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Cl-. Multispectral Scanner System Parameter Study and  

Analysis Software System Description  

1. INTRODUCTION  

The utilization of sensors on earth orbiting platforms as the main  

element of an Earth Observational System has undergone substantial  

growth in recent years. ERTS-l (Landsat-l) followed by Landsat-2 and  

-3 have proven exceptionally successful in collecting data to help  

monitor the Earth's resources.  

The principal data collection unit aboard the first three Landsats  

is the multispectral scanner known as MSS. Although this scanner has  

been providing data with a quality which exceeded most prelaunch  

expectations, it has been clear from the beginning that MSS does not  

represent the ultimate in multispectral instruments; more advanced  

instruments providing greater detail would be needed as the user community  

begins to become familiar with the use of such space data.  

The design of a multispectral scanner is a very complex matter;  

many different, interacting factors must be properly taken into account.  

Currently operational systems such as MSS have been designed primarily  

using subjective judgements based upon experience with experimental  

data. In designing a scanner the use of empirical methods, at least in  

part, is essential. Each of the large collections of scenes which a  

given scanner will be used upon is a very complex information source; not  

enough is known to make a simple (or even a complex) model of it by  

which to make the design of a scanner a simple straightforward exercise  

of a mathematical procedure.  

And yet, more is known than when MSS was designed, and it is impor-

tant to be able to carry out future designs on a more objective basis  

than in the past. Thus the purpose of the present work is the develop-

ment of appropriate mathematical design machinery within a theoretical  

framework to allow: (a) formulation of an optimum multispectral scanner  

*  The work in this report was done under Task 2.2C1 Multisensor Parametric 
Evaluation and Radiometric Correction Model. 
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system according to defined conditions of optimality and (b) an 'ability  

for convenient manipulation of candidate system parameters so as to  

Permit comparison of the theoretically optimum designs with that of  

practical approximations to it.  

In order to deal with the complexity of the design situation, the  

first step is to determine a suitable set of parameters which adequately  

characterize it but is not so large as to be unmanageable.. It has been  

observed [i] that there are five major categories of parameters which  

are significant to the representation of information in remotely sensed  

data. They are:  

1. The spatial sampling scheme  

2. The spectral sampling scheme  

3. The signal-to-noise ratio  

4. The ancillary data type and amount  

5. The informational classes desired  

Thus, it is necessary to have present in the design machinery, some means  

for evaluating the impact of change in parameter values in each of these  

five categories.  

Such a scanner design tool has been assembled in the form of a  

software package for a general purpose computer. Each of the parts of  

this package, called Unified Scanner Analysis Package (USAP) has been  

carefully devised and the theory related to it fully documented [2, 3, 4, 51.  

The goal of this report is to provide a documentation and description of  

the software. In constructing this documentation it was a~sumed that this  

package will be useful for sometime into the future, however it was also  

assumed that it will only be used by a small number of highly knowledge-

able scientists.  

Section 2 recaps the theoretical concepts behind some of the primary  

These are divi7ded into (a) scanner spatial character-components of USAP.  

istics modeling and noise effects, (b) optimum spectral basis function  

calculations, (c) analytical classification accuracy predictions  
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(d) stratified posterior classification estimation and (e) an information  

theory approach to band selection. Although (e) is not a part of the  

USAP system, the results from this approach are helpful in understanding  

the scanner design problem.  

Section 3 shows the integration of the above modules into the  

software system. Section 4 is the user's guide to USAP describing the  

required inputs and the available output products. A listing of all  

programs is provided in the appendix.  

The work which led to USAP was immediately preceded by a simulation  

study of possible parametric values for the Thematic Mapper, a new  

scanner now being constructed for launch on Landsat-D in 1981. The  

purpose of this simulation was to compare the performance for several  

proposed sets of parameters. We will conclude this introductory section  

by briefly describing this work because it provides useful background  

and serves well to illustrate the problem. A more complete description  

of this simulation study is contained in [l, 6].  

The general scheme used was to simulate the desired spaceborne  

scanner parameter sets by linearly combining pixels and bands from (higher  

resolution) airborne scanner data to form simulated pixels, adding  

noise as needed to simulate the desired SIN; the data so constructed  

was then classified using a Gaussian maximum likelihood classifier and  

the performance measured. The problem was viewed as a search of the  

five dimensional parameter space defined above with the study localized  

around the proposed Thematic Mapper parameters. The scope of the  

investigation was primarily limited to three parameters (a) spatial  

resolution, (b) noise level and (c) spectral bands. Probability of  

correct classification and per cent correct area proportion estimation  

for each class were the performance criteria used. The major conclusions  

from the study are as follows:  
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1.  There was a very small but consistent increase in identification  

accuracy as the IFOV was enlarged. This is presumed to stem  

primarily from the small increase in signal-to-noise ratio with  

increasing IFOV, Figure 1.  

2.  There was a more significant decrease in the mensuration accuracy  

as the IFOV was enlarged, Figure 2.  

The noise parameter study proved somewhat inconclusive due to 3.  

the greater amount of noise present in the original data than  

desired. For example, viewing Figure 3 moving frolm right to  

left, it is seen that the classification performance continues  

the  amount of noise added is decreased until the to improve as  

point is reached where the noise added approximately equals that  

already initially present.* Thus, it is difficult to say for  

what signal-to-noise ratio a point of diminishing return would  

have been reached had the initial noise not been present.  

4. The result of the spectral band classification studies may also  

be clouded by the noise originally present in the data. The  

relative amount of that change in performance due to using  

.80-.91 jim different combinations of the .45-.52 Jm, .74-.80 vtm,  

and .74-.91 Pm bands is slight but there appears to be a slight  

preference for the .45-.52 jim band. The performance improvement  

of the Thematic Mapper channels over those approximating Landsat-l  

and  -2 is clear however.  

5.  Using spectrometer data it was verified that the .74-.80 vm and  

.80-.91 Pm bands are highly correlated.  

6.  Correlation studies also showed that the range from 1.0-1.3 Pm  

is likely to be an important area in discriminating between earth  

surface features. Further, it is noted that the absolute  

calibration procedure described above results in a global  

atmosphere correction of a linear type in that assuming a  

uniform atmosphere over the test site, the calibration  

procedure permits a digital count number at the airborne  

scanner output to be related directly to the present reflectance 

of a scene element.  

The  noise level in the original A/C data was equivalent to about .005 NEAp * 
on the abscissa. See Reference [ll.  



-----------------

5 

10-

-"'8/15 N.Dakota 

Reflective/ Emissive IFOV Wm 

Figure 1. Classification Performance vs. Spatial Resolution.  

10. ---- 7/6 Kansas 
0 8/15 U Dakota 

0 
30tO 40/120 5012D 60/12 80  

Reflective/Emrssive IFO( m) LANDSAT 2  

Figure 2. RMS Error of Proportion Estimates vs. Spatial  
Resolution.  



Nois Aded (EAPor4~c610c  

geo  

,DL -M-7,, 
0 \or D2 D3 (x -0o6f 



7 

2. SCANNER PAPAMETERS ANALYSIS TECHNIQUES  

Based upon the parametric approach introduced above, the development  

of a parametric scanner model must give explicit concern for the spatial,  

spectral and noise characteristics of the systems. This is what has been  

done in the Unified Scanner Analysis Package (USAP) shown in Figure 4.  

USA? is composed of two distinct subsystems. The spatial aspect of it  

contains (a) a data spatial correlation analyzer, (b) a scanner IFOV  

model and (c) a random noise model. The spectral techniques are capable  

of producing an optimum spectral representation by modeling the scene as  

a random process as a function of wavelength,followed by the determination  

of optimum generalized spectral basis functions. Conventional spectral  

bands can also be generated. Also studied was an information theory  

approach using maximization of the mutual information between the reflected  

and received (noisy) energy. The effect of noise in the data can be  

simulated in the spectral and spatial characteristics. Two different data  

bases are used in the system. The spectral techniques require field  

spectral data while the spatial techniques require MSS generated data,  

aircraft and/or satellite. The system performance, defined in terms of  

the classification accuracy, is evaluated by two parametric algorithms.  

A detailed system description and user's guide is presented in Sections 3  

and 4. In the following, the theoretical ideas behind the five major  

elements of USAP are discussed.  

2.1 Analytical Classification Accuracy Prediction  

Throughout the analysis of remotely sensed data, the probability of  

correct classification has ranked high among the set of performance indices  

available to the analyst. This is particularly true in a scanner system  

modeling where generally the optimization of various system parameters  

has as its prime objective the maximization of the classification accuracy  

of various classes present in the data set.  

The estimation of the classification accuracy is fairly straightfor-

ward if Monte-Carlo type methods are employed. In system simulation and  

modeling however, such approaches are generally a handicap due to their  



Figure 4. Block Diagram of the Unified Scanner Analysis Package (USAP).  
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heavy dependence on an experimental data base, the availability of which  

can be limited due to a variety of reasons. What is required, therefore,  

is a parametric classification accuracy estimator for a multiclass,  

multidimensional Gaussian Bayes classifier. This procedure should require  

the class statistics, mean vectors and covariance matrices, as its only  

input and produce a set of probabilities of correct classification.  

This technique has been developed, tested, implemented and comprehensively  

reported [2]. The following is a summary of the method and some" results.  

The probability of Error as an N-Tuple Integral.  

The classification of a multidimensional observation vector into  

one of M populations is conceptually identical to the binary case. Let  

0, M and N be the feature space, number of classes and the dimensionality  

of Q respectively. The procedure is to divide 2 into M mutually disjoint  

sets, Pi and to assign each feature vector to a set in accordance with  
- 

an appropriate rule. This is illustrated in Figure 5. Let Zi, i = 1,  

2, ..., M partition S1in R . The Bayes risk is defined as 

R = i J P(m.) Ci. f-Xlw) dX 
1~ Z. J=l 

I 

is the cost of deciding w1. where w. is true. In the case where  

C..=0 for ij and C..=1 for i#j. R is the probability of error.  
iJ 1:  

where C.. 13 i1  

Among all possible choices of Z. the Bayes rule partitions Q into 1  

Z.=Z.* such that R=R* is. the the minimum probability of error. Assuming 
1 1  

that the population statistics follows a multivariate normal law, the  

optimum Bayes rule is as follows [7].  

X a W3. if W. < W. Vi # j - 1, 2, ..., M 

where  

Wi = (X- i)T [i-1 (X-_.u + ln[iZ.-21n P(o')m 



i0  

~wo2 
~~WM 

Allocation of a Measurement Vector X to an Appropriate Partition  F-igure'5.  
of the Feature Space.  



with  

X  = observation vector  

= mean vector for class w  
(2)  

= covariace matrix for class .1  

P(  i) = apriori probability for i 

The error estimate based on direct evaluation of Eq. (1)exhibits all the  

desired-properties outlined previously.  

The evaluation of multiple integrals bears little resemblance to  

their one dimensional counterparts, mainly due to the vastly different  

domains of integration. Whereas there are three distinct regions in one  

dimension; finite, singly infinite, and double infinite; in an N dimensional  

space there can potentially be an infinite variation of domains. The  

established one dimensional integration techniques, therefore, do not  

carry over to N dimensions in general. Hence, it is not surprising that  

no systematic technique exists for the evaluation of multivariate integrals  

except for the case of special integrands and domains [8]. The major  

complicating factor is the decision boundaries defined by Eq. (2). P. is  

defined by a set of intersecting hyperquadratics. Any attempt to solve  

for the coordinates of intersection and their use as the integration limits  

will be frustrated if not due to the cumbersome mathematics, because of  

impractically complicated results.  

In  order to alleviate the need for the precise knowledge of boundary  

locations and reduce the dimensionality of the integral, a coordinate  

transformation followed by a feature space sampling technique is adopted.  

The purpose of the initial orthogonal transformation of the coordinates  

is  an N to 1 dimensionality reduction such that the N-tuple integral is  

reduced to a product of N one dimensional integrals. Let the conditional  

classification accuracy estimate, Pc be the desired quantity. Then  

the transformed class w. statistics is given by  
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. . j = 1, 2, ... , M (3) 

-3-
S. = 0T. 0 

where 0. is the eigenvector matrix derived fromi" Naturally, in each  

transformed space, Ti(Q), wi has a null mean vector and a diagonal  

covariance matrix.  

The discrete feature space approach is capable of eliminating the  

If 0 is the need for the simultaneous solution of M quadratic forms.  

continuous probability space, a transformation Ti is required such that  

can be completely described in a nonparametric form, thereby in TiQ), r. 1 1 

bypassing the requirement for.an algebraic representation of P.. This  

desired transformation would sample Q into a grid of N-dimensional  

hypercubes. Since the multispectral data is generally modeled by a  

multivariate normal random process, a discrete equivalent of normal  

random variables that would exhibit desirable limiting properties,is  

Let ynBi (n, p) be a binomial random variable with parameters required.  

n and p. The x defined by  

Yu- npx Yn 0,i, 2, ... , n (4) 

converges to xN(O, 1) in distribution [91, i.e.,  

lim F (X) - - F(x)n 

The convergence is most rapid for p= , then  

(yn - n/2)2  
(5) n  
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The variance of xn is set equal to the eigenvalueof the transformed Yi  
by incorporating a multiplicative factor in Eq. (5).  

The segmentation of . b a union of elementary hypercubes makes  

nonparametric representation of P. and its contours feasible. Following 1  

the orthonormal transformation on o. and sampling of 2 accordingly, each 1  

cell's coordinate is assigned to an appropriate partition of r. This  

process is carried outexhaustively, therefore FI can be defined as a set  

such that  

r. = {ux :x el*.i (6)  

once the exhaustive process of assignment is completed, the integral of  

f(Xjwi) over Fi is represented by the sum of hypervolumes over the  

elementary cells within P.. The elementary unit of probability is given by 1 

61 62 6N  

f f (Xi) = 2 f (xli i ) dN T f (x 2 lo i ) d 2 2--2 f (xNIwi) dN 

C -61 62 -N  
2 2 2 (7)  

where C. is the domain of a sampling cell centered at the origin and 6.  

is the width of a cell along the ith feature axis. The conditional  

probability of correct classification is therefore given by  

c Il+ 61 c2+ 62 

Pcli - T (x i (x-l2) (C)dx2J f jw) (C)dx x. 
c -6 2c -61  

2 2  

(8)  

c +6 
"n n 

c 2.-- f (xNIw±) I.I(C) dxN 
c -6 
n n  

2  

with overall classification accuracy given by  
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M 
p P(m.) P 1W. (9)

• C I 

where  

1 if Cc'. 
(10) ii(C) = 

0 otherwise.  

C = The domain of an elementary cell  

Figure 6 is a geometrical representation of Eq. (8).  

Experimental Results.  

The analytic classification accuracy prediction (ACAP) has been  

Two examples are repeated hepe. thoroughly tested and documented [2].  

The first experiment investigates the performance of the estimator vs.  

Small to moderate range of grid size i.e., number of cells per axis, n.  

Figure 7  n is required if computation time is to remain realistic.  

vs. n for three classes having some hypothe-shows the variation of Pcjw  
c1  

The main property of the estimator is tical statistics in 3 dimensions.  

its rapid convergence toward a steady state value thereby alleviating  

the need for excessively fine grids and hence high computation costs.  

The data collected over Graham County, Kansas is used to perform  

a comparison between the ACAP algorithm and a ratio estimator such as  

LARSYS. The results are tabulated in Table 1.  
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Table 1. ACAP and LARSYS Performance Comparison.  

Class No. of Points LARSYS ACAP  

Bare Soil 443 65.9 78.3  
Corn/Sorghum 99 89.9 91.0  
Pasture 1376 98.4 95.0  
Wheat 459 94.8 93.9  

Overall 2377 87.2 89.6  

The comparison of ACAP and LARSYS results from Table 1 is inconclusive.  

In some cases the difference is negligible (corn) and in some, significant  

(bare soil). Examination of the data statistics revealed that the  

assumption of normality does not hold throughout the populations statistics.  

This problem can be rectified by simulating random Gaussian data having  

identical statistics with the real data, hence assuring the normality  

assumption. Repeating the LARSYS and ACAP procedures produces a new set  

of classification accuracies, Table 2.  

Table 2. ACAP and LARSYS Performance Comparison Simulated Data.  

Class LARSYS% ACAP% Accuracy Difference%  

Bare Soil 77.8 78.3 0.5  
Corn 91.2 91.0 - 0.2  

Pasture 95.3 95.1 0.2  
Wheat 94.2 93.9 0.2  

Overall 89.6 89.6 0  

The differential between ACAP and LARSYS results has been narrowed  

considerably, ranging from a high of 0.5% for bare soil to 0% for the  

overall classification accuracy. Two conclusions can be drawn from the  

results of this experiment. First, the ACAP and Monte Carlo type  

classifiers produce practically identical results if the underlying  

assumptions are satisfied (e.g., normality of the statistics). Second  

and more revealing is the fact that the results of the ACAP processor  

indicated an upper bound for the classifability of bare soil had  
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its statistics been Gaussian. This result is a direct property of ACAP's  

data independence. Figure 8 is the ACAP estimator vs. n for Graham Co.  

data.  

The above selected experiments and others reported in the biblio-

graphy establishes ACAP as a viable and necessary tool in any analytical  

remote sensing data collection system modeling and simulation when the  

performance index is defined as the probability of correct classification.  

2.2 Stratified Posterior Classification Performance Estimator.  

The second classification accuracy estimator to be presented here  

(SPEST) is based on the maximization of the aposteriori probability  

associated with each sample. This formulation is closely related to  

the maximum likelihood principle used in the ACAP. The distinction  

arises in the determination of integration domains. Where in ACAP a  

"deterministic" grid was set up to sample the feature space, SPEST uses  

an internally generated random data base and assigns the feature vector  

to the appropriate class via the maximum aposteriori principle. Due to  

the different approaches adopted, the statistical properties of the  

estimators could be substantially different although no major study has  

yet been carried out. It has been observed however, that the SPEST  

algorithm is somewhat faster than the ACAP in selected cases. The  

approach here is similar to that described in Moore, Whitsitt, and  

Landgrebe [10].  

1, 2, 3, ... , M, Let X be an observation from one of M classes wi, i =  

with a priori probabilities P.. The maximum likelihood decision rule can  1  

be stated as follows: Assign X to the class w k if  

P(ikIX) = max {P(wi.X)} 
JX)  i  

This rule partitions the observation space Q into subregions FI, 1'2 , ., PM , 

corresponding to the classes il, ()2' . ' M' respectively. Define the 

indicator function as 
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The probability of correct classification integral is given 'by  

Pc = f M , I.(x) p(xi) dx (11) 

It is desirable to evaluate the probability of correct classification for  
I 

each class as well as the overall probability. The performance probability  

for the ith class is  

Pci = JI i(x) p(xlt& (12) 

The overall performance, then, is  

M 

p = iPci (13) 
c i= l1 c 

From Bayes' rule  

P(mijx) p(x)  

p(xli) P. 

hence,  

Pci = l(x) ptn p(x) dx 

p(x) is a mixture density  

M 
.p(x) = X P. pjx 

jl p ( 
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Therefore,  

M P" 

I - T2 x) P(4)Ix) p(xV1 ) dx (14)
Pc1 j=l P i  (  

Define  

Qi(x) = Ii(x) P((i Ix) 

Then 

f Qi(x) p(xIW) dx 

is the conditional expected value of Qi(x) given that X comes from the  

class C.. The estimate  

M p N. 

(15) j=l PN I Qi(xk)j=P5 jJ k=l 

is unbiased. This estimator is similar to the stratified posterior  

estimator described by Whitsitt [10].  

To do this a pseudo-random sequence of uniformly distributed random  

digits is generated by the power-residue method and is transformed by the  

inverse cumulative-distribution-function method to obtain nearly Gaussian  

samples. These samples are used to fill the elements of the data vector Y.  

Each vector Y, then, has expected value 0 and covariance matrix I.  

By performing the transformation  

X = . F. Y + m. (16)
J j - -3  
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On the vectors I, the random vectors for class j are obtained, where 4'.  

is the matrix of eigenvectors required to diagonalize the covariance matrix 

of class j, rS is the diagonal matrix of eigenvalues and m. is the desiredJ 
These random vectors are used to evaluate the estimators in  mean vector.  

Eqs. (15) and (13). 

The term that must be evaluated from Eq. (14) is  

P p(xlwo) 

P(C.Ix) = YPk P(X_ k Q 

k 

To evaluate this probability compute P. p(xloj) for each class w.. Choose  

the largest value of the product P. p(xlm.) and divide by the sum P P(XLk) 
j k 

P(x~mk) = exp {- (x-mk)T K1 (x - m) (17) 

(27F) 2K I 

and Kk are the mean vector and covariance matrix respectively 
for class  

k. Substituting Eq. (16) into (17),  

p(xIk) = - exp {- T T- Y 

2YT r. T -1 "1 -18 
-2 -j Kk (-m-,mk) 4 (m.-mk) K (m.-mk)]} (18) 

In this form it is not necessary to perform the intermediate computational  

step of transforming the data. We need only to generate M sets of random  

vectors Y with mean vector 0 and covariance matrix I and use them in the  

Eq. (18).  
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Estimator Evaluation.  

A subroutine program was written to evaluate classification perfor-

mance by the above method. To test the method a three class problem was  

constructed. The mean vectors for the classes were  

1 ]
T  

S = [-i, -i, ..., 
.. . ]T M 2 [0, 0,  

N'2 T 
L3 = [, ,] 

The covariance for each class was the identity matrix. The number of  

random vectors generated for each class was 1000. The exact classifica-

tion accuracy as a functidn of the dimensionality can be evaluated for  

this case  

P = 1 - erfc (fi/2)  

Pc2 = 1 - 2 erfc (VN/2)  

P = 1 - erfc (A-/2)  

P =1 - 4/3 erfc (AT/2) c 

t~ -X2/2 

where erfc (a) = edx  

and n is the number of dimensions. Table 3 contains the results of  

evaluating the class conditional performance and overall performance  

from one to ten dimensions.  

To evaluate the variance of the estimates different starting values  

for the random number generator were used. Twenty trials were used to  

evaluate the maximum bound and the standard deviation from the true value.  

These results are presented in Table 4.  

For the overall accuracy the estimate is within .005 of the true  

value. This is certainly sufficient for performance estimation. The  



Table 3. Test of the SPEST Error Estimatd. 

Pc1c P P P Pc2 Pc30 

1 0.6915 0.3829 0.6q15 0.5886 0.6859 0.3793 0.7001 0.5884 
2 0.7602 0.5205 0.7602 0.6803 0.7671 0.5116 0.7700 0.6829 
3 0.8068 0.613j5 0.8068 0.7423 0.8037 0'.6202 0.8081 0.7440 
4 0.84-13 0.6827 0.8413 0.7885 0.8283 0.6852 0.8550 0.7895 
5 0.8682 0-.7364 0.8682 0.8243 0.8642 0.7425 0.8703 0.8256 
6 0.8897 0.7793 0.8897 0.8529 0.8767 0.7939 0.8787 0.8498 
7 0'.9071 0.814I 0.907i 0.8761 0.8993 0.8242 0.9065 0.8766 
8 0.9'214 0.8427 0.9214 0.8951 0.9129 0.8472 0.9240 0.8947 
9 0.9332 6;8664 0.9332 0.9109 0.9193 0.8809 0.9360 0.9120 

10 0.9431 0.8862 6.943i 0.924i 0.9209 0.9012 0.94'81 0.9234 
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Table 4. Variation of Estimates,  

pcl Pc2 Pc3 Pc  

1  .016 .010 .017 .003 a  
.033 .019 .049 .005 Bound  

2  .018 .010 .014 .002 a  
.036 .018 .027 .005 Bound  

3  .016 .017 .017 .003 C 

.046 .031 .055 .007 Bound 

4  .011 .016 .015 .003 a  
.025 .029 .029 .005 Bound  

5  .015 .014 .012 .002 a  
.031 .033 .026 .004 Bound  

6  .014 .014 .010 .003 a  
.026 .023 .022 .006 Bound  

7  .009 .016 .012 .003 a  
.027 .033 .027 .005 Bound  

8  .013 .013 .012 .003  
.025 .036 .023 .006 Bound  

9  .013 .014 .012 .002 a  
.026 .031 .021 .004 Bound  

I0  .009 .012 .009 .002 a  
.016 .024 .019 .005 Bound  

a = standard deviation 

Bound =  maximum difference between estimate and true value over 
20 trials 



26 

class conditional estimates are less reliable but are sufficient to  

observe trend in the performance due to individual classes.  

2.3 Scanner Spatial Characteristics Modeling  

The multispectral scanner represents the,most important element in  

a remote sensing data gathering system. Therefote, an understanding of  

the signal flow through this subsystem is essential. As data is processed  

through the scanner, its statistical properties undergo a transformation.  

This in turn will alter the population separabilities and hence the  

classification accuracies. The comparison of this quantity at the scanner  

input and output and observationof its variation with the system para-

meters sheds considerable light on the overall system design. Since the  

Bayes Ppectral classifier depends solely on the population of spectral  

statistics, methods need to be developed that relate the scanner's input and 

output statistics. A complete derivation of such relationship is given 

in Appendix A of [2]. A summary follows: 

Scanner Characteristic Function.  

Figure 9 is a basic block diagram of the scanner spatial model where  
f through fN are N stochastic processes corresponding to N .spectral  

bands and h(x,y) is a two dimensional PSF. In particular where the Landsat  

scanner is concerned, the assumption of a Gaussian shaped IFOV has been  

widespread. Let f(x,y), g(x,y) and h(x,y) denote the input and output  

random processes associated with any two matching bands and the scanner  

PSF respectively. It is well known that the above quantitfes are related  

by a convolution integral.  

Jg(x,y) f f(x-1,y-A 2 ) h(XV1 2) d IdX 2 (19)-

it follows that  

S(U,V) SIf(u,v)IH(u,v)l2 (20)  
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n(x,y)  

f2 h(xy)+ 92  

f- _-+ gN  

Figure 9. Scanner Spatial Model as a Linear System.  
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where S(u,v) is the spectral density of the appropriate random process 

and H(uv) is the two dimensional Fourier transform of the scanner PSF. 

Let M(u,.v) = IH(u,v)12 , afd m(T,n) its inverse transform. Then the output, 

spatial autocorrelation function is given by  

R (T,n) = Rff(T,n) * m(Tn) (21)  

In order to obtain specific results, the following assumptions are  

invoked; (a) exponential data spatial correlation, (b) Gaussian IFOV,  

PIT I Rff(T,n) = 011 r,n 0, 1, 2, 

(22)  
2 2 

h(x,y) = c1 e - e'2 
r r 
0 0  

=-a =-b 
where px = e and py = e are the adjacent sample and line correlation 
coefficients respectively, r is the scanner PSF characteristic length 

O 
in-pixels and c1 a constant providing unity filter gain. Using the  

separability property of the functions inv6lvedi  

R g(T,,I) = Rff(T-X-) m(x) dx f Rff((Th-y) rn(y) dyJ  
where  

c 2' 2 r0 2 2 n 
m(rr) = 2 e 2r 2e 2- 2 (23) 

0 0 

carrying out the integration, the scanner characteristics funation is  

given by  
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2 a222 
lar a r 

_- -aT +a 

W (T,I,a,b) = Q(ar --L-) + e Q(ar +U)X 
0 0 

bt~rr 2or Qb l 

o  
+ o +bf 

2 Lr- Q(br2Q(br ) (24)e  

where  

2 x  

Q(x) = e 2 

The spectral statistics is a subset of the spatial statistics hence  

W (0,0,a,b) defines the ratio of the variance at the scanner output to  s 

the corresponding input quantity.  

