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A. DETERMINATION OF MISREGISTRATION EFFECTS

Paul E. Anuta
Carlos Pomalaza

This task was formulated to further explore the question of misre-
gistration in multispectral/multitemporal data used in resource applica-
tion projects. Misregistration can occur between spectral bands in a
single acquisition due to sensor and data handling errors or it can
occur between acquisitions from different times which have been imper-
fectly registered. Temporal registration errors are due to a variety of
causes relating to both the nature of the data and the registration pro-
cessor., The ultimate source of error is the change in the scene which
occurs between the two times of acquisition. Matching of two images
which have undergone change relative to each other will always result in
some error. The change in the scene is, of course, related to the
information derived by the user, whereas the change is noise to the
registration processor. These two viewpoints are in conflict and are an
interesting characteristic of this information processing image process-
ing problem.

Several studies have been conducted on the misregistration effects
problem but results are few compared for results of studies of, for
example, various classifiers and their performance. In 1975 Malila 1
studied the effects of misregistration on crop classification and pro-
duced results on proportion of mixed pixels and its effect on class sta-
tisties.

Two aspects of misregistration were studied in this project. The
first is an approach to determine misregistration using properties of
the Fourier transforms of the two images being compared. This 1is a
different approach from the usual correlation process carried out. It
warranted investigation since little was known about its characteristics
and could potentially offer an improvement in accuracy of misregistra-
tion estimation. The second subject is effect of misregistration on
classification accuracy. Several empirical studies have been performed
and these give only a few samples of error conditions. The work here
focused on the problem of developing general models for misregistration
effects so that results would be varied over a wide range of cases.
Several models were pursued and evaluated. Problems and considerations
for adequately general models are discussed.




1. Estimation of Misregistration Using the Fourier Transform

1.1 Development of Difference Spectrum Expressions

The method described here for estimation of misregistration between
two images uses properties of the Fourier transforms of the two images.
It is assumed that there is no rotation, skew, scale difference or
higher order distortion between the images. Thus there are only two
variables describing the misregistration: §_, translational shift in
the x direction and &,, translational shift in the y direction. One
image is assumed to be the reference and the other is shifted with res-
pect to it. The images we are concerned with are discrete or digital
images which are arrays of numerical values. However, the thrust of
this research is to find improved methods of determining small frac-
tional sample misregistrations. Thus the continuous image case will be
explored first. Then the relationship between the continuous image and
fractional misregistration in the discrete case will be explored.

The two images will be represented as p,(x,y) and p¢,(x,y). Since
we are considering temporal change in the ear%h scene, thé p, (x,y) 1is
the reference image sensed at time t and ptz(x,y) is the Same basic
image with the temporal change added. Thus:

p, (x,y) = p_ (x,y) + Ap (x,¥) A-1
) £ 1%

The Ap, (x,y) 1is the change in the image over the time interval tlt
and is dué to changes made in the scene by cultural practices, seasona
effects, atmospheric effects, sun angle changes and other events such as
floods or fire. The change is the information carrying quantity for the
analyst and it is noise for the image registration processor for if
there were no change, then registration would be a much easier problem.
The misregistration is a shift of p¢,(x,y) with respect to p_ (x,y).
Thus the misregistered image is represénted as: 1

ptz(x,y) = ptl(x+6X,y+6x) + Aptlt2

The premise for the approach being investigated is that the misre-

gistration can be deduced from the Fourier transforms of the two images.
The Fourier transform of P, (x,y) is:

(x+6x,y+6y) A-2

& -3 20 (ux+
FT [ptz(x,y)] =S J Py (X¥)e J2M(uxtvy) gy ay A-3
i 211 +v§ j2
= FT [pt (x,y)]eJ (uﬁx v y)+ FT [Apt t (x,y)]eJ H(USX+6Y)
1 172

The misregistration thus manifests itself as a linear phase term in the
transform of the misregistered image. Estimation of the phase term due
to misregistration is the goal of this approach.

The transform can be expressed as a magnitude and phase for each
frequegcy and the problem is to separate the phase components due to
misregistration from those components due to the reference image and the




difference image. The one-dimensional case permits a more convenient
exploration of the problem.

o, (u) j2Mus
|Pt (u) |e o1 e X
1

Frlp, (0]
2

j¢ (u) j2nus
IAPt ¢ (u)le t1t2 e x

172 A-4

j¢t (u) + j21'[u6x
[P, (w)]je 1
t

-+

it,

(u) + 2Mud
(u)l e 172 X

+
S
rJ

where the capital P denotes the Fourier transform of p(x,y). The phase
angle of the misregistered image is obtained by manipulation of the com-
plex variables. Let ¢'t(u) be the phase of the misregistered time tz
image. 2

Then:
' -1
¢ (u) = tan Im P, (u)
ty 2
Re Pz(u)
| h
[P, (u)|sin(¢,_ (u) + j2Mus )
t t X
1 1
+ IAPt . (u)[sin(o,  (u) + 2Mud )
-1 172 172
= tan A-5
IPt (u)|cos(¢t (u) + j2Mus )
1 1
+ .
|APt1t2(u)|51n(¢t1t2(u) + 2Mus )
- -
The problem here is to find d, given the measured phase functions.

Since the reference image is known, the magnitude and phase functions
P, (u) and ¢ (u) can be evaluated. The true difference transform is
th&s what is uﬁknown. Previous work has provided evidence that the tem-
poral change statistics are similar to the statistics of the reference
image only with a different spectral amplitude. Assuming the image is a
Gaussian process with a Markof spatial correlation characteristic, the




difference image can be assumed to be zero mean. A least squares fit of
the linear phase 1line to the measured phase difference is the approach
taken here to estimate the misregistration. It is desired to find the
dx, which minimizes the expression:

(o]

f (a¢(u) - 216 u)’au

—00

where: Ap(u) = ¢! (u) - ¢, (w)
t t
2 1

This is a least squares fit of the linear phase line to the measured
phase difference values. In the discrete case, the integral becomes a
summation and the standard method of solution is to differentiate with
respect to the unknown parameters and set the result to zero.

N
€ = 2: (Ap, = 216 u )2 A-7
i x 1
i=1
N
de_ . Z 2(prp, - 2m8_u ) (-2Mu,) = 0 A-8
dé i x i i
X .
i=1
This results in:
N
§:A¢iui
N 1 i=1
- A-9
6x 21




The important characteristic of this estimator is its variance. An
expression for the variance of this misregistration estimate will enable
comparison to other methods. In particular, in the work by Svedlow[2]
an expression was developed for the variance of the registration esti-
mate using a matched filter which was also shown to be the optimum
linear process for registration error estimation. This important vari-
ance derivation is presented in the Appendix as a reference for the dif-
ference image method explored here.

1.2 Variance of the Registration Error Using Matched Filter

The development presented in the Appendix provides results relating
the signal-to-noise ratio of the images to the variance of the estima-
tor. The expressions are:

Var[(gx -6 1= ——

A-10

Var[(ésy - ay)] —

where Bx, are the effective bandwidths of the x and y dimension in the
noise or temporal difference image. The signal-to-noise ratio is the
ratio of energy in the reference image to the noise energy in the random
temporal difference image. The 6X,6 are the estimated misregistrations
and the §4,9 are the true misregis{rations. Making assumptions that
the images are bandlimited and that they have the same spectrum shape
with different amplitudes, a simplified expression can be obtained as a
function only of the bandlimits W W The standard deviation of the

estimates then becomes: y
N _ 1 / 3
Std[(ax_sx)] B Zwa SNR
A-11
N _ 1 3
Std[(ﬁy Gy)] B 2Hwy v SNR

For the Landsat case, the expressions become:

Std lines = 44Li meters
VSNR

Std cols =-§§Ll meters
VSNR

These functions are plotted in Figure A-1 to show the relationship
graphically. It is the purpose of this investigation to obtain the same
relationship for the estimator using the Fourier difference spectrum.




1.3 Variance of Registration Estimate Using Difference Phase

The variance of the estimator given in Section 1.1 can be obtained
from the variances of the input processes.

N
2: Ap,u, 2
: A 2 1 i=1 " A-lz
- — - -—1= -
VAR[GX] = E[(Gx §) 1=k& MmN s
2: u,
1
i=1
s o~
[ N - — N ]
Y Begyy PN
1 i=1 1 i=1
S L 2B o1 N S
Y oYy )} u?
. . 1
i=1 i=
+E[52]
X
We can assume the § is zero without loss of generality. Then the

expression is simply a linear combination of the expectations of squares
and cross products of the A¢.. If we further assume that the A¢l are
uncorrelated and of equal variance, the variance becomes:

N
A L Yy E[As
var[s ] - E[A¢i] 12 1N1 _ 12 12 A-13
41 (Z uz)z 4T % u’
& i / *
i=1 =]

The A¢; is the result of the phase and magnitude variations as defined
in equation A-5. The random process defining the temporal change is
assumed to be Gaussian; thus the imaginary and real parts of the Fourier
transform are also Gaussian. The ratio of the imaginary to the real
parts is a ratio of two Gaussian random variables which results in a
Cauchy distributed random variable. The arctangent function applied to
a Cauchy random variable results in a uniformly distributed random viri—
able with range -1/2 to 1/2.[3] The variance of the phase is thus 1°/12
radians. The variance then of the estimate appears to be independent of
the variance of the noise process which is representing the temporal
change.

