaw arke vington orrest eene rrison awamba ickson asper eff Davis ones eake incoln eshoba ewton erry ike ontotoc cott Impson mith tone ippah **ishomin**go nion althall ayne inston Missouri

Missouri

St. Francois Webster

Ohio

Athens Belmont Guernsey Jefferson Lake Lawrence Meigs Monroe

Wisconsin

Clark Door Kewaunee Marathon Wood

Table 4. Counties assigned to Stratum 2.

Illinois

Jefferson

Kentucky

Muhlenberg '

Monroe

Williams Indiana Brown Clark Crawford Dearborn Floyd Harrison Jefferson Lawrence Monroe Ohio Perry Switzerland Kentucky Ballard Barren Boy1e Breckinridge Caldwell Calloway Carlisle Casey Clark Clinton Edmonson Graves Grayson Green Hancock Hardin Hart Henry Jefferson Larue Lincoln Logan Lyon McCracken Marion Marshall Mason Meade Mercer Metcalfe

Nelson Pulaski Russell Shelby Spencer Taylor Warren Michigan Arenac Bay Gladwin Grand Traverse Kent Mason Montcalm Muskegon Newaygo Oakland Ottawa Saginaw St. Clair Sanilac Van Buren Wayne

Minnesota

Anoka Benton Isanti Mille Lacs Ramsey

Missouri

Franklin Jackson St. Louis

Ohio

Adams Ashtabula Brown Carroll Clermont Cuyahoga Gallia Geauga Hamilton Hocking Jackson Lorain Muskingum Ottawa Perry Scioto Summit Trumbull Tuscarawas Washington

Ohio

Wisconsin

Brown Calumet Manitowoc Milwaukee Oconto Outagami Ozaukee Polk Shawano Sheboyga Vernon Waupaca

Table 5. Counties assigned to Stratum 3.

Indiana	Kentucky	<u>Ohio</u>
Calhoun	Davies	Burler
Cook	Fleming	Columbiana
Madison	McLean	Crawford
Massac	Ohio	Darke
Adams	Simpson	Defiance
Allen	-	Erie
Blackford	Michigan	Fairfield
Daviess		Fulton
De Kalb	Allegan	Henry
Delaware	Barry	Highland
Dubois	Berrien	Holmes
Elkhart	Branch	Knox
Franklin	Cass	Licking
Grant	Clinton	Logan
Hamilton	Eaton .	Lucas
Hancock	Genesee	Mahoning
Hendricks	Gratiot	r.
Henry	Hillsdale	Mercer
Howard	Ingham	Miami.
Huntington	Ionia	Montgomery
Jackson	Isabella	Morrow
Jav	Kalamazoo	Portage
Jennings	Lapeer	Preble
Johnson	Lenawee	Putnam
Kosciusko	Livingston	Richland
Lagrange	Macomb	Sandusky
Madison	Midland	Shelby
Marion	Monroe	Stark
Marshall	Shiawassee	Warren
Miami	Tuscola	Wayne
Morgan	Washtenaw	Williams
Noble		
Orange	Minnesota	
Owen		
Pike	Carver	
Randolph	Chisago	
Ripley	Hennepin	
St. Joseph	McLeod	
Scott	Rice	
Spencer	Scott	
Steuben	Steele	
Washington	Washington	
Wayne	Wright	
Wells		
Whitley	<u>Ohio</u>	
Iowa	Allen	
	Ashland	
Bremer	Auglaize	
	-	

.

ł

Arkansas	Michigan	<u>Mississippi</u>
Clark	Alcona	Hancock
Dallas	Alger	Hinds
Faulkner	Antrim	Jefferson
Franklin	Cheboygan	Kemper
Hempstead	Delta	Lafayette
Izard	Dickinson	Lamar
Lafayette	Emmet	Lauderdale
Little Rock	Houghton,	Lawrence
Logan	Kalkaska	Madison
Nevada	Lake	Marion
- Ouachita	Luce	Marshall
Perry	Mackinac	Montgomery
Pope	Marquette	Oktibbeha
Scott	Menominee	Pearl River
Sebastian	Montmorenci	Rankin
Sevier	Osceola	Wilkinson
Yell	Oscođa	Yalobush
	Otsego	
Kentucky	Presque	Missouri
	Schoolcraft	······································
Lawrence		Benton
	Minnesota	Camden
<u>Louisiana</u>		Carter
	Aitkin	Cedar
Ascension	Becker	Crawford
Assumption	Beltrami	Dade
Beauregard	Carlton	Dallas ·
Bossier	Cass	Dent
	Clay	Douglas
	Clearwater	Hickory
	Crow Wing	Howe11
Claibanna	Hubbard	Iron
	Itasca	LaClede
De Solo Fast Patan Davas	Mahnomen	Madison
East Baldin Rouge	Norman	· Maries
Theria	Pennington	Miller
Therwille	Pine	Morgan
LaFourche	Polk	Oregon
Natchitoches	Red Lake	Osage
Plaquemines	Wilkin	Phelps
Red River		Polk
St. James	<u>Mississippi</u>	Pulaski
St. Marv		Reynolds
Terrebon	Amite	Ripley
Vermilion	Attala	Shannon
West Baton Rouge	Carroll	Stone
West Feioana	Claiborne	Texas
	Copiah	Washington
	De Soto	Wayne
	Franklin	Wright