The output crosscovariance terms can be similarly derived. Let  

the crosscorrelation function between bands i and j be defined as  

Rf.f (T,) = rf.f.af of e-aeIrI -biiI (25)
213 1J 1 j 

where rf f is the spectral crosscorrelation-coefficient at the input  

such that Irff I < 1 " aij and bI.j are defined similar to a and b with 

the additional channel specification. Following the previous technique  

it follows that the crosscovariance term between channels i and j is  

given by  

Rggj (0,0) = rffoff off Ws(0,0,aij,b)ij (26) 
1J 1 .J i i ij 12 2 
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The corresponding crosscorelation coefficient follows:  

W (0,0,a :i,bi) 
Sgigj - rff  

w 2(0,0,aii~bii) WbO,O,a. .,b..) i 
s si, 33 33 

Therefore, the band-to-band correlation coefficients are identical at  

input and output provided the spatial auto and crosscorrela-the scanner  

tion function at the input are equivalent, i.e., aiiaij, biib ij. A  

closed expression can also be obtained for a rectangular PSF defined by  

I~o Ix lyl o/2  

(28) h(x,y) = 

0 elsewhere  

the corresponding characteristic function is given by  

-a. .r 

(i1 - ) X 
-l W (OOa,.)= 2 l-e 110 

s O aiii a..r a..r  
I 0 11 0 

-b..r  
b..r2 (I l-e.r 110 -) (29) 

ii o ii 0 

Eq. (24) and Eq. (29) are plotted in Figures10 through 13 for different  

as a running parameter. The  scene correlations with the IFOV = r0  

of either PSF is the increasing output universal property exhibited by Ws  

variance reduction as IFOV is increased. This property has,been widely  

verified experimentally. Comparison of Figumsll and 13 indicates that  

for the same IFOV, a Gaussian shaped IFOV causes a heavier variance  

a rectangular PSF. reduction in a spectral band than that of This  

property can potentially produce a higher separability among the popula-

tions as the signal is processed through the scanner electronics.  
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The input-output statistical relationship just developed along with  

the analytic classification accuracy predictor,provide the two basic  

tools required for a parametric evaluation of the MSS performance under  

varying operating conditions. As an illustration, three hypothetical  

classes with some prescribed statistics are specified at the scanner  

input. Three different sceneswith adjacent sample correlations of 0.5,  

0.85 and 0.95 are considered. The scanner characteristic function  

produced a set of transformed statistics at the output followed by the  

estimation of the conditional classification accuracies using ACAP, for  

8 different IFOV's. The results are plotted in Figuresl4 through 16.  

Two main properties stand out. First is the improvement in class  

separability as the IFOV is enlarged. This is true in all the cases.  

The rate of improvement however, is strongly correlated with the scene  

spatial correlation. The lower the input scene correlation, the higher  

the classification accuracy improvement per IFOV step. This property  

is brought about by the characteristics of Ws where one step increase  

in IFOV size produces a greater variance reduction for a low scene  

spatial correlation than a similar increase would cause in a highly  

correlated scene.  

The scene spatial correlation plays a significant role in the overall  

system performance which is not readily obvious. One of the well  

known properties of linear systems with random inputs is the reduction  

of the output variance/input variance ratio as the point spread function  

(PSF) is widened. In this section it has been shown theoretically that a  

third factor in this reduction is the spatial correlation structure of  

the input stochastic process. Specifically, with everything else fixed,  

a process having a moderate scene correlation will undergo a tighter  

clustering around its mean than an otherwise identical process with a  

highly correlated spatial characteristic. On the extreme side of the  

correlation scale with a small pixel-to-pixel correlation, the ratio of  

the output variance to the corresponding input quantity is very negligible.  

Consider a bandlimited white noise process with a spectral density,  

shown in Figure 17,where W is the bandwidth and No/2 the two sided spec-
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No/2  

-2gW 27W w  

Figure 17. Bandlimited White Noise Spectral Density.  

tral density. As W increases the adjacent pixel correlation in the  

scene decreases. The increase in W, however, is accompanied by a  

decrease in No/2 if this process is to remain physically realizable  

(finite energy). Under a finite energy constraint, therefore, as W--

No/2-- 0. In the limit the energy content of the output random process  

will be nil.  

Random Noise.  

Additive random noise entered at various stages of a scanner system  

can degrade the overall system performance substantially. The noise can  

be classified into two broad categories: external and internal. A  

major source of external noise is atmospheric in nature mainly due to  

absorption (e.g., water vapor) and scattering. The detector and quanti-

zation noise comprise the major component of the internal noise sources.  

From a system analysis point of view, the latter represents a more tract-

able and better understood component of the random noise [11], while  

the former still awaits further experimental documentation. The purpose  

of this work is not so much the exploration of the various noise sources  

but the integration of its effect within an analytic analysis package  

once its characteristics and origin has been determined.  

can be stated that atmospheric From the theoretical results obtained it  

noise, in the uplink path at least, has negligible degrading factor  

compared with the detector and quantization noise. Let f(x,y)., Nf(x,y),  

f'(x,y) and Nf'(x,y) be the input random process, input additive white  
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noise, the output random process and the noise component of the output  

signal respectively, then  

f-(x,y) = f(x,y) * h(x,y) (30) 

N (x,y) = Nf(x,y) * h(x,y) (31)
f 

Define  

(SNR)f = Var {f(x,y)1/Var {Nf(x,y)l (32) 

(SNR) -= Var {f'(x,y)}/Var {N (x,y)) (33) 
f f 

Recalling the functional dependence of Ws on the input scene spatial  

correlation, it follows that the ratio of the variance of a white noise  

process at the scanner output to the corresponding input quantity is of  

the order of 5% to 10%, higher or lower depending on the IFOV size.  

Therefore,  

Var {f'(x,y)} < Var {f(x,.y)l (34,)  

Var {N (x,y)l << Var {Nf(XY'} (35) 
f  

hence  

(SNR) f >> (SNR)f (36)  
f  

It then follows that the noise component of the output process prior to  

cases. detector and quantization noise is negligible in most  

In order to observe the effect of noise on the scanner output class  

separability the test class statistics were modified to exhibit the effect  

of random noise. The assumed properties of the noise are additive, 

white and Gaussian. Let F-(x,y) )e the signal to be teJmeterud to 

Earth. 
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f"(x,y) = f'(x,y) + N .(x,y) (37)  
f  

the statistics of f'"(x,y) and f'(x,y) are related by  

+ Y (38)  
r~f -N.  

f  

the simple addition is due to the signal and noise independence. Assuming  

a zero mean N .. the mean vector are identical, i.e., 
f 

E {ff"j = E {f-) 

Among the four assumptions about the noise,:its Gaussian property is the  

weak link due to the Poisson distributed detector noise and uniformly  

distributed quantization noise. Relaxing the Gaussian noise assumption,  

however, would mean the design of an optimum classifier for non-normal  

classes and evaluation of its performance. A task that would complicate  

matters considerably. Due to the relatively insufficient documentation  

of the characteristics of random noise in multispectral data, the initial  

Gaussian assumption is adhered to.  

Following the adopted SNR definition, three different noise levels  

are considered and the corresponding overall classification accuracies  

for the three previously used test classes are estimated. Figure 18 is  

the variation of P vs. IFOV with SNR as the running parameter. For a  
c  

fixed IFOV, P increases with increasing SNR. For a fixed SNR, P  c c  
increases with increasing IFOV size. These illustrations have shown  

that with a proper coupling between the ACAP and the scanner characteristic  

function, the progress of the population statistics through the system  

can be studied on an analytical and entirely parametric basis. The  

accompanying classification accuracies can measure the designer's success  

in selecting the spatial and/or spectral characteristics of a Multispectral  

Scanner System.  
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2.4 Optimum Spectral Function Research  

In earth observational remote sensing much work has been done with  

extracting information from the spectral variations in the electromagnetic  

energy incident on the sensor. Of primary importance for a multispectral  

sensor design is the specification of the spectral channels which sample  

the electromagnetic spectrum. An analytical technique is developed for  

designing a sensor which will be optimum for any well-defined remote  

sensing problem and against which candidate sensor systems may be compared.  

Let the surface of the earth at a given time be divided in strata  

where each stratum is defined to be the largest region which can be  

classified by a single training of the classifier. Each point in the  

stratum is mapped into a spectral response function X(X) as in Figure 19.  

That is if one observes a point in the stratum with the sensor, then the  

function X(A) describes the response variations with respect to the  

wavelength, X. The stratum together with its probabilistic description  

defines a random process, and the collection of all of such functions  

X(X) which may occur in the stratum is called an ensemble.  

The general concept of a pattern recognition system in this applica-

tion requires that if each X(X) is to be classified by a classification  

algorithm, this can be accomplished by first measuring a finite number  

of attributes of X(A), called features. This is the function of the  

sensor system as depicted in the upper left portion of Figure 20 where  

X1, X2, ..., X are the values of N features for a given X(X). It  

may be viewed as a filtering operation on X(A).  

For example, on the right portion of Figure 20 the function of MSS  

of the Landsat satellites is illustrated. In this case a number propor-

tional to the average energy in a wavelength interval is reported out by  

the sensor for each of four wavelengths. Mathematically this may be  

expressed as  

Zn f X n)(X)dX n = 1, 2, 3, 4 
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Next we must consider what would constitute an optimum sensor. We  

first note that in general the sensor may be used over any part of the  

earthb surface, at anytime, and for many different applications (sets  

of classes). Therefore the sensor must be optimized with respect to the  

entire set of strata represented by these cases. As a result of the large  

size of this set and the fact that its statistical description is not  

known, we will optimize the sensor with resp&ct to its signal representa-

tion characteristics. The fX(A)} each contain information Useful to the  

classifier; we require of the sensor design that for a given N a maximum  

of this information which was in X(A) still be present in {X }. Since  n 
the specific nature of this information is not known a priori, we can  

only assure that this will be the case for any stratum if X(A) is  

recoverable from fX I.  n 

Let X(A) be the result of attempting to reconstruct X(A) from {X }.  
n 

A fidelity criterion which is useful in this instance is  

= f[X(X) - x(X)] 2 dA (39) 

the so called mean square error or mean square difference between X(X) 

and X(A). 

It is known [12J that'a reconstruction scheme which minimizes C for 

a given N is 

X(A) = XI1 (A) + X2? 2(A)+.... + +n(A)  

N  
X + (A) (40)  

n=l  

provided that the {n(A)} are orthogonal over the wavelength interval of  

interest, i.e.,  

S m(X)n(X) d) = 0 m # n (41) 



Stratum The Ensemble  

A  

A  

A  

Figure 19. Realization of a Stratum as the Ensemble of Spectral Sample Functions.  
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and the {X } are calculated by n 

X = X(x) Mn(3dA (42) 

Note for example that'the Landsat example of Figure 20 satisfies  

these conditions. In the lower right of Figure 20 is depicted the  

result of such a reconstruction for the Landsat example.  

While use of Eq. (42) in the case does minimize s with respect to  

the choice of values of TX 1, a further improvement may by obtained by n 

choosing a set of {.iIXI} which minimizes E. Itcan be shown [5, 12]  

that the set { n(X)} which accomplishes this must satisfy the equation  

U = R(A,C) C()dC (43) 

where  

R(X,C) = E{[X(A) - m()] [X( ) - m( )]1 (44) 

is the correlation function of the random process and m(X) is its mean  

value at X.  

Such a signal tepresentation defined by Eqs. (40-44) is known as a  

Karhunen-Lo~ve expansion [13]. It provides not only for the most rapid  

convergence of X(X) to X(X) with respect to N but in addition the random  

variables (X } are uncorrelated and since the random process is Gaussian  n 
they are statistically independent. Further the only statistic required  

of the ensemble is R(X,C). This representation of {X(X)} is therefore  

not only optimal, it is convenient.  

A useful generalization of the Karhunen-Lo~ve expansion can be made.  

Suppose a priori information concerning portions of the spectral interval  

are known and it is desired to incorporate-this knowledge into the analysis.  

A weighting function w(A), is introduced which weights portions of the  

interval according to the a priori information. As an example, measure-
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ments were taken over the spectrum and it was observed that there was  

considerable variation in the signal in the water absorption bands  

around 1.4 and 1.8 micrometers. This variation was due to measurement  

and calibration difficulties rather than being a result of variations  

in the scene. Therefore, the weighting function was set to zero in  

these absorption bands. This generalization is referred to as the  

weighted Karhunen-Lo~ve expansion [5]. Eqs. (40), (42) and (43) become  

N 
X(A) = x.( AsA (45)

i=1l  

a '(A) = FR(A,E) w( ) 4, (E)dE (46)
w. i f w 

x, X(A) w() tw .(X) dA (47) 
1  

where the eigenfunction, 41 (A) are solutions to the integral Eq. (46) W'.  
1  

with the weight w(A). The special case where w(A) = 1.0 for all AcA  

reduces the expansion to the original form in Eq. (40), (42) (43), and  

(44).;  

The results of having utilized this means of optimal basis function  

scheme on spectral data are contained in reference [5]. From them one car  

see the significant improvement in classification accuracy which decreased  

spectral representation error will provide. One can also determine the  

spectral resolution and band placement needed to achieve such classification  

accuracy improvement.  

2.5 Information Theory Approach to Band Selection  

The ptoblem of selecting a set of "optimum" windows in the electro-

magnetic spectrum for observing the reflected sunlight has always been of  

considerable interest. Depending on the definition of the optimality  

different methods have been developed. One such approach was shown in  

Section 2.4 using K-L expansion to select an optimum set of basis functions.  

In this section an information theoretic definition of optimality developed  

in [3] is explored.  
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Mutual Information and Stochastic Modeling.  

The reflected energy from the target is detected by the scanner  

and corrupted by various noise sources. If S is the "noise-free" signal,  

Y the observation and N a random disturbance, then  

Y = S + N (48) 

the reduction of uncertainty about S obtained from Y is called the  

average or mutual information between the observation and original signal.  

Since the reconstruction of the reflected signal from the noisy observa-

tion is the highly desirable capability, the comparison of such average  

information-and selection of these bands with the highest information  

content is chosen as-a means of spectral band selection. Let  

S = (sl, s, .2. ) 

and  

) Yn =(Yl' Y2' "''Yn  

where si and yi are the coefficients of the orthonormal (K-L) expansion  

of Y and S, then the mutual information between Y and S is given by [3].  

T(Y,S) = - log et. (49) 

where C and C are the covariance matrices of (yi, i = 1, 2, ...) and  

(ni = No/2, i = 1, 2, ...) and No/2 is the two sided spectral density of  

the additive white noise. Equivalently I(Y,S) can be represented in  

terms of the Wiener-Hopf optimum filter impulse response,  

A 
-(2 T(,)= J h(A,A) dA (50) 

11  
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h(X,A) provides an estimate of S from Y with a minimum mean-square error.  

This relationship, however, is not a practic d-.dethod of evaluating I(Y,,S)  

since the actual solution of the Wiener-Hopf integral itself is a nontriyal  

task. This problem can be circumvented by a discrete state variable  

formulation, i.e.,-

s(k+l) = _s(k) + FW(k) ke[Al ,x2 ] (51)  

where  

s1(k+l)  

s2(k+l)  

s(k+l) = 

Sn(k+l)  

is an (nxn) matrix  

r is an (nxl) vector  

W(k) = a descrete independent Gaussian  
zero mean random process  

The formulation of the problem in the discrete domain -provides a practical  

way of computing h.X,X) through Kalman filtering techniques. The discrete  

version of Eq. (50) is given by  

I(Y,S) = - h(k,k) 

k 6 {AA 2} (52)  

The discrete nature of this approach makes the evaluation of Eq. (52)  

considerably more practical than its continuous counterpart. This is due  

to the fact that the Wiener-Hopf equation is easily solved in only those  

cases for which the analytical form of Ks (A,u).,, the signal eovariance  

fnnction, is fairly simple, not likely for most-random processes encountered  
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in remote sensing. Since h(k,k) is dependent on the parameters of Eq. (51)  

a concise representation of s(k+l) is needed.  

The general form of Eq. (51) is given as an autoregressive (AR)  

model  

m1 m2 

s(k) = X a.s(k-j) + I bji(k-j), + W(k) (53) 
j=l J j1 

s(k) = The spectral response at the discrete  
wavelength k. It is a Gaussian random  
process.  

w(k) = zero mean independent Gaussian disturbance  
with variance p.  

*(kj) = deterministic trend term used to account  
for certain characteristics of the  
empirical data.  

a.,b. = are unknown constant coefficients to be 
I i determined. 

ml'm2 = The order of the AR model. 

The identification selection and validation of general AR models  

for the representation of a random process is a well developed technique  

[14,15]. The identification of an appropriate model provides the  

necessary parameters required for the evaluation of I(Y,S) in Eq. (52).  

The model selection process for a selected number of ground covers has  

been carried out [3] leading to the ranking of a set of spectral bands  

according to the criterion outlined previously. A summary of the  

experimental results are given below.  

Data Base and Model Selection.  

Two different sets of empirical data are used to demonstrate the  

techniques developed here. The first set consists of observations of  

wheat scenes. The second set consists of several vegetation cover  

types such as oats, barley, grass, etc. For each scene the spectral  

responses, collected by the Exotech 20C field spectroradiometer, are  

averaged over the ensemble. It is thought the resultant average  
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zspectral response provides a relatively good data set for demonstration  

-purposes. Figures2l and 22 show the average response for both cover  

types.  

In order that the study be carried out in a context that is rela-

tively realistic for multispectral scanners,, the spectral response -of  

the two data sets is divided into a cnumber -of spectral banids. The division  

is fairly arbit-rary, but each band must contain a sufficient number of  

.data points to ensure accurate parameter estimation for model identifi-

cation. The spectrum is divided into 9 bands from 0.45 pm to 2.38 pm  

with ,two gaps in the 1.34-1.45 pm and 1.82-1.96 -pm range -due to atmos-

pheric absorption, see Tables 5 and '6.  

Table 5.' Spectral Bands for Wheat Scene. 

Band Number Spectral Wavelength 
Interval (Pm) 

1 0.45-0.54 

2 0.54-0.62 

3 0.62-0.71 

4 0.71-0.85 

5 0,.85-0.99 

6 0.99-0.13 

7 1.13-1.34 

8 1.45-1.,82 

9 1.96-2.38 

Table 6. Spectral Bands for Combined Scene.  

Band Number Spectral -Wavelength  
Interval (pm)  

1 0.45-0.54  

2 0.54-0..62  

3 0.62-0.71  

4 0.71-0..85  

5 -0.85-0:98 

,6 0.98-1.12 

7 1.12-1.30 

8 1.4:5-1.8 2 

9 1.96-2.38 

http:1.96-2.38
http:1.12-1.30
http:0.98-1.12
http:0.62-0.71
http:0.45-0.54
http:1.82-1.96
http:1.34-1.45
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Figure 21.* Average Spectral Response -- Wheat Scene.  
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Figure 22. Average Spectral Response -- Combined Scene.  
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The next step is the identification and validation of models that  

would adequately describe the aforementioned spectral responses. Three  

different models were tested and compared, (a) autoregressive (AR),  

(b) autoregressive plus a constant trend (AR+C), (c) integrated  

autoregressive (I-AR). Following the standard selection and validation  

techniques, one of the above 3,models is selected which describes the  

scene most satisfactorily. Tables7 and 8 show the selected models for  

the wheat and combined scene respectively, IAR-2 in Table 8 in a second  

order IAR.  

Table 7. Modeling of the Wheat Sc~ne.  

Band Order of Model 

1 7 

2 2 

3 11 

4 1 

5 1 

6 2 

7 5 

8 8 

9 6 

Type of Model  

AR  

AR  

IAR  

AR+C  

AR  

AR+C  

IAR  

IAR  

IAR  

Table 8. Modeling of the Combined-Scene. 

,and Order of Model Type of Model 

1 11 IAR-2 

2 2 AR 

3 11 IAR 

4 1 AR+C 

5 3 ,AR 

6 1 AR 

7 '9 AR+C 

'8 '8 tAR 

9 1 AR 
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Spectral Band Selection.  

It was initially stated that the information content of a set of  

spectral bands can be used in the selection of an optimum subset. Here,  

the preceding regression analysis will be used to evaluate the mutual  

information between the reflected energy and the observed signal in the  

9 spectral bands under study.  

The first step is the computation of the average information in y(k),  

the received spectral process, about s(k). The reflected spectral scene  

response as a function of spectral bandwidth for each band of both  

scene types. The average information is computed for several values of  
2  

the noise variance, a N" Appropriate software is developed to carry out  

the calculation of I(Y,S). Figures23 and 24 show the variation of  

I(Y,S) in nats for the wheat and combined scene in band 1. Similar plots  
2 -3 are shown for the infrared band 7, Figures 25 and 26. Selecting a a = 10  

for demonstration purposes, the average information for wheat and combined  

scenes are tabulated in Tables9 and 10 for 9 spectral bands.  

Table 9. Average Information for Wheat Scene I  

Band I(Y,S) nats  

1 34.50  

2 10.52  

3 20.35  

4 30.00  

5 44.96  

6 37.20  

7 60.31  

8 34.80  

9 50.10  
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Figure 23. Average Information, Band 1, Wheat Scene.  
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Figure 24. Average Information, Band 1, Combined Scene. 
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Figure 25. Average Information, Band 7, Wheat Scene. 
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Figure 26. Average Information, Band 7, Combined Scene.  
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Table 10.  Average Information for Combined Scene Band.  

Band  I(Y,S) nats  

1  41.33  

2  16.17  

3  22.98  

4  40.08  

5  45.73  

6  40.96  

7  78.25  

8  64.15  

9  74.19  

Using the information content of each band as an optimality criterion,  

the 9 spectral bands can be ranked, see Table 11.  

Table 11.  Order of Preference of Spectral Bands for the  
Wheat and Combined Scenes.  

Rank Wheat Scene Band Combined Scene Band 

1 7 7 

2 9 9 

3 5 8 

4 6 5 

5 8 1 

6 1 6 

7 4 4 

8 3 3 

9 2 2 

The top 6 highest ranked bands, although ordered differently, are the  

same for both cover types. Moreover other than band 1 which is in the  

visible portion, the remaining 5 are all in the infrared portion of the  

spectrum.  Thus, relative to the average information criterion, the  

infrared portions of the spectrum is generally preferred to the visible  

portion since bands 2 and 3 are ranked lowest for both the wheat scene  

and combined scene.  
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The selection of a subset of the available spectral bands using the 

idea of their information content is a new approach in band selection 

and requires further investigation to evaluate its optimality in more 

concrete terms. One of- the most useful optimality criterion is the 

selection of these bands that maximize the overall classification accuracy. 

No -documented relationship exists between the average information contents 

of a set of bands and the subsequent class separability. It is true 

however, that such information measure is directly related to the optimum 

Weiner filter thereby providing a basis for the optimality of this 

ranking technique. 

3. THE UNIFIED SCANNER ANALYSIS PACKAGE BLOCK DIAGRAM  

The identification and development of a set of individual techniques  

and algorithms is only the first step toward a complete system simulation  

package. The usefulness of this package is fully realized only when the  

elementary modules are interconnected in a logical and clear fashion. The  

objective here is the integration of the available processors such that  

starting with a raw data base, the question of optimum spectral bands,  

IFOV size and the noise model can be answered with the classification  

accuracy as a primary performance index.  

3.1 System Structure  

One realization of such simulation model was shown in Figure 4 and  

is repeated here for convenience in Figure 27. USAP is basically composed  

of three distinct parts (a) a spatial path, (b) a spectral path and (c) a  

means for classification performance estimation. In the following  

individual software modules are discussed.  

Classification Accuracy Estimators.  

There are two classification performance estimators available  

(a) the analytic classification accuracy predictors and (b) the stratified  

posterior performance estimator.  



Figure 27. The Block Diagram of the Unified Scanner Analysis Package (USAP).  

MS mage 

Data 

LARSYS
Data I 

RetrievallliteJ 

CORELATSpatial - Spatial 

Correlationl StatisticsAnalyzer "Model 

SCANSTAT[Spectral 

Saitc 
Saitc 

os 

ACAP 

... . . . . ... . 

Spectral Statistics 

Analytic 
Classification 
Accuracy 
Predictor 

SPEST 

A 
Pc 

Stratified 
Posterior 
Performance 
Estimator 

A 
Pc 

EXOSYS SPOPT SPTES 

r 

ra 

Data 
Retrieval 

Spectraland'Band" 
Construction 

Spectral Data 
Ensemble Sample 

OptiMum 
Spectral 
Function 
Calculation 

Opt. Spect. 
Functions 

)0 

Data Transformation 
and 

Statistics Calculat[tYV 

Band-- --

Specification  

Implies path for spectral/spatial statistics  

Implies path for data or spectral functions  



61 

Analytic Classification Accuracy Predictor. The ACAP algorithm  

discussed in Section 2.1 is the primary processor in evaluating the  

performance of a scanner system when the probability of correct classifi-

cation is defined as the primary performance index. This piece of  

software, as shown in its theoretical development, requires one major  

input in the form of the population statistics. In order to facilitate  

the operations, the format of the statistics deck is chosen to be  

identical to the one produced by LARSYS statistics processor although  

it contains a considerable amount of redundancy such as field coordinates.  

These cards are skipped. Among other user-supplied information is the  

desired spectral bands to be used in the analysis and the-sampling and  

grid fineness in the form of number of elementary cells per axis.  

There is obviously a trade-off between the estimator's variance, a  

decreasing function of the grid size, and the computation time. If  

N is the number of spectral bands and n the number of cells per axis,  

the per class number of cells to be tested in a set of M quadratic  

discriminant functions is nN. This exponential relationship calls for  

a careful selection of n particularly for a high dimensional space.  

On the other hand a small variance is very much required property of any  

estimator.  

The relationship between grid structure and the estimator's variance  

has been covered in detail [2]. It was shown that the classification  

accuracy obtained using ACAP exhibits a relative independence from n for  

n > 12. This property is preceded by a fairly rapid rise to a steady  

state value after which the magnitude of the Pc oscillations is within  

0.5% of the true value or the Monte Carlo derived reference. The choice  

of n is ultimat&ly decided by the user depending on his specific needs  

and after some experimentation. Initially, however, a default option of  

n = 9 cells per axis is considered to provide quick turn-around time  

while keeping the quality of the estimate high. The output, in addition  

to the classification accuracy estimate, contains information on the  

transformed class statisti&s, .feature space and sampling grid structure.  
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Stratified Posterior Classification Performance Estimator. This.  

is the software implementation of the.algotthm discussed in Section 2.2.  

The maximum conditional aposteriori clas'sprobability is the criterion  

for classifitation and error estimation purposes. The program does,  

not provide any options and the size of the internally generated random  

data is fixed. ACAP and SPEST produce different,but very close results.  

Spatial Path.  

Data Base. The input data to the spatial scanner model is via the  

multispectral image storage tape containing satellite or aircraft  

collected data. This tape has been reformatted and is compatible with  

any LARSYS processor.  

Data Retrieval. The individual software units can access the  

available data base through various system support routines or any of  

the LARSYS processors.  

Spatial Correlation Analyzer. The determination of the scanner  

characteristic function requires a knowledge of the spatial properties  

of the input data, therefore a class conditional estimate of the spatial  

auto and crosscorrelation functions is needed. Let f (x,y) be a two 
k  

dimensional image of size N x N pixels in the kth spectral band then 0 0  

the spatial autocorrelation function estimate is given by [16].  

No-t No-n  

^Rkk(Tn) = C Y Y fk(i'j) - k] [fk(i + T, j + n) -'Vk]i=l j=l  

T,T1 = 0, 1, ... , n -1 (54)  

where-pk = E{fk(x,y)l. The multiplicative factor C can be chosen ta be  

one of the following  

1 (55) 
CI= (N -'T)(N -ii) ( 

U1(  
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1  
C2 =2  

if k ts known and C = C1 then E{Rkk(Tn)} = Rkk(Tfn)- If Pk--Ik then 

neither selection of C1 or C2 will produce an unbiased estimate. The 

actual derivation of the mean and variance of Rkk when the mean is 

estimated is rather complicated. The bias of the estimate in one 

dimension is given by [161. 

N-ITIVar -2 (56) 

E{Rk(T) - R(r)} = -R() k + O(No)
NN k 0 

0 0  

From Eq. (56) it follows that R.( ) is asymptotically unbiased. This 1  

result can be extended to the two dimensional functions provided the 

autocorrelation function is separable along each spatial axis. In 

general the maximum lag, n, must be chosen such that n << N . As a 

rule of thumb it is desirable to keep the maximum lag less than one-

This will tend to avoid certain instabilities tenth the sample size N . 
0  

that can occur in autocorrelation function estimates. The across-band  

correlation function estimate is obtained using an identical relationship  

to Eq. (54).  

The empirically obtained spatial correlation matrix needs further  

processing to be used in the scanner spatial model developed in Section  

the experimen-2.3. Specifically a Markov correlation model is fitted to  

tally obtained lkk(T,r). By invoking the separability assumption for  

small lag values,  

R(r;'n) R(r) R(n) (57) 

where no subscript indicates either auto or crosscorrelation function.  