The value of the variance of § is then .8225 radians multiplied by
the factor K: x
K = 5 % A-14
41 2: 2
u,
A 1
i=1




The summation of the frequency values is a summation of fractions up to
the value one-half since the sample interval is taken as unity, so the
maximum frequency is 1/2: u = i/N i=1,...N/2 where N is the total num-
ber of points Fourier transformed. Thus we have:

K = A-15

2

41 2

l,
N/2
1 .
ZLt
i=1

For N=16 K=.008 and for N=32 K=.004; thus the value will be very small
for large arrays. The dimension of K 1is distance units squared and if
the one-unit spacing is scaled to the 80 meter Landsat sample spacing
and more than 32 points are used, the value of the variance would be
less than .004 x .8225 x 6400 = 21 meters or the standard deviation
would be 4.6 meters.

This result is not considered to be reasonable since it does not
depend on the effect of temporal change 1in the two 1images. Clearly
higher levels of change in the images will make registration more diffi-
cult and in the 1limiting case of infinite variance for the temporal
change, the error should be infinite. This result is correctly pred-
icted by the model described in the Appendix and plotted in Figure A-1.
A realistic model for the variance of the error in the phase difference
estimate was not developed in the study as desired. The above result is
interesting in that if the arctangent function is used, the variance of
any phase estimator would appear to be bounded by some small number in
the I radian range. This contradicts the fact that increasing temporal
variance makes images increasingly dissimilar. Further work is needed
to develop correct analytical expressions for the variance of the pro-
posed misregistration approach.

1.4 Experimental Analysis Method

To explore the behavior of the proposed misregistration method, a
numerical evaluation was carried out wusing registered LACIE segments.
Early in the study, ten segments were identified as a test set for the
evaluation. As it became apparent that analytical evaluation of the
method was not going to be achieved in the course of the study, it did
not seem desirable to plan on an extensive numerical evaluation. Some
work was carried out to observe the behavior of the phase differences of
the images for one segment: 854 in Tippecanoe County, Indiana.

Misregistration estimates were made using the correlation coeffi-
cient and a correlation block size of 32 by 32 pixels from ten acquisi-
tions for this segment for the 1978 growing season. A typical correla-
tion function plot is shown in Figure A-2. The peak of the function was
interpolated using second degree Lagrange polynomials and the fractional
position of the peak was determined. These estimated fractional misre-
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Figure A-2. Correlation function plot for Segment 854 for refer-
ence date Aug. 21, 1978 and Aug. 4, 1978 overlay date. Maximum
point is at the center column and one row up from the center row.
The correlation value at the peak is .54.
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gistrations are listed in Table A-1 using a mid-season date of August 21
as the reference. The last row in the table is the August 21 date cor-
related with itself as a check on the algorithm. The misregistration
values are what the correlator estimates as the remaining misregistra-
tions in ‘the LACIE segments after registration by the NASA processor.
These estimates are, of course, subject to the error variance associated
with this method so cannot be taken as exact values.

The variance of an optimum processor used to register the two
images is a function of the signal-to-noise ratio, as defined in the
Appendix. This ratio can be estimated from the Fourier transforms of

the two images. Since the registration method being investigated
requires the Fourier transform of the images, the transforms of the
fourteen acquisitions were computed and stored on tape. Ten of these

are used in the study. The dates from September 27 on were not used as
they were judged to be too late in the season to offer good results with
an algorithm we knew little about. The Fourier data file information is
presented in Table A-2. The transform dimensions are 64 x 64 points.
The next larger size, 128 x 128, could not be used since the data sets
had only 117 lines. Gray-scale images of two acquisitions are shown in
Figures A-3 and A-U for dates August 21 and August 4, respectively.
Channel 2 (Band 5) was used for the study as it displays good road
structure relative to the IR bands and better signal-to-noise ratio than
Channel 1 (Band 4). A gray-scale reproduction of the magnitude of the
FFT is shown in Figure A-5 for the August 21 date. This image is typi-
cal of all transforms of this type of scene and is presented for its
pictorial value. The two general loci of brightness, one running top to
bottom and the other faintly left to right, represent the road struc-
ture.

The misregistration estimator was programmed and applied to the
Fourier transform files. The phase difference of the transforms is com-
puted for each frequency value. The evaluation was begun with the
August 21 data set misregistered one line and one column with respect to
itself to give an image pair of known misregistration and no temporal

L{
0
T gl

Figure A-5. Fourier transform
magnitude for Segment 854,
Aug. 21, 1978, obtained from
the first 64 lines and columns

of Channel 2.

T
Y
0
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Table A-1. Misregistration errors in sample segment obtained from
image correlation and using cubic interpolation to find fractional
misregistration. Segment 854, Tippecanoe County, Indiana.

Reference Run is 78542330 Aug. 21, 1978

Discrete Peak Fractional

Overlay Correlation Misregistration

Runs Date Value Lines Columns
78542340  Aug. 21, 1978 .68 -0.54 -0.76
78542430  Aug. 31, 1978 .56 -0.5 0.0
78542510  Sept. 8, 1978 .56 -0.03 -1.40
78542520 Sept. 9, 1978 .40 -0.05 -1.23
78542690 Sept. 26, 1978 27 0.09 -0.50
78541610  June 10, 1978 .28 0.535 -0.50
78541970 July 16, 1978 .32 0.27 +0.70
78542070 July 26, 1978 .25 0.21 -1.30
78542160  Aug. 4, 1978 .54 -0.67 0.21

78542330  Aug. 22, 1978 1.00 0.0 0.0
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Table A-2. Fourier transform files for Segment 854 (Tippecanoe
County, Indiana). Channel 2 (.6 - .7um) used for transform.
(Data on LARS Tape 26 at time of publication.)

Data Set Additional
ID No. File No. Date Information
78542332 1 Aug. 21, 1978 64x64 points
78542342 2 Aug. 22, 1978 "
78542432 3 Aug. 31, 1978 "
78542512 4 Sept. 8, 1978 "
78542522 5 Sept. 9, 1978 "
78542692 6 Sept. 26, 1978 "
78542702 7 Sept. 27, 1978 "
78543062 8 Nov. 2, 1978 "
78543512 9 Dec. 17, 1978 "
78543592 10 Dec. 25, 1978 "
78541612 11 June 10, 1978 "
78541970 12 July 16, 1978 "
78542072 13 July 26, 1978 "
78542162 14 Aug. 4, 1978 "

78542334 15 Aug. 21, 1978 Origin shifted

one line and
one column




Channel 2 (Band 5)

Figure A~3. Gray-scale images of Segment 854 for Aug. 21, 1978
used as a reference image.




Channel 9 (Band 7)

Figure A-3 (continued).




Figure A-4,

Channel 2 (Band 5)

Gray-scale images of Segment 854 for the Aug. 4, 1978
acquisition.




Channel 4 (Band 7)

Figure A~4 (continued).
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change. The linear phase term should have a slope of unity for this
case and at the maximum frequency of 1/2 the value should be:

ZHUGX = 20x%x1 = 1

Thus the phase difference curve should go from 0 to II and the linear
phase line should pass through these points.

The phase angles used for the estimation for columns are all values
for which the line frequency is zero and vice versa. The phase differ-
ence angles for the column direction are plotted in Figure A-6 and those
for the line direction are plotted in Figure A-T7. The desired linear
phase line with a unity slope is shown starting at zero and ending at
pi. Phase angles are close to the expected curve at low frequencies but
deviate widely at high frequencies. Restricting the least squares curve
fit to only the lower half of the frequency curve reduces the effect of
this dispersion somewhat. The column misregistration estimate in this
case is .97 and the line estimate is .65 pixels.

The Fourier transform program assumes a two-dimensional periodic
image; thus the shift of one pixel here introduces new data and essen-
tially adds noise to the transform of the second image. This was sus-
pected of causing the variability in phase so a special data set was
constructed which was periodic with a period of 64 pixels. The time-two
transform was then taken of a 64 x 64 block shifted one line and column
in the periodic image data. The phase differences are plotted in Fig-
ures A~-8 and A-9; a strict linear phase line is observed in each case.
The curve fit results also produced exact 1.000 line and 1.000 column
estimated registration which is the correct and expected result. Thus
we concluded the algorithm was properly implemented and could be tested
on the other segment acquisitions.

The algorithm was tested on the ten acquisitions for which correla-
tions were run. The results are listed in Table A-3 along with the cor-
relation results. It is apparent that no readily recognizable agreement
exists between the correlation and phase difference predictor results.
The wide variability of the phase angle for the test case where one new
line and column were introduced (Figures A-6 and A-7) suggests that
there may be serious problems with this approach. This is reinforced by
the results from the nine other acquisitions. Based on these results,
the decision was made not to pursue this Fourier transform method
further in this task and to instead concentrate resources on the ques-
tion of misregistration effects on classification accuracy. Further
study of Fourier transform methods of determining misregistration is
recommended to determine the cause of the observed variability and pos-
sibly define an algorithm which will perform satisfactorily. Theoreti-
cally, this should be a good method of determining small misregistra-
tions because of the 1linear phase properties of translation into the
Fourier domain. The investigation conducted into models for misregis-
tration effects on classification accuracy will be discussed in the
remainder of this task report.
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Figure A-6. Phase difference angles for column direction
for overlay image shifted one line and one column.
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LINE DIRECTION PHASE DIFFERENCES
Overlay Image Shifted 1 Pixel

M Segment854 Aug. 21,1978 -
— ”,,
. _-N\
DESIRED LINEAR
P PHASE LINE
® ~ °

2| ’,,, .
2 o - ¢ °
K- ”./
© . -
E { - o ® .
- 1 [~ P - *
- § ~ . L4 'y
s Pt
2 } 70 o @
S’org; ° 1 L l 1 L T 1
< — 1 ¥ 1 —1 —1
© 5 10 15 20 25 30 32
Q Frequency Number
o
o
E -
(=]
©
[} e
§ .