Nebraska Banner Blaine Box Butte Cherry Cheyenne Dawes Deue1 Garden Garfield Keith Keya Paha Kimball Logan Loup McPherson Morrill Rock Sheridan Sioux Thomas

Tripp Walworth <u>Wisconsin</u> Florence Forest Iron Langlade Lincoln Rusk Sawyer Taylor Washburn

South Dakota

Potter

Spink

Sully

Todd

<u>Ohio</u>

Morgan Noble

South Dakota

Aurora Beadle Brown Brule Buffalo Butte Campbell Clark Codington Custer Day Edmunds Fall River Faulk Gregory Hand Hughes Hyde Jerau1d Lyman McPherson Marshall

-

Table 7. Counties assigned to Stratum 5.

Arkansas	Michigan	Missouri
Arkansas	Charlevoir	New Madrid
Ashley	Iosco	· Pemiscot
Chicot		Putnam ·
Clay	Minnesota	St. Clair
Conway		Vernon
Craighead	Kanabec	
Crittenden	Otter	Nebraska
Cross	Traverse	······································
Desha	Wadena	Boyd
Drew		Lancaster
Greene	Mississippi	
Independence		Ohio
Jackson	Adams	
Jefferson	Benton	Vinton
Lawrence	Bolivar	
Lee	Calhoun	South Dakota
Lincoln	Chickasaw	······································
Lonoke	Clay	Charles Mix
Miller	Coahoma	Grant
Mississippi	Grenada	Miner
Monroe	Holmes	Roberts
Phillips	Humphrey	Sanborn
Poinsett	Issaquen	
Prairie	Lee	Wisconsin
Pulaski	Leflore	
Randolph	Lowndes	Barron
St. Francis	Monroe	Burnett
White	Noxubee	Marinette
Woodruff	Panola	1101 21100 00
	Prentiss	
Louisiana	Quitman	
	Sharkey	
Adadia	Sunflower	
Allen	Tallahatchie	
Catahoula	Tate	
Concordia	Tunica	
East Carroll	Warren	
Evangeline	Washington	
Franklin	Webster	
Jefferson	Yazoo	
Madison		
Morehouse	Missouri	
Ouachita		
Pointe Coupee	Barton	
Rapides	Bollinger	
Richland	Butler	
St. John	Dunklin	
Tensas	Gasconade	
	Henry	
	Jasper	

•

•

Table 8. Counties assigned to Stratum 6.