Table 12 shows the magnitude of the errors involved in carrying out  

this approximation on an aircraft data set. The error is expressed as  

a percentage of the experimental values. An exponentially dropping  

function is then fitted to the individual correlation functions along  

the sample and line directions. The fitting is accomplished using a  
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Table 12. Error Matrix for Cross Correlation Function Appr6ximation  
Between Channels 2 and 8.  

1.00 .92 .81 .69 .59 .50 .44 
.93 .88 .78 .67 .56 .48 .41 
.73 .71 .64 .54 .44 .36 .3 

R28 .48 .47 .43 .36 .28 .2i .16 
.30 .31 .29 .24 .18 .12 .08 
.23 .25 .24 .21 .16 .12 .08 
.22 .24 .24 .22 .19 .15 .12 

1.00 .92 .81 .69 .59 .50 .44 
.93 .86 .75 .64 .55 .46 .4 
.73 .67 .6 .5 .43 .36 .32 

R28 .48 .44 .38 .33 .28 .24. .71 
.30 .27 .24 .2 .17 .15 .13 
.23 .21 .18 .16 .13 .11 .1 
22 .2 .18 .15 .13 .11 .1 

0 0 0 0 0 0 0 
0 2.2 3.8 4.5 1.8 4.16 2.43 
0 5.6- 6.2 7.4 2.3 O 6.75 

28E 0 6.4 11.6 8.3 0 17.5 23.8 
0 13.0 17.2 16.6 5.5 20 38.4 
0 16 25 23.8 18.7 8.3 20 
0 16.6 25 31.8 31.6 26.6 16.6 
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weighted least square approach to the logarithm of R(T) and R(n). The  

slope of this linear fit determines the adjacent sample or line  

correlation coefficients. Specifically let  

F(i) = ln R(i) i =0, 1, ..., n -l  
0  

then the parameters of the linear fit, CI+C 2x,are given by [17]  

C = (HT W H) -I HT W F (58) 

where  

E(i) = 1 = 0, , ... ' no(59)0 

0 i no+l,H(i) 2n -l-i = 0o 0O ... , 2n -i 

and the diagonal weighting matrix, W  

(n -1-i)  
i = 0, 1,... n - (60) W(i) = a  

with a as the weighting matrix diagonal base, o < a < 1. The weighting  

matrix via the control parameter assigns a progressively smaller weight  

to R(T,n) for succeeding lag values. This weighting is necessary since  

the properties of the correlation functions show an increasing deviation  

from the underlying assumptions of separability and Markovian structure  

for higher lag values.  

A complete specification of the spatial properties of the available  

spectral classes requires determination of  

N!  
N + 2! (N-2)!  

auto and crosscorrelation functions per spatial axis per class where N  

is the total number of spectral bands used in the analysis. The imple-

menting software contains various default provisions in case the corre-
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lation properties of the input data differs considerably from the afore-

mentioned assumptions.  

The user specifies the area to be correlated by a run table entry  

run number follow&d by the field coordinates. In order to perform either  

the auto or crosscorrelation operations, appropriate spectral bands(s)  

need to be specified. The maximum lag, no, in computing R(t,n) is also  

a variable and is entered as a percentage of the image size in pixels.  

The value of n is dependent on the size of the area to be correlated.  
0 ^ 

Since the magnitude of R(T,n) for Landsat data is generally negligible  

for more than 4 or 5 pixels lag, n as a percentage can take on small  

values for large fields and vice versa.  

Scanner IFOV Model. The scanner IFOV software is the computer  

implementation of the scanner characteristic function discussed in  

Section 2.3. The input consists of (a) spectral covariance matrix,  

(b) spatial correlation matrix along the samples (c) spatial correlation  

matrix along the lines and (d) IFOV size in terms of the number of high  

resolution pixels. A standard LARSYS statistics deck produced by the  

statistics processor constitutes the first item. The spatial correla-

tion information in entered through an N x N symmetric matrix the (i,j)  

element of which  

-a 
Pj = e ij 

a.. is estimated  

by the spatial correlation software. The IFOV size is expressed on a  

relative scale in terms of the number of high resolution pixels within  

1 IFOV of the scanner PSF, e.g., 1, 2, 3, etc. There are two choices  

available for the functional form of the PSF, Gaussian and rectangular.  

is the pixel-to-pixel correlation for bands i and j. :11 

The output generated by this software module is a spectral statistics  

deck which is the input class statistics transformed by the scanner  

characteristic function. This deck is used as input to the ACAP processor.  
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Additive Noise Model. By virtue of the parametric approach adopted  

here, the incorporation of the noise effect takes on a simple form. The  

noise statistics is characterized by a zero mean vector and a diagonal  

covariance matrix with zero off diagonal elements. This matrix is then  

simply added to each class covariance matrix,  

2  
nI  

2  
Gn  

2  

+ (62) 

f f 

2 a  
nN  

The diagonal elements of G2 ,determines the SNR in each spectral 
-N i 

band. By the appropriate selection of a 's, different SNR can be 

specified for each band. Let a denotenhe variance of the noise-free  

signal at the scanneroutput, then the SNR in the kth spectral band is  

defined by  

(SNR)k = af2  n  
(63)  

The choice of equal oic unequal SNR in different bands based on experimental  

or theoretical results is at the analyst's discretion.  

Spectral Path.  

Data Base and Retrieval. EXOSYS is a software package which provides  

access to field measurement data taken with a variety of field instruments.  

A brief overview of the EXOSYS package will be given here, with more detail  

available in the EXOSYS manual [18]. Data is collected and stored on  

magnetic tape in field measurements format. During the reformatting  

procedure the data is calibrated and ancillary information such as  
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weather readings soil conditions, and plant growth status is placed in  

the identification record for each run.  

There are three processors in EXOSYS which are used to access the  

field data information - IDLIST, GSPEG, and DSEL. The IDLISW processor  

scans the tape and lists information from the identification record as  

required. One can use this information to select appropriate runs-to  

represent informational classes.  

The GSPEC processor provides a punched deck consisting of the  

numerical values of the spectral response function for all of the desired  

runs. One can select a set of run numbers as input and the output will  

consist of a punched deck. Options exist for plotting the spectral  

response functions for the desired runs.  

The DSEL processor simulates rectangular spectral channels and  

uses data from the tape to evaluate the response in each channel for  

the ensemble. The inputs are the spectral band locations and the run  

numbers on the data tape., The output is a set of statistics for the  

specified channels.  

Optimum Spectral Basis Function System. For the optimum spectral  

function calculation the output of the GSEC processor is required. The  

appropriate ensemble can be selected by specifying a set of identifica-

tion parameters such as date of collection, scene type, run number, etc.  

The cards containing the numerical values for the spectral response  

functions are used and stored on- disk in a format which is compact and  

convenient for future processing by the program SPRDCT. The files that  

are stored on disk may be transferred to magnetic tape for future use to  

avoid repeating the procedure involving the EXOSYS package. SPRDCT  

requires some information to be entered at the terminal to provide ID  

information for the ensemble. A list of all runs used by run number is  

printed after the data has been stored on disk.  
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Optimum Basis Function Calculation. The calculation of the optimum  

set of basis functions for an ensemble is accomplished by solving the  

matrix equation  

4r = KWF (64)  

to get the eigenvalues ll O2' ... , aN and the eigenvectors h' 2' ""' N" 

N1 The matrix 0 is the matrix of eigenvectors 0 = [1i 2' . and F is 

the diagonal matrix of eigenvalues 

0 a1  

a2 (65)  

aN  

The matrix W is a diagonal matrix of weights  

Wl 0  

W 2 (66)  

WN- 

R is the covariance matrix for the ensemble. Let the mean vector for the 

ensemble be m = [mI, m2 , ... , mNT then 

R.. = E {(x.-m) (xj-m.)T (67)  

The maximum likelihood estimate is  

N 
1 = kN T 

ki Ns I ~ (Xik-m.) (x kk-m )68 
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where N is the number of sample functions in the ensemble.  

If we let A=KW, then A is a real general matrix. An algorithm for  

solving for tha eigenvalues-and eigenvectors of a real general matrix is  

available [19] and is used here with only slight modification. The  

algorithm makes use of Householder's method and the QR double-step itera-

tive process to compute the eigenvalues. The eigenvectors are obtained  

by the inverse iteration technique. A sorting routine-was added to order  

the eigenvalues and the corresponding eigenvectors.  

The required inputs are the data in the appropriate format and the  

weight function. The output of this processor is a set of N eigenvectors  

or baslis functions punched onto cards. Also, the eigenvalues and means=  

square representation error are printed. The eigenvectors can,beplotted  

using GCS subroutines.  

Data Transformation and Statistics Calculation. The ejgenvectors  

are used to perform a linear transformation on the original data vectors  

[X}. The transformed vectors MY} have the desired properties provided 

by the Karhunen-Loive expansion. Each element of the transformed-vector 

is given by 

Yi = ilxl + i2x2 + ... + 4iNXn ('69) 

where ij is the jth element of the ith eigenvector.  

The inputs to this processor are the eigenvectors and the data set  

stored on the disk. The output is the set of statistics for each class.  

The statistics are printed and punched on a deck of cards for future,  

processing.  

4. USER'S GUIDE TO USAP  

The block diagram of the scanner parameter study, Figure 27, is made  

operational by a collection of compatible software packages. Each module  

is individually compatible with the LARSYS environment facilitating  
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incorporation of LARSYS processor in the overall system performance  

evaluation. This section provides a guide for the acquisition and  

execution of each program available on the LARS IBM 370/148 computer  

system.  

Prior to a discussion of the individual modules some general remarks  

are in.order. The access to this program library is simplified by the  

allocation of two special disk storage devices designated by DHSYS and  

DHDSK. The former contains the text version of the software while the  

latter holds the source. These devices can be accessed using the  

appropriate GETDISK commands.  

GETDISK DHSYS  

and  

GETDISH DHDSK  

these commands will establish the proper links in a Read-Only mode and  

USAP initialization is complete. In the following subsections the  

required input and necessary steps to run each program are discussed.  

4.1 The Classification Accuracy Estimators  

There are two parametric classification accuracy estimators  

available to the USAP user, (a) the analytic classification accuracy  

predictor (ACAP) and (b) the stratified posterior classification  

accuracy estimator (SPEST). The theoretical aspects of these processors  

have been discussed in Section 2. Here is a guide to their software  

implementation.  

Analytic Classification Accuracy Predictor  

This program evaluates the performance of a Bayes classifier when  

the populations statistics are multivariate normal. The following  

control cards are required.  
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.ontrol Word -Description 

*ACAP This card specifies the particular processor 
requested. 

CHANNELS The desired subset of the available channels 
is given here. Note that the numbers appearing 
on this card are the order of the selected 
channels not theiractual number. For example, 
if the available channels are 8; 9, 12, 14 
and channels 8, 9 and 14 are requested CHANNEL 
card should read 1, 2, 4. 

CLASSES This card specifies the name of each class. 
Each name must be placed in a field 7 charac-
ters long followed by .a blank. The continua-
-tion card, if required, must have the word 
"CLASSES" at the beginning. 

GRID This quantity controls the quality of the 
estimate. The higher the number the closer 
the estimate is to the true Bayes error rate. 
(See '&stimated CPU time!'for more details.) 

END This card signals the end of the control card. 
Stat deck follows immediately. 

Remarks. The ACAP processor in its current form is capable of  

handling up to 20-classes and 8 spectral bands. The extensions of  

these parameters presents no conceptual difficulty. The required statis-

tics deck is a standard LARSYS produced deck with no modifications. It  

must be punched in the character format, however.  

How to Run the Program. Make sure the DHSYS disk has been accessed  

properly. One reader file consisting of the control cards followed by a  

statistics deck is required. Type ACAP in the CMS environment. Appro-

priate terminal and printer output is produced.  

Example of control card set up  

*ACAP  
CHANNELS 1,3,4  
CLASSES SOYBEAN ALFALFA WHEAT  
END  

Since GRID card is not included, its default value (9) is selected.  
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Estimated CPU Time. The execution time is quite sensitive to the  

GRID card specifying the number of cells per axis. For the default  

grid size and a 4-dimensional space it takes approximately 2 minutes of  

CPU time per class to provide the requested classification accuracy  

estimates. The CPU time is most sensitive to the dimensionality of the  

feature space. Hence if the number of spectral bands is limited (less  

than 4) considerable increase in GRID number is possible. The default  

number of cells per axis is considered to be the minimum while 'still  

providing acceptable performance. Increasing the parameter improves  

the quality of the estimate somewhat at the expense of higher CPU time.  

The choice is left at the user's discretion.  

Stratified Posterior Error Estimator.  

This program is identical in purpose but different in approach to  

the ACAP processor. GivEna set of multivariate normal populations,  

SPEST provides the classification accuracies associated with each class  

using an internally generated random data base. The different estimation  

procedures between the two methods is transparent to the user.  

Description of the Control Cards  

Control Word Description 

*SPEST This card specifies the particular processor 
requested. 

CHANNELS The desired subset of the available channels 
is given-here. Note that the numbers appearing 
on this card are the order of the selected 
channels not their actual number. 

CLASSES This card specifies the name of each class. 
Each name must be placed in a field 7 charac-
ters long followed by a blank. The continua-
tion card, if required, must have the control 
word "CLASSES" in the beginning followed by 
the rest of the names. 

END End of the control cards. 
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Remarks. In usage, this program is identical to *ACAP. The  

standard,LARSYS statistics deck follows the control and disk immediately.  

Printer output contains the estimated conditional classification  

accuracies. By virtue of their separate.approaches,, *ACAP and,*SPEST  

provide different, but very close, estimates of the correct 5classification  

accuracies.  

How to Run the Program. The reader file contains the control cards, 

followed by the LARSYS statistics deck. A sample control card deck 

follows: 

*SPEST  
CHANNELS 1,,2,4  
CLASSES ALFALFA SOYBEAN WHEAT'  
END  

4.2 Spatial Path  

The spatial path in USAP consists of two main software units. The, 

spatial correlation analyzer, CORELAT and the S.CANNER IFOV model,. 

SCANSTAT. 

Spatial Correlation Modeling. This program is a.2-dimensional 

spatial correlator the primary output of which, Is. a. normalized, spatial 

auto (cross) correlation matrix for any specifie& area.. The user speci-

fies the coordinates of the desired segment in the form,of am injtial, and  

final line and column along with, the appropriate spectral bands (s). 

Following the estimation of the correlation matrix,, the. expQnential fit 

option, if invoked,, will fit an exponentially dropping function to- the 

experimental values of R k(t) or \k-n) using a wetghtedi linear least 
squares technique. 
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Description of the Control Cards  

Control Word Control Parameter Description 

*CORRELATE This card specifies the particular 
processor requested. 

INPUT RUN(.) Run number of the desired area. 
TAPE(.) Tape number of the desired area. 
FILE(.) File number of the desired area. 

BLOCK LINE(.,.) Initial and final lines: 
COLUMN(.,.) Initial and final columns. 

FUNCTION AUTO Autocorrelation function requested. 
CROSS Crosscorrelation function requested. 

CHANNELS Channels used for correlation 
operation. 

SAMPLELAGt Maximum cross track lag used as 
a percentage of the total number 
of samples. 

LINELAGt Same as SAMPLELAG except for 
along track lag. 

EXPOFITt If included exponential fitting 
operation is carried out. 

END End of control cards. 

Remarks. This program is capable of processing areas containing  

up to 2400 pixels. The maximum lag default is set at 20 percent of  

the total number of lines and columns. Both quantities can be altered  

by user supplied control cards. The exponential fit option provides a  

pixel-to-pixel correlation coefficient for the channel(s) specified.  

This number is computed from the estimated parameters of the exponential  

correlation model.  

How to Run the Program. The only required reader file is the  

control card deck,an example of which follows:  

t optional  
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*CORRELATE  
INPUT RUN (74028500), TAPE (2689), FILE (3)  
BLOCK LINE (1,25), COLUMN (1,25)  
FUNCTION AUTO  
CHANNELS 2  
SAMPLELAGt 25  
LINELAGt 25  
EXPOFIT±  
END  

after DHSYS disk has been properly linked to, type CORELAT tp start  

execution. Appropriate terminal and printer output is.generated.  

Scanner IFOV Model.  

This program computes the spectral statistics of a population at  

the output of a multispectral scanner provided the data spatial correla-

tion approximately follows a Markov model. The ,scanner IFOV shape is  

limited to either a Gaussian or rectangular shape. No assumptions  

are made or indeed required about the type of the population statistical  

distribution.  

Description of the Control Cards  

Control Word Description 

*SCANSTAT This card specifies the particular processor 
requested. 

CHANNELS The desired subset of the available channels 
is given here. Note that the numbers appearing 
on this card are the order of the selected 
channels not their actual number. 

CLASSES This card specifies the name of ' each class. 
Each name must be placed in~a field 7 
characters long foliqwed by a blank. The 
continuation card, if required, must have 
the control work "CLASSES" in the beginning 
followed by the rest of the names,. 

IFOV This card specifies theJIFOV size of the 
scanner in terms ofhigh resolution input 
pixels. 

t optional  
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APERTURE  The choices here are "GAUSSIAN" or "RECTANGULAR."  

SNRi  Output signal energy to noise energy in dB.  

PUNCH±  The output statistics is punched out in an  
ACAP/SPEST format. Redundancies are added  
to replace field description cards.  

END  End of control-cards.  

Remarks. This program is limited to 20 classes and 8 specfral  

bands. Execution time is quite short and extension of those parameters  

is straightforward. The input data immediately following the control  

cards consists of 3 parts:  

1.  Standard LARSYS statistics'deck in character format.  

2.  Spatial correlation parameters (cross track) are entered via a  

NXN symmetric matrix where N is the number of channels. The  

(i,j) element of this matrix is the adjacent sample correlation  

between channels i and J. The lower triangular part of this  

matrix is punched in a 5 (EI3.7,lX) format.  

3.  Spatial correlation parameter matrix except for along track  

pixels.  

The above decks follow the control cards in the order listed. The  

signal-to-noise ratio is defined as the ratio of the output signal  

energy in a particular.channel (diagonal element of the class covariance  

matrix) to the noise energy in the same bands expressed in dB and defined  

by  

10 log1 0 a k/2 (SNR)k = 
k 10 sk nk  

where k refers to the particular spectral band.  

t optional  
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How to Run the Program. One'reader file consisting,of 4 consecutive  

decks and appropriate link to DHSYS disk is required before the program  

execution. An example of a control card set up follows:  

*SCANSTAT  

CHANNELS 1,2,4  
CLASSES ALFALFA SOYBEAN WHEAT  
IFOV  2  
APERTURE GAUSSIAN  
SNRI  10 
PUNCHI  
ENDt  

The output consists of an ACAP/SPEST compatible statistics deck for  

the modified population. This deck can be used in the ACAP-/SPEST processors  

to obtain the new set of classification accuracy estimates.  

4.3  Spectral Path  

The spectral path in USAP consists of three main pieces of software  

(a) data retrieval through EXOSYS processor (b) optimum spectral function  

calculation and (c) data transformation and statistics calculation.  

Procedure for Computing and Evaluating Optimum Basis Functions.  

Data Retrieval. The data retrieval system is stored on EXOSYSDV and  

it is necessary to define storage as 768K. A card file containing the  

data points for each run will be constructed on a temporary disk  

(25 cylinders). It is desirable to make the temporary disk a P-disk  

and the permanent user disk a T-disk.  

In CMS  

RELEASE 191 P  
LOGIN 191 T  
GETDISK TEMP MODE P25CYL NO-UFD  

"±nntn1,l 
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In CP  

I EXOSYSDV  
CCINPUT TERMINAL  
RUN EXOSYSDV  

The control cards will be entered through the terminal. The tape on  

which the data is stored must be specified as well as the cover type  

and the collection date. A typical sequence of cards is as follows:  

$ TAPE 4896 
$ GSPEC 

GRAPH SPEC (SPRING WHEAT), DACO (770508) 
LIST NO LIST 
OPTIONS PUNCH, NOGRAPH  
END  

$ END  
$ EXIT  

The runs taken over Williams Co., North Dakota for May 8, 1977 are on  

tape 4896. The crop species is spring wheat and the collection date is  

May 8, 1977. The output is a deck of cards with one hundred data values  

for each run punched onto the cards. Header information must be flushed  

at the line printer. Return the system to CMS and read the cards onto  

a disk file SPR100 DATA. The number of records in the file is equal to  

the number of runs. This number should be recorded as it will be needed  

later. This procedure is repeated for the second class. The cards from  

GSPEC are read onto the file INPUT DATA and the number of records  

recorded. The two files are combined by typing (in CMS)  

COMBINE SPR100 DATA P1 SPR 100 DATA P1 INPUT DATA P1  
ERASE INPUT DATA  

This procedure is repeated until all classes have been included in the  

file SPR 100 DATA. The crop species SUMMER FALLOW and PASTURE are used  

in GRAPH SPEC(.) to complete the data set.  



At this point the program SPRDCT is loaded and rum. .A disk file 

will be created using DSRN of 2 and file type :FUNC. The 'following 

information is requested at the terminal 'by SPRDCT 

Experiment Number 100  

Number of Classes 3  

Number of Sample Points per Run 100 

(Dimensions) 

Class Name Wheat Fallow Pasture 

Number of Samples 
per Class 664 437 16-

The information is requested and is entere-dbetwpen the slash  

marks, right justified.  

At this point the data is ready to be used by the system. It is a  

good iaea to store the file on tape for future use. Type  

TAPMOUNT 156 TAP2 RI  
T DUMP SPR 100 FUNC Pl  

The tape on which the data is ,stored is 156 in this example. 'To recall  

the data to the disk type  

TAPMOUNT 156 TAP2 RO (If not already mounted)  
'T SLOAD SPR 100 FUNC  

Note that the 2-disk -must be a large -fairly empty -disk '(10 cyl)  

The format for data storage is  
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ID  

Run 1  
100 Data Vae Class 1  Values  

Run 2  

100 Data  
Values  

Class 2  

ID Information Record  

Item  

Date  

Exp. Number  

Number of Classes  

Number of Dimensions  

Number of Samples for Class 1  

Number 6f Samples for Class 2  

Number of Samples for Class 3  

Number of Samples for Class 4  

Number of Samples for Class 5  

Number of Samples for Class 6  

Number of Samples for Class.7  

Name of Class 1  

Name of Class 2  

Name of Class 3  

Name of Class 4  

NnMr' nf CA.n~ 9  

Words  

1-15  

16  

17  

18  

21  

22  

23  

24  

25  

26  

27  

30-39  

40-49  

50-59  

60-69  

70-79  
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Name of Class 6 80-89  

Name of Class 7 90-99  

Optimum Spectral Functions Calculations.  

Once the data set is on disk it is necessary to issue the following  

CMS commands to compute the eigenvectors.  

FILEDEF 2 DSK-P4 SPRIOO FUNC RECFM VS LRECL 400 BLKSEZE 
400 (PER 
CP SP PUN TO USERID  
LOAD SPOPTM (XEQ 

4.4 Example Outputs  

This section presents a sample output for the individual software  

units used in USAP. The example set consists of sample outputs from the  

ACAP and SPEST processors. CORELAT and SCANSTAT in the spatial path and  

SPOPT and SPTES in the spectral path. Graham Co., Kansas is used as the  

test site.  

Classification Accuracy Estimators.  

The following control card set up is used for the ACAP processor and  

output is shown in Table 13.  

*ACAP  
CHANNELS 1,2,3,4  
CLASSES BARESOI CORN SOYBEAN WHEAT  
END  

The required control cards for the SPEST processor are  

*SPEST  
CHANNELS 1,2,3,4  
CLASSES BARESOI CORN SOYBEAN WHEAT  
END  

the output is shown in Table 14.  



Table 13. *ACAP Sample Output.  

ANALYTIC CLASSIFICATION ACCURACY PREDICTION'- A C A P  

SAMPLING GRID CHARACTERISTICSO  

GRID SIZE= 9 CELLS PER DIMENSION  

TOTAL NO OF CELLS IN THE GRID 6561  

TRANSFORMED FEATURE SPACE CHARACTERISTICSO  

EIGENVALUESO  

2.9182E 01 1.1413E 01 1.3430E 00  

EIGENVECTORSO  

2.105E-01 2.0478E-01 8.2319E-01 4.58446E-01 8.2659E-01  -1.5239E-01 -6.7334E-03  1.9331E-01 -5.3271E-01 
8.6342E-01 -4.872BE-01 -1.2389E-01 

TRANSFORMED MEAN VECTORSO  

1.1654E 01 2.3928E 01  3.8200E-01 -2.Z766E 00  1.5Z48E 01 1.3871E-011.3111E 01 5.1333E 00 -5.9814E-01 
0.0 0.0 

P R O B A B I L I T Y  

CLASS WHEAT  

7.6125E-01  

-v  

4.8593E-01  , -2.8873E-01  
8.2390E-01  
4.1283E-02  

-5.4T50E-02  
1.0838E-01  
1.0702E 00  
0.0 

O F C 0 R R E C T  C L A S S I F I C A T I O N 93.486 1  

*****TOTAL PROB OF CORRECT CLASSIFICATION****= 89.287 PERCENT  

0.0 



Table 14. *SPEST Sample Output. 

STRATIFIED POSTERIOR ERROR ESTIMATOR 

P R 0 B X B I.I T Y 

CLASS BARESQI 

0 F C 0'R R E C T C L A S S I F I C A T I 0 N = 79.218( 

P R 0 B.A B I I-| T Y 

CCASS CORN' 

0 F C 0 R R E C T C L A S S I F I C A'T I 0 N = 92.721( 

PR0BABIL ITY 

CLASS 

O F 

SOYBEAN 

C O R R E C T C L A S S I F X'C A TI 1O N = 96.359(' 

P a s A ' 1 II TLY 

CLASS 

0 F 

WHEAT, 

C On R E C T C L A' S, S I F I C A T 1 0 N - 92.614( 

OVERALL PROBABILI,TNy,1QF CORRECT RECOGNI.TION,= 90;2'20 

do'" 
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Spatial Path.  

The control card set up for CORELAT is as follows:  

*CORRELAT  
INPUT RUN(74028500), TAPE(2689), FILE(3)  
BLOCK LINE(50,98), COLUMN(50,98)  
FUNCTION AUTO  
CHANNELS 1  
EXPOFIT  
END  

The sample output is shown in Table 15.  

The control card set up for SCANSTAT is as follows:  

*SCANSTAT  

CHANNELS 1,2,3,4  
CLASSES BARESOI CORN SOYBEAN WHEAT  
IFOV 2  
APERTURE GAUSSIAN  
END  

The sample output is shown in Table 16.  

Spectral Path.  

The optimum basis function calculation and computation of the  

transformed data statistics comprises the main spectral processors. The  

sequence of required commands has been shown in Section 4.3. The  

following example is a weighted basis function calculation.  

The weighting function w(X) is zero for the water absorption bands  

near 1.4 and 1.8 micrometer and zero elsewhere on the interval (.4-2.4 pm).  

The printer oi-tput is shown in Table 17, listing the first 30 eigenvalues.  

The first 4 eigenvectors are sent in card format to the reader. They  

can be stored on the disk by issuing the command.  

0 READ EIG00 DATA Tl  



Table 15. *CORRELAT Sample Output.  

TWO DIMENSIONAL SPATIAL CORRELATION ANALYSIS 

CHANNELSO 1 1 

2-D SPATIAL CORRELATION MATRIX  

1.00' 0.3 0.50 0.36 O.28 01.23. 0.19 D.1f3' 0.08  

0.70 0.,6Q- 0.44 0.33 0.26, 0.20, 0.,17 0;12 0.07 

0.50 Q.45 O.36 0.27 0.21, 0.17 0.,1,4 0.10- 0.05"  

0;.38 0.37 0.3,1 0.24' 01-7 0.1.3 0,11 0.08; 0.03!  

0.31 0.32 0'.27 U.,21 0.14 0.11 0.10 0.08, 0.04  

0'.25 0.26 0.23 0..6 0.11 0.09 0.07 0.05 0 .02  

0,.2 0 , 0.20 0. 18 0.1'3' 0,.10 0.07' O,.0& O.05, 0.03  

0.14 0,.15 '..4, 0.,lO 0.07 0.05: O.94- 0;04 0.02, 

0.10 0. 11t 0.12 0,.1i 0.09 0;4.0- 0.031 0.02 0,.001 

WEIGOTEDzLEAST- SQUARES FIT' INFORMAT'ION,,-

WEIGHTING MATRIrX DIAGONAL, BASE=O.40' WEIGHTED' LSF. ERROR. (CROSS TRACK)= 0.1037569E-02>
ADJACENT SAMPLE CORRELATION= 0.7.937.16E 0,-WE IGHTED LSF ERRORU,.(ALONG' TRACK-) :. 673b4634Et05-AJDJACENT: LINE CORRELATI0N -. 7026,460E 00: 

I I 

http:BASE=O.40


Table 16. *SCANSTAT Sample Output. 