-2 — .

3L
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Figure A-8, Column Direction. Phase difference
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Table A-3. Estimated misregistration for Segment 854 acquisition
using phase difference algorithm.

Reference Run is 78542330 Aug. 21, 1980

Misregistration Misregistration
Date From Correlation From Phase Algorithm
(1978) Lines Columns Lines Columns
Aug. 22 -.54 - .76 .08 - .86
Aug. 31 -.5 0.0 -.86 .24
Sept. 8 - -.03 -1.40 -.55 .18
Sept. 9 -.05 -1.23 -.08 .05
Sept. 26 .09 - .50 -.54 - .31
June 10 .54 - .50 -.15 1.16
July 16 .27 .70 -.36 1.09
July 26 .21 -1.30 -.18 .72

Aug. 4 -.67 .21 1 12
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2. Classification Error Models for Misregistration

2.1 Introduction

Spatial misregistration in multitemporal, multispectral scanner
data affects the performance of classifier processors working on such
data. In order to analyze these effects, it is useful to identify and
to study particular cases before developing a general model that can
take into account the different parameters that are present in the prob-
lem. A discussion of those cases is in the next paragraphs.

2.2 Field-Center Pixels That Remain as That
After Misregistration

When the amount of misregistration is such that field-center pixels
will remain the same, the major effect on the training statistics com-
puted from those pixels will be in the change of value of the nondiago-
nal elements of the covariance matrix. Specifically this change occurs
in the covariance between misregistered channels. To see this more
clearly, let the following conditions be assumed: There are two classes
(Class A and Class B), two channels (Channel i and Channel j), and the
covariance matrices of the statistics from both classes are the same
(K). The class mean vectors will be denoted by a and b, respectively.
Assuming equally likely classes, the probability of error in classifica-
tion (PE) will be

- 1
P.=% (PF + PM)

where E

o
n

Probability of false alarm (say, Class A when it is Class B)

o
n

Probability of miss (say, Class B when it is Class A)

For the present problem

Due to the misregistration, the covariance matrix K changes to Kyre
Assuming, as in [1], a linear decreasing cross correlation between mis-
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registered channels, K _ is of the form

MR
2
o (1-€) p o0, ©
1 171
MR = 2
(1-¢)p 9, 9 I,

where € = amount of misregistration (relative to pixel dimensions),
assuming for simplicity 01 =0, =0.

p, = o308 T kg 01%)

2 2 ]
My + My — 2 Hy My 0 (1-¢)

1
Ql 2
02 1 - pz(l—e)2

The expression above can then be used for computing the probability
of error for different combinations of parameters.

Figure A-10 shows the probability of error for different values of
the cross-correlation p when uk =u,=0=1. From that figure, it is
observed that the effect of the sEatial misregistration can be quite
different as the cross-correlation value varies. Thus it does not
affect it at all if p = 0. If p = -0.8 P_ increases as e increases and
finally PE actually decreases with ¢ if p~ = 0.8. Therefore for this
particular case, the presence of misregistration does not necessarily
mean degrading the performance of the classifier.

2.3 Boundary Pixels

Boundary pixels, i.e., the ones that are close to the lines that
separate different cover types, are affected by spatial misregistration
more markedly than field-center pixels by the fact that, in general,
they will become mixed-class pixels. The statistics of these pixels
(mean vector and covariance matrix) will be different from the ones com-
ing from the training fields which, if the amount of misregistration is
not excessive, will have only field-center pixels. To illustrate some
of these aspects, let it be assumed that a pixel is lying just next to a
boundary between two different classes or cover types. Without misre-
gistration, it would be a pure Class B pixel, but with misregistration
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Figure A-10. PE vhen classifying field-center pixels.
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along one channel it will become a mixed-class pixel. If the covariance
matrices of both classes are considered equal, the statisties of such a
pixel when the relative amount of misregistration is € would be

o by

mean vector m = =

m (1-¢) b2 + € a

2 2

where it is assumed that the misregistration is along the second chan-
nel. The covariance matrix will be the same as the one from the field-
center pixels, i.e.,

(1-¢) PO Oy

(1-€) po, © o

1 72

The discriminant function based on the statistics coming from the train-
ing set is

g =ul KL% é‘%— G gk La-5pt g1 b)
B
E(2/B) = u° K -
Variance (&/B) = ﬁT K_l b= oxz
m can be rewritten as
m = + € =b + e d2
b
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The probability of false alarm will be

o =Q(;EETK—]';—%I_)TK_]-B—ETK-IEI>
F o
X
(wT Klh - e K a?_)
=Q 5
X
assuming o, = o, = 0

1 2

2 2
ET g1 =W + U7 - 2 U Hy (1-e) o

62 (1 - (1-e)% 02

. 2
ET K-l D= TH My (1-e) + My

6% (1 - (1-)2 0%

Finally

2 2 2
m "+, =21 By (1-€)p - 2¢ (u2 — Uy My (1-¢)p)

p. =qlx
w2+ w2 - 2wy w, @-0)17 [1- @-0)? p’T% 0

In particular, if By = Hy = 1

1--¢
[2¢1+ (l—e)p)]ls

Figure A-11 illustrates P, for various values of the cross-correlation p
and when 0 = py, = u, = 1. It is apparent from it that for all cases
there is an increase in PF with €. The relative amount of this increase
is different for different values of p.
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2.4 Possible Effects When More Than Two Classes Are Present

So far, the effects of misregistration when dealing with two
classes and two features have been discussed. Additional effects occur
when there are more than two classes. For example, 1let it be assumed,
for simplicity, that there are four classes and also two channels. Let
it be assumed that there are equal covariances (K = ¢“ I) and the dispo-~
sition of the mean vectors is as in Figure A-12.

channel i

channel j

—— e e o e e e e e o

b e — o o— e

Figure A-12. Locus of mean vectors.

For equally likely classes

P, = 1 - [1-q(a/2)]?

A mixed-class pixel (let us say between Classes A and C) will have
its mean located along the line that goes from the class mean A to the
class mean C, as in Figure A-12 where a mixture proportion of (1-8) from
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Class A plus § has been assumed. Thus

d/2 (258-1)

B
ft

-d/2 (26-1)

If in addition there 1is a relative misregistration € along the j chan-
nel, then

d/, [2(s+e) - 1] m

=R
0
[l

—d/2(26-l) m

In the present example, the covariance matrix stays the same with or
without mixture and misregistration. It turns out now that a mixed-
class pixel (such as x in Figure A-12) due to misregistration will have
an increasing probability of being assigned to a class completely diffe-
rent from the ones present in the pixel (such class would be Class B in
Figure A-12). Class B, therefore, will be assigned, by classification
error, more pixels than it would usually get if the configuration of the
various cover types were different. For the case shown in Figure A-12,
the probability of a pixel with mixture proportion § and relative misre-
gistration ¢ of being assigned to Class B is (assuming ¢ = 1)

Py = Qm)) [1 - Q(mz)]

Figure A-13 shows P, for different values of the mixture proportion §
and when d = 2. It is apparent from the figure that the Py increases
steadily as the amount of the misregistration increases. This behavior
is intrinsically related to the distribution of the cover types on a
particular scene and the nature of their statistics. If, for example,
the mixture would have been between Classes A and D, the misregistration
would have had no effect whatsoever on PB' Therefore, given a scene,
the classification error for certain classes 1is going to be differently
affected by the misregistration. The conclusion that misregistration
effects might result in errors that are noncompensating over a scene was
also reported in the simulation study formed in [4].




1.00

30

875

+500 -

«375

0.00

1)
0.00 .185

Figure A-13,

4 ) ¥ 1
250 «375 +500 -625 <750 875

Py

amount of misregistration

. Mixed-class nixels, d=2.0.




31

2.5 Contamination of the Training Statistics Due to Misregistration

One important aspect in the design of the classifier processors is
the nature of the training data. It is usually desired that these data
be accurately representative of the various classes present in the
scene. To have this, one would like to have training-field sizes with
the sufficient number of pixels to ensure a good estimation of the clas-
sifier parameters, e.g., the mean vectors and covariance matrices. Even
if this condition is met in a particular analysis, when a certain amount
of spatial misregistration is present, a number of pixels of the train-
ing set would have their statistics changed due to class mixture with
neighboring fields. The number of these pixels which are the boundary
or close to the boundary pixels will depend on the relative sizes and
shapes of the pixels and the fields. In many practical applications, it
has been found that this number is in general significant, i.e., it can
account for 20-40% of the total number of training pixels.

When the training statistics are now being computed from spatial
misregistered training fields, the statistics of the boundary pixels,
now altered, will contaminate the class statistics. The severity of
this contamination depends on the amount of the misregistration and the
relative number of boundary pixels involved. To see these effects more
clearly, let the following model be assumed. There are two channels and
the statistics of Class A are being computed. A certain amount of mis-
registration occurs in Channel 1 and because of this, some of the pixels
from the training data of Class A become mixed-class pixels. Let Class
B be the contaminating class. The statistics of the field-center pixels
from Class A are N(2,K_ ) and the statistics of the boundary pixels are
N(my Kx). Ty and Kx will depend on the statistics of Class A and Class
B (N(b,K, )) and the amount of the spatial misregistration. If the pro-
portion of boundary pixels to the total number of training pixels is ¢,
the statistics of Class A when misregistered will be:

Probability distribution

P(x) = (1-8) N(a, K ) + N(m_ , K )
a X X

mean

aMR = (1-8) a + & m_

covariance

K = (1-§) K + 6K + (1-8) @aal+q 5T
aMR a X X X

- (1-8)%2 23T - 1-8)) s 2 axT - (1-8) ¢ m &l
X

2 - -T
-8 " m m
X X
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Ex and K, can be computed as in previous sections as a function of the
-relative amount of the misregistration e. Figure A-14 illustrates an
example when the statistics of A and B are

a = b = Ka=Kb =

The values of the parameters § and € are 0.4 and 0.3, respectively. The
common classifier processors will assume that all distributions are
bivariate normal, doing the same here. The ellipses shown for Figure
A-14 contain 90% of the total normal mass for each case. It is easy to
observe the change in distribution for Class A due to misregistration.