-

<u>Illinois</u>	Missouri	<u>Nebraska</u>	Wisconsin
Alexander	Bates	Frontier	Pierce
Franklin	Boone	Furnas	Portage
Hardin	Caldwell	Hitchcock	Richland
Jackson	Callaway	Holt	St. Croix
Johnson	Cape Girardeau	Jefferson	Trempealeau
Monroe	Carroll	Johnson	Waushara
Perry	Cass	Knox	
Роре	Chariton	Lincoln	
Pulaski	Clay	Nuckolls	
Randolph	Clinton	Pawnee	
Union	Cooper	Perkins	
	Daviess	Red Willow	
Iowa	De Kalb	Sherman	
	Gentry	Webster	
Clarke	Grundy	Wheeler	
Decatur	Harrison		
	Howard	Ohio	
Kentucky	Johnson		
	Knox	Harrison	
Bourbon	Lewis	Pike	
Butler	Linn		
Christian	T.ivingston	South Dakota	
Crittenden	Macon		
Livingston	Marion	Bon Homme	
01dham	Mercer	Brookings	
Trigo (Moniteau	Davison	
	Monroe	Deuel	
Michigan	Montgomery	Douglas	
	Perry	Hamlin	
Clarev	Pettis	Hanson	
Mecosta	Pike	Hutchins	
Missaukee	Platte	Kingsburg	
Ngemaw	Ralls	Lake	
oberno.	Randolph	McCook	
Minnesota	Ray		
	Ste. Genevieve	Wisconsin	
Big Stone	Schuyler		
Douglas	Scotland	Adams	
Grant	Scott	Buffalo	
Morrison	Shelby	Chippewa	
Pope	Stoddard	Crawford	
Sherburne	Sullivan	Dunn	
Stearns	Warren	Eau Clair	
Todd	Worth	Jackson	
		Juneau	
Missouri	Nebraska	La Crosse	
		Marquette	
Adair	Brown	Monroe	
Audrain	Custer	Pepin	
~~~~~~~		1	

### Table 9. Counties assigned to Stratum 7.

.

•

•

			,
<u>Illinois</u>	Iowa	<u>Missouri</u>	<u>Ohio</u>
Adams	Van Buren	Lafavette	Paulding
Bond	Wapello	Lincoln	Pickaway
Brown	Warren	Nodaway	Rose
Clark	Wayne	St. Charles	Seneca
Clay	Winneshiek	Saline	Union:
Clinton			Wyapdot
Crawford	Kentucky	Nebraska	nyunuoe
Cumberland	······		South Dakota
Edwards	Henderson	Antelope	<u>boden ballota</u>
Effingham	Hickman	Boone	Clav
Favette	Hopkins	Buffalo	Lincoln
Hamilton	Todd	Butler	Minnehaha
Jasper	Webster	Cass	Moody
Jersey		Cedar	Turner
Jo Daviess	Michigan	Chase	Union
Lake	<u></u>	Colfax	Yankton
Marion	Calhoun	Cuming	Tankton
Pike	Huron	Dakota	Wieconsin
Richland	Jackson	Dawson	<u>masconozn</u>
St. Clair	St. Joseph	Dixon	Columbia
Saline		Franklin	Grant
Schuvler	Minnesota	Gosper	Green
Washington		Greelev	Green Lake
Wavne	Chippewa	Harlan	Towa
White	Dakota	Howard	Jafavette
mace ,	Fillmore	Madison	Sauk
Indiana	Goodbue	Nance	Walworth
,	Houston	Nemaha	Warwortin
Greene	Kandivohi	Otoe	
Martin	Lac Oui	Pierce	
Warrich	Lincoln	Richards	
	Lyon	Saline	
Iowa	Meeker	Saunders	
	Murray	Seward	
Adair	Olmsted	Stanton	
Adams	Pipestone	Thaver	
Allamake	Redwood	Thurston	
Appanoose	Stevens	Vallev	
Davis	Swift	Washington	
Guthrie	Wabasha	Wayne	
Howard	Winona	hayne	
Jackson	Yellow Medicine	Ohio	
Lucas		01110	
Madison	Missouri	Coshocton	
Marion		Delaware	
Monroe	Andrew	Franklin	
Page	Atchison	Hancock	
 Ringgold	Buchapap	Hardin	
Tavlor	Clark	Huron	
Union	Holt	Marion	

•

Table 19. Counties assigned to Stratum 8.

<u>Illinois</u>	Illinois	Iowa
Boone	Stark	Audubon
Bureau	Stephens	Benton
Carroll	Tazewel1	Black Hawk
Cass	Vermilion	Boone
Champaign	Wabash	Buchanan
Christian	Whiteside	Buena Vista
Coles	Will	Butler
De Kalb	Winnebago	Calhown
De Witt	Woodford	Carroll
Douglas		Cace
Du Page	Indiana	Ceder
Edgar		Cerro Cordo
Ford	Bartholomew	Cherekee
Fulton	Benton	Cherokee
Gallatin	Вооле	Class
Greene	Carrol1	Clay Class
Grundy	Caes	Clayton
Hancock	Cl av	Clinton Crassferri
Henderson	Clinton	Crawford
Henry	Deestur	Dallas
Troquois		Delaware
Kapo	Fayette	Des Moines
Kankakoo	Foundain	Dickinson
Kandall		Dubuque
Vnov	GIDSON	Emmet
	Jasper	Fayette
	KNOX	Floyd
Lawrence	Lake	Franklin
Lee	La Porte	Fremont
Livingston	Montgomery	Greene
Logan	Newton	Grundy
Mellonougn	Parke	Hamilton
MCHenry	Porter	Hancock
McLean	Posey	Hardin
Macon	Pulaski	Harrison
Macoupin	Putnam	Henry
Marshall	Rush	Humboldt
Mason	Shelby	Ida
Menard	Starke	Iowa
Mercer	Sullivan	Jasper ·
Montgomery	Tippecanoe	Jefferson
Morgan	Tipton	Johnson
Moultrie	Union	Jones
Ogle	Vanderburg	Keokuk
Peoria	Vermillion	Kossuth
Piatt	Vigo	Lee
Putnam	Wabash	Linn
Rock Island	Warren	Louisa
Sangamon	• White	Lvon
Scott		Mahaska
Shelby		Marshall
,		

•

٠

Iowa

Nebraska

Mills		
Mitchell		•
Monona	•	
Montgomery		
Muscatine		
O'Brien		
Osceola	•	
Palo Alto		
Plymouth		
Pocahontas		
Polk		
Pottawattamie		
Poseshiek		
Sac		
Scott		
Shelby		
Sioux		
Story		
Tama		
Washington		
Webster		
Winnebago		
Woodbury		
Worth		
WOILH		
MITRUC		
···		
Kentucky		
Union		
ULLON		
Minnecota		
<u>Minieso ca</u>		
Blue Earth		
Brown		
Cottonwood		
Dodge		
Foriboult		
Faribault		
Treborn		
Jackson La Cuóur		
Le Sueur		
Martin		
Mower.		
NICOLLET		
Nobles		
Kenville		
Rock		
Sibley		
Waseca		
Watonwan		

Adams Burt Clay Dodge Douglas Fillmore Hall Hamilton Kearney Merrick Phelps Platte Polk Sarpy York

.

<u>Ohio</u>

Champaign Clark Clinton Fayette Greene Madison Van Wert Wood

Wisconsin

Rock

•

.

importance than corn, is located in the Mississippi River Valley where the climate and soils are more suited to soybeans than to corn.

Stratum 3, the small farm stratum with the greatest production of corn and soybeans, is located primarily in eastern Indiana and western Ohio where the cropland is productive, but the terrain is rolling. The lesser production small farm strata (strata 1 and 2) are centered about this area on the outskirts of stratum 3.