SCANNER 

APERTUREO 

OUTPUT 

GAUSSIAN 

STATISTICS 

IFOV SIZEO 2 HIGH RESOLUTION PIXELS 

CLASS CORN 

INPUT COVARIANCE MATRIX 

9.29 

12.26 19.79 

10.63 16.37 16.09 

4.43 7.14 6.24 3.45 

OUTPUT COVARIANCE MATRIX 

4.86 

4.61 10.37 

4.00 6.15 8.43 

1.67 2.68 2.34 1.81 

00  

rt  
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LARQOPATONY FOR APPLICATIONS OF REMOTE SLNSIIG PUPFUE UN4IVEPS1TY  
SAMPLE FUNCTION I'4FOrL.ATION 10 JULY, 1978  

100  
NUMBER OF CLASSES .................. 3  
CLASS:...............................WHEAT  
NUMBER OF SAMPLE FUNCTIONS..........664  
CLASS................................FALLOA  

EXP. NO .............................  

NUMBER OF SAMPLE FUNCTIONc...........437  
CLASS.............................. PASTURE  
NUMER OF SAMPLE FUNCTIONS.......... 164  

WEIGHTING FUNCTION NUIARE 3  

N 
1 
2 
3 

EIGENVALIJE 
311.4133 
229.3520 
21.1702 

VAR (GA ) 
307.0752 
166.5619 

1.4191 

V.AR (PHI)
0.0086 
0,.OOb7
0.0104 

MEAN-SQUARE EPROR 
299.15674q
6V.8d4748 
4.6J4554 

4 15.4660 0.7574 0.0126 33.16b544 
5 8.8838 0.2499 0.0106 24.2047e4 
6 
7 
q 

5.7765 
3.5611 
2.6887 

0.1057 
0.0402 
0.02?9 

0.012; 
0.OLj7
0.0573 

jt.50&,2q
i4.947187 
1f.25848 9 

2.3128 0.0169 0.0635 4.945677 
10 
1i 

1.8363 
1.4195 

0.0107 
0.0064 

0.04,4 
0.0663 

o. 10',33 
0.6u9800 

12 
19 

1.2304 
0.9300 

0.00i. 
0.0027 

0.0043 
0.0336 

b.4b 4q4
4.52-464 

14 0.6806 0.0015 0.0338 3.8465-28 
15 
16 

0.5217 
0.3517 

0.0009 
0.0004 

0.0351 
O.lo 6 

J.327086 
2,975436 

17 
IR 

0.3138 
0.2945 

0.0003 
0.0003 

0.3,14 
0.47o2 

.6o15)9
2.3o7111 

19 
20 

0.2771 
0.2336 

0.0002 
0.0002 

0.3430 
0.211 6 

2.090019 
1.8D64 11 

21 0.2102 0.0001 35.7eb2 1.646236 
2? 0.2092 0-.0001 35.7220 1.437049 
23 
24 

0.1792 
0.1514 

0.0001 
0.0001 

0,14-69 
o.z238 

1.2!7806 
1.106359 

25 0.1452 0.0001 0.5u6 0.961120 
2r 0.1137 0.0000 0.0943 u.B,+458 
27 
P 
2Q 

0.0976 
0.0851 
0.0744 

0.0000 
0.0000 
0.0000 

0.1?01 
0.13180.11n3 

0.749854 
U.664 7 850.%9tU391 

52 

30 0.0583 0.0000 0.c213 0.5j211-2 q-

Table 17. Eigenvalue and Mean-Square Representation Error for the Data  
Set.  
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A GCS routine was used to plot the graphs of the eigenvectors the 

first of which are displayed in Figures 28 through 31. 

The statistics for the first 4 terms are computed by using the 

same FILEDEF command as above plus 

CP SP PUN TO USERID 
0 PUNCH EIG100 DATA TI 
LOAD SPTES (XEQ) 

The program will ask 'NUMBER OF TERMS?',to get all 4 terms type '4.' 

The output will be a statistics deck with the following format: 

Card 

I 

2 

Number of Classes, Number of Terms 

Apriori Probabilities for each Class = l/Number of Classes 

Mean Class I [Foimat (20A4)] 

Covariance Matrix Class 2 

Mean Class 2 

The covariance are in upper triangular form. This statistics deck  

can be used as the input to the classification error estimator algorithms.  

Table 18 is a sample of the statistics obtained from the data set using  

the first 4 optimum basis functions. Also, the statistics were used as  

input to the classification performance estimator *SPEST to get an  

estimate of the probability of correct classification.  
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1.9 2.4-I 
.9 1.4 1.9 2.4 A "'A 
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Figure 28. Eigenvector 1. Figure, 294' Eigenvector 2.  
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Figure 30. Eigenvector 3. Figure 31. Eigenvector 4.  



92 MEAN VECTOR  

-20063751 22.0529 4.5466 18.8553  

COVARIANCE MATRIX  

312.5391  
-24.4102 62.8445 

8.4233 -20.7412 14.0594 
-5.2539 -8.6057 4.5237 12,26-1.2 

MEAN VECTOR  

-202.1029 35,2806 5.7945 16.3977  

COVARIANCE MATRIX  

244,.7227 
-69.3594 152,5959  
-15.8333 10.3513 24.0876  
-2.2070 1.3667 -0.7130 12.3877  

MEAN VECTOR  

-187.5431 54.8315 8.2578 19.0705  

COVARIANCE MATRIX  

286.1719  
-1.2813 168.4688  

-19.2971 -47.7388 29.0520  
10.3206 54.3401 -16.4006 26.1763  

PROBABILITY OF CORRECT CLASSIFICATION FOR CLASS I = 0.9187 

PROBABILITY OF CORRECT CLASSIFICATION FOR CLASS 2 = 0.6624  

PROBABILITY OF CORRECT CLASSIFICATION FOR CLASS 3 = 0.9003 

OVERALL PROBABILITY OF CORRECT RECOGNITION ' 0.8270  

Table 18.  SPTES and SPEST Sample Output Using the First 4 Eigenvectors  
and Estimates of the Classification Accuracy.  
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5. SUMMARY  

The task of evaluating the performance of a multispectral scanner  

system while incorporating every spatial, spectral, electronic and tele-

metric parameter is exceedingly complicated. The primary objective of  

this project has been the investigation of the two important, and most  

relevant in remote sensing applications, of scanner parameter, namely  

spatial and spectral. The development of analytic techniques for system  

performance evaluation differentiates the approach adopted here from  

other experimental methods. This property provides an ease of parameter  

manipulation not available through some heavily data dependent algorithms.  

Although the development of individual components of such systems is  

fundamental to the overall system operation, it is the logical and proper  

integration of individual modules that determines its ultimate processing  

capabilities.  

The Unified Scanner Analysis Package (USAP) is a fully integrated  

system with complete input-output compatibility of software units. It  

consists of a spatial and spectral path plus a shared unit providing the  

desired performance index in the form of probabilities of correct classi-

fication.  

5.1 Classification Error Estimators  

The primary performance index throughout this study is defined as  

the probability of correct classification of the various populations  

present in a data set. In keeping with the underlying requirement of a  

parametric approach, the available LARSYS and other classification  

accuracy estimators using a randomly generated data base were deemed  

less than satisfactory. It is well known that the exact probability of  

correct classification is a multiple integral over an appropriatedomain.  

The direct evaluation of such integral in a continuous N dimensional  

space is a complicated and mathematically cumbersome task. This problem  

is circumvented by a deterministic sampling algorithm of the feature  

space preceded by an orthogonal transformation. This transformation  

when applied to the Gaussian probability density function of a particular  

class under consideration would conditionally decouple the feature space  
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and hence reduce the N dimensional error integral to a product of N one  

dimensional integrals each of which is a widely tabulated quantity. This  

algorithm requires the population statistics as the only major input  

and provides classification error estimates of high quality without  

excessively fine feature space quantization. The second classification  

accuracy estimator uses the maximum a posteriori principle coupled with  

a Monte-Carlo type integration technique. Although this algorithm is in  

a way dependent on a simulated data base, from a userspoint of view the  

difference between ACAP and SPEST are essentially transparent since both  

methods require the spectral statistics of the populations as their  

primary input. The aforementioned classification accuracy estimation  

techniques provide the basic tools for the scanner system performance  

evaluation.  

5.2 Scanner Spatial Parameters Selection  

The scanner spatial modeling algorithm and software consists of one  

main plus two supporting routines, i.e., IFOV modeling (SCANSTAT), spatial  

correlation analyzer (CORELAT) and classification error estimator (ACAP).  

The objectives of an analytical representation of scanner IFOV model  

is the establishment of a parametric relationship between the system's  

input .and output statistics in terms of the class conditional mean vectors  

and covariance matrices. This relationship is -established using linear  

system analysis techniques extended to a 2 dimensional space. In order  

to derive any specific results two basic characteristics need to be  

specified: (a) scanner PSF and (b) ground scene spatial correlation  

model.  

The choice of a Gaussian shaped PSF has been widespread in the field  

of image processing as applied to the Landsat data. This model closely  

approximates the averaging property of the scanner aperture. An added  

feature of a Gaussian shaped PSF is the simplification of an otherwise  

intractable and cumbersome mathematics. Generally speaking the amount  

of information available about the spatial correlation properties of  

remotely sensed data is sparse. It has been frequently observed however,  

that the ground scene spatial correlation model approximately follows an  
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exponentially dropping function [2]. On the basis of previous experimen-

tal evidence and the mathematical simplicity afforded by these assumptions,  

a Gaussian PSF and a Markov scene spatial correlation model is adopted.  

Like many other instances, the choice of the problem assumptions does not  

necessarily rest on their strict validity but also on the tractiability  

of the ensuing algebra. It is entirely conceivable that much more  

elaborate scene correlation models and PSF shapes can be envisioned.  

This approach, however, could and would complicate the underlying mathe-

matics to the point where the gains initially expected from the more  

accurate model are balanced out. For simulation purposes the entire  

analysis is repeated for a rectangular shaped PSF although no currently  

operational Landsat is equipped with such a scanner system.  

Based on the foregoing discussion the scanner characteristics  

function is derived in a closed form. This function relates the input  

and output statistics as a function of the IFOV size and pixel-to-pixel  

correlation. SCANSTAT is the software implementation of this linear  

transformation. The auxilliary program, CORELAT, estimates the class  

conditional correlation functions and provides the best exponential  

curve fit to the experimental data using a weighted least-squares fit  

algorithm. The resulting output statistics is modified by additional  

random noise the power of which is computed from the specified SNR. The  

ACAP or SPEST processors provide the new classification accuracy sets.  

The probabilities of correct classification at the scanner output provide  

the basic information needed to evaluate the system performance under  

various operating conditions. For test purposes a hypothetical set  

consisting of 3 populations is selected and their statistics (mean  

vectors and covariance matrices) specified. The scanner output statist-

tics and associated classification accuracies are computed for various  

IFOV sizes and scene correlations. The results are in close agreement  

with the numerically oriented experiments. For any fixed scene correla-

tion, the population separability and hence the overall classification  

accuracy increases monotonically with IFOV size. The rate of increase,  

however, is a function of the scene spatial correlation. The classifi-

cation accuracy increase per IFOV step is small for a highly correlated  

scene compared to a scene with a small adjacent sample correlation.  
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This property stems from the features of the scsnner characteristic  

function and its particular weighting process. The addition of white  

Gaussian noise predictably degrades the output separability. The  

experimental results show that for a fixed IFOV size, SNR and classifi-

cation accuracy increase monotonically. Same relationship exists between  

the classification accuracy and IFOV size when SNR is fixed.  

5.3 Scanner Spectral Parameters Selection  

The task of information extraction from remotely sensed data here 

primarily deals with the development of methods and techniques to 
select a set of spectral bands to enhance population separability. The 

first criterion employed in selecting a set of optimum spectral channels 

is the Karhunen-Logve expansion of the ensemble of spectral responses 

associated with a cover type. This expansion provides a 'set of optimum 

basis functions, a linear combination of which reconstructs the original 

stochastic process with a minimum mean square error. These basis functions 

in effect define a set of optimum windows in the electromagnetic spectrum. 

The associated software consists of EXOSYS data retrieval package, SPOPT 

spectral function claculation and SPTES data transformation and statistics  

calculation. The classification accuracy estimates used to check the  

resulting separability is obtained using either the ACAP or SPEST proces-

sors.  

The second approach employes an information theoretic concept for  

the specification of the optimal spectral bands. The observed spectral  

random process is modeled as the sum of a noise free signal plus an  

additive random noise component. For a candidate set of channels the  

quantity of interest, mutual information between the reflected and  

observed energy, is computed. The method consists of representing  

each random process as an autoregressive model. This type of represen-

tation facilitates the evaluation of the mutual information when expressed  

in terms of the Wiener-Hopf filter PSF. Experimental results consists  

of selecting a wheat scene and dividing the continuum of electro magnetic  

spectrum into 9 distinct bands. In each band a proper autoregressive  

model is fitted to the particular random process. Following the  
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estimation of the parameters of the regression models, the average  

information content in each band is computed and on this basis spectral  

channels are ranked. Therefore on the basis of maximum mutual information  

optimality criterion, the top N bands represent the N "best" choice. The  

significant result obtained from the ranking method is that out of the  

6 top ranked channels 5 lie in the infrared portion of the spectrum  

thus future scanner systems used in remote sensing application should  

contain more infrared spectral bands according to this analysis.  

5.4 Conclusions  

This report has presented a brief description of the algorithms and  

results of the Scanner Parameter Selection culminating in the development  

of a Unified Scanner Analysis Package by proper integration of the  

available software modules. Although this report is the final document  

in this project, it actually represents the first step toward a well  

coordinated scanner system parameter study technique. The current struc-

ture of USAP basically represents a skeleton of the future analysis  

packages. There exists a considerable software and theory development  

potential. The software by and large can take most of the streamlining  

to further facilitate their usage. Specific topics include extended  

diagnostic handling and error recovery capability, accelerated algorithms  

to further reduce execution times, etc.  

An overall'evaluation of the methods and results presented in this  

report shows that the objectives initially outlined have been success-

fully met. The resulting analysis package, starting from a data base,  

produces specific guidelines on the selection of spatial and spectral  

parameters of a multispectral scanner system and it does so on an entirely  

analytic basis. In closing it should be pointed out that USAP can have  

a pivotal role in any follow up project providing by far the widest and  

most economical parameter manipulation scope, fully complimenting any  

numerical or experimental scanner analysis techniques.  
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FILE. . . ACAP FORTRAN B; 

c  

SUPERvISOR POR THE ANALYTIC CLASSIFICATION ACCURACY PREDICTION 
WRITTEN O8/16/1 BC  

OCFL;AD  

C DESCRIPTION AND PURPOSE 
E THE A'iALYTIC CLASSIFICATION ACCURACY PREOICTION S A- IACAP  
C SOFTWARE PACKAGC, TilE PRIMARY OUTPUT OF WHICH IS ANSET OFIC 
C PROBABILITIES (IFCURIRLCT CLASSIFICATION FOR VARfCUS NUHBER OF 

CLASSES IDENTIFIEO IN THE DATA SET.  
C THE ALGORITHM IMPLEMENTED HERE DIFFERS FROM THE DATA DEPENDENT  
C TECHNIQUES AND RATIO ESTIMATORS SUCH AS *CLASSIFYPOINT OF LAASYS. Q WHEREAS LARSYS RFTURNS TO T14E DATA BASE FOLLOWING THE ESTIMATION 

OF THE  CLASS STATISTICS IN ORDER TO PROVIDE THE CLASSIFICATION  
AZCURAC|ESi ACAP BYPASSES THIS STEP AND PROVIDES THE SANE  
QUANTITY 0DIECTLY FROM THE STATISTICS DECK GENERATED BY *STAT. TH 
METHOD  EMPLOYED IS A MATHEMATICAL ONE (AS OPPOSED TO STATISTICAL)AN.) INVOLVES PERFORMING A MULTIDIMENSIONAL INTEGRATION OF EACH 

C P2k3AILtTY DENSITY FUNCTION OVER THE MYPERVOLUME OF CORRECT c DEC SIU1 OMHAIN.  
c C  DESCRIPTION OF CONTROL CARDS 
C 
C *ACAP 
C THIS CARD SPECIFIES (HE PARTICULAR PROCESSOR REQUESTED 
C  
c  
C CHANNELS  

THE DESIRED SUBSEC F THE AVAILABLE CHANNELS IS GIVEN HERE.  
CSBSETE DSIRD  S GVE' OFTHEAVALABE CANNLS HEE.C  

CT IS IMPORTANT TO REMEMBER THAT THE NUMBERS APPEARING ON THIS C ARD IS THE ORDER OF THE SELECTED CHANNELS NOT THEIR ACTUAL 
C NUMBER. FOR EXAMPLE IF THE AVAILBLE CHANNELS ARE 6.902,14  
C AND CHANNELS $,0 AND 14 ARE REQUESTED, SUSCH&NNELS CARD SHOULD  
c AEAD 1,2,4.  c1  

C LASSES 
THIS CARD SPECIFIES TH NAME OF EACH CLASS. EACH NAME MUST BE  
PLACEDIN A IELU I CIIRACTFRS LONG F3LLOEU BY A BLANK. TH4E  
ONTIUE A IN CARD F REQIURED MUST HAVE THE WORD 'CLASSES'  

THE HEGINNING rOLLUWFD BY E RESTSTOOF THE NAMES.  

c  GRID  
TillS IJUAITITY CONTROLS THE QUALITY OF THE ESTIMATE. THE HIGHER 
TIE NUMBER THE FTTER THE ESTIMATE (ON A MACRO SCALE1. TlE CPU  
TIME .HUWEVFR I VERY SENSITIVE TO THIS QUANTITY AND FOR  

DEFAULT VALE OF 9 CELLS/AXIS UNTIL TIle USER HAS ACQUIRED A  
FEEL FOR IHE PROCSS.  

C ED  

2  THIS CARD SIGNALS THE END OF THE CONTROL CARDS. STAT DECK 
C  FOLLOWS IMMEDIATELY. c  
C *¢e STAT DECK MUST BE PUNCHED IN CHARACTER FORMAT * 

C  REMARKS 
c 

TIE PROGRAM IS CURRENTLY CAPABLE OF HANDLING 20 CLASSES AND  
a SPECTRAL BANDS, THE EXTENSION OF THESE PARAMETERS IS ONLY LIl  
BY COMPUTATION I ME. THE USE OF MORE THAN 5 FEATURES IS NOT  

C RECOMMENDED S THE GRID SIZE IS REDUCED. TRIAL AND ERROR IS  
POBABLY THE QUICKEST WAY OF FINDING THE PROPER TRADE OFF.  
HOW TO RUN THE PROGRAM  

,NAMED ACAP, MUST RESIDE ON THE USER$S  
TIE FOLLOWING EXEC FILE  

FILE. . . ACAP FORTRAN 81 

c Pt [MARY DISK 
E ETYPEOUT OFFA .GLOBAL TXTLIB SYSLIB CMSLIB SSPLIB  

GETDISK LARSYS  

ACAP BCOVAL (CLEAR NOMAP XEQ)  

C &EXIT  
cE READER FILE 1S LOADED  

TSCOMMAND INITIATES THE EXECUTION FOLLOWED BY iPPROPRIATE  
TERMIAL MESSAGES AND PRINTER OUTPUT.  
EXAMPLE OF THE CUYROL CARD SET UP  

C  
C  tACAP  
c. A  
C  FLANSES BAEOf CORN PASTURE WHEAT  
c  GAID 9  
C  ED 

2 DEFAULT VALUE OF GRID IS SELECTED IF GRID CARD IS NOT 2  INCLUUEDCtNLUD  

C ESTIMATED CPU TIME C 
C  WITH THE DEFAULT GRID SIZE AND USING 4 FEATURES, IT TAKESC APPROXIMATELY 2 MINUTES OF CPU TIME PER CLASS T PROVIDE THE 
C REQUESTED CLASSIFICATION ACCURACY ESTIMATES.
C  TIE CPU TIME IS MOST SENSITIVE TO TtlE DIMCNSIONALITY OF C  TIE FEATRE SPACE. HENCE IF THE NO OF SPECTRAL BANDS IS  
C  LIMITED (LESS THAN 4) CONSILERABLF INCREASE IN GRID NUMBER  
C  IS FEASIBLE. EXPERIENCE HAS SHOWN HOWEVER, THAT THERE IS ONLY 
C  A MARGINAL (FRACTIUN OF PERCEIT) IMPPRUVFENT I . THE  

CLASSIF[CATION ACCURACY ESTIMATE: BY INCREASING THE GRID 
C  SIZE BEYOND ITS DEFALLT VALUE.  
C  
C***ef,. .**..*..l4****tt*a  * * *t#Q**#*o*4  

REAL*4 A172QIsAAfT O)iSLG$AI2EBO 6M iI6D);MAAtI6O1.M(i6OILSDIS)IDELTAIB I6IP(  VIIWEB toI(6) ,IO  

2 R16~1 .14MIPR3IIIEVI 1,LLI 1,ULI8;,W(20:ZO(1041,DEIIZ0, CLAESAOI AEAL4 icsE I (gr EA17201  
A11TEGER* ACRT(9C D1D2 1NDXIZO) HEAD120) 0 m  4 I I  
INTFGEM' LISTI5Ut&AcA','CHAN','CLAs'.'GRIOs"'EO '/,IVEC(1It  

I E0) ICARO 
I S LAK/FS D 4F~R4BLANK/ S/FTCRD/'LARSI/ 
ILTEGER ICSEL(303& C £0j30)C(30)  
LOGICAL*( FLAG3O)i FALSE./  

C COMMN /CAPCOH/ ND0N1,M.NS0CLS:NP. SIZE KNTR 
CGOM$ N  /ACUCOH/ ND NLMNS ,NPSANSISIENSTZE,SKP 

C 00 
1u1 FDAMAT(IX,'ERROR IN CTLWRD. EXECUTION TERMINATED,'
toil FD4MAT IX,'ERROR IN IVAL. EXECUTION TERMINATED.-I  

SDI IX,'ERROR IN CHANEL. EXECUTIOi tERMINATEO,'I 0 FOAMAT IX,'MISSING CONTROL WORD. EXECUTION TERMINATED.I 4 
P184 FORMATrIX,1ACAP ROCSSING STARTED') NREAD'0  c  
cMC  

C 
C DECODE CONTROL CARDS  1 
C  
,,*,*.****,*#,.*co*.,,#t**,.*I..*.,  

C  
SET THE DEFAULT GRID SIZE  

NS  ET  
ICSEI (11.  
NC 111.0 1E  
Do 7ITT 10  

T7? CONT IlUE  



FILE. . . ACAP FORTRAN 81 

C 
DO 778 1  

I78  ICSEI -,oooo0000.o  

FLAGI4).TRUE.  

100  CONTINUE  
LSZ=5  
1ER-0  
INRU-5  

C  
CALL CTLWRD IICARDICOLLISTLSZICODE.INRDIERI  
IF IER.NE.Ol GO TO 1001  
GO TO  (99 1Ol102.103.1041, [CODE 

99  FLAGI4II.IRUE.  
GO TO  100  

C C  
CHANNELS CARD E  

lot CALL CIANEL I[CARDICOL.NCRICSEL.ICSETNCC9001 
FLAG(2)-.TRUE. 
NDIHNCA  

C  GO TO 100  

C CLASS NAMES CARD  
C  

te2 DOnO 1-1,20  
10 HEADII)ICARD(l) 

FLAG  31-.TRUE.  
GO TO  1OO  

C 
C 
C R0I'DSIZE CARD  
C  
103  LSI1  

CALL IVAL ICARD,1COL,IVECLSZ,10021  
NS-IVECI[1 
GO TO 100  

ENO CARD  

104 LSZfI  
CALL  IVAL IICARDICOL,IVEC.LSZP02) 
FLAGISI..TRUE.  
GO To 201  

£002 HRITE ttlOtll  
WRTEI16k IOII  
GO to  99  

C  
201  CONTINUE  
C  
C CHECK IF ALL CONTROL CARDS HAVE BEEN READ  
C  

To 250 1-1 5  
IF.NOF.FLIG(IllI GO TO 321  
GO TO 253 '  

321  WRITEI16,101336410131 WRITEI  
GO TO  99  

250 CONTINUE  
C 

WR TEI16, II  
WR ITE 6 ,1  
WRI E1161014  
WqITEI 6,1L41  

C WRITE110 10151  

WRITEI 610151  
C  

GO TO  u8O  
1001  WRITEtI6,101OO  

WRIE 6410109  
600  CON INUE  

FILE.  . . ACAP FORTRAN 81 

900  WRITE46,t0121 
WRITE(II610123  

- GO TO 999 
720  CONTINUE  
C  6 0 0 0 

C READ THE TOTAL NO OF CHANNELS AND CLASSES FROM THE STAT DECK'  
C  

C  
502 READIS501) ICRD  
501  FORMATtA4) 