It is also apparent that the performance of the classifier when
using the altered statistics will be worse than when no misregistration
oceurs. This effect has been observed in an analysis performed at LARS
where aircraft data have been misregistered in order to study and evalu-
ate the Thematic Mapper specifications[2]. 1In this analysis, two sets
of two bands each were registered with respect to each other. The first
set contains a visible and a near infrared band. The second set has a
middle and a thermal band. Tables A-4(a,b) show the statistics of a corn
class when no misregistration is present and when a relative misregis-
tration of ¢ = 0.3 (along the scanning track) is set between the two
pairs of channels, i.e., Channels 3 and 4 are shifted 0.3 pixel with
respect to Channels 1 and 2. The changes in the corresponding elements
of the mean vector and covariance matrix are shown in Table A-4(b).
Figure A-15 displays this change in the statistics when considering only
Channels 1 and 3. As before, the ellipses contain 90% of the total nor-
mal mass. The continuous line corresponds to no misregistration and the
dashed line corresponds to misregistration as in Table A-U(a).

It is interesting to observe that even for this relative amount of
misregistration, the statistics of a particular class can be altered
significantly. This usually happens when the amount of training data is
not big enough and the training fields available have to be used in most
of its extension, making them vulnerable to contamination from neighbor-
ing fields due to misregistration.
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Statistics of corn class.
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No misregistration present.

Mean Covariance
Channel 1 2 3 4
1 46.50 2.09 0.90 1.18 -14.77
2 76.83 0.90 8.15 -0.12 12.71
3 52.83 1.18 -0.12 1.96 -13.74
4 59.41 -14.77 12.71 -13.74 246.08
Table A-4(b). Statistics of corn class. Misregistration ¢ = 0.3 of

Channels 3 and 4 with respect to Channels 1 and 2.

Mean Covariance
Channel 1 2 3 4
1 46.50 2.09 0.90 1.90 -15.77
2 76.83 0.90 8.15 -1.00 12.37
3 54.00 1.90 -1.00 4.00 -13.18
4 60.58 -15.77 12.37 -13.18 270.99
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2.6 Elements of a General Model for Estimating the
Effects of Misregistration

2.6.1 Amount and Direction of the Misregistration

The influence of these factors in the classification error, when
the data have a spatial misregistration between channels, 1is apparent
from the equations derived in the previous sections and displayed in
Figures A-10 - A-12. That the amount of misregistration is an important
factor is intuitively obvious. On the other hand, the effect of the
direction of the misregistration is more complex to assess due to the
various elements involved. Among them are the relative direction to the
scanning track of the sensor and the preprocessing of the collected data
before being put in final digital form. In the 1latter, usually some
kind of averaging process is involved and the way this is done is
intrinsically related to the spatial direction. Finally, as it has been
seen in Section 2.5, the contamination in the training statistics
depends on the nature of the contaminating neighboring field. The kind
and amount of this contamination will obviously depend on the amount and
direction of the spatial misregistration. Experimental studies made at
LARS[3] have shown significantly different results when the direction of
the misregistration changes even though the amount of it remains the
same. Thus, for example, the classifications performance varies when
the misregistration occurs along the scanning track, but in one case,
let us say, in the positive direction and in the other in the negative
direction. Therefore the nature of the fields that contaminate the
training statistics is different for both cases.

2.6.2 Relative Sizes of the Fields and the Pixels

The number of boundary pixels is directly dependent on the relative
sizes between fields and pixels. Estimation of the expected proportion
of boundary pixels and its increase due to misregistration can be com-
puted by using the expressions developed in [1]. The effect of the num-
ber of boundary pixels on the classification performance is important
since the statistics of these pixels 1is the most altered when spatial
misregistration occurs. As it was explained in Sections 2.3 and 2.4,
these border pixels almost invariably are or would become mixed-class
pixels whose statistics will not be represented in the training statis-
tics set, the latter coming usually from field-center pixels. This
situation will 1lead to the classification of these pixels with higher
probability of error and, as explained in Section 2.4, in a noncompen-
sating fashion. Application of the expressions in [1] to compute the
proportion of boundary pixels in a scene used in the experimental study
of the Thematic Mapper performed at LARS shows that 43% of the total
number of pixels are boundary pixels. When a spatial misregistration
occurs along the scanning track direction by the amount ¢ = 0.3, the
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increase in the number of boundary pixels is estimated to be around 20%,
i.e., 1in this case around 50% of the total number of pixels will be
boundary pixels. As expected, it was found in that experimental study
that the classification performance sharply decreases even when the
amount of the spatial misregistration is small.

2.6.3 Statistics of the Various Classes

So far, for the discussions and quantitative analyses performed in
the previous sections, it has been assumed that the different classes
involved in the analysis have equal covariance matrices. This was done
only for the sake of simplicity. A more realistic analysis has to con-
sider the fact that in most real cases, the various classes have diffe-
rent covariance matrices. If in addition to this fact the number of
channels is more than just two, the theoretical analysis of the classi-
fier performance even with the assumption of multivariate Gaussian dis-
tributions becomes much more complex. Although it might be possible to
obtain bounds for the various probabilities of error, it will still
require a sizable increase in the number of computations required. A
more viable way of tackling this theoretical problem is yet to be
obtained.
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APPENDIX

Derivation of the Variance of the Registration Error Estimate

The basic assumption made in this derivation is that in the absence
of noise, the output of the processor will be a maximum at the correct
translation. No assumptions about the probability distribution of the
noise are needed. The signal corresponding to the image to be overlaid
is modeled as having two components, the desired signal and additive
noise. This signal is passed through a filter and the position where
the maximum of the output signal occurs is taken to be the correct
registration position. However, since the filter is designed to yield a
maximum at the correct delay only in the noise-~-free case, this observed
registration position may differ from the true registration location.
The discrepancy between these two positions is the registration error.

First consider the parameters involved.
f(x,y) signal;
m(x,y) additive noise;

f(x,y) + m(x,y) data set to be registered;

h(x,y) filter impulse response;

g(x,y) f(x,y) * h(x,y) = output signal in the absence of
noise;

n(x,y) m(x,y) * h(x,y) = output due to the noise input;

z(x,y) g(x,y) + n(x,y) = composite output signal used to
estimate the correct registration position;

(%,?) true registration position;

(£,§) estimated registration position.

The derivation proceeds as follows. First expand g(x,y) in a second
order Taylor series about (*,9).

”

g(ny) = g(®Y) + 8, &9 X1 + g K3 [y-y]

+

By (o9 [k y-51 + % g (5,9 [x-xT°

I-1

+

1 n o a2
25 x -
2 gyy( ’Y) [y Y]




39

where the subscripts denote the partial derivatives with respect to the
corresponding variables,

oAy 9
gx(x,y) = _E%ELXL

N n;
X=X, y=Y
This subscript notation is used for the remainder of this section.
Assume that (x-x) and (y-y) are small enough so that all higher order
terms may be neglected.
Note that a necessary condition for a maximum is
LY o - mEY .
oxX By

Substitute this result into the equation for z(x,y).

2(x,3) = gGLY) + g, Gy [x-x1ly-y]
+ 3 g (3,5 (%17

oy a2
+% gyy(x,y)[y-y] + n(x,y). I-2

Again use the necessary condition for an observed maximum,

dz(x,y)/3x = 0 = 3z(x,y) /3y,
~on VI VR v
z (x,y) = 0= gxy(x,y)[y-y]
N Rt A ~on
% I-3
+ g, (%,7) [x=x]+ n_(x,y)

~ o v rt v
,y) = 0 = (%,y) [x-x]
zy(x y) Byy (X5
VI VR ~r
+ g (x, -yl +n_(x,y). I-4
gyy(x v) [y-y] (%Y

Arrange these equations in terms of (x-%) and (y-y), the error in
the registration.

~ gn—gn
(x-%) = _EQLJL_JD%fS

gxxgyy_gxy I-5

N g n-g n
v Xy X XXy
(y-y) = xxz

gxxgyy—gxy I-6
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where the arguments (x,y) and (%,9) have been left out for notational
convenience.

One can now find the variance of the error by taking the expecta-

tion of (x-¥)2 and (y-¥)2, where it is assumed that E[x-¥] = 0 = E[y-¥].
Var[x—;] = E[(x—&)z] = (x-)q{')2 I-7
L N2 o
var[y-y] = E[(3-9)°] = (y-1)? 1-8
2 2 e 2 2
—_ -2 n +
2 By T TBayByyyTx T By
(x-x) 2 12
Lo By = By 1-9
222 _2g g mml + ginl
tng2 gxynx gxygxx y X gxxny
(y-y)~ = 2 3
[gxxgyy gxy] I-10

One may use these equations to calculate the variance of the error,
but in doing so, it is found that a filter function must be specified
first. This is intrinsic in the parameters in these equations, which is
seen more clearly if one writes these terms as a function of the filter
(wide sense stationarity is assumed).