In summary, looking at the geographic location of the strata, the system appears to be logical and the various strata seem to represent different conditions. This result is supportive not only of the variables and the methodology employed in the stratification, but also of the validity of the data sets employed.

### 5. Low Density Segments

### Sample Allocation.

The low density segments were selected to sample the variability present in corn and soybean producing regions of the United States. The sample was designed to represent differences in climate, topography, field size, variety, and management practices. In order to achieve as diverse a representation as possible, an equal number of segments were allocated to each of the strata. This allocation scheme emphasizes representation of variability rather than sampling in a manner suitable for aggregation purposes.

Twenty 5 x 6 nautical mile segments were allocated to each stratum. The counties to receive sample segments were determined using a random selection procedure without replacement. Thus, all counties in a stratum had an equal probability of receiving a sample and no county could contain more than one segment. Locations of counties receiving sample segments are illustrated in Figure 11. Latitude and longtitude coordinates of the sample segment centers can be found in Table 11.



Figure 11. Locations of counties in all eight strata receiving low density sample segments.

Stratum	State	County	Latitude/Longitude
1	Arkansas	Clebuine	35.480/91.970
	Ventuelm	Bath	38.240/83.807
	Kentucky	Boone	38.815/84.675
		Boyd	38.385/82.658
		Carter	38.312/83.170
		Clay	37.237/83.833
		Greenup	38.643/82.933
		Lewis	38.570/83.545
		Nicholas	38.327/84.060
		Powell	37.823/83.81/
		Scott	38.223/84.636
		Washington	37.677/85.081
	Michigan	Leelanau	44.800/85.916
	Mississippi	Jones	31.594/89.204
		Ponototoc	34.300/89.082
		Smith	32.012/89.436
	Miccouri	Greene	37.164/93.470
	MISSOULT	St. Francis	37.880/90.540
	Ohio	Belmont	40.112/81.000
	Wisconsin	Wood	44.500/90.000
2	Illinois	Jefferson	38.340/89.101
	Indiana	Switzerland	38.858/85.033
	Kentucky	Ballard	37.117/88.963
	•	Barren	37.065/85.885
		Graves	36.706/88.695
		Grayson	37.413/86.590
		Lyon	37.058/87.960
		McCracken	3/.030/00./33
		Monroe	36./15/85./10
	Michigan	Arenac	44.086/83.685
	1120112800	Kent	43.271/85.763
	Missouri	Jackson	38.908/94.263
	Obio	Adams	38,960/83.470
	VIILO	Ashtabula	41.696/80.818
		Gallia	38.876/82.317
		Jackson	38.930/82.573
		Sciota	38.795/82.829
		Washington	39.456/81.665

Table 11.	Locations	of the	low	density	sample	segments	by	latitude	and
14010	longitude	coordin	nates	s of the	segment	centers.	•		

,

Stratum	State	County	Latitude/Longitude
	Wisconsin	Polk Vernon	45.283/92.283 43.617/90.900
3	Illinois	Calhoun	38.920/90.575
	Indiana	Daviess Hamilton Jennings Johnson Scott Spencer Washington Whitley	38.791/87.102 40.127/86.070 39.040/85.563 39.415/86.245 38.693/85.725 37.975/87.145 38.624/86.080 41.127/85.667
	Kentucky	Fleming Daviess	38.423/83.750 37.660/87.125
	Michigan	Ingham	42.665/84.278
	Minnesota	Carver Scott Wright	44.766/93.800 44.633/93.383 45.150/93.900
	Ohio	Defiance Fulton Logan Portage	41.372/84.550 41.541/84.288 40.463/83.612 41.284/81.230
	Wisconsin	Dane	42.922/89.385
4	Louisiana	Ċameron De Soto East Baton Rouge Iberville Red River West Feliciana	29.950/93.080 32.110/93.790 30.670/91.095 30.141/91.155 32.173/93.360 30.805/91.315
	Minnesota	Polk	47.816/96.683
:	Mississippi	Carroll Copiah Hinds Yalobusha	33.345/89.813 31.761/90.611 32.348/90.615 34.140/89.635
	Missouri	Dent Laclede Polk Texas	37.628/91.600 37.669/92.595 37.667/93.351 37.283/92.000
	Nebraska	Box Butte Keith Kimball	42.166/103.233 41.168/101.866 41.307/103.650

•

# Table 11. (con't)

Stratum	State	County	Latitude/Longitude
	South Dakota	Aurora Hyde	43.750/98.483 44.466/99.450
· 5	Arkansas	Conway Greene Jefferson Lonoke Prairie White	35.190/92.790 36.192/90.710 34.354/91.882 34.772/92.003 34.762/91.615 35.208/91.580
	Louisiana	Allen Madison Morehouse	30.490/92.815 32.282/91.501 32.910/91.630
	Minnesota	Traverse Wadena	45.819/96.451 46.439/94.897
	Mississippi	Benton Calhoun Humphreys Noxobe Sharkey Tunica Yazoo	34.937/89.295 33.932/89.183 33.305/90.365 33.191/88.543 32.750/90.880 34.570/90.305 32.765/90.143
	South Dakota	Roberts Sanborn	45.725/96.950 43.996/97.878
6	Illinois	Роре	37.335/88.605
•	Iowa	Decatur	40.631/94.014
	Kentucky	Crittendon	37.245/88.150
	Michigan	Mecosta	43.681/85.206
	Missouri	Adair Boone Callaway Clay Cooper Gentry Grundy Lewis Mercer Platte	40.250/92.500 39.215/92.183 38.962/92.035 39.410/94.276 38.745/92.870 40.325/94.430 40.171/93.381 40.005/91.670 40.338/93.383 39.484/94.795
	South Dakota	Brookings Deuel Douglas	44.304/96.890 44.963/96.570 43.333/98.179

## Table 11. (con't)

	-		
Stratum	State	County	Latitude/Longitude
	Wisconsin	Crawford Eau Claire Trempeal	43.127/91.034 44.735/91.255 44.387/91.360