ICROSQ=ICROSQJ*  
C  IFIICRD.EO.BLANK) GO TO 503  

GO TO 02  
503  CONTINUE C 
~~~602REWIND15RA F  

6 FICR.EqFQSCRD GO TO 601  
GO TO  602  

601  CONTINUE  
C  NUHIZCRDSQ-2  

DO56 ['1 pNUH 
REACT 503  

501 FORMAT IUA4,I8I  
506 CONTINUE  
C  
C 
C 
C 

RVADI5 SOS) NCLS NFLD SDI  
508  FORMAT I5.6XISt6X.I5l  
C 
C  

509  
C  
C  
C  

C  
612  
C  

C  
611  
C  
C  

NUH2SSOIM+  
DO 509 I=1NUMZ  
READ45,5O  
CONTINUE  
FIND THE CHANNEL SET  

DO 611 I- S1I0  
00 612 J.,NOI I  

IFiI.EQ.NCC(Jf)  

CONTIUE  

NCIKf.=  
11CIK  

CONTINUE  

ND=NDIH$*2  

THAT IS NOT REQUESTED  

GO TO 611  

NPtNS-1 i I ZE:NDIRe NDItL|1/2 
NS IZE, SDIMSD I TtI/2  

C  
NTS.NCLS*ISIZE  
NSm=NCLS*N0IM  
NSS.NCLS@ND 
NSA.NCLSONSIZE  
NSM.NCLS*SOIM  

0  CONTINUE 
CALL ACUTST tA EAAASIGNA EIA,HAMAA N SO:DELTA PPC VWVI,WV2. 

X RIM,R,0PR,4V,LL ,UL,W,bE, Z IQ, IN6X,NA6R,NC,NCC,  
2 HEAD) 

C  

I  

TP  
,. . .................................................................  

mailto:NSS.NCLS@ND
http:IER.NE.Ol


FORTRAN 81  
FILE . . . ACAP FORTRAN B 2 XPRIMINOhRINDI.QINOI PRINS) EVINDIMI LLINOI)MbULINDIM),  

FILE. . . ACAP 

3 WINCLS),EAINSAtCMANMi4),11N61M.NS) ,D&TIN CIS)  
C 3 (NC S A CIN MI  

SUBROUTINE ACEST  QENDIMI ,INDX(NIMINADRINSAIHEADII), SDIM  SUBRUTN AUTSTINTEGER*4  NTEGER*2 NCISpIM),NCC(SDIMI C PURPOSE  1W.1 0-0E14.eT12' INTEGER* 4FHTIA 3 PERFORM THE INITIAL TRANSFORMATIONS OF THE COORDINATES PRIOR  
14TEGER 4 NI /1  'E14.','1I'/ INTEGER:4FMT3I41 jO:/2N22, /' 0-11,11 /# 0/CC TO CLASSIFICATION ERROR ESTIMATION  

C C DESCRIPTION OF PARAMETERS  CC  cA - COVARIANE MATRIX ARRAY FOR THE SPECIFIED SUB CHANNE C  COMMON /CAPCOM/ NO 'DIMNS NCLS.NP,ISIZEKNTR C AA - AIREI COPY OF A USED IN INITIAL IATION 
COMMON /ACUCOM/ NT ,NTM,NSLNSA.NSM,SDIMNSIZEISKP 

DET - ARRAY OF DETERP NANTS OF EACH TRANSFORMED COVARIANC CDELTA - ARRAY OF CELL WIDTHS ALONG EACH FEATURE AXIS 

MATRIX 
C EV - ARRAY OF EIGENVALUES OF THE CURRENT CLASS C 

COMMON BLOCK VARIABLES DESCRIPTION EA - COVARIANCE MATRIX ARRAY FOR ALL THE CHANNELS CCMEAN VECTOR FUR ALL THE CHANNELS EMA - CSTORAGE FORSPACE EACH COVARIANCE MATRIXISIZE - IREQUIREDFORNT1lEAOD - ARAY DISPLAYING TITLES NLS - OFO CLASSNOUTE THURN INOX - POINTER ARRAY c NCLS - NO OF CLASSES - ARRAY OETERMINING THE CYCLIC STRUCTURE OF IP4XIQ  C NU - ENTIRE ENTRES OF A COVARIANCE MATRIX 
LL - ARRAY OF THE LCWER COORDINATES OF A CELL 

C NOIM NO OF UIMENSIO:NS IFEAIURESI HA - ORIGINAL MEAN VECTORS FOR THE SPECIFIER SUB CHANNEL 
C NS - NO OF CFLLS PER AXIS IN THE SAMPLING GRIDMAA - COPY OF MA FOR INITIALIZATION 
C NSA E CRE SPACE ALLPAED TO ALL COV MATRICES  USING LCHANC H - TRANSFORMFD MEAN VECTORS C NSIZE - CORE SPACE ALLOCATED FOP OflE CDV MAT USING SUBCHAC NADR - U-IWANTEO COVARIANCE MATRIX ENTRIES C  MEAN VEC USUNG ALL CHANNSM - CORE SPACE ALLOCATED TO ALL

C NC - COMPLFMENT Of NEC  NSS CORE SPACE ALLOCATED TO TRAN COV MATRICES C NCC - OESI.(O CIANNELSISURST OF THE TOTAL) C  SUBCHANc NTM CORE SPACE ALLOCATED TO MEAN VEC USING THE P - ARRAY REPRESENTING ONE CELL CENTER COORDINATESARRAY OF CLASSIFICATION ACCURACIES  C NTS CURF SPACE ALLOCATED TO COV MAT USING THE SUBCHAN 
C SDIM - TOTAL NO OF CHANNELS AVAILABLEC PR - ONE DIMENSIONAL PROBABILITY ARRAY C  

£ R OF EICENVALUES 
C Q - hCRK VECTOR 

-VECTOR  C 
cU - UPPER CCORUINATE OF A SAMPLING CELLC D -STANDARD DEVIATION ARRAY FOR THE CURRENT CLASS 

C 
C - THE RESULTING DISCRIMINANT FUNCTION
C V - ARRAY CCMPRISING PART OF H 70 FORMATIEHI) 

TI FORxATI/) NVI - WERK VECTOR 72 FORMATIf/I WVZ - WORK VECTOR 74 FORMAT(/f//I XPRIH : WORK VFCTOR  
C - ARRAY CCNTAINING THE COORDINATES OF EACH SAMPLING C 
C CELL 536 FORMATI3SXOANALYTIC CLASSIFICATION ACCURACYP 

REMARKS  537 F3RMAT149X,0CLASS ',2A41 
538 FORMATIIX,'SAMPLING GRID CHARACTERISTICSO ' I N5 FORMAT(IX,GRIO SIZE 13. CELLS PER DIMENSIONI  
540 FORMATIIX,'TOTAL NO OF CELLS IN THE GRIO" 18)  
541 FOMATII,'TRANSFORMEC FEATURE SPACE CH&RACIERISTICSO-) SUBROUTINE AND FUNCTION SUBPROGRAMS REQUIRED NE)  543 FOMAIOU3IPII 

4 
'l  

542 FORMATIIX,'EIGENVALIIESO XI 544 54 FORMATFORMAT IXIX '(IPEIICtEIGENVEC DRSO' 
)  

GMPRD, ADRESPMCEIGENDIAGGMTRA  
FORMATII PE12.4.3X)I 545 REDPE ARHGOA  I2EC TC A5HA6  0H 8ETR B6 IFLIRMA1Tr0 TRNFRMTO 4ETHOD6FORMATIIXWIRANSFORMED MEAN VECTORSO'  

EACH CLASS IS PROCESSED SEQUENTIALLY. THE PrHOGONAL 541 FORMATI25X,'P RN0 8 FT C I L  
CHA ANSF AtION THAT DECOUPLES THE FEATURE SPACE IS1FIRCA  CORRECT CLASSIFICATION*00*'UNDER 548 FORMATIZ5X*4***TOIIL PR6B OF  

DERIVED BY OBTAINING TME EIGENVECTOR OF THE CLASS C  TIT * PERCENT')ENTIRE SET OF STATISTICS MEAN VECTORS C CONCIDERATION. THE  549 FORMAT GAI- C AND CUVARIANCE MAIRICES ARE TRANSFORMED REULTING IN A  FORMAT IIX'ALL CLASS STATISTICS HAVE BEEN READ')0 550 £ DIAGONAL COVARIANCE MATAIX FOR THE CURRENT CLASS AND GENER  
THE NFW COORD NATE SYSTEM IS IGSNS9O IM C FORM FOR OTHERS.THE MEAN OF  CAt THE CURRENT PEAN. TIS PROCESS IS REPE TEO UNTIL THE  PNINI+NIN ENTIRE SET OF PUPULATICNS IS EXHAUSTED.  EN22+SM  

N3N3+5 =  C.............................................................................. IFINSIZE.LT.51 N3 NSIZE  
c  

SUBROUTINE ACUTST IA.EAAASIGMA EMAMAMAA,MTS DELTAIPIPC VtHV cZI-NI N2 6 F T2 ZI NZ NC, RC HADIFTIIN2NADR I4V,XPRI M R, PR EVLL,UL,W 6ET,Z,lQ ,IN X, 

C C  I THE M-A C LOCAL VARIABLES DEFINITION  , 

REALOA AINTSI AAINTSh.SICMAANSSIMAINTM) MAAINTM) TMSOINOIM C  

C1 DELTANOI~HItnPIN ,P INCL I)VINCL$)WV IN cIMe!VnI  ii, 
0 

http:IFINSIZE.LT.51
http:WINCLS),EAINSAtCMANMi4),11N61M.NS


FILE. . . ACAP FORTRAN B1  
C  
C  READ (5,PMI2I EMA  

READ IS,FIT3I EA  c wkITEIt6551O  

WRItEt 6.550) 
C 
C  

S SELECT THE REQUIRED SUBSET OF CHANNELSE  

C  DO 803 JCLSSI.NCLS  
C  

5MDS-IJCLS-L)SDIM  

DO 802 K01P41,SDIH 
00 801 J-1,NDIM  

C  
IFIKO A.EQ.CCIJ K Kt  
IFiKDMI.EQ.4CC(J II MAIKIUEMAIDS NCCIJI) 

C 
801 CONTINUE  
602 CONTINUE  
603 CONTINUE  
C 
C 

D 530 JCLS-INCLS  
00 530 KOI1,INOIN 

C 
MOS.IJCLS-I)*1)DII MtKDIM  
MAA (MOS I-MAMi)SI  

C  
C  
C OBTAIN THE ADURESS OF THE SELECTED ENTRIES INTO COVARIANCE MATRIX  
C  

EIDSuIJCLS-1)  
C  

CALL ADRES INADRNCSOIMNDIM)  

K-0  
DO 603 JCLS-1,NCLS C  

MOS-IJCLS-I)*NSIZE 
C  

DO 602 I-jNSIZE 
00 601 J-I*NSIZE  

C  
IFII.EQ.NADRIJI) GO TO 602  

C  
601 CONTINUE  
C  

IKt+L  
A(KIuEAIMOSI) 

C  
602 CONTINUE  
603 CONTINUE  
C  00 20 KDIHINTS  
C  

AAIKOIN-AIKDINI  
O CONTINUE  

381 CONTINUE  
00 628 I.1.NCLS PCI! )0. 
P" I I1lUE  

620 CNTHU  
ICNT-ICNTOl  

FILE. . . ACAP FORTRAN BL 

C TPCC-O. 

C 00 88 KNTR tINCLS 

C 
IRITE16,?0)WRITE(6,7zI 

C 
C RESET THE MEAN VECTORS 

00 321 JCLS-1INCLS  
DO 321 KDIMflN1I4 C  

MOS=(JCLS-1I)*NUII 
MAINDS+KOIhMIHAAIMDSKOIMI  

321 CONTINUE  
C  
C  
C PERFORM A OECOUPLING TRANSFORMATION ON THE CURRENT CLASS  
C 
C  

C 
C 
C 
C  
C  
CC TRANSLATE THE ORIGIN TO THE MEAN OF THE CURRENT CLASS  
C  

IFIJCLS.EQ.KNrR) GO TO 35  
C  

DO 38 KOIM-tNUIM  
0N011  

NOSnIKNTR-1 *NDII  
MAIMDS KDI PIMA(MDS*KDIMI-MA(NDS KDIMI  

C  
38 CONTINUE  
35 CONTINUE  
C  DO 36 KOIflINDIM  
C  
36 MAINDS+KOIMI=O  
C  
C  
C  
C ,na...*..
C  
C FIND THE REQUIRED TRANSFORMATION MATRIX  
C  
C  
C  
51 FORMAT(IX,4(IPEII.4.IXII 
C  

NDS.IKNTR-I ISIZEtl  
CALL EIGEN IANOSIFRtNDIMNV) c  
L-O  
DO 40 KOIM-1.NDIM  

C  

EV KDIMI-AINDS+L-1I) 
C  
40 CONTINUE  



FILE.  . . ACAP FORTRAN 81FILE.  . . ACAP FORTRAN 51 
WRITE(6,721 WRITEI6,5421  

RESET THE CURRENT CLASS COVARIANCE MATRIX WRITE16, 12 E  
WRITE 6,MTII EV  

C W ITE16 .54) 00  WR TEI6,5 4) 
0 901 KDIM-.1ISIZE  WRITE 6:721 C  WRITE16,FTI R C AINOSKDIM-I)AA(NDS*KDIM-13  WRITE(6:TI A  

C ~WRITE (6.74)  

901 CONTINUE WRITE 6,5461 
C  C 

WRITE 6,721 
$ WRITEI6,FMTII M  

C 
PERFORM DIE TRANSFORMATION ON COVARIANCE MATRICES  C RTt*4* * * C  C.*s.*.***.tflqr******.****.***, ****f ***..*.*t,.**....* .*...*.....*... 

START  ESTIMATION OF THE PROBABILITY OF MISCLASSIFICATION NCI NOtM  
NC 1N DIM  
NC2-NDIM  C  
MSA-.  99 CONTINUE  
MS8.1  CALL PMC (MISIGMAPPCEVZ SD.DELTA.WVI WVZV,XFRIM,W,R,  
IC0*0 I Q0ETINDXO Q, LUL,PR.HAD)  
00 TOI JCLS-I.NCLS **$$$t*t$€$$$*$ $*$$$ $$$$¢$$$*$¢$$  

C C  
KOS. JCLS-I)OISIZE t C CONVERT THE RESULTING PCC TO PERCENTAGE  
KSS JCLS-I)*NDtI  C  
CALL  iLAG R AIR SISIGMAIKSS),XPRIM,MSAMSB,NRINCINC2.ICO, CDH I  

C PCiKNTRI-sOO.*PC(KNTRI 
701  CONTINUE C  
C  WRITEII6,72) 
C  WRITEIIS6491 IHEADIKS*I, 3-1,2) 

49  FOIHATI2 XtCLASS *,2A4)  
WRMITE I6XP[L PERFORM THE TRANSFORMATION ON MEAN VECTORS  

43 FORMATCL;X,_--P ROBABILITY OF CORRECT CLASSIFICATION- %,FT.3,  
C ,RRITEII6.?2) CALL GMTRA IR.QNDIM,NDIM) , C  

NRI .NDIM  C  WRITE(6.547) PC(KNTR) NC I'NUIM  
Nc2' 868 CONTINUE  

DU 702 JCLS*I.NCLS C  
MUS JCLS-t ¢NL M+l  

NC N 2) C FIND THE TOTAL PROBABILITY OF CORRECT CLASSIFICATION 
CALL GMPRD IOMA(MUSIMOS3.NRINCINC)C 

0.M MB I N M S NR  

02 CONTINUE  $~e$e$*$e*$e$$*$$$$$$$$$$$*e$*$$$$$ 

C C D0 568 11I,NCLS  
C$$ee$$TH¢E$$$$$ OUTPUT ,$$$$$$$$$¢$$$$$$¢$$$ TPCC-TPCC.PC(I C  I CC 

PREPEARE THE PRINTED 0  568 CONTINUE  
C** $ e $ ***$ $$*$ $ $$TPCC-TPCC/FLOATINCLS) 

WRITE (b,4T C  WR TE 6NT KS.2* TRR  C  WRITEI6,12) WRITEI6,5361 
WRITE(6 74)  C  
WRITEI6 537) IHEAD(IKStIIZt12)  999 CONTINUE c  WRIT 16,74) cC 
WRITE 16.536) C 

C  C RETURN  
WRITE 16,721  END  
WRITEI6 5393 NS c  

C WRITEIt,??)  S  ....................................  ,.... WR ITE(6,540)lBS  I  

C E  SUBROUTINE ADRES  
WRITEI6 741  C  
WRITE16:5411  



FILE. . . ACAP FORTRAN B1 FILE. . . ACAP FURTRAN B 
C PURPOSE I C LL - LOWER COORD. OF A CLLL A 
c C M - TRANSFORMED MEAN VECTORS a 
c  FIND THE DESIRED SUBSET OF A COVARIANCE MATRIX C P - GRID PO NT VECTOR A C  PC CLASSIF CATI ON ACCURACY RESULTS A DESCRIPTION  OF PARAMETERS C PR - PRCHABILITY ASSOCIATED WITH EACH GRID CELL Ac  I C Q - WORK VECTOR -

£ NADR -ADRESS ARRAY OF THE ENTRIES TO BE DELETED I C R - EIGENVECTORS  A
NC ARRAY OF THE CHANNELS TO BE DELETED I C SO - CLASS STANDARD DEVIATION VECTOR  A 
SDIM TOTAL NO OF BANDS SUPPLIED  I C V - PART OF IHE DISCRIMINANT FUNCTIONS A  

C NDIM - DESIRED SUBSET OF SDI I C WVL - WORK VECTOR  A c  I C WV2 - WORK VECTOR A C REMARKS  I C W - DISCRIMINAT FUNCTION AAC XPRIM- WRK VECITR £  
C NONE  I C z - COGRD OF CELL CENTERS A 

I  A  
SUBROUTINE AND FUNCTION SUBPROGRAMS REQUIRED  C REMARKS  

C  CC NONE tC 4NNE AA 
C C AC METHOD  C SUBROUTINE AND FUNCTION SUBPROGRAMS REQUIRED A  
C C A 
C USING A 04L DIMENSIONAL STORAGE MODE FOR EACH COVAR ANCE I C DIAG. GRPROB, MINV A 
C MATRIX IN AN UPPER TRIANGULAR FORMaTHE PARAMETRIC A RESSES C A 
C FOR EACH ENTRY IS DERIVED AND USING NC ARRAY THE LOACTION OF ; C METHOD A 
C ALL THE ENTRIES THAT LIE IN THE UNWANTED LINES AND COLUMNS C A 
C IS COMPUTED AND STORED IN NADR i C THE PRIMARY INPUT TO THIS SUBROUTINE IS THE TRANSFORMED A 
C  I.C PEAN AND COVARIANCE MATRICES. THE STRUCTURE OF rHF SAMPLING A  
C........,.......... ...... ,.,........,• ...,.*,............ 0 C GRID IS DETERMIND BY COMPUTING THE CELL WIDTH ALONG EACH A 
C C DIMENSION AND THE COORD OF THE CENTER OF EVERY CELL TIRDUGHOUA  
C C THE GRID. THE ENTIRE GRID IS SCANNED AND NCLS DISCRIMINAT A  

SUBROUTINE ADRES (NADRNCSDIM,NDtI) I C FUNCTION IS CALCLLATED FOR EACH CELL. USING MAXIMUM LIKELIH A  
INTEGER*4 NADRAII.PDIHSDII 030 RULE A CELL IS ASSIGNED TO EITHER THE CURRENT CLASS OR A CUTSIDE(NEED  NOT KNOW EXACTLY WHICH CLASS). SUBROUTINE A 
INTEGER*2 NC II i C GRPROB CALCULATES THE HYPERVOLUME JNDER THE POF AND OVER THE A  

C C GRID CELL. AFTER ALL TIHE POINTS ARE EXHAUSTIVELY TESTED THE A  
PDIM-SDIM-NDIM C ELEMENTARY UNITS OF PRUBABILITY ARE SUMMED AND STORED IN THE A C  C PC ARRAY AND RETURNED TO THE CALLING PROGRAM. A  
IFIPDIH.LE.0 GO TO 100 C  A 
DO 20  Jt1,PDIM C.........................................................................A  
NI-.NCIJ) C  A  
DO 1O  I-k,N1 C A 
K=K+1  SUBROUTINE PMC (MSiGMAP.PCEV ZlSDDELTAWV1,WV2VXPRIM.WR, A  
NADRIKIaINC(JI*(NCIJ)-1I/2I+I  I QDET.INDX IC.LLULPR,HEAI A  

10 CONTINUE C  A  
20 CONTINUE C A  
c 
C  C A  

DO 45  J-IRDIN C LOCAL VARIABLES DEFINITION A  
NFINSDIM-NCIJ)+] C  A  
DO 35 L-.NFIN  *  

C  C A  
K-K+  REAL MIl LLIIIULIIIPRII) A 
NADRIKII (NCIJI*I-1)4P4CIJI+I-21/21NCIJ)  I SIGMPIlv,WeIII ,ZNDMWVilI),NSISilIIDELA i AA 12  LI C  
WRITERI6 2331 K NADRII(  1PIhCwW ,D iII 2 'It iliWV2(  A 

533  FORMAt(2ZIS.X)5 3 XPRIMINDiMiWIilg1.rt ,VI A  
35  CONTINUE C A 45 CONT1INUE jINTEGER*6 GSfIEADEIIIQII),INDXfl) A  
C c A 100  RETURN COMMON /CAPCON/ ND.NDIMNS,NCLSNP.ISIZEKNTR A  

END C A 
C  GS-NS**NDIM A  

ICD-l  A  
C......................................................................... C  A  
c  C A 
C SUBROUTINE PHC C A  

C PURPOSE C A  
C  C FIND THE VARIANCES ALONG EACH FEATURE AXIS A C TO COMPUTE THE PROBABILITY OF HISCLASSIFICATION OF THEC A  
C CLASSES C*A****************** #*** **t *** A C  A 

DESCRIPTION  OF PARAMETERS DO 706 KDIM-INDIM A  
C  C A  
C  DET - DETERMINANT ARRAY FOR EACH COY MATRIX SD(KOII='SCRT EVIKDIN|i A 

DELTA- ARRAY (F SAMPLING CELL DIMENSIONS C A 
EV - EIGENVALUES 106 CONTINUE A 
HEAD - HEADER ARRAY  A CNDX - POINTER ARRAY C  A 

http:XPRIMINDiMiWIilg1.rt
http:ZlSDDELTAWV1,WV2VXPRIM.WR
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C 
C INVERT THE TRANSFORMED COVARIANCE MATRICES  

£  
C 

DO 70T? JCLS-l NCLS 
KOS IJCLI-I*ND*j
CALL MINV (SIGMAtKOSI,NOIN.OETIJCLSIWYIWVZ  

70? CONTINUE 
C33 FRMATIIX 3 IPE I .12 x I 

32 FORMATIIXw2ILPEIZ. I 
C c2 
C 
C SAMPLE THE FEATURE SPACE BY A BINOMIAL APPROX. TO NORMAL D.F. 
C 
C 

C 
FIND THE WIDTH OF A SAMPLING CELL ALONG EACH DIIENSION C  

C  

C  
00 44 KDIMS1,NDIM  

C  

OELTAIKDINI.2.*SD(KDIHI/SORTIFLOATINPII 
44 CONTINUE  
C  
C  
C  
C FIND THE COORDINATES OF EACH AND EVERY SAMPLING CELL CENTER  

*.4,*. **e***.e*n***ee****.*..***************************  

C  

Da 30 KDIM=j.NDIM 
DO 30 1- C00  

ZIKIMII=2.*SDIKDIMI*IFLOATI I-I-NPI2) /SRTIFLOATINPII  
C  
30 CONTINUE  
C  
C C 

CUADRATIC DISCRIMINANT FUNCTIONS C* CALCULATE THE  
C  

£  ICNT'O  
C  

00 404 KDIM=INDIM  
C  
404 INDXIKDIPII C  

99*99* **********fUDO  
C  

,s.*.t*.*****,***t***********  

C PERFORM A ONE-TO-N DIMENSIONAL MAPPING OF POSITIVE INTEGERS  
C  

DO 520  

C  
I1II-NS**(NOIM-11  

2O  CONTINUE  
00 I2O J.IGS  

C  
IFIJ.EQo1 GO 70 30  

FILE. . . ACAP FORTRAN Bt 

DO 12Z KDIM-1NOIIM  
C  

IFII'.OOlJ 1 IOIK(DINI I.EQ.OI INDXtKDIIII-INDXIKDIMI41  
IFIINOX(KD[I.GT.NS INDXIKOIK  

C 
122 CONTINUE  
A$ CONTINUE  
c  
C  
C  

CJIPLETE THE DISCRIMINANT FUNCTION CALCULATION  

00 124 JCLS=1.NCLS  
00 126 KOIM-INCIM  

C 
NDSs(JCLS-I*NOIM  
PiMfS*KDIMI-ZIKOIMINDXIKDIMI)-M(MDS*KDIMI  

126 CONTINUE  
12C 04IU DO 128 JCLS-1.NCLS  
C  

MKS- JCLS -l*ND+1  
lISA SO  
MSB-O  

CALL DIAG (PIMOS)iSIGMAIKOSIVIJCLSI.XPRIM.MSAMSB.NR1. C  

WIJCLSI-V(JCLSItALOGIDETIJCLSI 
C  
128 CONTINUE  

C C4ECK THE CONDIKION FOR CORRECT CLASSIFICATION  

C  
C  

134JL=INL  
C JCLSINCLS  

IF(W(JCLSI.LE.TERMI TERMWIJCLSI  
C  
134 CONTINUE 
C **********t************c********************#**************9**  

+  

E FIND THE ELEMENTARY UNIT OF PROBABILITY  
C  
C  

IFITERM.NE.W(KNTH)I GO TO 120  
ICNT-ICNT*I  

CALL GRPROB IINOXDELTASfhNSNDItZ.PRLLULI  
c 
855 CONTINUE PRP I.  

710'P [H-I ,NCIM  

C PRP-PRP*PRIINOXIKDIMII  
c  
C Cl0NOIM  

PCIKNTR).PCIKNTR I*PRP  
C  

120 CONTINUE  

RETURN  
END  

C**  

http:IINOX(KD%5BI.GT.NS
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FILE. , . ACAP FORTRAN BE  

C C  A C REMARKS  
C SUBROUTIN GRPROB rA. NONE  

A PURPOSE  C SUBROUTINE AND FUNCTION SUBPROGRAMS REQUIRED A, COMPUTE THE GRID PROBABILITY C  A; C IPRO.GMPRD C  
DESCRIPTION OF PARAMETERS ASUBROUTINES  TP AND GMPRO ARE USED IN SECUENCE TO A' £ PERFORM HE TRANSPESITON AND MULTIPLICATION. T 

C DELTA - GRID CELL DIMENSIONS  A'  
C INOX - POINTER ARRAY  
C LL - LOWER COORD OF A CELL  At 

A C . . ...... ............ . 

C MS - No or CELL PER DIMENSION 
c NtMN - NO CF SELECTED SUBSET CHANNELS 

A C 
C PR - PROBABILITY ARRAY AROUND EACH CELL A C 
C So - STANDARD CEYIATICN VEC TORt  A; C SGAXRMMAMBN1NINZIDN 
CU -ULUPPER CUORD OF A CELL A[ SUBROUTINE DIAG EQ X SIGHAAXPRI)MSAMSBNRINCINC2,ICD#NI  
C_ - CELL CENTER COORO ARRAY At REAL Q 7X(II,SIGA I),XPnI  

REAK  A' 76 F0RMATI1 IF5.261X))  
At IFIICO.EQ.O) G TO 55  

i  REMARKS C NONE Ir NRI-N 
C Al NRI-N 
C SUBROUTINE AND FUNCTION SUBPROGRAMS REQUIRED  Ar NC2-N  

Al C 
CEFAl  55 CONTINUE C ERF LtE 100 55  CALL TPRD IQ,XXPRIM,NR1,NCI.MSA,MSB,NCZ)  

C THE NORMALIZED CLASS DENSITY FUNCTION IS INTEGRATED OVER A!IFICDEQO GO TO 121  
HYPERVOLUME WHOSE SIZE IS DETERMINED BY 'DELTA'. A( E A NRLs1 

C Al NCI.N 
C ..................................................................  A NC2-1 Ai C C  

Al 121 CONTINUE  
SUBROUTINE GRPRCB IINOX.DELTASDNSNDIM,Z,PRLLUL) Al CALL GMPRO IXPRIMQSIGMANRINCINC21 CA RETURN  
REAt*4 Z(NOINMSOEAI)Pl) O ) A!RTR c END NSETINTEGERIINPRI.SOILLII),ULII)Al XI T  