_2—_}\——/\—_ ~ ~ ~ ~
,y) = h_(x-0,y-B)h_(x-v,y-A
ny(x y) = [f/S y(x a,y-B) y(x Y,y-A)

. Rm(a—Y,s—x)da dg dy dx I-11

ny(§,§)nx(§,§) = I15S hy(;c—a,s;—ﬁ)
. hx(x-Y,y—A)Rm(a-Y,B—A)

. do dB dy dA I-12

_E—T—T_'_ N ~ ~ N
nx(x9}') = /IS hx(x-a’Y"B)'hx(x—Ysy-)‘)

. Rm(a-Y,B-A)da dg dy dx I-13
N oA Y
gxx(x,y) = [f hxx(x-a,y—B) f(a,B) da dB I-14
"o, Y
s = [/ h -0, y~- f(a,B) da dB I-15
gyy(x y) yy(x a,y-8) f(a,B) do

gxy(%,Qb = If hxy(Q-a,§-s) £(a,B) do dB I-16
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where R (o-v,B-1) = m(a, Bym(y, \) -7

One now has an expression for determining the registration error
variance. Equations I-9 and I-10 will allow one to find the variance of
the error for any filter function; however, they seem to bear little
resemblance to the results in the first section.* To obtain a particular
solution, a specific filter function must be chosen. The one that has
been picked is intuitively pleasing in two ways: It is an optimum type
filter in that it maximizes the signal-to-noise ratio; and it yields an
answer in terms of the signal bandwidth and signal-to-noise ratio. It
can be shown that this filter minimizes the error variance. This filter
is the so-called "matched filter."

Y v
Let H(u,v) = F*(u,v) exp (-j2m(xu + yv))
>V S (u,v) I-18
m
Sm(u,v) Fourier transform of Rm(x,y);
F(u,v) Fourier transform of £(x,y);
H(u,v) Fourier transform of h(x,y).

Substituting this filter function into equations I-9 and I-10, the
results simplify to, -

g2 -1
(x-§)2 = EEX - 8 1-19
yy o
'gz T-1
~ 2
(y—;) =X _ gyy I-20
gxx

This simplification is seen more easily if one first converts equations

I-11 through I-16 to the frequency domain and then inserts the matched
filter.

One obtains the final result by converting these last two equations
to the frequency domain. They then become,

- g2 1-1
(x-?“:)2 = |- —Z—XY— + B2 SNR 1-21
B“SNR
y -
i gz 1-1
(y—?r')2 = |- —3—‘L2 + BY SNR I1-22
i B SNR

* Reference [2], pages 18-24.
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where
w =
2 1/2
4H2 Ir u2 Fu,v) du dv
S (u,v)
B =
. JIIE;Xll_ du dv o
5, (u,v)
- -
Bx effective bandwidth of input signal in the x-axis
direction;
B 2 )
2
) v2 F(u,v) du dv
Sm(u,v)
B =
y 2 1-24
JFIRLACT2N Ep
S (u,v)
- n -
B effective bandwidth of input signal in the
y y-axis direction;
SNR = .lEQiQQJ__du dv
s (u,v) 1-25
SNR = output signal-to-noise ratio.

It is seen that the variance of the error is again expressible in
terms of the effective signal bandwidth and signal-to-noise ratio.
These results are similar to those obtained in the first section,* but
the relationships are not quite as simple.

A further simplification can be obtained by making some additional
assumptions. The error variance expressions then will be the same as in
the first method. These assumptions concern the term g__(¥,¥) in equa-
tions I-21 and I-22. If this term equals zero, then the desired result
1s obtained. Such a condition involves the quantity

L|F(u, v)|2]/[Sm(u v)] 31nce g..(X,¥) is a function of this quantity.

Let K(u,v) = [|F(u v) | 21/[s. %% v)] fornotational convenience. Since
K(u,v) 1is an even function of u and v, in order for Exy (X,y) to equal
zero it is suffficient that,
K(u,v) = K(-u,v) 1-26
or necessarv and sufficient that,
S S uwv K(u,v) du dv = S/ S uv K(-u,v) du dv. I-27
(o] o] (8] o

* Reference [2], pages 18-24.
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The expressions then become

(x—;\i) 2 - 21
B SNR

X

o 2 1

(y-y)" = =
BTSNR

y

I-28

I-29

An example of when these last assumptions might apply is the fol-
lowing situation. Let F(u,v) and S (u,v) be bandlimited to W_ and W_ in
the respective axis directions. And 1let [lF(u,v)|2]/[Sm(u,v)]equal a
constant. This would occur when the noise spectrum has a shape similar
to the signal spectrum. In this case, it might be advantageous to model
the two spectra as differing only by a constant factor for simplicity in

estimating the variance to be expected.

2
LE&ELXll_ = ¢, a constant.

Sm(u,v) ’

From Equation I-25

Wx W

SNR = ¢ f * S ¥ du dv.
W -W
y y

So,
_ SNR
C T Tww
Xy

Then from Equations I-23, I-24 and I-25,

2 2 zwi

Bx SNR = 471 ¢ 3 (2Wy)
5 ) w3

B° SNR = 41° c(2w ) | —X|.
y X 3

This may be written,

I-30

I-31

I-32

I-33

I-34
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Substituting in the expressions for c, the variances are:

(x-%)2

—— =35
41 "W~ SNR
X
2
(y-y)" = 3 I-36
4 2WZSNR
y
The respective standard deviations then are:
S 1 3
Standard deviation of (x-x) = -—— /[— I-37
2an SNR
s Aoy 1 3
Standard deviation of (y-y) = i~ /SNR I-38
y

One may obtain a quantitative feel for the values of these expres-
sions by using the sampling intervals for the Landsat-1 data in this
example. The sampling interval is about 60 meters along the columns and
about 80 meters along the lines. Substituting these values in equations
I-37 and I-38, one finds that,

Standard deviation of error along the

44,1
VSNR

lines = meters I-39

Standard deviation of error along the

33.
SN

=

I-40

columns =

;

A quantitative measure of the registration processor accuracy in
terms of the variance of the error of the registration has been derived.
With the appropriate assumptions, the variance is shown to be inversely
proportional to the square of the effective bandwidth times the signal-
to-noise ratio. The final expressions are presented again to emphasize
both the form and simplicity of their representation.
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~ o 1
Var [(x-x)] = 5
B SNR
X
~ 1
Var [(y-y)] ==
B SNR

This derivation should prove useful in several respects. First of
all, it may be a basis for the analysis of different registration sys-
tems by providing a way to estimate the expected accuracy of the system.
Secondly, it provides a straightforward way of estimating this error.
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B. MULTISTAGE CLASSIFICATION

D. A. Landgrebe, M. J. Muasher, P. H. Swain

1. Introduction

A number of different types of classifiers are now in routine use
in remote sensing. Most of these classification algorithms, using pat-
tern recognition techniques, can be regarded as "single-stage" classifi-
ers, where an "unknown" pattern is tested against all classes using one
feature subset, and then the pattern is assigned to one of the present
classes in a single-stage decision procedure.

In recent years, as classification of multispectral data has found
a larger number of users and a wider range of applications, the need has
been felt for alternate, more powerful techniques than the conventional
classifiers, through the wuse of which more information could be
extracted more accurately and/or efficiently from the scene. Some of
the reasons that have warranted this need include:

1. The need to extract more detailed information from data. The
opportunity to do so results from the emergence of more complex
data sets. The growing use of multitype data bases containing
Landsat data with a variety of other quantitative geodata
together with the anticipated launching of more sophisticated
sensors such as the Thematic Mapper result in the opportunity
to extract considerably more information from the data.

2. The broadening of the range of applications. As pattern recog-
nition methods have developed, they have found a larger number
of users with a wider range of applications. The feedback from
these different and versatile uses has indicated problems and
needs not initially present.

3. The ever present need for improved classification accuracy.
There are some applications for which conventional classifiers
have proved to be marginal at best. Some of these are listed
in Swain et al. [1] and include multi-image analysis and the
use of mixed feature types.

4. The need for improved processing efficiency. The conventional,
single-stage, classifiers use only one particular feature sub-
set and are somewhat inefficient, as they must compare an
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unknown pattern against all possible classes before assigning
that pattern to a particular class.

Because of these and other factors, there has been some research in
recent years directed towards developing multistage classifiers, whereby
the decision procedures go through several stages before finally assign-
ing a pattern to a class.

The purpose of this research is to develop a layered decision
algorithm that can increase the accuracy and efficiency over the conven-
tional single-stage classification approach. Developing such an algo-
rithm requires, among other things, a careful look at some parameters
that are crucial to any successful attempt at tackling such a complex
problem. In particular, three areas have to be investigated:

1. The development of an adequate training procedure to define an
initial set of spectral classes with their respective statis~
tics;

2. The investigation of various error estimators and the develop-
ment of an adequate performance estimator that can reasonably
predict the accuracy or any trends in performance;

3. The development of an algorithm to build a binary tree making
use of the above-mentioned methods.

Of these three areas, the most important problem is believed to be
the development of an accurate error estimator, especially in the pres-
ence of what has come to be known as the Hughes phenomenon (elaborated
upon later in the review of 1literature). Predicting the conditions
under which the Hughes phenomenon occurs provides the key to the solu-
tion of the problem. Therefore, a considerable portion of the research
has been directed towards trying to understand and predict the impact of
this phenomenon.