7	Illinois	Hamilton Pike Richland St. Claire	38.035/88.495 39.665/91.210 38.695/88.135 38.589/89.865
	Iowa	Lucas Madison Taylor Wapello Warren	41.050/93.489 41.466/94.021 40.792/94.806 40.959/92.300 41.384/93.489
	Kentucky	Hickman	36.698/88.944
	Michigan	Jackson	42.336/84.425
	Minnesota	Goodhue	44.453/92.875
	Missouri	Atchison Clark Lincoln	40.310/95.214 40.360/91.520 39.080/91.130
	Nebraska	Antelope Dawson Dixon	42.367/98.180 40.908/99.955 42.333/96.916
	Ohio	Delaware Wyandot	40.212/82.826 40.880/83.352
8	Illinois	Boone Douglas LaSalle Logan McLeon Moultrie	42.178/88.809 39.749/88.055 41.428/89.083 40.259/89.221 40.675/88.824 39.755/88.703
	Indiana	Carroll Gibson Lake Montgomery Vermilion	40.712/86.593 38.288/87.352 41.294/87.345 40.211/86.854 39.622/87.498
	Iowa	Butler Chickasaw Floyd Jefferson Kossuth O'Brien	42.717/92.674 43.131/92.395 43.134/92.805 41.122/91.900 43.299/94.310 43.035/95.399

٠

,

• Table 11. (con't)

Stratum	State	County	Latitude/Longitude
	Minnesota	Cottonwood Freeborn	44.016/95.133 43.787/93.429
	Ohio	Clinton	39.377/83.602

_

-

#### Segment Location.

Segment locations were selected using a modification of a computer program written for "Crop Inventory Using Full-Frame Classification", described in the final report of Contract NAS9-14970 (June, 1977). The design of the location procedure was based upon that used in LACIE. A grid was laid over each county with grid intersections five by six nautical miles apart. A random selection procedure was then used to select a grid intersection which determined the latitude and longitude coordinates of the center point of each segment.

Although only one segment was allocated to each county, several segments were selected to attain a high probability that at least one of them would be located in an agricultural area and would be accepted as a site. The number of sites to be located in each county was determined by the percent agricultural land in the county. The segment centers were randomly selected without replacement and the first segment located outside a nonagricultural area was to be used.

The ag/nonag delineation was conducted by NASA/JSC. Full-frame. color composite Landsat imagery was used to delineate areas which were not agricultural. This was done on the basis of whether or not field patterns were apparent. Rangeland, forest, and urban areas were among the types of land uses which were delineated as nonag. Segment locations were compared with these boundaries and the segment was rejected if less than 5% of the segment fell into an agricultural area.

### 6. High Density Segments

### Test Site Selection.

The high density segments were designed for intensive study of the remote sensing technology required for corn and soybean inventories. In order to sample more corn and soybeans, test sites were located in the Corn Belt where production of both crops is high. Test sites were placed across the Corn Belt to sample the varied climatic conditions, soil types, crop distributions, and field sizes which are present (Figure 12). Each test site was selected to be relatively homogeneous within (same stratum, similar soil types and farming practices) to support classification studies, particularly of multisegment training. Each of the sites contained about ten counties and was approximately the size of a crop reporting district.

Test Site 1 is located in eastern Indiana which is an area of small farms. The other three test sites are located in large farm areas. Test Site 2 is comprised of counties in west central Indiana and east central Illinois. Test Site 3 is in north central Iowa and Test Site 4 is in west central Iowa.

<u>Description of Test Sites 1 and 2</u>. The climate across central Indiana and east central Illinois is continental with warm summers and cold winters. Normal mean temperature is -1.2°C in January and 31.1°C in July. In this semihumid region of the U.S., the average annual precipitation is 950 to 1000 mm which does not limit crop production. Rainfall is greatest during the spring and early summer months with June typically receiving 107 to 118 mm of rain. Average precipitation in June is slightly excessive, adequate in July, and often inadequate in August for corn. The crops survive because of some moisture stored in the soil profile.

Test Site 1 is composed of two major soil associations. Soils of the northern two-thirds of this district (Allen, Wells, Adams, Blackford, Jay, and parts of Madison, Delaware, and Randolph counties) belong to the Blont-Pewano-Mortley soil association. These soils were formed on clayey glacial till and are nearly level and poorly to very poorly drained. The Brookston-Crosby-Miami-Parr assocation which predominates in the remainder of Test Site 1 was formed in thin loess (wind-blown materials) over loamy glacial till and is also poorly drained. These two soil associations are suited to intensive cropping but are subject to problems associated with wet soils unless adequate artifical drainage is provided. Typically, approximately 287,700 hectares of