E A [  C 
00 100 KEOIflNOIM  At C SUBROUTINE GMTRA  

A! C  

A( C PURPOSE  
ULIKDIN)L(KDIMINDXIKDIMI tALTA(KDIN 2.  C TRANSPOSE A GENERAL MATRIX  
LLIKOIN)ZIKDIINPXIKOIMI)ODLKDIMI ;2. C  

A[ C USAGE  
ULIKDLIM)ULIKIH)fSD IKOII A(  C CALL GHTRAIA.RNM)  
PjIINXI OIM)I).Q.SOERFIULIKDIM)/SQRTIZ.)I-ERFILLIKDIMI/SQRTIA  C DESCRIPTION CF PARAMETERS 
. 1 C A - NAME OF MATRIX TO BE TRANSPOSED

A(  R NAVE OF RESULTANT IATRIX  
A  C N - NUMBER OF ROWS OF A AND COLUNS OF R0O CONTINUE  
AI  H NUMBER OF COLUMNS OF A AND OdS OF R 

RETURN At £  
END A C REMARKS,  N THE  SAME LOCATION AS 2 MATRIXRMA TR ICE S ACANNOTAND R MUBE T BE STORED AS GEINNERAL MAT R CES.  •,, , . . . - o , , . . . . .o * , , . . ., , , , , , , ~ ~ ~ o A( 

c 
cA[  AAl CC SUBROUTINESNONE AND FUNCTION SUBPROGRAMS REQUIREDSUBROUTINE OIAG  

C PURPOSE AC C NON  
C TO PERFORM THE FOLLOWING OPERATION. tQTRANSPOSEI*X*IO1- At CTROD  

TRANSPOSE N BY K MATRIX A TO FORM BY N MATRIXRC U 
SA,MSBN,NCI,NC2,IC,N.RCN CA A ..................................................................CALL DGXSR,IAG I,X,SIGPA,XPRI  

Af C) 
DESCRIPTION or PARAMFIERS  A( SUPROUTINE GMTRA(AR.N,M 

CQ -THE FIRST MATRIX A[ DIMENSION Aillyftill  
S -THE ECOND PAIR IO A  
SIGMA -TIHF OUTPUT PATH IX A' IRDO MSA  -FLAG FOR TIlE STORAGE MODE OF FIRST MATRIX Ai D0.0 1-1,N 

c mSs -FLAG FOR THE STORAGE MODE OF SECOND MATRIX  At IJ-N 
NRI  -NO OF ROWS IN THE FIRST MATRIX At 00 -IM  

-NOFIRST MATR X A( JNAJ+N  
NCE -NO OF COLUMNS IN THE SECOND MAT4IX  A[1 ReI RR1 

c ICO -FLAG TO BESET NA AND NC PARAMETERS A( ORIR-|J  
C 4 -NO OF DIMENSIONS AC  
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RETURN 
END 
................................................................. 

80 CONTINUE 
90 IR-IR*I 

RETURNE 
N 

D 

C 
C 
C 

c 
C 
C 
C 
C 
C 
C 
c 
C 
C 
C 

c 
E 

SUBROUTINE TPRD 

PURPOSE 
TRANSPOSE A MATRIX AND POSTMULTIPLY BY ANOTHER TO FORM 
A RESULTANT MATRIX 

USAGE 
CALL TPROIABRNM.MSAMSBL) 

DESCRIPTION OF PARAMETERS 
A - NAME CF FIRST INPUT MATRIX 
B - NAME OF SECOND INPUT MATRIX 
R - NAME OF OUTPUT MATRIX 
N - NUMBER OF RCWS IN A AND 6 
M - NUMBER OF COLUMNS IN A AND ROWS IN R 
MSA - UNE DIGIT NUMBER FUR STORAGE MODE OF MATRIX A0 - GENERAL 

I - SYMMETRIC 
C 
C 
C 
C 

2 - DIAGCNAL 
HSB - SAME AS MSA EXCEPT FOR MATRIX B 
L - NUMBER OF COLUMNS IN B AND R 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C
C 
C 
C 
C 
C 
C 
C
C 

REMARKS 
MATRIX R CANNOT BE IN THE SAME LOCATION AS MATRICES A OR B 

SUBROUTINES AND FUNCTION 3UBPROGRAMS REQUIRED 
LOG 

METHOD 
MATRIX TRANSPOSE OF A IS NOT ACTUALLY CALCULATED. INSTEAD. 
ELEMENTS IN MATRIX A ARE TAKEN COLUMNWISE RATHER THAN 
ROWWISE FCR MULTIPLICATION BY MATRIX B. 
THE FOLLOhING TABLE SHOWS TilE STORAGE MODE OF THE OUTPUT 
MATRIX FOR ALL COMBINATIONS OF INPUT MATRICES 

A B R 
GEERAL GENERAL GENERAL 
GENERAL SYMMETRIC GENFRAL 
GENERAL DIAGONAL GENFRAL 
SYMMETRIC GENERAL GENLRAL 
SYMMLTRIC SYMMETRIC GENERAL 
SYMMETRIC DIAGONAL GENERAL 
DIAGCNAL GENERAL GENERAL 
DIAGCNAL SYMMETRIC GENERAL 
DIAGONAL DIAGONAL DIAGONAL 

................................................... 
SUBROUTINE TPROIAB,RNMMSA.MSBSLI
DIMENSION AlI).E9(1,RIII 

C 0 

SPECIAL CASE FOR DIAGONAL BY DIAGONAL 

MS-MSA*IOtMSBIFIMS-22) 30.10.30 Z 

20Do0 

RETURN 
MULTIPLY'TRANSPOSE OF A BY B -

30 !R-l 
DO 90 K-1.L 
DO 90 J-I.M 
RIIRI.3.O 
IF(MS 40160,40 

40 CALL LOIIJIAN:M:MSAI 
AL LOCIIAKiBNL.NSBM lA) 50, 3,50 

so6 IF 1B 1 TO 00'70i 

60 ANIJ?1B-NO RIKTel1 
10 RI-RI.R(IRS.AIIABIIBII 

0 
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£  
SUEVSRFRTEETMTRINTEGtR'4 SUPERVISOR FOR THE STRATIFIED POSTERIOR CLASSIFICATION ACCURACY ES T I M A TOR  

CWRITTEN 01/24/78 0. J.  
C 

AENDED 10/3178 B. G. MOBASSERI  

DESCRIPTION AND PURPOSE 
C cH THE STRATIfIED POSTERIOR ESTIMATOR - SPEST- IS SIMILAR TO TH 

ACAP PROCESSOR IN PURPOSE. IT PROVIDES A SET OF CLASSIFICATIO  
ACCURACY ESTIMATES FOR A BAYES CLASSIFIER WHEN T14E POPULATION  
STATISTICS ARE MULTIVARIATE NORMAL. ALTHOUGH THE ALGORITHM  
E1MPLOYS THlE LIK~LIHO0 PRINCIPALf IT DIFFESDECOE  
BY USING A RANDOMLY GENERATED DAfA BASE. FURTHER DETAILS ONC  
THE THEORY CAN BEFOUND IN THE LARS FINAL REPORT,NOV 30 .1970  

cNCSEIIIB C DESCRIPTION OF CONTROL CARDS  
c C aSPEST  
C  

THIS CARDS SPECIFIES THE PARTICULAR PROCESSOR REQUESTED C C  
CHANNELS  

THE DESIRED SUBSET OF THE AVAILARLE CHANNELS IS GIVEN HE C  THE NUMBERS APPEARING IT IS* IMPORTANT TU REMEMBER THAT  
THE ORDER OF THE SELECTED CHANNELS NOT C ON THIS CARD IS  

THEIR ACTUAL NUMBER. FOREXAMPLE, IF THE AVAILABLE c I ARE REQUE c CHANNELS ARE 0,9,12, 4 AND CHANNELS 0,9 AND  
C THI'S<CARD SHOULD READ L,2,4.  
C  
C CLASSES  
c 
C 
c 
C 

C 
c 
C END 

E **0 STAT 

2 REMARKS 

THIS CARD SPECIFIES THE NAME OF EACH CLASS. EACH NAME  
MUST BE PLACED IN A FIELD 7 CHARACTERS LONG FOLLOWED 
Y A BLANK. THE CONTINUATION CARD , IF REQUESTED MUST, f 
E THE NAME 'CLASSES' IN THE BEGINNIG FCLLDWED BY THE  
REST OF THE NAMES.  

C  

SIGNALS THE END OF THE CONTROL CARDS  

QECK FOLLOWS IMMEDIATELY. MUST BE IN CHARACTER FORMAT  
REMARKSFLAG013-.  

C THIS PROGRAM IS CURRENTLY CAPABLE OF PROCESSING UP To 20  
c CLASSES AND B SPECTRAL BANDSE  

HOW TO RUN THE PROGRAMFLAG4.TRUE.  
THEPRG  

C P GETDISK DHSYS' TO ESTABLISH THE PROPER LINKS.THE REI  
THE CONTROL CARDc FIE CONIAIKS ONE DECK CONSIST NG OF R L  

AND LARSYS'STATISTICS DECK. TYPE SPEST FOR THE PROGRAM' 
EXECUTION.PE CONTL CR ST UP 

ED 

C 
C 

#SPEST 
CHANNELS I 
CLASSES BAAE OI CORN 
END 

PASTURE WHEAT 

C.*,.9t$#** ,,*,**.tt****Q,***t#**#Q ~250 

20) COV(36 201 REALM4 PR(2O),PHI. 2iZO)PI20) AMIB  
REALM OPZO') COVTf GA 8, DeT|OCOVINC.2O) 
RALt44)Yin) DL COVU 8 PM SDETIOI (1201 

0AITEIE,IO REAL EXAMB, XCOV 3Lzh -REALe ,  

SPEST FORTRAN 01  

D2)  
FILE. . . 

REAL#4 ICSET (901  
INTEGERS', NAOR(720),HEADI2D51  

LIST(41 1'*5PE 'CHiN', 'CLAS' ,'ENDI/ I V E C/lLIARD S"C  
2 BLANK/ */FSTCRD/'LARS'/  

- - ,IECU ICAOdO 

INTEGER2 ICSEL(3OI,NCIJOI NCC(O) 
tIERSA LOGICAL;I FLAGI4I/4*.FALSE./  
COM MON /SPCOH/ NTHNTSISI ZENSIZE.NSA.SDIMNDIM  

11 FORMATI// R CHANE EXECUION EMINT .0I  
1Ola FORHAIIXTERR0R IN CTLWRD EXECUTION TERINAT D.'I  

10X2 EJMA CHANEL. EXECUTION TERMINATED') 1X'ROR 1013 FORMAT IX 'MISSING CONTROL WORD. EXECUTION TERMINATED$I  
1014 FORNAT(LX,'SPEST PROCESSING STARTED') R1A5Et.IFORHATII)X tALL CONTROL CRSHV ENRA  
O15 *FORHAII'ALO NTROCRSHE BEEN EAD')  

CONTROL CARDS 

C  
DO 777 1I1,30  
ICSEL(II0  

TTTST77CONTINUE  

C 
77 D 7CSE7I-50000.O 77 Ceil-00.  
100 CONTINUE  

LSL-4  
IERDO  

c  
C  
CALL CGLWRO TICARDICOLLIST0LS01ICOOE.INRDZERI  
IFIER.NE.O1 GO TO 1001  
GO TO 199 101,102,103) , ICODE  

99 FLAGIIo.RUE.  
GO  

C  
C CHANNELS CARD  
C  
101 CALL CHANEL (ICARD,KCOL,NCR,ICSEL,ICSET,NCC,900) 

FLAGICTRUE.  
NDIM' NCR GO TO 100  

C CLASS NAMES CARD  
10 DO 10) 20R  

TRUE.  

GO TO 100  
N END CARD  

0 0 UE 
C  

201 CONTINUE  c  
C CHECK IF ALL CONTROL CARDS HAVE BEEN READ  

DO 250 1 "'  
IF.NOT.FLGIII) GO TO 321  
GO TO 250 - 

WRITEI 6,10L31  
GO TO 999  
CONT INUE  
WXITE 16,11)  

WRITE 16,1C141 
WRITEI 6,10141  

- 15 .  

0 

http:IFIER.NE.O1
http:DeT%7COCOVINC.2O
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WRITEI 6'IO151  
C  

GO TO 680 1001WR TE3  
OWRIE 6T 1000 GO To 999  

680 CONTINUE  
C  

GO TO 720  
900 WRITEI6tO12) 

WRITE(16.10121 
7 0TO 999  

720 CON TINUE  
C 
C***..*.*********4*********f*****l****************************** 

READ THE TOTAL NO OF CHANNELS AND CLASSES FROM THE STAT DECK  

501 FORAT A0I  
5 I kOSMA COS4 t 

ICCDSO ICROS~t 
IFIICRO.EQ.BLANK) GO TO 503  
GO TO 502  
REOIN 5  
REWIND 5 

602 READ S l ICRD  
IFIICR6.EQ.FSTCRDI GO TO 601  
GO TO 602  

601 CONTINUE  
NUNI CiDS0-2  
005061.1SNUN  

KEAO(5 NUl  
501 FORMATIBAA,I8  
0b CORMTNU  

C  
READ(5 508) NCLSNFLO  

08 FORMATI15,6X I5, 1X- NS  
MNNDIM  

NU2 SD NUMZ 
E 09 ,0 

HEADI5Sul0  
509 CONTINUE  

FIND THE CHANNEL SET THAT IS NOT REQUESTED  

C 
DO 611 I=I SDIK  
00 61 J l.NDIM  

C  
IFII.EO.NCCIJ33 GO TO 611  

C  
612 CONTINUE  
C  

NCIKI-I C  
611 CONTINUE  

ISIZE-SDIM* ISNIM*lI/  
ISIZE4DSIMI NOIM*1/2  

C  
NTS-NCLS*1SIZE  
NTM-NCLS*NDIM  
NSS-NCLS*ND  
NSANCLStNSIZE  
NSM-NCLS*SOIR  

NCT * N9(N*I)/2  
00 21 12 PII-I.FLQAT(MI  

FILE. . SPEST FORTRAN4 a1 

C  
C CALL MCOVPINAMIIIICOVIIII) 
30 ENTI . T O(M ALL SPESTM(MNPHZ PSAM.COV.PRPCQPICOVTGAMO ET COV!N  

Y.TEI.DELCOVU,PX.SUETNAURNC NCCEXAtEXCOV. 2 HEAD;  
C  
C  
C 
C  

PC.IOOS;PC  
WRITEI6,6OIPC 60 FORMAT(///30XOVERALL PROBABILITY OF CORRECT RECOGNITION =,F1  
1.3) 

999 STOP END  

C ............................  
SPEST IS AN ESTIMATOR OF THE CLASSIFICATION PERFORMANCE FROM A  

GIVEN SET OF STATISTICS FROM M CLA SES THE ESTIMATOR IS A  
C STRATIFIED POSTERIOR ESTIMATOR (REF. WHITSITT AND LANDGREBE). 
C THE PROBABILITY DISTRIBUTIONS APE ASSUMED To OF MULTIVARIATE 
C GAUSSIAN 
C 
C 19 JANUARY, 1918 £.........................................................  

SUBROUTINE SPESTMIMN PHI PtAMCCOVPR0PCQP COVT.GARDET -COV.-
0 COUPSETN ,CCM AEXh  

2 H&r  
INTFCER*4 NADR(NSA);SCIM 
INIEGER:4 FMTI(4 / (2X,'* 00 E14% 171/1  
NIEGER 4 FMT2 A /'(2X,',' O : E1:, 71  
4ITEGER*4 NL/I 0- N2/6 0/ 

REAL*. QPIMP M, .PRiI).EXA4(SDIMM) rKCOVINSIZMI.COVTtISIE) P  
REAL*4 GAMfl MI PHI(NNI OtCTIM),COVINIISZEMI  
REAL*" YIN) EI t) ,nELIN dOVUIN.N)  
REAL*4 AMIN M) HEADI2O),COVIISIZEM) 
REAL*8 PXMIIH COE'I SDETIMIRETAZO.LI,Z2,z3 INTEGER*2ONSPCO# NC!3)NCCN30)"II NC1 IE,NSIZCNSA,SOIK,NOIM  

C MMON /SPCO/ Noi $s  
C - - - - -.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C  
C LIST OF VARIABLES  

M - NUMBEA OF CLASSES CC N - NUMBER OF DIVENSIONS  
C PIl - APRIORI PROBABILITIES OF CLASS I  
C PRI I ' CLASS CCNOITIONAL PERFORMANCE  
C PC * OVERALL PERFORMANCE 
C AM, J : PEAN VECTOR OF CLASS  
c COV(JI CIVARIANCE MATRIX OF LASS STORED IN UPPER TRIANGULAR  

C FORM) 
C  
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C  
C  

C  
C READ IN THE MEAN VECTORS AND COVARIANCE MATRICES  

C  
NI-NISOIM N22*  

C IF(NSIZE.LT.5I N2-NZ+NSIZE  

FMTII2)-NI 
FMT212l-N2  

C  
00 30 I-I,M  
READ I5,FMT1I IEXAMIJ.Il JflSDIMI  

30 CONTINUE  
C  

-DO 311.4 READ (5,AMFZIEXCOVIK,I K-INSIZE)  
CONTINUE  

H  
H  

http:IEXAMIJ.Il
http:IF(NSIZE.LT.5I


FILE.  . . SPEST $ORTRAN 81 

C  
C  

SELECT THE AEOUIREO SUBSET OF THE CHANNELS  

DO 803 JCLSfI.M  

C  K=O  
CKOC  DD 802 KOIM.ISDIM  

Do 801 J1,N  
c  

IFIKDIM.EQ.NCC(JI) K-K ) 
IFIKDI.EQ.NCCI JI) AM(KJCLS)-EXAM(4CCIJhJCLS)  

C  
801  CONTINUE  

CONTINUE 
0 CON|itNU  

C  

C  
C OBTAIN THE ADDRESS OF THE SELECTED ENTRIES INTO COVARIANCE MATRIX  
c C  

CALL ADRES INADRNCSDIMNDIF4)  
C  

c=O  
DO 603 JCLS=IR  

K0  
c 00 6021 "NSIZE  

Do 601 J a1NSIZE  

C IFII.EO.NADRtJ)) GO TO 602  

60 CONTINUE  SZ3  
K=K  
COV(KJCLSI)EXCOVIIJCLS) 

C  
'602 CONTI NUE  
603 ONT NUE  
C  
C  I=9;79j3  

NCT * N*INOII(  
C  
C COPPUTE EIGENVALUES AND EIGENVECTORS FOR EACH MATRIX  
C *170 MV - 0  

EPS - 1.OE-6  
DO lOO' J.11 0  
00 5 5 1 L, N T0  55  CDVTI G. COVIII.1,I-toJ)5Y11vl 
CALL EI EN(COvrtPHIII.,IJIN0MV 
L o.0  
00 60  I *i.N  
L L4I  

60  G$(1IJI COVTI)  
c  
C COMPUTE DETERMINANT AND INVERSE OF EACH MATRIX C  C0 65 I. ,NCT  

65 COVTCI) - COV(ICIJC 
ALL SMINVICOVI NODETIIJI,MV,EPSIER) 
FItE)I00 060  

70  CONTINUE  
SOETI!) - S RTIOET(IJ)I  
DO 7 5 lulNC.  

75  COVINi JI - COVTIII 
100  CONTINU  

MV - 0  
00 105 I-, R  

10s  gpd0u5o.6M  
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C LOOP ON CLASS ICL  
c  PC a0.0  

00 500 ICL-I,N  
c  AVE - 0.0 

C LOOP ON THE NUMBER OF SAMPLES C  
NS - 1000 DO 300 IJINS  

C  
C GENERATE Y VECTOR FROM CLASS ICL  
c  

D 1l1 1IN  
CALL RANOUtIXIYXP  
IX -aY  
CALL NDTRIIXPY(I),XDIERI  

e CONTINUE  

C COMPUTE CONDITIONAL PROBABILITIES FOR EACH CLASS  
C  

DO 200 JCL-4  
IF(JCL .EQ. ICLI GO TO 180 DO 130 itqL,NTEII) - 0.0  
DELFl) - AHIIICLI - AM(I.JCLI  
00 130 Jll  
TEI? -4T1 II) S1RT(GAMIJ.ICLW0YIJ)'PNIIJJICL) 

130  CONTINUE  

00 140 I-i1N  
DO 140 J I 
JJ - JJ * [  
COVU(Jti) - CUVINIJJ JCLI COVUI  ,JI - VIN JJ:JCL  

140  CONTINUE 1 - 0.0  
Z2 - 0.0 - 0.0  
DO ISO I'1,N  
00 150 J.hN  
Z~lI ZI - o5*TEII)*COVUIIJ)*TEI(J) 
Z2 • 22 - TEIIICUVU(IJIJ)ULIJ)Z3 3- o*OELIICOVUIhIDELJ)  

150 CONTINUE  
ZSUM - Z1 + Z2 + Z3 
IF(ZSUN .LT. -1OO) GO TO 190  
BETA - P(JCL)*1.O  
PXIJCL) - BETA'*DEXP(ZIZ2+Z3)/SOETIJL) 
IFIPXIJC) .EQ. 0.0 WRITE 116.919 ICLJCL.ZSUMSOET(JCLIPXJ(UL  
CNIU GO TO 200  

180 COUTINIJE  
ZO - 0.0  
DO 10I- O.5*(N  

185 CONTIUE,  
IFIZO  .LT. -100 GO TO 190  
BETA - PIJCL)*1.O
PXJCLI * BETA'*OEXPIZ)/S ETIJCLI 
IFIPX(JCLI .EO. 0.0 WRI1E16919) ICL.JCLZOSDET(JCLIPXIJCLI 
GO TO  2OO-

190  PXIJCLI * 0.0 
200  CONTINUE 919  FORMATi5X,215.3EI2.4)  

C  
C CHOOSE THE LARGEST  

B DIG 2  -0O0  
DO 220 I 1 I  
IFIPX41I .0T°  BIG) LOC XII) 

2 ONT  
220 ONTINU  

DEN -'0.0  
DO 230 1-I04  
DEN *  DEN * PXIII 

http:gpd0u5o.6M


FILE. . . SPEST FORTRAN Bi 
FILE. . . SPEST FORTRAN 51 

NADRjKI-(NCIJI*INC(J)-1I/2I+i P 

AVERAGE 
230 ~ ONTIUE 

C 
CONINUEP 

DO 45 J-,PDIM P 
C NFINSSDI M-NC[JI 

QP( OC) - OPILOCI + PIICLI*Q/P(LOC) DO 35 I-INF N 
300 CON 
500 CONII NUE K-K*1 

HRITE(6.)536AR).INCIJI+-I)*(NCiJIWRIrECA 536) I CONTINUE 

36 FDRATIS STRATIFIED POSTERIOR ERROR ESTIMATORS) 45 CONTINUE 
FORMAT(IIll :EN 
00O510 ICL'I 1 100 RETURN 

,~IL: PPIICLI/FLOAT(NSI END 
PC . PC * P(ICL)*PR(ICL)
RITE(6,72) 

T2 FORMAT(///I
DSPL2*ICLWRITE(b >37)C(HEADIOSPL+I),1-1,21 

537 FORMAT I9XCLASS ,2A4) 
C PCPR-|O1.*PRIICLI 

WRITElb.82)
82 FORMATI//)

WAITEb1,4821) PCPR 
482 FORPATI2SX,'P R 0 B A B I L I T Y f F C 0 R A E C T C L A S I 

INFIC A 7 I U N -S %FT.300)
510 CONINUE 

RETURN 
1000 WRITEI6 IIOOIIER 
1100 FORHAT(IOXO*0*INVERSION ERROR1 ,12,)1***')

RETURN 
END 

C........................................................................I 
C 
C SUBROUTINE ADRESC 

l 

|-21/2|+NC4I 

P 
p 
p 
P pP 

P 
p 

PURPOSE -c 

FIND THE DESIRED SUBSET OF A COVARIANCE MATRIX 

DESCRIPTION OF PARAMETERS tCT) 

C 
C 

Cc 

NAD - ADDRESS ARRAY OF THE ENTRIES TO BE DELETED 
NC - ARRAY OF THE CHANNELS TO BE DELETED 
SI-TOA aOF SANDS SUPLIED 

DESIRED SUBSET OF SDIM 
REMARKS 

NONE 
C SUBROUTINE AND FUNCTION SUBPROGRAMS REQUIRED 

NONE 

C METHOD 

C 
EIS 

USING A ONE DIMENSIONAL STORAGE MODE FOR EACH COVARIANCE 
MAR IX IN AN UPPER TRIANGULAR FORM THE PARAYETRIC ADDRESSES 
FOR EACH ENTRY IS DERIVED AND USIN& THE NC ARRAY THE LOCATION 
OF ALL THE ENTRIES THAT LIE IN THE UNWANTED LINES AND COLUMNSLOMPUTEO AND SIORED IN NADR. 

C................................................................ ........ 
SUBROUTINE ADRESINADRNCSDINNOIM) 

C INTEGER*4 NAORIII)POIMSDIM 
INIEGER*2 NC(II 

C PDIM-SDIR-NDIM 
C IFIPDIM.LE.OI GO TO ICO 

00 2 JflPOIM 
D6 0Ii-1 ,N tK-IKJ1 

HN 
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2C  
SUPERVISOR FOR A TWO DIMEISIONAL SPATIAL CORRELATION  

SPEVIORC  
C WRITTEN 10/04/78 BIJAN G. MOBASSERI  

2 
N  

C  
DESCRIPTION AND PURPOSE  

EC 
C THIS PROGRAM IS A TWO DIMENSIONAL SPATIAL CORRELATOR THE  

hHICH IS A NORMALIZED SPATIAL CORRELATION C PRIMARY OUTPUT OF  
C MATRIX FOR ANY SPECIFIED AREA.  
C 

THE USER SPECIFIES THE COORDINATES OF HIS DESIRED AREA IN THE  c  
INITIAL AND FINAL LINES AND COLUMNS ALONG WITH THE  c FORM OF  

RESPECrIVE SPECTRAL HAND1 I[F THE AUTOCORRELATICN FUNCTION  
IDESIRED ONLY ECAB N*ORLT  

IS E  MNLY E ONE CHANNEL NUMBER NEED BE SPECIFIED. EXPOLONENIALONOKD  c FOLLOWING THE ESTIMATION OF THE CORRELATION MATRIX, THE EXPONENTIAL FIT OPTION IF INVOKED 4ILL FIT AN EXPONENTIALLY  
ROPPING FUNCTIO4 TO TH& EXPERIMENIAL DATA USING A WEIGHTED  

LINEAR LEAS SOUARES FIT TECHNI UE. IN CASES WHERE THIS  
ASSUMPTION IS NOl YALIO, THIS OPERATION IS BYPASSED.  
THE PURPOSE HERE S TO DEVELOP A MARKOV MODEL FOR THE  

SPATIAL CORRELATION FUNCTION OF THE MSS DATA.  

DESCRIPTION OF CONTROL CARDS  

C *CORRELATE  
c 

THIS CARD SPECIFIES THE PARTICULAR PROCESSOR REQUESTED CC  
C INPUT RUNI.),TAPE(.1,FILEI.) 
C  
C TilE INPUT RUNTABLE FROM WHICH DATA IS READ  
C- 
C BLOCK LINEt.,.I,COLUMNI.,.I 
C  
C SEGMENT TO BE CORRELATED  
C  
C FUNCTION  
C ACOMMON  

EITHER AUTO OR CROSS FUNCTION CAN BE SPECIFIED  

CHANNELS  
SPECTRAL BANDS USED IN CORRELATING  
S  

C SAMPLELAG  

CROSS TRACK LAG USED IN ESTIMATING THE CORRELATION FUNCTION  

EXPRESSED AS A PERCENTAGE.OF TOTAL NO OF SAPPLES IN  
C THE AREA. THIS CARD IS OPTIONAL.  

C  
C tINELAG c  

SAME AS SAPLELAG EXCEPT FbR LINES (ALONG TRACKI  

C ExD  
C THIS CARD STARTS IHE EXPONENTIAL FITTING PROCEDURE. OPTIONAL  
CI  
C END  
C  
C END OF CONTROL CARDS  2 REMARKS 
C 

TH S PROGRAM IS CURRENTLY CAPABLE OF PROCESSING AN AREA  
111 PIXELS LARGE SINCE ALL THE SUBROUTINES ARE OYNAMICALLY  
SIMENSIONED6 ANY ENLARGEMENTS CAN BE ACCnMPLISHED BY ALTERINI  