2. Review of Literature

2.1 Training Procedure

Several training methods have been suggested in the literature. We
will not attempt to list all of them, but rather will give a background
of some of the methods reviewed and used in this work.

The training process is the procedure whereby labeled samples are
selected and used to compute class statisties which in turn are used to
classify unlabeled (i.e., "unknown") samples.

Several parameter estimation methods (training methods) have
appeared in the literature. Sample-partitioning methods, the leaving-
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one-out method, clustering are but a few. See, for'example, Fukunaga
[2] and Duda and Hart [3].

For remote sensing purposes, clustering has been widely used in
developing training statistiecs. Two basic approaches have been: a
supervised clustering approach, in which the analyst selects areas of
known cover types and then the statistics for these areas are obtained
with the aid of a computer; and the non-supervised clustering approach,
in which the entire training area is subdivided into clusters by the
clustering algorithm and each cluster is then identified by the analyst
and given a specific label. The statistics of each cluster correspond-
ing to a cover type or a subclass of a cover type are then calculated.
Fleming et al. [4,5] investigated several clustering approaches and
their effect on classification accuracy. Among the approaches they used
were non-supervised clustering, supervised clustering, modified cluster-
ing, mono- (aggregate) cluster blocks, and multi- (class-conditional)
cluster blocks.

2.2 Performance Estimators

A key factor in the design of a layered decision algorithm is the
ability to predict how the algorithm will perform in terms of accuracy
at every node. While optimizing the performance at every node does not
necessarily produce a globally optimal tree, it is still a very impor-
tant and useful step in the design.

Several performance (or error) estimators have appeared in the lit-
erature. Again, we will not attempt here to exhaustively list all the
contributions made, but rather will give an idea of how the research in
this area has progressed.

Performance estimators can be divided into two main categories:

Performance functions which have some sort of direct relationship
Wwith the probability of error. Examples are Parzen estimators (see
[2]), the k-nearest neighbor error estimator (see [6]). More recently,
Mobasseri et al. [7] published an error estimator that computes the
minimum probability of error through use of a combined analytical and
numerical integration over a sequence of simplifying transformations of
the feature space. The results have been shown to be similar to those
obtained by conventional techniques. However, the algorithm becomes
computationally too inefficient to use as the number of classes and/or
features increases. Moore, Whitsitt and Landgrebe [8] (see also Whit-
sitt and Landgrebe [9]) developed a stratified posterior estimator
which, 1like Mobasseri's, depends only on a given set of statistics.
This was later used by Wiersma [10] and both estimators (Mobasseri's and
Whitsitt's) were compared in [11] and found to give similar results,
with Whitsitt's algorithm being faster in some cases. The former proce-
dure uses a "deterministic" grid to sample the feature space, while the
latter uses an internally generated random data base and assigns the
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feature vector to the appropriate class via the maximum a posteriori
principle. Both procedures assume normal class conditional statistiecs.

Separability measures, most of which have only a subtle, indirect,
and often unknown, relationship to the probability of error. Various
separability measures have been in common use in remote sensing applica-
tions. Among these are: Divergence [12], Transformed Divergence [13],
Jeffreys-Matusita distance [14,15], Bhattacharyya distance [16] and the
Mahalanobis distance [17]. (See list in [22].)

Several works have been reported comparing different separability
measures and their effects on performance. (See [9,13,18,19,53].)

There are two problems with most of the above distances applied to
remote sensing applications: (1) ambiguity and (2) 1linearity in pair-
wise error. The term ambiguity implies here that there does not exist a
one-to-one relationship between the value of the measure and the proba-
bility of error. Linearity means that for some distance measures, when
they are averaged over all class pairs, one class pair with large separ-
ability value can outweigh the contribution of all the others. Whitsitt
[9] developed a distance measure D, ¢ = erf (v2B) where B is the Bhatta-
charyya distance and erf(-) is the error function. He found that the
resulting measure is less ambiguous and more linear than the measure B.

Another key factor in the process of error estimation is the choice
of feature subsets. The problems here are twofold:

1. As the number of features becomes large, it becomes desirable
to choose a subset of these features that can adequately pre-
dict the accuracy. This selection process also can become
expensive if one must search through all possible combinations
of the feature set. It is desirable, therefore, to have a
priori knowledge of the importance of each feature in relation
to the probability of error. The Karhunen-Loeve expansion
(attributed to Karhunen [20], and Loeve [21]) in pattern recog-
nition literature has historically been used as a feature
selection technique. It has the advantage of producing uncor-
related features (in theory, but the features are actually
approximately uncorrelated in a practical K-L transformation).
In addition, it imposes an ordering on the features in terms of
importance in a representation error sense. As a result, first
feature is "likely" to be more important than the second in
calculating the probability of error, and so on.

2. The probability of error is not necessarily monotonically
decreasing as the number of features increases. This is due to
a peculiar phenomenon that has come to be known as the Hughes
phenomenon. Hughes [23] found that with a fixed and finite
training pattern sample, recognition accuracy can first
increase as the number of measurements on a pattern increases,
but decay with measurement complexity higher than some optimum
value. He also reported that for unlimited training data, this
does not occur and the recognition accuracy reaches an optimum
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only at infinite measurement dimensionality. According to
Hughes, if insufficient sample data are available to estimate
the pattern probabilities accurately, then a Bayes recognizer
is not necessarily optimal. Many papers have since been pub-
lished on this phenomenon, confirming it or trying to explain
why it occurs (see [24-32]). Thus, it appears that a success-
ful design should predict when and if such phenomena occur.

2.3 Multistage Classifiers

In recent years, some work has appeared in the literature aimed at
developing multistage classification algorithms. There is much yet to
be learned about such algorithms, and no work has been reported claiming
optimality (or even close to optimality) of results.

In general, earlier work can be grouped into two main categories:

Sequential classification methods. These can be found in several
papers and books (see, for example, [33-35]). Basically, the method
consists of observations made on feature measurements, one at a time.
After an observation is made, the classifier either reaches a final
decision and the process is terminated, or it makes another observation
until a final decision is reached.

Hierarchical classification methods. These are subdivided into two
categories:

1. Hierarchical clustering methods. Examples of such work are
found in Fukunaga [2], Dubes and Jain [36], who present a semi-tutorial
review of the state of the art in cluster validity, and Lukasova [37].
In general, hierarchical clustering is designed to generate a classifi-
cation tree, The "root" node of the tree represents a collection of
samples (either a training data set or the entire sample set) and each
terminal node represents either an individual sample or a group of sam-
ples belonging to some class within the set of classes in the data set.
The method attempts to divide the set of samples in each node into dis-
Joint subsets which form new nodes. Defined as such, the method is
often nonparametric and depends heavily on the ability of the algorithm
to find meaningful divisions of samples that correspond at terminal
nodes with meaningful classes.

2, Decision trees and criterion functions. Most of the work done
in multistage algorithms belongs to this category. Often, a decision
tree is built using an optimization or criterion function that dic-
tates the structure of the tree. It is this kind of approach that will
be of greatest concern in this research.

Hierarchical methods differ from sequential methods in certain
important respects. While in sequential schemes any class can be
accepted at any stage of the measurement process, in hierarchical
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schemes certain classes are excluded from consideration at each stage.
Also, sequential methods impose a linear ordering on the features. In
hierarchical methods, features used along one decision path can be
different from those used along another path.

In 1971, Nadler [38] tried to calculate error rates in a hierarchi-
cal decision structure under assumptions of statistical independence
among the members of the hierarchy. Even under such assumptions, the
results assume "small" probabilities of errors at any level.

Several heuristic methods of constructing tree designs have been
proposed in the literature. Some studies were done using optimization
methods to automate the classifier design procedure, but the assumptions
made were often too restrictive. Meisel and Michalopoulos [39] in 1973
presented a two-stage partitioning algorithm for the design of an opti-
mal binary tree. In the first stage, a suboptimal sufficient partition
is obtained. The second stage optimizes the result of the first stage
through a dynamic programming approach. The method allows only for
linear discriminant functions to partition the space, certainly a subop-
timal and too restrictive condition.

In 1974, Wu et al. [40] reported on a decision tree approach with
direct application to multispectral data analysis. Several design
procedures were proposed (one of which is manual), with special emphasis
on a heuristic, machine-implemented approach. The optimality criterion
used is a weighted sum of computation cost and accuracy. Results were
presented which showed superiority in efficiency (but infrequently in
accuracy) over the conventional classifier. The criterion function
used, as it cannot predict beforehand the structure of the tree below
that node, assumes all the nodes below the node under consideration are
terminal nodes, and hence is necessarily suboptimal. Later papers have
appeared that have pointed to applications using this particular classi-
fier [47,42].

In 1976, You and Fu [43] presented a linear binary tree classifier
that uses linear discriminant functions at decision stages with an
application to multispectral remotely sensed data. The procedure
includes a grouping algorithm, a separability measure, and an error min-
imization procedure using the Fletcher-Powell algorithm [44]. Again,
the procedure is certainly suboptimal because of the assumption of
linearity. Results reported, though, show that this classifier is much
faster and more accurate than the maximum likelihood classifier with the
same number of features. This is due to the fact that the procedure
uses different feature subsets (with a restriction on their number) at
each node, compared with only one feature subset used in the one~stage
maximum likelihood classifier.