Figure 12. Locations of high density test sites.

corn for grain; 245,300 hectares of soybeans; and 87,300 hectares of winter wheat are planted.

Test Site 2 includes dark-colored prairie soils and lightcolored forest soils both of which were formed in loess-covered Topography is generally gently rolling with short glacial till. slopes and nearly level areas interrupted by depressions or potholes. The northern one-third of this district (Newton, Jasper, Kankakee, and northern Ford and Iroquois counties) has soils which are sandy and variable in subsoil development. These soils tend to be droughty, low in fertility, and require a high level of management for moderate yields. In Tippecanoe, Benton, Warren, southern Ford and Iroquois, and northern Vermilion and Champaign counties in the central portion of the district, the soils developed under prairie or mixed prairie and forest vegetation, are dark to moderately dark colored, and are generally imperfectly drained. Crop yields are moderately high to high with a high level of management. Dark-colored soils on nearly level to moderately sloping upland areas are typical in southern Vermilion and Champaign counties. These soils have high available moisture storage capacities and are very highly productive under a high level of management. Farmers in Test Site 2 typically plant 667,700 hectares of corn; 557,200 hectares of soybeans; and 39,200 hectares of winter wheat.

Description of Test Sites 3 and 4. The climate in western Iowa is continental, characterized by marked seasonal changes. Temperature fluctuations are extreme with winters being cold and summers warm. Thirty-year normal temperatures are -8.4 C in January, the coldest month, and  $23.6^{\circ}$  in July, the warmest month. Annual precipitation is 762 mm with most of it occurring in the spring and early summer. Summer precipitation is variable from year to year with the largest amount (132 mm) generally falling in June.

The Clarion-Nicollet-Webster soil association, which is the only major soil group in Test Site 3, was derived from glacial till. About 75 percent of the area has level to gently sloping topography and is well suited to intensive production of corn, soybeans, and alfalfa. This test site has about 1,499,600 hectares of farm land and typically grows 607,300 hectares of corn (approximately 96% for grain); 477,100 hectares of soybeans; and 54,500 hectares of alfalfa and hay.

Three major kinds of parent materials (loess, glacial till, and alluvium) are found in Test Site 4. Loess (wind-blown material) from the Missouri flood plains is thickest near the Missouri River and thins and increases in clay content in a southeasterly direction. Marshall and Monona-Ida-Hamburg soil associations which occupy the central threefourths of this district were formed from deep loess under grass vegeta-These soils are generally well-drained and have high proportions tion. of their area used for cultivated crops. The Clarion-Nicollet-Webster soil association, which is a continuation of the predominant soil of the third test site, is the major soil in Sac County. These soils are well suited to intensive production of corn, soybeans, and alfalfa. A third major group of soils which developed primarily from alluvial materials on the nearly level flood plains of the Missouri River are the Luton-Onawa-Salix association. These soils are found primarily along the Missouri River in Woodbury, Monona, and Harrison counties and are farmed for corn, soybeans, and wheat.

High proportions of Test Site 4 are used for cultivated crops, particularly corn and soybeans. Of the 1,385,100 hectares of farm land in this district, 634,100 hectares of corn are planted annually and approximately 90 percent of this corn is harvested for grain. An additional 233,700 hectares of soybeans are typically planted. The proportions of corn and soybeans vary from year to year depending on market conditions and prices.

### Sample Allocation.

In general, two segments per county were allocated. In the case of unusually large or small counties, three segments or one segment might be allocated. All counties indicated in Figure 12 received segments. Table 12 lists the number of segments allocated to each county. 39

Test	Sites	State	- County	No. of Segments
	1	Indiana	Adams	2
			Allen	-2
			Blackford	2
			Delaware	2
			Henry	2
			Jay	2
		·	Madison	2
			Randolph	2
			Wayne	2
			Wells	2
	2 .	Indiana	Benton	2
			Jasper	2
			Newton	2
			Tippecanoe	2
			Warren	2
		Illinois	Champaign	3
			Ford	1
			Iroquois	3
			Kankakee	2
			Vermilion	3
	3	Iowa	Calhoun	2
			Emmet	2
			Hamilton	2
			Hancock	2
			Humboldt	2
			Kossuth	2
			Palo Alto	2
			Pocahontas	2
			Webster	2
			Wright	2
	4	Iowa	Crawford	2
			Harrison	2
			Ida	2
		••	Monona	2
			Pottawatomie	3
			Sac	2
			Shelby	2
			Woodbury	3

four high density test sites.	nsity test sites.	