THE O1MENSI6 NS OF THE ARRAYS IN THE  

FILE. . . CORELAT FORTRAN BI 

CC HON TO RUN THE PROGRAM 

C USE THE COMPAND IGETOISK DHSYS' TO ESTABLISH THE PROPER LINK 
THEN TYPE *CORRELATE.  

C  
C EXAMPLE OF CONTROL CARD SETUP  

fCORRELATE INPUT RUNIT402850O0tTAPE12689),FILE(3 BuLcOCK UF  
6 FUNCT~ION AU?

C CIIANNELS 2 
C SAMPLELAG 25  
C LINELAG 25 
C EXPOFIT  
C END  
C  
C OR FOR CROSSCORRELATION.  

CCORRELA  
INUTR ITT  

C BLOCK LINEIi2 SCOLUMNItS} 
C FUNCTION RCS CHNNELS  
E C LINELAG 25 C EXPOFIT  

c END  
£  IS 20  
C PERCENT OF  
C IF SAMPLELAG AND LINELAG ARE LEFT OUT, THE DEFAULT  

THE TOTAL NO OF LINES AND COLUMNS.  

C  
C IMPLICIT INTEGER CA-i)  

REAL64 F2500 G12500),RIZ500,ICSET9I ,RNORM MEANt MEAN2  
INTESER'4 RUNTA(IO,31 1(2001 LDATAI12500, LDATA225001  
INTEGER*4 LISTI(9)/lCOR'-,INPU'rBLOC% FUNC'CHANLESAMP%  

I 'LINE','EXPI"-END I  
2 LIST2II)/'RUN ,'TAPIO;FILE'/, 
3 LIST32I1LINE 'COLUf  
INTEGER*4 ICARD(201,FCTI21),IVECt2)  
INTEGE02 CSELI MI ISELI30),NCCI30)  
LOGICAL*L IDATAc2iOOOIFLAG|IZJ/12*.FALSE./ 

ICORCOH/ FSTLN,LLINEFSTCLLCOLNSIZEXNSIZEYLAGXLAGYt  
C I PCTX.PCTY 

1011 FORMAT(IX,'ERROR IN CTLWRD. ERROR CODE=%13,' EXECUTION TERMINAT 
1012 F'RMTI 1XzERROR N CTLPRM. EXECUTION TERMINATED$)  
1013 FORMATI X,'ERROR N VAL. EXECUTION TERMINATED') 

FORMAl IXOERROR IN iHANEL. EXECUTION TERMINATED'I 1014 
is) CONTROL CARD OR PARAMETER. EXECUTION TERMINATI  

1015 FORMATIX,MISSING  

C  
C PCTX=20  

PCTY-20  
NCE111=  
ICSELIII  
00 777 .t-,30  

777 COt.TINUE 
778 2.1 90  

7 ICSETII9-0000.O  

100 CONTINUE  
LSZ=9  
IER-O  
14RD-5 
CALL CTLWRD IICARD.ICOLLISTILSZICODE IMROIERI  
IFIIEK.NE.i O~GO TO IDOL  
GO TO 99 1O ,12,1O3,104.IO5,106,?,,OTI CODE  

99 FLAG I -. RUE.  
GO TO 100  
INPUT RUNTABLE 2H INPUT RUNTABLE  
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c  
CALL CTLPRMIICARUICOLLIST2,LSZICODE.IOOZ2 101 LSZ3.TUE 
LSZ1  
CALL [VALIlCARD. ICULIVECLSZOO3) 
GO TO 1501,502, 3),o coo  

C RUN NUMBER  
C  
501  RUNTAB(1I)SIVEC(Il 

FLAG(2s. TRUE.  
IF(ICOL.LT.121 GO TO 101  
GO TO  100 C  
TAPE NUMBER  

502 RUNTABII,2)-IVEC(1) FLAG/ -).TRUE. 101 IFLAGOLLIET2E GO TO  

GO TO 100ONTINUE  

FILE NUMBER  

503  RUNTABII,3)-IVEC(Il 
FLAG(4)s.TRUE 
IFIICOL.LT.721 GO TO 101  
GO TO 100  

c  
102  '51Z2  

OAL CTLPRHILCARD,ICOLLIST3.LSZICODE1OOD2) 
LSE-2  
CALL  IVAL(ICARDICOL6IVECLSZ.10033 
GO TO 1601,bO2) [C E  

c  
C NO OF LINES  
C01 FSTLN-IVECII  

LLINE=IVECI2I  
FLAGIS):.TRUE. 
IFIICOL.LT.TZ) GO TO 102  

C  GO TO 10  
C  NO OF COLUMNS  
C 
602  FSTCL-IVEC(l) 

LCOL  -IVECIZI  
FLAGI6-..TRUE.  
IFtICOL.LT.72) GO TO 102  
GO TO  LO0  

C AUTO OR CROSS  
20D OO is I1 103  FCT I).ICAAD[i)  

C04INUE 
151 

GO TO 00  
C  
C  CHANNELS CARD  
C  
104  CALL CHANEL (ICARDCOL,NCR,ICSEL.ICSETNCC.IOOI1 

NW N-NCR  
FLAGIB).TIUE. GO TO  100 
O TR LAG  

05 tS1 G  
,I

CALLI  VALIICARAOICOL,IVECLSZ, 
100 ) 

PCTX IVECCI)  
FLAGI9)9.TRUE. 8~[O.LZ1T0 O F OL.LT.721 GO TO 101Cl 

1 T10 LAGC ALNG TRACK  
ALNGTACKLAG, V .  

106 'A'L'IVLIICRDIOL.VECSZ,1031OR  

FILE.  . . CORELAT FORTRAN BI 

PCTY-IVEC(II  
FLAGI1OI.TRUE.  
IF(ICOL.Lr.722 GO TO 101  
GO TO 100  
EXPONENTIAL FIT  

107  FLAGIII).TRUE. 
GO TO  100  

C  
C  END CARD  
106  FLAGIIZ).TRUE. 
C  
c  
C CHECK IF ALL CONTROL CARDS HAVE BEEN READ  
C 0 1-. TO 00 651 [1.18 F(,NOT.FLAGII)I GO TO 652  

C  

GO TO  6b4  652  WRITEIIO 1015) 
GO TO  994  

C  00 
654  CONTINUE  

GO TO  125  
1001  WRITEII6,IO11 ILEA  

GO TO  999  
1002  WAITE(b1,1O12) 

GO TO 999  
1003 )RITE(16,10131  t, GO TO  999  '  GO6 TO  999 1004  WRITEI16,IOIA) 
c  GO999 
125  NSILEX-LCOL-FSTCL*I  

NSIZEY.LLINE-FSTLNt1  
C  

c  LASX:PCTX*NSITEX/100  
LASY PCTY*NSIZEY/100  Go 

C 
CALL CRLT (FGRLDATAILOATA2,RUNTAB.NCCFCTFLAG)  

c  
999  STOP  

END  
C  

SUBROUTINE CRLT  

C PURPOSE TO PERFORM A TWO DIMENSIUNAL CORRELAT ION OF AN IMAGE IN TWO 2 ARBITRARY BANDS AND DETERMINE A SPATIAL CORRELATION MATRIX. 
C DESCRIPTION OF PARAMETERS 
C  
C F - ARRAY TO STURE THE INPUT IMAGE (FIRST CHANNEL) 
C G - ARRAY TO STORE THlE INPUT IMAGE (SECOND CHANNEL) 
C R - RCSULING SPATIAL CORRELAFION MATRIX 
C LDATAI - STORAGE ARRAY 
C LDATA2 - STURALE ARPAY 
C  RUN[AS p1:) - RUN NUHRIER (IFTlE DESIRED AREA 
C RUNTAB I I - TAPE NUmarR cr HE DES RED AMA 
CROS TAKLAGC - NUPBER OFRUNTABII131 FILE HE DES!RED AREA2K  NCC - CHANNEL ARRAY 

FCT - DESIGNATING AUTO OR CROSS FUNCTICN 
C FLAG - OPTION ARRAY 
C 
C REMARKS  
c  THIS UBROUTINE HAS VARIABLE 0 HTNSjON PRoPERTY. ALL THE 

ARRAYi MUST BE OIMENSIONED IN THE MAIN PROGRAM ACCORDING 
TO THE SIZE IUFTHE P CTURE 

EOTHELAG N IMATiNE THE CORRELATION FUNCTION IS USR SUPPLIE 
IT IS ADVISABLE HOWEVER TO KE P HI S QUANTITY AT 

BELOW 20 PERCENT OF THE AR A N ODER TO PRCGVIDE AN 
i 'ESTIMATE WITH SMALL VARIANCE. 

i.-
.L 
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ARRAYS FGANO R ARE EMPTY UPON ENTERING THE SUBROUTINE. NRTRY-2C  
SUBROUTINE AND FUNCTION SUBPROGRAMS REQUIRED  

STAPOP.  C* POSITION THE TAPE AT THE START OF DESIRED RECORD  
METHOD *¢**e****e***¢**#***oe*******A*ee  

GETRUN  
lN IE ThOTUSTN-

C THE STANDARD LAGGED-PRODUCT SUM METHOD IS IMPLEMENTEO IN TWO ICOUNT.ESTLN-1 
AT UP GTOUNICONU ER1DIMENSIONS ANC CARRIED OUT BY SUBROUTINE ALF.  ALTUPFS INUNITflCU ERI 

-IERR.NE WRITE h'6 6 ERR  
IF(ERR.NE.O GO Tu 88  

NSCID16)  
NC -1015) c  

SUBROUTINE CRLT IFGRLDATA1.LDATA,RUNTABlCCFCTFLAG)  IFIFJ 13j.EZR, gJP L  
IFQI fQT(3TFSTCLE.CCORI 0 PL S  

1 CSELII. D I C  1 LOCAL VARIABLES DEFINITION  
IFIFCT(3).EQ.ACORI GO TO t4  
CSELINCC1)3l-1  

C  

CSEL  CC 21)-l I4PLICIT INTEGER IA-Z)  CSELINCCIII)fl REAL*; FNSIAEX1SIZEYIAGINSILEX NSIZEY RtLArXLAGYI, I. RU,) P(6; 4 6),t~tT(3}.HI 12 ).WRZII) FRROR(312  
IEKI),krrE I 3,Fa(3IFHAII3 .NCKMrE ANLEAn Ct READ iN THE DESIRED AREA  

3 ER1.EM340X,tIY C(2) 3 INTEGER 4 IUU4TA6(IUf l,16(2zIZO LOATAI(NSIZEX)#LDATAZINSIZEXI  0  
INTEGER 4 ACOR?' AU /,CCOR/' ROC  DO 30 J=INSIZEV  

2I'  CALL TOPRV IINUITNSCERRIOATANRTRYNCCSELLNID) I'NTEGCR'4  3 OfTIIt)/'4!//'Z,1R,'I)'/ 
INrEER*4 FIIZIS)II o tVlI .fe't5t0,1 i1'I  IFIERR.NEl WRITE t6.2) RR 
ItTEERQ4 FCTIZCI , 41'  ,NI) N/  I I$IERHNE. Go TO S6? INTEDtRO2 CSEL(D3,NCCI3O)  CALL  OYBYT IIATAFSTCL,lLDATAI.3.NSIZEX) LOGICAL*1 IOATA(25GIOFLAG(121  CALL NOVOYT IZOATA .D FLiLOATA2.344,NSItEXI COMMON /CORCUM/ 3STLNLINEfSTCLLCOLNS1ZEXNSIZEY.LAGX.LAGY,  

SPCTXPCTY  ILNSIZEX  
GFI.J)-LOATA2 1) c  

30  CONTINUE COMMON BLOCK VARIABLES DESCRIPTION  

C  C  
FSILN - FIRST LINE C  
FSTCL - FIRST CCLUMN  

S LLINE - LAST LINE ******,**ttt4**tt***lt******##*#**"  
C  LC3L - LAST COLUMN C* FIND THE MEAN OF THE PICTURE  

NSI1Z X- NO Of COLUMNS  
NSIZY -NO OF LANES  
PCrT -- LAG AS A PERCENTAGE OF NSIZEX  00 ZO J-1,NSIZEY
PCTY - LAG AS A PERCENTAGE OF NSIZEY  DO 200 I'1 ,NS ICX 

MEAN!  ME AtIIGf 1,JG F T R L 60 FOR'AT2IX,) N ERROR.' IV  200 CONTINUE  
61  FOqMATI IX.IOPFS ERRUR. * MEANIS$EANIIFLOAT(NSIZEXgNSIZEY
62 FOAMATILXITOPRV ERROR 021 MEAN2=EANZ/FLAINS ZEXNSIZEYI  
C -.  !EXNS11EY  

LAG-3  C . SUBTRACT- THE MEAN OUT 

00 255 JZNSILEYTHE RUNTABLE ANC FIND THE PROPCR FLIGHTLINE  
DO 255 1iNSIZEX  

C*  SETUP 
Ft IJ3FI ,J 1-NLANI  
Gi lJGF1 J)-MEAN!  

652 FORMATI 1XA,2,l I,IK.2LIPE1t.4,1X)O 
255  CONTINUE  
P1o  CONTNE  

FSTCL-fSTCL- 

C ENIT 6 I0,ERRRUNTAa,)  COMPUTE TME AUTOICROSS) CORRELATION FUNCTION  
ERo CALFGET RUN IRUNSEL IN! lO)  +p oAAl+e,  

FERR.N .0 WR14 IM601 &RR  
IFIAR.LOIGo V 8 
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C  
CALL ACF (FG.RNSIZEXNSIZEY.LAGX.LAGY)  1 WRITEI6,1001S 

C  1005 FORMATII/// 
SWRITe(6,1006  

O0  FORIAT(3O%62-0 SPATIAL CORRELATION MATRIX'I  
00 320 J-1 LAGY WRITEI6 FMfII IRIIJ),I-1.LAGX)  

320 CONTINUE  

c NORMALIZE THE RESULTING CORRELATION FUNCTION  c IFIR(t,1).LT.R(2i)) GO TO 671  
IF(R(1 II.LT.RI 2 OTO 671  

a OC7 FiNOT.FLAGIL1I ) GO TO 611 RNORM-R(1,11 RNRMRIL  
DO 68 J=tLAGY c WRITEI6,1005) 

WRITEI6t1007) 00 68 I1 LAGX  
1001 FDRMATIOX.-WEIGHTEO LEAST SQUARES FIT INFORMATION-)  

68 conE(NUa  
68 JlsRIJ)/iRNORM)  WRITEI6,1002) 

WRITEItb.100d) RHO C  G  
LF(.NOTFLAG(11) GO *~t***e****e** ,1006 WRITE16;iOO2) ,F4.23 cwee** ¢¢*~*¢,t*e~#*c~ TO 902  FORMAT{30X6'WEIGHTING MATRIX DIAGONAL BASE'  WRITEI6 1009) ER  

1009 FDRMAT( UX WEIGHTED LSF ERROR (CROSS TRACKI)hEI4.7)  
EXPONENTIAL CORRELATION MODEL DEVELOPMENT WRITEIS,1062I  

NRITE(6 IOLO HIOX  
1010 FORMAFI:OX6;ADJACENT SAMPLE CORRELATION-I.EI4.7) IRITECb 1::E  

USE A LINEAR LEAST SQUARE FIT TO THE LOGARITHM OF THE rUNCTION WRITEIS6.LOLL ER2  
IALONG TRACKI-tEI4.7) 

111 FORATI3JX62WEIGHTEO LSF ERROR  
WRITE6,1012) RHOY  

1012 FORMATI3OXADJACENT LINE CORRELATION -%EI4.1)  
DO 831 1I1,LAG  

C  C  
IFIR(I.1).LE.0) GO TO 901  6T1 CONTINUE  
FNII)-ALOGRLAG--11h11) I  WRITE(lb,1002)  

831 CONTINUE  C  
C 2001 FDMMATI/I  

CALL LSF IHWGTPSFNFHATCIERERRORWRIWR2,LAGRMSERMUI  0 RITE16,2002)  
ER I'RMSIEII) 2002 FORMATiX, 'TWO DIMENSIONAL SPATIAL CORRELATION ANALYSIS'l  

WRITE(16,2001)  
CWRITEII6,2003) 

RHOX-EXPP-CI2)I  NCCII tNCCI2I  
O 832 IsILAG  2003 FORMATI2X,-CHANNELSO .21I2,X)) Mllb2001 ).-ALOGIRIILAG-IOT 1-1 3)IFR1  

832 COAINUE  
FNI L°  F.49011)-AL I 1 LA -1  RITE116 20041 IF(R( ,I).LAE.0AlGO ro,  WRITEIlb,2001) 

2004 FOMATILiX602D SPATIAL CORRELATION MATRIXI)  C 
WRITE( 16 2OO1 C 
00 330 J=iLAGY IHWGT.P.S.FNFHAT.CIERERROR,WRIWRZLAG.RMSE.RMUI CALL 1SF  

ER2RFSO CALCONTINUE T I WRITEBH6 F 12) IRILJ)R-ALAGXI M 
RHOY9EXPI-CIZ))c 330 CONTINUE 0R TE (1,IO05 1  

GO T  881 RETURN 
901 WR TE 16 1OI3 

902  
END  

WRirEl ,o103|  OR CCF 0 C  ooo .*1013 FORMATMA EXPONENTIAL FUNCTION DOES NOT DESCRIBE THE ACF 
IF THIS AK A°  REQUEST IGNORED-) ............................. .E  

902 CONTINUE  C UAEXAY  

C USAGEC C CALL ACF IF,G,R,NSIZEXNSILEYL4GX.LAGY) 

C GENERATE THE OUTPUT  DESCRIPTION OF PARAMETERS  
C F - ARRAY CONTAINING THE AREA TO BE CORRELATEDI1ST C  c,#eC*********t**~****t***********t**** v¢ v** ********** *** C G - ARRAY CONTAINING THE AREA TO BE CORRELATEOIHND CH NrfI. 

R - RESULTING SPATIAL CORRELATION MATRIXC  NSIZEX - NUMBER OF COLUMNS IN TIlE PICTUREFIFCTI3).EQ.ACOR) NCC(2)*NCCII)  C NSIZEY - NUMBER OF LINES IN THE PICTURE  
IFILAGX.GE.I0I FMTI(3I)NI19 C LAGX LAG IN PIXELS ALONG THE COLUMNS FMrI3):LAGXNlI  

C LAGY LAG IN PIXELS ALONG THE LINES FMT2(2)sFMTII3) 
WRITE 6 1000)  C  

C REMARKS  
WRITE46,100II  

1000 FORMATIEHI)  C  
1001 F3AMATIA X TWO DIMENSIONAL SPATIAL CORRELATION ANALYSIS')  NONE  

WR ITS I6.1062)  c SUBROUTINE AND FUNCTION SUBPROGRAMS REQUIRED 1002 FORMAT(//)  NCC( WRITEI6 10031 NCC(II  
NONE  

WRITEI 10, (CLASS II2),1-1,1Z  
1003 F JRMAT1X9CAhNELS *,2i12.IX))  

METHOD  
1004 FORMATINO' LASS' .2 41  

THE LAGGED PRODUCT SUM METHOD IS CARRIED OUTH  

http:WRITE16;iOO2),F4.23
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C  

C  

C SUBROUTINE ACF IFG.R.NSIZEXNSIZEYLAGXLAY)  

A V A FSUBROUTINE LOCAL VARIABLES DEFINITION 

EPe***flINTEGERfl**O MPLICIT INTECEIA tA-lZ  
IEAL FINSIZEX,NSIZEY), G(NSIZEXNSIZEYI ,RLAGXLAGYI, RNN EANIyMEANZROIM  

IM.NSItEXVNSIZEY  

C  SM THE LAGGE PROUCTS 

C  
00 ETA'1,LAGY Do 1010 TAUILAGX  
00 30 J ILNSIZEY  

C 00  30 1 . ,NSILEX  

C IFI(IETAU-II.GT.NSIZEX.O.uIJ ETA-II.GT.NSIEy)I GO TO 25 C. 
2S 2 ?TAU.ETAIRTAUETAII4+tAU-i *F CUNT IUue I.J T-;F~jhIJ 
30 CONTINUE 

RITAUITA)-RITAUETAI/RDIH 
10  CONTINUE  

'RETURN  
END  

SUBROUTINE LSF C  

PURPOSE  

C  PUROEI A LINEAR  FUNCTION THROUGH A DATA SET,IJSING LEAST SQUARES 
C  
C DESCRIPTION OF PARAMETERS  

H -MATRIX OF VALUES Or LINEAR FUNCTIONS WGT-WEIGHTING MATRIX  a -HTRAISPOSE.NGT  
C P.HNPNTS-I CS RINVERSE*P  

C -LEAST SQUARES COEFF.  
F -MATRIX UF DATA VALUESFHT-ESTIMATE UP F 

C  ERR-WEIGHIEO F-FHAT 
LAG-N) (IFDATA VALUESWRI-WURK  VECTOR WRZ-WOAK  VECTOR 

C REMARKS 

THE EQUATION OF THE LINEAR FIT IS OF THE FORMCI*CZOX  
THE FOLLOWING MATRICES ARE OIMENSIONEO 2*tAG  
HP.S  

THE FOLLOWING MATRICES ARE DIMENSIONED LAC IN THE MAIN PROG  
C IGT.WRIW2,RROR EA ,FNFHAT  

FILE. . . CORELAT FORTRAN 61 

C  C  

C R(4),RSEIIICI2I  

AND FUNCTION SUBPROGRAMS REQUIRED  C TPROGMPRDINV E G tPOGPOMN  

C  NETHOO C GENERALIZED LFAST SQUARES TECH3IQUE IS IIPLEMENTFO.FORMULA U$Ef C INTR*tGI*H)** -II*HTR0WGr*F  IC FOR FURTHER O TAILS SEE IDICRETE PARAMETER ESTIMATION 'BY IC J.M.MENOEL,1qT3 
C I 
C ........................................................ ........I  

SUBROUTINE ISF IHW$T P,S,F,FH&TC,ERA,ERROR,WR1,WRZ,LAG.RMSE,RMU)  
CI  
C LOCAL VARIABLES DEFINITION C  

C  
IMPLICIT  INTEGER IA-Z)  

I; PiiSf11,FIIR C WA-,R().WR I ), REAL*4 HiE) GT(I t EI l FHAT(1|,CIIltERRII.ERRORIRMU.DET 

ED FORMATi//I
8I FORMATI//) 
8 FPOATSLAG  

I  
DO 30  IhNPNT$  

KN*NfPNTS KItNPNTS*i  
H(1). 2"1  

40 CONTIN4UE  

40 C'TIE  
C* INITIALIZE THE WEIGHTING  MATRIX  

2 HUwQ.4
C  

no ZR Is1,NPN(S  
WGTt)-RU**X  

C  
NsPT 

NNPTS 
MSA.O 
MSS.z 
L-NPNTS 

C CALL TPR IH GTPNMMSAMS ) 
C N-2 

Lsz 
C 

H-
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CALL GPAD IPHRNR4LI  
C  

CALL PUNV £R,NDETWR,1R2)  
C  

N N=2 N*2i 
KsZ  
L NPNTS  
CALL GMPRO IRP.S.N,1,Ll  

C  
N:2 M NPNTS 
L-I  

C CALL GMPRO IS.F,CN.,L) 

FIND THE LEAST SQUARE ESTIMATE  

C  
NNPNTS  
M.2  
L-1  
CALL GMPRD IH,C,FHAT.N.HL)  

C  
C  

WIGHTD LASTSQUARES ERROR FIN TH  

£  03 100) 1- 1NPNTS  
ERRORIL1I I-FHAII) 
CONTINUECl  

DLNPNTS  

CALL TPRO IERRORWGT.ERRNMMSAMSB,.  
C  

M NPNTS  
L-1  
CALL GMPRD IERR,ERROR.RMSE.N.M.L) 

C  

RE TURNE01  
ENO  

END  

Cf  
Cal  

Cu'  
CO!  
COl Call 
CO I  
Co: 
CO  
Lai  
CDl  
Cot  
Cal  
Cni CAl  

4CO,  

CO I  
CUI  
COl  
CDI  
CGl  
Cut  
Cal  

CUl  

Cal  
CoI  

Cal  

Cal  
CDI 
CoI  
CaI  
COt  
COl 

CDI  
'-I 

C q) 
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SUPERVISOR FOR THE COMPUTATION OF THE SCANNER OUTPUT STATISTICS  

WRITTEN 09/25!TB BIJAN G. MOBASSERI C  
****O*fl**  

C  
C DESCRIPTION AND PURPOSE 
C  

THE SCANNER OUTPUT STATISTICS PROGRAM IMPLEMENTS A LINEAR I  
TRANSFORMATION T) OBTAIN A SET OF STATISTICS AT THE OUTPUT  

C OF A MULTIOAND SCANNING RADIOMETER IN TERMS OF THE CORRESPONOIN'  
c  INPUT QUANTITIES. IHIS TRANSFORMATION IS ACCOPPLSIIED BY THE COmpUTAFTON OF THlEI SCANNER CHARACTERISTIC FU:ICT ION 4. ANANALYTICAL EXPRESSION, THE MAIN PARAMETERS OF WHICH ARE THE  
C IFOV SIZE AND INFORMATION ON DATA SPATIAL CORRELATION.  
c  
E DESCRIPTION OF CONTROL CARDS 

C *CNTTC 
C THIS CARD SPECIFIES THE PARTICULAR PROCESSOR REQUESTED  

E  
C CHANNELS  

THE DESIRED SUBSET OF THE AVILABLE CHANNELS IS GIVEN HERE.  
cTIS 11HPURTANT TO REMEMBER THAT THE NUMBERS APPEARINGMON IS CARO ARE THE OROER OF THE SELECTED CHANNELS NCT 
THIER ACTUAL NUMBER. FOR EXAMPLE IF THE AVAILABLE CHANNELS  
ARE 8 W2,14 AND CHANNELS 8,9 AND 14 ARE SELECTED, CHANNELS 

THIASSS  NAE::C LS:t£NMISB CLASSE THIS CARD SPECIFIES THE NAME OF EACH CLASS. EACH NAME MUST BE 
PLACED IN A FIELD 7 CHARACTER LONG FOLLOWED BY A PLANK. THE 

C  IN TH BEGINNING FLLOWED BY THE- REST OF THE NAMES.  

c IFOVC  

THIS CARD SPECIFIES THE SPATIAL RESOLUTION OF THE OUTPUT DATA  
IN TERMS  OF TE INPUT. BASICALYINTEGER*2  
RESOLUTION PIXELS WITHIN ONE FOY OF THE SCANNER. E. G. FOR  

C  MSS OPERATING ON A 6 MTER DATA AND IFOV-5 ACCORDING TO THE  
ABOVE CONVENTION THE ACTUAL SPATIAL RESOLUTION IS 30 METERS  

APERTURE  
c  
C THE CHOICES HERE ARE 'GAUSSIAN' OR 'RECTANGULARV  

SNR (OPTIONALE  
C C  TkIS;'ARD SIMULATES THE EFFECT OF RANDOM ADDICTIVE NOISE ON THE  

POPUIATIUNS S'ATISTICS AT THE SCANNER OUTPUT.THE NOISE COVARIAN  
MATH X S DIAGONAL WITH OFF DIAGONAL ELEMENTS EQUAL TO ZERO. HESR IS N DEFINEO AS THE RATIO OF SI]GNAL ENERGY (DIAGONAL ELEH 

C ETS) To NOISE ENERGY.SNR MUST BE GIVEN IN OECIBELS DEFINED 
SNR - 1,*ALMIObISI MAL ENERGY/NBISE ENERGY). THIS SNR WILL 

C BE THE SAME IN ALL CHANNELS.  

PUNCH AUPTIONAL)  
IF PRESENT THE OUTPUT STATISTCS' IS PUNCHED OUT. NOTE THAT SOME  
BLANK CARDS ARE INCLUDED IN THE DECK FOR COMPATIBILITY REASONS  

END  
C THIS ARD SIGNALS THE END OF CONTROL CARDS. DATA FOLLOWS IMMEDIA  

C TLY U D1026 2 NPUT  DATA STRUCTURE 

*5US CONSI TS OF 3 SEPERATE DECKSO 
1- LARSYS STATIST0ICS DEK WITH NO CHANGESO IT SHOULD 
NPUT TO 
2_HOWEVER BE, N CHIARAC FORMAT * E0 TERA  

t.SPATIAL  rCCRELATION PARAME TERS ARE ENTERED VIAk A ND011X 1401$ 

FfLEo .. SCANSTAt FORTRAN 8t 
CMATFRIX.A THE II,JI ELEMENT OF IT IS THE PIXEL-TO PIXELCORRELATION IN CHANNFLS I AND J. THIS DECK CORRESPONDS TO  
C THE CROSS TRACK COR ELATTON. C  ORLAINC  
C 3- SAKE AS 2 EXCEPT FOR ALONG TRACK DIRECTION. C  
C REMARKS C THIS PROGRAM IS CURRENTLY CAPAOLE OF PROCESSING UP TO 20 CLASSE 
E AND 8 SPECTRAL BANDS.THE EXECUTION TIME IS QUITE SHORT AND 
C  EXTENSICH TO A HIGER NO CF CLASSES AND DIMENIONS PRESENTS  
C  NO PARTICULAR PRUBLEM. THE.STATISTICS DECK PRODUCED HERE DOES  
C  NOT CARRY A SEQUENCE NUMBER IN THE 72-80 COLUPNS.  
C  
C HOW TO RUN THE PROGRAM  
C  