Kulkarni and Kanal [45] used dynamic programming and branch-and-
bound methodologies in the design of hierarchical classifiers. The cri-
terion of optimality they used is a weighted sum of the probability of
error and the average measurement cost incurred in classifying a random
sample. The design assumes that the features used at the nodes are sta-
tistically independent and that the decision at each node is a function
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of only that particular feature observation, the design using only one
best feature at each tree node. Further, the design of the optimal
tree assumes a very low error rate for the tree, a very restrictive
assumption since in many cases a high error rate is specifically the
reason why a layered classifier was selected, i.e., to improve the accu-
racy. Although the authors presented some methods to reduce the com-
plexity of their design algorithms, the examples they used involve only
a small number of classes and features.

In 1977, Parkih [46] compared several classification techniques of
clouds, including hierarchical design. However, his paper offers no new
insights or major results that would help improve the state of the art.

Also in 1977, Sethi and Chatterjee [47] developed an algorithm for
the design of an efficient decision tree with application to pattern
recognition problems involving discrete variables. A criterion function
was defined to estimate the minimum expected cost of a tree in terms of
the weights of its terminal nodes and costs of the measurements, which
then was used to establish the search procedure for the efficient deci-
sion tree. The concept of prime events was used to obtain the number
of nodes and the corresponding weights in the design sample. No opti-
mality claim was made, but the procedure was found to lead to the opti-
mal tree in most of the cases. The procedure uses only one feature at
every node, and its applicability to remotely sensed multispectral data
is very doubtful.

In 1978, Breiman [48] presented a procedure for building a binary
classification tree. He used a criterion function that is only a func-
tion of the parent node and the two descendent nodes. He used one best
feature at every node. He also reported on another regression algorithm
developed at Survey Research Center, University of Michigan [49], in
which the criterion function tries to reduce the variances of the two
descendent nodes as much as possible from the variance of the parent
node.

Rounds [50] in 1979 developed a binary decision tree algorithm, but

again one feature is selected at every node. The approach is a nonpar-
ametric one, based on the Kolmogorov-Smirnov criterion.

3. Hughes Phenomenon: Work Accomplished

As mentioned earlier, a considerable portion of this research is
directed towards understanding the Hughes phenomenon. Figure B-1 illus-
trates the phenomenon conceptually. In the presence of a 1limited
training sample size, the mean recognition accuracy as a function of the
measurement complexity (number of features for our purposes) exhibits a
peaking effect. Contrary to intuition, the mean accuracy does not
always increase with additional measurements. Further, peaking of the
curve shifts up and to the right as the number of samples increases,
disappearing in the case of an infinite number of training samples
(complete knowledge of the underlying distributions).




Mean Recognition Accuracy

Measurement Complexity (Total Discrete Values)
log scale

Figure B-1. The Hughes Phenomenon.
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Figure B-2 suggests one possible explanation for this phenomenon.
Figure B-2a shows class separability plotted vs. dimensionality. As
dimensionality increases, so does class separability (a nondecreasing
function of dimensionality) until it saturates, and any further increase
in dimensionality does not have a significant effect on class separabil-
ity. But this is not the only effect on the mean accuracy. With the
presence of a fixed, limited training sample size, any increase in
dimensionality necessarily results in a degradation in the accuracy of
statistics estimation of the class distributions. Thus, conceptually,
one should expect a curve similar to that of Figure B-2b.. Further, as
the number of samples increases, the curve should shift to the right,
i.e., for any given dimensionality, the larger sample size should pro-
vide a better estimate of the true distributions. Assuming these two
effects are the dominant effects on accuracy, adding the two effects
results in Figure B-2c¢, a curve similar to Figure B-1. Based upon this
concept of the phenomenon, the solution to the problem lies in being
able to predict quantitatively how the number of samples present affects
the accuracy of the estimated statistics .

3.1 Simultaneous Diagonalization: Introduction

The key problem to solve, then, is the development of an error
estimator that accurately predicts the Hughes phenomenon. Working with
multiple features, several properties are desired in these features

which will make further analysis easier:

Uncoupled (Independent) Features. Uncoupling of features from one
another simplifies analysis a great deal as it permits evaluating the
effect of each feature separately from other features.

Ordered Features. If the features can be ordered, or at least
approximately so, in terms of their effect on the probability of error,
then the process of feature selection would be made easier.

Optimal Separability. The features should be optimal with respect
to the probability of error for two distributions at hand. Putting it
in different words, the feature subset should be tailored to the separa-
bility of the two distributions.

To this end, a technique known as a "simultaneous diagonalization"
[51,52] is discussed in the next section.

3.2 Simultaneous Diagonalization: Theory

Let Z; and 22 be the estimated covariance matrices for classes 1
and 2, respectively. We seek a transformation matrix A such that




Class Separability

()]
(9]

N,<N,

Accuracy of Estimated Statistics

Dimensionality Dimensionality

B-2a. B-2b.

Classification Accuracy

Dimensionality
B-2c.

Figure B-2. FExplanation of the Hughes phenomenon.
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S AT . S AT _
AL{A = 1 ALHA" = A
where I is the identity matrix and A is a diagonal matrix.

This transformation would uncouple the features, while not affect-
ing the probability of error because the latter is invariant under
linear transformations. We proceed to find such a transformation as
follows. (For more details, see [2], pp. 31-35.)

Let 6 and © be the eigenvalue and eigenvector matrices of 21, res-
pectively; then

6-%QT2196-% -

|
Lo
—~
f
~

TS © =
(@ Zlm 9)

6~%QT§2Q6—% ..... (2) K is a general matrix

1]
~

Next, we desire to diagonalize K. To find eigenvalues of K, it is
necessary to solve the equation

|K = AI] = 0..... (3)

Replacing K and I in (3) by (1) and (2), we get
_l "N " —1/ a) --1
|6~ %T8,06™ % - A0 20T81867 2| = 0
Or
_Li ~ A _%
le72%eT| |Z, - AL;| 867 %] =0
-3 T
Since 6 “@° is nonsingular, it follows that
122-x211 =0
or

‘ﬁl_lﬁz - >\Il =0

~

So, only the eigenvalue and eigenvector matrices of XI]XZ need be cal-
culated.

The eigenvalue matrix is then A, and the transpose of the eigenvec-
tor matrix, AT, serves as the transformation matrix.




57

The idea behind simultaneous diagonalization is to transform the
original features into a new space where the features are independent
and then choose a subset of these features in the new space which is
optimal with respect to the probability of error. This is illustrated
in Figure B-3.

4, Performance Estimator: Approximation to the Probability of Error

4,1 The Likelihood Function

One of the most serious difficulties facing researchers in trying
to estimate the probability of error in multidimensional analysis is the
need to carry out a multiple integration on the multivariate probability
density function. It would be much easier if one could work with a
function that is one-dimensional and carries all the information pre-
sent. Fortunately, such a function does exist and is given by

h(x) = -1n(p(x/w;)/p(x/w,))

Since the assumption of class-conditional normal distributions is
valid in this case, h(x) becomes:

h(x) = %E-MDTETL (x-M) - (XM TT; L (X-M) + % In—

where ﬁi is the class-conditional mean of class i and Zji is the covari-
ance matrix. Note that h(x) is a scalar random variable, regardless of
the dimensionality of x.

The problem then is to know, or to estimate, the probability den-
sity function of h(x). Once that is known, the probability of error can
be obtained by carrying out a scalar integration.

4.2 Feature Selection

Before proceeding to discuss the approximation algorithms to esti-
mate the probability of error, we digress briefly to discuss how the
features are ordered.
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Figure B-3. Delineation of optimal subspace by
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The 1literature offers many studies made on comparing different
separability measures and their effectiveness in choosing the best fea-
ture subset (see [9,13,18,53,54]). It appears that the Bhattacharyya
distance is one of the most suitable separability measures for distin-
guishing between classes. Thus, it will be used as a basis for feature
selection. The fact that the features are independent allows us to de-
termine the effect of each feature on the probability of error sepa-
rately.

The Bhattacharyya distance for two normal distributions can be
expressed as follows:

$ 43 )‘1» |35(51+29) |
B =

AA oo 1
(Ml“MZ)T( ) Gy + 5 o
1211712

|

After the simultaneous diagonalization transformation, however, B
can be expressed as:

n

2 1
B = 2. % (dg3-dpy) +—%— In —%— Lea?
i=1 At 1 A

where djj is the jth element of the transformed class-conditional mean:
Dij = ATMy; and Aj is the ith diagonal element of A.

Thus, it is clear that for every feature i, B can be calculated
separately. The feature with the largest B is the best feature, the one
with the second largest is the second best, and so on. Also, the two
best are the best two, and so on.

4.3 Approximation Algorithms

Figure B-4 shows the probability density functions for h(x) given
either class 1 or 2. The probability of error is then the area under
the two curves (multiplied by the prior probabilities). The objective
is to develop an algorithm which will approximate the class-conditional
probability density functions of h(x) and, hence, the probability of
error.

Normal Assumption. When I3 = 23, h(x) becomes a linear function of
x and hence is normally distributed. In general, I does not equal 29
and h(x) is not normal. An algorithm was developed and tested under the
assumption that h(x) is normally distributed, but results showed it to
be a very poor approximation to the probability of error and hence the
algorithm was not further analyzed.




Discriminant function:

p(X]w,)
h(X) = -ln ————
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T P(w,)
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= (X—Ml) 21 (X—Ml) - (X—Mz) 22 (X—Mz) + 1n {le - 1n W . 0
w,
2
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Plh|w1l
—r
Pe h(X]

Figure B-4. Probability density functions of h(Xlwi) and the probability of error.
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Modified-Gamma Distribution Assumption. Fukunaga and Krile [52]
developed an algorithm that approximates h(x) by convolving the densi-
ties of n (number of dimensions) noncentral x° variables having multi-
plicative constants, and adding a shift parameter, by considering a gen-
eral gamma function,

ae-h/B for h 20

(h) = | —
s 8%t pigt1)

The parameters O and B can be determined so that the means and the vari-
ances of the true distributions match those of the approximation.