### Sample Location.

The method used for sample selection was the same as described for the low density samples. More segments were located than were allocated to permit for loss of some segments in nonagricultural areas. Locations of the sample segments by latitude and longitude coordinates can be found in Table 13.

### 7. Summary and Conclusions

A stratification was performed and sample segments were selected for an initial investigation of Multicrop problems. The effort was to support:

- Development and evaluation of procedures for using LACIE and other technologies for the classification of corn and soybeans.
- Identification of factors likely to affect classification performance.
- Evaluation of problems encountered and techniques which are applicable to the crop estimation problem in foreign countries as well.

The two types of samples, low density and high density, supporting these requirements were selected as a research data set for an initial evaluation of technical issues and should not be used in an aggregation scheme. In summary, looking at the geographic location of the strata, the system appears to be logical and the various strata seem to represent different conditions. This result is supportive not only of the variables and the methodology employed in the stratification, but also of the validity of the data sets employed.

Test Site	State	County	Latitude/Longitude	
1	Indiana	Adams Adams Allen Allen Blackford Blackford Delaware Delaware Henry Henry Jay Jay Madison Madison Randolph Randolph Wayne Wayne Wells Wells	40.785/84.880 40.620/85.016 40.956/85.273 40.952/84.877 40.541/85.412 40.457/85.413 40.290/85.285 40.123/85.549 39.789/85.424 40.039/85.419 40.370/85.022 40.451/84.889 40.128/85.810 40.295/85.808 40.038/85.159 40.036/84.899 39.785/84.904 39.954/85.161 40.789/85.276 40.650/85.230	
. 2	Indiana	Benton Benton Jasper Jasper Newton Newton Tippecanoe Tippecanoe Warren Warren	40.627/87.382 40.520/87.210 40.879/86.990 40.963/87.122 41.125/87.521 40.794/87.384 40.515/87.027 40.335/86.835 40.378/87.117 40.293/87.378	
	Illinois	Champaign Champaign Champaign Ford Iroquois Iroquois Iroquois Kankakee Kankakee Vermilion Vermilion	40.172/88.307 40.339/88.435 40.310/88.100 40.588/88.300 40.919/88.030 40.752/88.034 40.831/87.768 41.248/87.757 41.086/88.026 40.078/87.657 40.415/87.910 40.330/87.650	

# Table 13. Locations of the high density sample segments by latitude and longitude coordinates of the segment centers.

Test Site	<u>State</u>	County	Latitude/Longitude
<i>"</i> 3	Towa	Calhoun	42,294/94,838
5	Tour	Calhoun	42, 380/94, 569
		Emmet	43,464/94,725
		Emmet	43.298/94.585
	•	Hamilton	42.219/93.489
		Hamilton	42.300/93.893
		Hancock	43.052/93.625
		Hancock	43.135/93.762
	-	Humboldt	42.801/94.036
		Humboldt	42.717/94.303
		Kossuth	42.966/94.301
		Kossuth	43.135/94.172
•	•	Palo Alto	42.963/94.852
		Palo Alto	43.127/94.855
		Pocahontas	42.713/94.711
		Pocahontas	42.794/94.848
		Webster	42.384/94.164
		Webster	42.549/94.166
		Wright	42.886/93.897
		Wright	42.217/93.876
4	Iowa	Crawford	41.948/95.635
		Crawford	41.952/95.367
		Harrison	41.615/95.624
		Harrison	41.778/95.763
		Ida	42.454/95.382
		Ida	42.530/95.655
		Monona	41.941/96.037
		Monona	42.113/95.775
		Pottawatomie	41.285/95.348
		Pottawatomie	41.446/95.619
		Pottawatomie	41.362/95.749
		Sac	42.205/95.374
		Sac	42.457/95.111
		Shelby	41.699/95.493
		Shelby	41.622/95.224
		Woodbury	42.358/96.054
		Woodbury	42.216/95.784
		Woodbury	42,480/95,870

APPENDIX

.

,

Appendix. Problems Encountered with County Estimates Data

Numerous difficulties were encountered with the county estimates data. The original tape which was transmitted from NASA/JSC was in ASCI format on an 800 BPI tape.

There were some unreadable characters on the tape, indicating that the original data tape may have been bad. The problems were found in the first few columns of a record, so that "educated guesses" could be made to fill in the missing information. The missing information was sometimes restricted to the first five columns which were constant throughout the entire data set. If state or county codes were missing, these could be determined by examining the placement of the card in the data deck. For all bad data lines, the missing information was overlaid, but the first five columns (containing a constant code which was irrelevant to the study) were left bad so that these lines could be located again if necessary.

There were also some codes encountered which were not documented. A visit with Bob Cole of the Indiana USDA/SRS office helped identify an appropriate course of action.

The first column of each record was supposed to indicate the card number and should have been "2" for all data on the tape. One record was encountered, however, which had "3" in the first column. As it was learned that card three did not exist, this was determined to be a keypunching error and was changed on the data file.