C THE SOURCE AND TEXT FILES ARE LOCATED ON THE 01105K AND ONSYSC DISKS RESPECTIVELY. AUTHCRIZED 1O0S ARE AUTOMATICALtY LINKED  
C TO BOTH DISKS AT LOGIN TIME. OTHERWISE ANYONE CAN ACCESS THE 
C DISKS THRU THE COMMANDS GETSK OHSYS- FOR TEXT ANDC G~rDISK DHOSK- FIR THE SOURCE 

AFTER THE PRUPER LINKS ARE ESTABLISHED, TYPE IN *SOS.  

c EXAMPLE OF THE CONTROL CARO SET UP  

c 0SCA4STAT 
C CHANNELS 1.2t4 
C  CLASSES BARE.O1 CORN SOYBEAN WHEAT 
C FOV 2 
C  APERTURE GAUSSIAN  
C  PUNCH  
C  END  

TEGER* LISTI8)1'4SCA',ICHAN' 'CLAS'.'IFOV','APER','SNR%'PUNC, I END f/. IVEC(II jICARD iOi O RTO  
INTEGER04 RLAN ,I- I STCRDO/ZOL)NAORIT2O  

14TEGER04 FMTI 5)I-(7X,1 O' FB.' 12 144 1)1/  

2FT(1t'3 FHT4(6)ftt4CXtlt,' 0 #IF$~~I I|~  

N NL/' 091  
SPREAT3T)lICSEU3 NC3OfNCI3I  

REAL4 C'VIN172C2ICOVLUTI72Q r,U(OV 72 SLPXITEO)jSLPY1I2OI. 0) 
I SUBSLX720IISUBSLYITZCIPXIT2OIPYIT2O ,SPxtTaOI. 
2 SPYEI2OICIITZO) C217201,CIYI0).RHO(7201. 

C 3 MUIIbOhI.$MUf16O) 
REAL*M ICSET190I 
LOGICAL*L FLAGIOI/B*.FALSV./ 
COMMON ISUSCOM? NCLSSOIH.NOIMNSIZE, ISIZENTSNSASIGMAXSIGHAY, I  T S N C  TMSR  

C  
1010 FORMArtIIX RROR F'NCTLWROD EXECUTION TERMINATED.') 
loll FORlHATl'IX.IERROR N IVAL. XECUTIO TERMINATED.'I IOIZ FORMA {IWERROR IN CHANEL. EXECUTION TERMINATED.-) 
1013 FORMAT'IXtIR SS|NG CONTROL WORD. EXECUTION TERMINATED.-)
1015 FAHNTI  

FOHAT1,6,'S CANEV 1,01T FOAMA, 13,SXIS C A N 0 E It 0 U T P U T S T A T | 5 1 1 C SIt 
10IGI FOR A 20XO~SCANNER QUIPUT SPECTRAL STATISTICS*)
I'D 19 FOR4HA,3SXAPERIURO -,3A41
1020 FORMA4IZOX:'APERIUREO 1,3A41 
1021 FOR1ATI35XIFOV SIIEC,12," HIGH RESOLUTION PIXELS'O  
1022 FOI4AT ZOX, 1FOV SILEO'1 12,' HIGH RESOLUTION PIXELS'I  
1023 FOUHAT 9XOCLA S 1,2A4 
1024 FOIMATg25t9,CLASS I 2A4 
1025 FO4MATI IOX'IMPU CUVARIANCE MATRIX.Afl.'OUTPUT COVARIANCE MATRIX  

1') 1FORMAtIIXIINPUT COVARIANCE MATRIX'.IOXIOUTPUT COVARIANCE MATRIX  

O27 6  hTt/// 

DECODE CONTROL CARDS  



FILE.  . . SCANSTAT FORTRAN 1F 

C  
DO 77 1-1,30  

77 ICSEL 12.0 777  CONTINUE  
DO 116 1:1 90  

78  ICSETII)I-0000.0  C 
100  CONTINUE  

LS?8  
IER=O  
INk O5  
CALL CTLWRD ICAROICOLtLISTLSZ.ICODE,INRD.IERI 
IFI ER.NE.0) GO TO 1Ol  
GO T0 t 1 lOZ.103,104,105.106,10),ICCDE 19 9 1 99  FLAGIII.TRUE.  
GO TO 100  
CHANNELS CARDC C  

101  CALL CHANEL IICARO,ICOLNCRICSELICSETNCC.900)  
FLAG21 .2 TRUE.  
NDIH-NCR  
GO TO  100  

C  
c  CLASS NAMES CARD  
C  
102  09 10 -.1,20 
10  HEADIII=ICARD(II 

FLAGlIl3.TRUE. GO TO  lEO  
G 0  

IFOV SIZE SPECIFICATION  

103  LSZfc  
CALL  IVAL IICARDICOL.IVECLSZ,10021 
FLAGI(I-.TRUE. 
SIGHAX'IVECIII  
SIMAYSSICAX  
GO TO 100  

C  
C  IFOV SHAPE SPECIFICATION  
C  
104  DO 30 1tj 20  
30  APERTI IICARDII  

FLAGIS -.TRUE.  

C G3 TO 00  
C  SISNAL TO NOISE RATIO  
C  
105  LSL1C  

CALL  IVAL IICARDICOLIVECLSZ,1023) 
SNi=IVEC(I3 
FLAGI61.THUE.  
Go TO 1o  
TO PUNCH OR NOT TO PUNCH  

106  FL&OI73-.TRUE.O 60 C,100  

ENO CARD  

FLAG(8.TRUE.oC 
GO TO 201  

002 I WRITEII ,OI  

Go To  0911)C
C O TO 90921  

WRITE(LIlOIZI 9DO  WRITEI6 10121  

FILE. . . SCANSTAT FORTRAN 81 

201 CONTINUE 
C  
C  CHECK IF ALL CONTROL CARDS HAVE BEEN READ  
c  

GO TC 321  
GO TO 250  

321  WRITEI1610133  
HARITEi 6,10033 
GO TO  999  

250  CONTINUE  
C  

IFI.NOT.FLAGI8I) GO TO 321  

GO TO 680  
1001  WRITEI161010 

WRITEI 6,10101 
GO TO  999  

680  CONTINUE  

C  
C  READ THE TOTAL NO OF CHANNELS AND CLASSES FROM THE STAT fECK  
C  
C  
502  READ{S01I ICRO  
501  FOR4ATIA43 5 CRDSO ICRS+1  
C COQIRSl  

IFIICRD.EQ.BLANK) GO 70 503  
GO TO 502  

503 CONTINUE  

REWIND 5  
602  READ56 501) ICRD  

IF(ICR .EQ.FSTCRD) GO TO 601  
GO TO  602  

601  CONTINUE  
NUM-ICR0SQ-2 
DO 506 1-1,NUH 
READIS LOT  

507  FORMATIBA4.183  
506  CONTINUE  
C  
c READI5 1014) NCLS NFLO SDI  
1014 FORMAIiLs,6X,15.X,15f 
C  

NUM2-SDIM41  
Do 509 I1 NUH2  
REAO15,50T1  

509 CONTINUE  
ISIZE0I4.I¢NOIM,1/2  

= 1 E C SZN L S IS I OMI/ NTS C O Z 

NSMHNCLSSDIN  

NSA-NCLS'NSIZE  
FIND THE CHANNEL SET THAT IS NOT REQUESTED 

C  KDS 
DO J t ,SNfOiN00 611611 1  

00 612 Ja MNOIR  
. IF(I.EQ.NCCIJII GO TO 611  

C612 CONTINUE  

C  

C0  

5 

n- _I: r ;  

H3  

http:FLAG(8.TRUE.oC


FILE. . . SCANSTAT FORTRAN B1 FILE. * . SCANSTAT FORTRAN 01  
tr=K.I C  

C  C.Rm oeoee~~~~~~oeeeweee~~oee~~o~~eete~e NC(Kl~  C....................................  
611 CONTINUE  
C  SUBROUTINE SCANER  
C PURPOSE  

C. START COMPUTATION OF THE STATISTICS AT THE MSS OUTPUT C  TO COMPUTE THE SCANNER CHARACTERISTICS FUNCTION AND GENERATE  
C  CC  THE TRANSFORMED STATISTICS  

CALL SCANER (COVIN.COVOUT SUJCOVSLPX SLPYSUBSLXSUSLC DESCRPTIN  OF PARAETERS  
IC1,C2NN CRHnADRIAnnU,~lf4'' ER  C 

C APERT - ARRAY CONTAINING TiHE IFOV IHAPE [ UTI[N CI ONE DIFENSIONAL SCANRER H RAFUNTION £2  OE DI PENS ZONAL SANR HlC C  C - C1C2 
CDVIN - INPUT COVARIANCE MATRICES 

E  C COVOUT - CUTPUT COVARIANCE MATRICES 
C FLAG - FLAG I[N CONTRCL CARDS 

C C  14U INPUT REAM VECTORS 
011842 .JCtStNCLS  CNADR ADORESS OF THE MATRIX ELEMENTS TO BE DELETED CC  NAO THE 'CHANNEL SET THAT I NOT REQUESTED 

C N COPLEMENT OF NC KSM24.CLS  C RHO - SPECTRAL CORRELATION MATRIXRS-ICLS-IISIZE AS11L-1*SZ  C - AUXPY tUX ARRAYARRAY 
wra 6,101S) SLPX - PATIAL CORRELATION PARAMETERS. CROSS TRACKWRI t6, 0161  SLPY - SPATIAL CORRELATION PARAMETERS. ALONG TRACKWRIE 16 0161  C SUBSLX - SUBSET OF SLPX 

H ,01 I) NRTE(16IIBI  CUBSLY - SPY SUUCUV - SUBSETSUBSET OFOF THE INFU SPECTRAL COW MATRICESWRITEI6,I168  SUBHU  - SUBSET OF THE INPU MEAN VECTORS WRITE(16 1016)  C C  
WRgTEI6,10201 1APERT (i1.1.3  

E+21 10136WRITEIot[d11I APERTI  
C REMARKS  

WRITEI6jI O E) C WR1IE116016)  C NONE wR TEIO'11 SIONAC WR ITTEt-t Iz21SIGIAX  C SUBROUTINE AND FUNCTION SUBPROGRAMS REQUIRED WRI  E6 1021 4 CW*RIEI'I0 1 . C ADRESWRITEI.!P 613 tAOIS 13 lflz) C METHOD Nk1TEILB)Wj3) IHEA(KS*IzIrSRjAWRUEII6ii2THE  A"EQUIflEO SUOSET OF THE INPUT SPECTRAL AND SPATIAC CORRELACC(6i10t6|  MATRICES IS COMPLIED. tHr SCANNER CHARACTERfISTIC ,UNCTION ISCRTSA6,IO2Tl  CCALCULATED BASED ON EIIHER A GAUSSIAN OR RECTANGULAOR jFOV 
C AND SPECIFIED SIZE. THIS WEIGHTING 'FACTOR &S THEN APPLIEDWR 16,I C5 C TO-THE INPUT STATISTICS AND THE RESULTING AUPUT IS PRINTEDWITEIV 14,1026) C A0NOPUNChED I F AEOUESTEOI. THE PUNCHED STAT BECK IS COMPATIBC  C 1TH OAC AP AND VARIOUS LARSYS PROCESSORS. UMOTY F TERCRT WITE( 1016)  CI1) II'A N AIOSLRY RCSSR.UIYFIE 
C GAIN MAINTAINS THE EUUALITY CF INPUT'AND OUPUT MEAR VECTORS C WRITE(I6401)DO 4I XDIf=l~,NDIM C 

6D 641K01M ,N~tHCC ..........................................?............................ 
9STRT-KD H* KDIM-11/+tI  c(STOPKOIHIKOIM-I)/2t  SUBROUTINE SCANER (CUVINCOVCUT SUBCOVSLPX SLPY SUBSLX.SUBSLY PX  

(UpyTCCI2,  CiNNCCRtlUNA, R,FLG.HUSUOHUoAPhRTI 
FNTI 2F=H1(23I  C  

MTIS  2 ITI 2 c  

NR FITI)I . OLOCAL VARIABLES DEFINITION URISEI6FT 'SIJ6COV 'ItlS)I-ISTRT, ISTOP)yVO TJit ISTOP)IWRITE I6,FT CS I.fS 

REAL4 COVjNINSAINUFNSM) COVOUTINT) SUCOVXNTSISU'UINTN),SLPI. ICDVOUT(J+MSI,.JISTRTISTOPI  #IN C it1EF16'fIT41  SA fSLPV(NSAC SU?0jNT jI; $ IPX(NTSI'PYIMTSJt C~ WRT(,06  U TCi( 6I ZINTS C NIS 6RH NTS 

g0 CONTINUE  INTEGER*4 NIT1 41/41I2A00/' 
842 COTINUEINTEGER44  Nil' O', Nl 0.16 

CNTEGER04 GMAgSIGAY.SR ,NAwRia . APERT|2) 
9NTFGE 4 SHAPE/ REJ-1 
INTEERf NCUIOIMCCT 30)  

ELO  
9fl STgP  S  

1') 



FILE. . . SCAISTAT FORTRAN 1  
601 CONTINUE  

UBSLX KI-SLPX IDSj  
USLY KIaSLPY 1DS l  c 

C  
602 ONTINUE  
603 ONIINUE  

K K=O 
00 803 JCLS-IlNCLS  

C  
00 802 KOIM-I SDIM  
ON 801JiND M  

I IFIKOIN* |K-K+I *E  
C T IN TE SCNNEI SURU(K UIDSNCCTIJ  

82 CON TjNUE 
03 CONT NiUE 

i ETERMINE THE SCANNER CHIARACTERISTIC FUNCTION 
* i i i ! l i i i * i i i i e i l i i i i i e e i e , i l i  

C  GAUSSIAN SCANNER POINT SPREAD FUNCTION U 
C 0 *00 IINTS  

IFIAPEAT 3)iEQ.SHAPEI GO TO 641  
PYXi SI$AXtt2)t(SUOSLXII 1..2 ~ '=IIOAY*SZIsISU8SLYII "*2)C  

SPK-SQTIPXIII) 
CSP RTptI  

CIIIl 2 *10,SeERFCjSPXlSQRTj2.)j)-EXP PXI|I/2:1  

2 5 ERFC SP /SQRT 2.) '/Z CC IfIf 8*0:I  WEXPIP  
GO TO 646  

C RECTAJGUALR SCANNER POINT SPREAD FUNCTION C  
641 CONTINUE  
C  PK .I-SIGKAXISUBSLXIIt 

PYIE lSIGAY*SUSLYIII 
CIII)-iZ./PXII). I-fl-EXPI-PX|III/PXIII 
CZI 'I2./PY Iit I- -EXP -PY7 III/PYII

C  

646 CONTINUE  
C CII CIIIl'c21I1  

C  
C FIND THE OUTPUT COVARIACE MATRICES  
C  
C  
C  
C  
C COVOUTIIJ-SUBCOVII)aCiI) 
00 CONTINUE  

IFI.NOT.FLAGI6)) GO TO 456  

C 
C ADD  NOISE TO THE SCANER OUPUT SIGNAL  

FILE. . . SCANSTAT FORTRAN BL 
~K-Ki  

CONMON /SOSCOM/ NCLS,S0IM,NCIM,NSIZEISIZENTSNSA,SIOMAXSIGAY, 
I  NTISN.SNR  

COMON BLOCK VARIABLES DESCRIPTION 
4 - CORE SPACE FOR ONE SUBSET OF CQVRIANCE HATRIX 

C NCLS " NOOF CLASSFS OIR - OF REQUESTED CHANNELS  
NTN CORE SPACE FOR A SUBSET OF MEAN VECTORS NSA NCLS N IZE  

C NSIZE COME SPACE FOR ONE COY MATRIX  
c RHA' CORS SPACE FOR THESEAENTIRE INPUT N TS -NCLS:ISIZE  
5 C om NO OAVAILABLE CHANNELS IGMAX- IFOV SPREAD. CROSS TRACK  
c 5 G1A0- IFOV SPREAD. ALONG TRACK0  

501 FORMATI2OAI4).2.IxI 508 FORMATItLARSYS VERSION 3 STATISTICS FILE') 
509 FORMAT(ICLASS NAME'l
510 FORMATt 151XI5i6XifS) 
511 FORMAT(10 F4.2, Xf|C  

~ READ IN THE INPUT SPECTRAL AND SPATIAL STATISTICS  

VECTORS  

e00  
c  

N2"N2 f5IC  
N2=NZf5  
IFINSILE.LT.5I N2-N3+NSIZE  

C  FMTI(21-NI  
f8 21T2).N2  

t2 MU  

READI5.$T2I COVIN  

C REAO5,507)  
REAOSb SLPX  
READD1iSSII ISLPY C  

C 00 S5 IsI.NSAC  
SLPXfh-LoG5(SLPXflI)  
SLPY(Uj.-ALOGISLPYIIII 

521 CONTINUE  

C C SELECT THE REQUESTED SUBSET OF THE INPUT  

C  
C  

CALL ADRES INADR.NCsSDINNDNIM  
C  

K-0 O0 603 JCLS-t.NCLS  
MDS"IJCLS-I NSIZE  

DO  602 I:I:NSIZE  

00 601 J I NSILE  
IF II.Eg.NAORIJ) GO TO 602  

C 

MATRICES  

http:IFINSILE.LT.5I


FILE. . . SCANSrAr FORTRAN 81 FILE, . . SCANSTAT FORTRAN f1 

C C 

C C  
c  0 5 CSINL SUBROUTINE AGNES INAORsNCSDiMN0Im)  

C 4  INECER*4 NADRIIPDIMSOIM  
G 455 KDIM-tCNDIM  INTEGER*Z NC(1I  

NAUSKDIM*IKDIMtII/Z C PDIN=SOIANDI  
VARNSE-|IIC)**(-SNR/1O.3)PCOVOUTIMISSNADI  c  

IF,PDIM.tE.O1 GO TO 100 COVUUIIMON.#NADIW COVOUTI POS+NAD) 4VARNSE 1,5 CONTINUE DO 20 J-IPGIM  
456 CONTINUE  C  

C IF(.NOT.FL&GI37) GO TO 544  00 10  I-1,1. C  

2  NARIKt-(CIJ)INC(d1-E2IlPUNCH  OUT THE SCANNER OUTPUT STATISTICS  
C  g

20 CONTINUE  

WRITEtT,508I c  
WR|TEMT5231 WRIT17,59) c 00 45 JlPI O) J-t0P0I"  

523 FORMATILK C NFIN-SDIM-NCtJ)+1 t3  

C  WRITEI(l5I0) NCLSNFLO.NDIM 00 35 I-I1NFIN  

NUM2-S~lM~tC KSKil  
U3 53f1-I=lNUMZ CONYRIEC  7C2 NAORIK)1 (NCIJI*I-lIINCIJI,k-/U+INCIJ I WJRITE ITE.2I CONTINUE  C  

35  CONTINUEP4NrIIt2)I-;3NDIMA 45  CONT NUE$Mt2121.NizC  C 
100  RETURN WRITEITFMTII SUBMU CVOUE C4  RITEITFM~fH)  

544  CONTINUE  
RE IURN  
END  

C  

SUanUrINE ADRES 
2 PURPOSE 
c  

FIND THE DESIRED SUBSET OF A COVARIANCE MATRIX  

DESCRIPTION OF PARAMETERS  

NAOR 4RCREARRYOYHUETISTFB I NADR - ADORESS ARRAY FTHENRETOEDLTD EEE S8 M ARRAY UP THE CHANNELS TO BE DELE.TED 
SDM TOTAL 140 OF BANOS AVA 'LABLE  

1401M DESIRED SUBS ET Of SU1M -

S REMARKS  

C NONE C  
SUDROUTINE AND FUNCTION SUBPROGRAMS REQUIRED  

NONE  

METHOD  

uSING A ONE DIMENSIONAL. STORAGE MODE FOR EACH COVARIANCE  
MATRIX IN AN UPPER TRIANGULAR FORM, THE PARAMETRIC ADDRESSE  
FOR EACH ENTRY IS DER'IVED. USING THE NC ARRAY, THE LDCATO OF ALL THE ENTR IES THAT LiE Ifl THE UNWANTED LINES AND COLU?C IS COMPUTED AND STORED IN NADR. 

http:PDIM.tE.O1


FILE. . . SPROCT FORTRAN PI FILE. . . SPOPTM FORTRAN PI 

sPR- C 
C SPOPTM C  
C PURPOSE  

PURPOSE  
EXOYS DATA IN PUNCHED FORMAT IS READ AN) STORED ON TAPE  

REVISED 1  TO DESIGN THE OPTIMUM SENSOR FOR A GIVEN DATA SET.  

3 JULY, 1978 USAGECALLED FROM EXEC ROUTINE  
C C- C  C DESCRIPTION OF PARAMETERS Cf14EON (04 tOO) C AM -- MEAN VECTOR OF DATA  

INTEGER*4 INS) 04V431D EI1IhNFOCRP 1OUPI C COY COVARIANCE MATRIXCOF DATA  
6E* C PHI OF EIGENVECTUORS. -MATR1X 8UEt0iATAI2SO0I~~~' 

011) 1G4A3  EIGENVALUES EQ ALENCIDAT&  C  N DIMENSIONALITY OF DATA SET  
411 1, IFOII, ),I1 IFIOO C NCLS NUMBER OF CLASSES  

RNT I C SUBROUTINE AND FUNCTION SUBPROGRAMS CALLED  
NT  oo0 C EIGENPEISORTSPWGI 

C C  
CtI INFORM4ATION  C METHOD  c N  CRI1c THE KARHUNEN-LOEVE EXPANSION WITH THE MAXIMUM LIKELIHOOD ESTIMATEt RITE|(6,10T1 C OF THE COVARIANCE MATRIX AS THE KERNEL IS USED TO REPRESENT THE 

ID FflMATI5XTYPEIN DATE*,/IX.15('/fl) C RANDOM PROCESS.READtI5 15)DATEH  
15 FORMAT4ISAIi C REVISED C 14 AUG. 1978 
C EXP. NO., NUMBER OFCLASSES, AND NUMBER OF DIMENSIONS C 

WRITE(16,2O| C 
20 FORMATIXTYPL EXPoN0.jCLAjSESAND DIMENSIONS*,/' / 1/ t0 COMMON 11)41O)

READtlb;25)iOtI6btiD0FORMAFI lT IO 1BA RE L 8 VEC (10OU O t VI (IO 0 4IND 0{OOACOVfIOO I 0O| GAN|IO DJ2 s 3ZX IZ ,X ,13)  REALt4 AMI OOJ#Y|[OO} coVISO),HIP100,100) 
REAL:$ PHC 100.10 

CEXPERIMENT INFORMATION REAL4 XIIOOi 0 OO  
NCLS - 10117)  REWIND 2W{IE 416.5)  
DC 35 I-ItNCLS 5 FORMATt5X-OPTIHUH SENSOR DESIGN') WRITE(I6,3QII  C  

30  FDRMAT(SX,'TYPE CLASS INFO AND NO * SAMPLES FOR CLASS 'Itl,/IX#KO C READ ID INFORMATION 
35  READ AEADI2) I0 
40  FDRMATIIAI I6OXI' WRITE618)

WRITE(III 1 8 FORPAT(IH1,SI/))
CALL SPL5L  CALL SPLOL  

READ SAMPLE FUNCTIONS FROM EACH CLASS  C* I 1  
DO 500 K-i NCLS C COMPUTE COVARIANCE  
WRITL(680  C  so  FOMMATth{/IIOX.SAMPLE FUNCTIONSt) WRITE (6tI) NF - ID(2O*KI 10 FORNA TI5%COVARIANCE BEING ESTIMATED (SPOPTHI 

1 00 READ2 O%9IAv TIME. tN NOGRPSxNOSAMS NCLS I II100 R 0 DAY INFT  
1000 FOAIAT JAA,2XfK / 4 IIBXt/)OX 20 

0 
I1I.NCLS I I 4#  00 REAOISIIOUIIDAIA I, nO S) 20 NFT " 4FI * 11)20+1)

1100 FDRMATIZOAAI COt - OFLOATINrI)/DFLOATINFT-1I
WRIITEI6 ISO IN  DO 30 I-I.N  

150  FORMATIIOXZ0A4) 30 AMIII - 0.0 
DO 160 1 1 NT  30 35 I0.0CT

160  XIll - DATAIItlI 35 CUVII) - 0.0WRITEIElI X 00 &5 IJINFT 
200 CONTINUE READI?) X 
500 COUTINUE IN - 0END FILE 11  03 50 I-1N STOP  AMIX) - AMill 4 XIll/DFLDATINFT)

END  Do 50 J-1,1  
14 - IN + I COVIIN) - COVIIN) * XII*XIJI/OFLAT(NFT-II

50 CONTINUE 
65 CONTINUE

IN - 0 
DO 60  I.IN  
DO 60 J-1.1  
IOViNl - OVIINI - CPN*AMII)*AMIJ1  

.0-. 



FILE.. . SPWGT3 FORTRAN PI 

FILE. . . SPOPTN FORTRAN PI C 

60 CONTINUE C WEIGHTING FUNCTION NUMBER 3 

C WEIGHTING FUNCTION  c  
C  ,SUBROUTINE SPWGT3(WI 

4 -R0  REAL*4 WIt1c0  
00 210 J-1 I 

WRITE (6,151 14 - IN * 1 FORMATI// 5KOWEIGHTING FUNCTION NUMBER 34//I Jl.-*OIC5  Do 20 1 ACOV(I ,  Wi 1.!100 210 CONTINUE  
C CALL SPWGT3(Wd  CALLSPWG31W)DO  20 CONTINUE 30.1;!18,53 C  00 250 I-1.N C 14.5D0 30~~o  

C  0 Will-0. DO 250 .11,N 250 W141  1-72,76 DO .J I.N 40 DO  40 • 0.0  
250 ACOVILJI ACOVIIJI'W(J) wil7 0. 

C W(541 0.5COMPUTE TRACE OF COVARIANCE  W(711 0.5  
WTUN 0.5 SUM - 0.0  

DO 80  ITNRN  END 80  SUM - SUM*t ACOYI|eI)  

COMPUTE EIGENVALUES AND EIGENVECTORS  
WRiTEl 1 6, 75)  ) 

75  F3RMATVSXAEIGENVALUES AND EIGENVECTORS (EIGENP)' 
NM NT - 56.  
CALL EiBENPINNMACOVT,GAMEVIPHIVECIINDIC.WI  
CALL EIORTIN GAM,PHI C  

C PRINT EIGENVALUES AND MEAN-SQUARE ERROR a CO - FLOAT NFTI/ FLOATINFT I )FLOAT INFT-1 1  

CI * FLOAi(4*NFi-II/(FLOAT(NFT-1))
WRITE(6 1I0)  

110  F3RMATidl/) .5X, N% SX,'EIGENVALUE.o5XeVARIGAMNP,5XIVAR(PHI),5SX
*'MEAN-SQUARE ERRORIL00 ISO 1-1,30 
VARP ; 0.0  
03 L20 J41 10, 
IFIJ .EQ. 19 GO TO 115 
VARP u VARP t COtGAM(l)*GAM(Jl/,GANA II - GAMIIJJ,*2 

115 CONTINUE"  
120 CONLNUE  

VARG - C4tG4MhhI*GAM(I)
SUM  SUM - GAMI II 
WITE (6.1451IGA(I) VARG VARPSUM 

145  FORMAT( X,~i4XFtO.L.4Xi LO.4,2X,F10.4,ZXF14.6)
150  CONTI NUE 

00, 155 JtI,N 
00 155 I1IN,1,55  RHI.PlIfIj *M PH'II, J)  
03 180 J-1 O,2' WRITE17 16 )IPHIPiII J-lI-1vN) 

160.  FORMATMIOA*) M  
180  CONTINUE'  

STOP, END' 

H1  

http:EiBENPINNMACOVT,GAMEVIPHIVECIINDIC.WI


FILE.  . . SPIES FORTRAN P1  

C - -0  C  ~CC SPTES TRANSFORMS THE DATA USING THE OPTIMUM  SET OF BASIS VECTORS OMPUTES THE MEAN-SQUARE ERROR, AND COMPUTES TE  
STATISTICS FOR EACH CLASS.  

COMON 10o100)- -5 REAL*4 P1103PHI(IOOG 03X/100),YIIOQIZ(i00j C  REAL4 A 1ObIAVEt261o? ,iOVtZ 0ica1  
SELECT NUHUER OF TERMS  

WRITE1I6,10I  
to FJRMAl15x;'NUMBER OF TERNS 6) is Rc oilSil INTEAP  
tS FORMATIIZ) 

REWIND 2  
READIZI 10 U S I0417) N:LS R  
N . a;18 * NVERM*INTERM 4 1)/AFT  
DO 20 IaINCLS  20~~~~~O NF $ D2+100 

00 25  laI,NCLS C  
25 CONTINUE  

P5 I ./FLOAT(NCLS)  

28  FOW4ATII2XI2N 
2 R8E T (* I  

0 FORHATlOFE.42 
COMPUTE MEAN FUNION  

C 0C 00 300 1 N  
300 AMII- 0.6I6  

no 320 KaINFT  
REAQ~z03AO32 £Xx ti03 ~I00 IIN 320 [I  

2 C+Xt16/FLOATiNFT320  CONTINUEN~~u  
REWI 2  

CREAD EIENVECTORS  
DO 40  J-I NTERM READ1- 
FORMAT1ZOA4) 35 FRATh 351(~PlHlII I,)f.I'N) 

40 CONTINUE 
LOOP ON THE SAMPLE FUNCTIONS IN THE DATA SET 

AVESO- 0.0WRITE16,21O)AVEUO AVESO  - 0.0  
Dl 200 ICLSr1,NCLS DO 50I . NTERM  

so  AVE( ICL - 0.0  
03 55 I.1 NCT  

55  COVIIcts). 0.0  

UP .  If(ZC4ICLSI 
CON a FLOATINF)/FLOATIN-1)  

c DO ISO ISAM-I.NF  
CREAD SAMPLE POINTS FROM FUNCTION  
C READI2) X  

TRANSFORM DATA USING BASIS FUNCTIONS  

Do 70 J'l NTERM  
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