Table A-1 lists crops and their codes for the data set. Nonexistent commodity codes were encountered in the data files. Some of the unusual codes might have been mispunched or might have been specific to a state; an example of this type is the code 17163 (for class and crop code). Class code 33 was not included on the list in Table A-1, but the Indiana office of the USDA/SRS was able to inform us that this class code represented

PRECEDING PAGE BLANK NOT FILMED 44

45

<u>Class</u>	Crop Code	Utili- zation	Crop Name
10	119	9	Winter Wheat
10	129	9	Durum Wheat
10	139	9	Other Spring Wheat
10	199	9.	Wheat, All
10	499	9	Rye. All
. 10	619	9	Rice, All
11	199	1	Corn for Grain
11	199	2	Corn for Silage
11	299	9	Oats, All
11	399	9	Barley, All
11	499	9	Sorghum, All
12	. 129	9	Cotton, All (Neither Ginning
			Status nor Staple Type Specied
12	121	9	Cotton, Upland
12	122	9	Cotton, American Pima
		-	Tobacco:
14	111	1	Flue-cured, type 11
14	111	2	Flue-cured, type 12
14	111	3	Flue-cured, type 13
14	111	4	Flue-cared, type 14
14	122	i	Fire-cured, type 21
14	122	2	Fire-cured, type 22
14	122	3	Fire-cured, type 23
14	133	1	Air-cured, type 31
14	133	2	Air-cured, type 32
14	133	5	Air-cured, type 35
14	133	6	Air-cured, type 36
14	133	7	Air-cured type 37
14	244	1	Cigar-filler type 41
14	255	1	Cigar-hinder type 51
14	255	- - 2	Cigar-binder type 52
14	255	2 /	Cigar-binder, type 52
14	255		Cigar-binder, type 54
15	200	0	Flavaad
15	299	5	Peapute
15		1	Soubeanc
15	171	1	Dry Edible Beens - Pea (New)
16	171	2	- Croat Northern
16	171	2 /	- Flat Small White
16	171	4	- Pinto
16	171	7	= Pod Kidney
16	171	1	- Neu Kiuney
16	172	1 2	= 1  Integral
16	100	2	Dry Boong (All Mich )
10	210	9	Dry Beans (All Mich.)
16	329	9	- Yellow and White Kinds
83	161	R	Wrinkled Peas for Seed
16	500	Q	Lantile
16	810	à	Austrian Winter Peac
3K 10	120	2 Q	Groon Page for Propagating
50	247	0	Tomatoge for Proceeding
83	104	2	Bush Garden Seed Beans (Idaho)

### Table A-1. Commodity Codes.

-

miscellaneous vegetables. Another problem was class codes which matched the list given, but whose corresponding crop code or utilization code did not exist. The code "14558", for example, does not exist, but all of class 14 is tobacco so this observation was included there. The utilization "0" is not used for 10129 (durum wheat) but was included in that crop type anyway. There were approximately 40 more cases which were handled in a similar fashion.

Duplicate cards were also encountered in the winter wheat, corn, barley, and miscellaneous crops data files. There were several different varieties of duplicates. Some cards were exact duplicates, a situation which had a straightforward solution. Some cards were encountered containing different estimates of a crop for the same county and the same year, but which were punched in different years. In this case, the most recently entered information was selected to be correct. Some duplicate cards had a third type of problem: yields differed by a factor of ten while the rest of the information was identical. In this situation, the card was selected for which acres times yield was equal to production.

There were many zeros for acreage, yield, and production in the data files. By looking at the values for a given crop in a given county over the five year period, it was determined that a zero might represent two situations: either no acreage of that crop was grown in that county or the true data value was missing. Missing values could possibly have been determined by consulting state crop production publications; time constraints for this project, however, did not permit this type of verification. Years with zero values were excluded from consideration in computation of crop averages. If the data were indeed missing, this approach yielded a much more realistic estimate. If the data were truly zero, a good estimate would be obtained by averaging the other non-zero years which would be small numbers.

Additional steps in data verification were attempted by summing individual estimates to obtain a total for a given crop, crop reporting 47

district, or state. These methods were abondoned as a data verification aid again due to resource considerations. As a rule, summing did not work. Some examples are given as follows.

Theoretically, the "all wheat" data file should be the sum of the winter wheat, durum wheat, and other spring wheat files. This was supposed to be true according to Bob Cole of the Indiana USDA/SRS office, but was found to be not necessarily true in the data. Sometimes all wheat was larger than the sum of the three component files and sometimes the sum was larger. Occasionally, the numbers were about equal. Some counties reported total wheat, but did not divide it down into its components, while other counties appeared to do the reverse.

Finally, crop reporting district and state area and production estimates of a crop should be the sum of estimates for the counties comprising them. This check also failed frequently, a possible result of missing data or a mixture of preliminary and final estimates.