Initial testing of the algorithm was done uéing four examples.
These were all based on aircraft multispectral scanner data, LARSYS run
71053900, The area is in Tippecanoe County, Indiana, and the data set
was part of the 1971 Corn Blight Watch Experiment. The data were taken
in August, 1971, and have 12 channels.

Results are plotted in Figure B-5. The first example contains
wheat and corn, with 265 samples of wheat and 569 samples of corn. The
second example also has wheat and corn, but with 20 samples of each.

The third example has wheat and corn with 13 samples of each. And the
last example has corn combined with pasture as one class (720 samples)
and forest as the other class (483 samples).

Y. Discussion of Results to Date

The probability of correct classification is plotted against the
best n channels, n=1,2,...,12, as determined by the Bhattacharyya dis-
tance. In all four examples shown, the black 1lines represent the
results obtained using the modified-gamma distributions approximation.

Procedural and programming problems remain in transforming the
data; therefore, these results are provisional at this time. These
problems are being studied but are unresolved as yet. To provide a
basis for comparison, however, the best n channels for the original data
were computed (using the Transformed Divergence in the LARSYS
SEPARABILITY processor) and used for determining experimental results
(dotted lines). While the values of the probability of correct classi-
fication thus obtained do not exactly correspond to the values obtained
using the transformed features, one might expect them to be quite close
as both feature subsets are near-optimal. Results involving the trans-
formed features will be reported when the remaining problem is solved.
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Figure B-5a shows wheat and corn where there are enough training
samples to estimate the distributions, so that a Hughes phenomenon does
not occur. We see that the approximation is a very good one in this
case, especially for large dimensionality, where the algorithm is more
accurate.

Looking at Figure B-5b, we see again that up to the best 7 chan-
nels, the approximation is very good (except at the low dimensionality
of 2). After the best 7 channels, the approximation predicts a satura-
tion of P.. , while experimental results show a decrease in the accu-
racy. The decrease is expected for large dimensionality as the low num-
ber of training samples in this case (20 samples per class) 1is not
sufficient to estimate the distributions at high dimensionality, i.e.,
there is a Hughes phenomenon occurring here.

The same effect is also noticed in Figure B-5c, where the algorithm
saturates at high dimensionality, but experimental results show a
decrease in accuracy. Actually, the decrease starts at a lower dimen-
sionality (2 features) here because of the lower number of training sam-
ples (13 samples per class).

Figure B-5d shows an example where corn and pasture are combined to
form one class while forest is the other class. Here, although the
training samples are sufficient to estimate the distributions, combining
corn and pasture results in a distinetly non-normal distribution.
Hence, the algorithm fails to detect the slight Hughes peaking that does
ocecur.

It appears that the next step is to modify the algorithm so that it
does take into account the number of training samples and its effect on
the accuracy of the estimated statistics for different dimensionality.
More examples will be used to test the algorithm and provide conclusive
results. Furthermore, tests must be conducted to examine how the pro-
gram performs under different conditions (high and low separability,
number of training samples, etc.).

6. Simulation Algorithm

In remote sensing data analysis, several assumptions are made that
are not always precisely met. These assumptions often include: that the
training classes are normally distributed; that the training data are
representative of the area to be classified; that the number of classes
present is known; and that all pixels are pure (one class only). In
testing new algorithms, deviations from the assumptions may obscure the
action of the new process. At times it is not clear whether a particu-
lar result is due to the aspects of the algorithm or to the extent the
data set deviates from the assumptions.

A method was developed to obtain an artificial data set through
simulation. While retaining the natural spatial and spectral informa-
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tion in the scene by basing the simulation on a classification, the data
set provides the analyst with an exact number of classes in the
scene, normal distributions of these classes, independent measurements
and "pure pixels." The simulation method was reported in LARS Technical
Report 070980 [55] , and the program will be used for testing the error
estimator after it is further developed.

10.
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C. CONTEXTUAL CLASSIFICATION

P.H. Swain, H.J. Siegel, J.C. Tilton, and B.W. Smith#*

Multispectral image data collected by remote sensing devices aboard aircraft and
spacecraft are relatively complex data entities. Both the spatial attributes and spectral
attributes of these data are known to be information bearing [1], but to reduce the mag-
nitude of the computations involved, most analysis efforts have focused on one or the
other. Only within the last few years have serious efforts been made to utilize them
jointly. For example, one approach uses the spectral homogeneity of "objects,” such as
agricultural fields, to segment the scene and then uses sample classification to assign
each object as a whole, rather than its individual pixels (picture elements), to an
appropriate ground cover class [2]. Another approach involves extraction of features
based on gray-tone spatial-dependency matrices from which texture-like characteristics
are developed [3].

In this project we are developing a more general way to exploit the spatial/spectral
context of a pixel to achieve accurate classification. Just as in written English one can
expect to find certain letters occurring regularly in particular arrangements with other
letters (qu, ee, est, tion), so certain classes of ground cover are likely to occur in the
"context” of others. The former phenomenon has been used to improve character recog-
nition accuracy in text-reading machines. We have demonstrated that the latter can be
used to improve accuracy in classifying remote sensing data. Intuitively this should not
be surprising since one can easily think of ground cover classes more likely to occur in
some contexts than in others. One does not expect to find wheat growing in the midst of
a housing subdivision, for example. A close-grown, lush vegetative cover in such a loca-
tion is more likely the turf of a lawn.

Classification algorithms such as the contextual classifier under development in this
project (and even much simpler algorithms used for remote sensing data analysis) typi-
cally require large amounts of computation time. One way to reduce the execution time
of these tasks is through the use of parallelism. Various parallel processing systems that
can be used for remote sensing have been built or proposed. The Control Data Corpora-
tion Flexible Processor system is a commercially available multiprocessor system which
has been recommended for use in remote sensing. PASM is a proposed multimicropro-
cessor system for image processing and pattern recognition. The way in which parallel
machines such as the CDC Flexible Processor system and PASM can exploit parallelism to
perform contextual classifications is under examination in this project.

The theoretical foundations of this contextual classifier and preliminary experimen-
tal results from applying the contextual classifler to a variety of very different data sets
were detailed in last year’s final report issued in November 1979, along with a description
of the CDC Flexible Processor and how it can be used to implement contextual
classification. This report summarizes the work reported in November 1979 and presents

* Substantial contributions to this research by Dr. Stephen B. Vardeman
are gratefully acknowledged.
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the work completed in this contract year. Section 1 summarizes the theoretical basis
and the classification model while Section 2 presents the results of studies into methods
of overcoming the practical implementation problems indicated by the preliminary
results of last year's final report. Section 3 gives examples of contextual classifiers. In
Section 4, uniprocessor algorithms for performing contextual classifications are
presented and their computational complexity is analyzed. The CDC Flexible Processor
system is described in Section 5 and the use of this system in performing the contextual
classifiers of Section 3, based on the algorithms from Section 4, is the topic of Section 6.
The SIMD mode of paralle! processing is defined and PASM is overviewed in Section 7.
Section 8 uses the uniprocessor algorithms of Section 4 as a basis for developing parallel
(SIMD) algorithms for performing contextual classifications.
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1. Theoretical Basis and Classification Model

Consistent with the general characteristics of imaging systems for remote sensing,
we assume a two-dimensional array of N =N ;xN; random cbservations X;; having fixed but
unknown classification ¥;, as shown in Figure C-1. The observation X; consists of n
measurements (usually containing spectral and/or temporal infoxjmation), while the
classification ¥;; can be any one of m spectral or information classes* from the set
Q= {wy,05....0m 1.

P11 Vg2 - By,
V21 Vo2 - Tan,
w1 o BN,

Figure C-1. A two-dimensional array of N =N XN pixels.

Let X denote a vector whose components are the ordered observations:
X =[Xy|i=12.. ,Nuj=12,..N,J .

Similarly, let B be the vector of states (true classifications) associated with the observa-
tions in X:

8=[9y]i=12,..,Nij=12... N,

The following notation will be useful. Let 9 €Q0® and X? €(R™)* stand respectively for
p-vectors of classes and n-dimensional measurements; each component of ¥ is a variable
which can take on any classification value; each component of X* is a random n-
dimensional vector which can take on values in the observation space.

Let the action (classification) taken with respect to pixel (i,j) be denoted by ay€q.
We restrict the action ay; to be a function of a specified subset of observations in X. This
subset includes, along with X;;, p-1 observations spatially near to, but not necessarily
adjacent to, X;;. These p-1 observations serve as the spatial context for X;; and are taken
from the same spatial positions relative to pixel position (i,j) for all i and j. Call this
arrangement of pixels together with X;; the p-context array, several examples of which
are shown in Figure C-2. Group the p observations in the p-context array into a vector of
observations Xy = (X1.Xz...Xz)7 and let B; be the vector of true but unknown
classifications associated with the observations in X;;. Note that the ¥;; and X;; are the
particular instance of ¥ and X* associated with pixel position (i,j). Correspondence of

. Spectral classes are spectrally differentiable subclasses of information classes (the
classes of interest).
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the components of ¥y, Xy, ¥ and X? to the positions in the p-context array is fixed but
arbitrary except that the pixel to be classified will always correspond to the " com-
ponents.

i-1,j+1
i i.j i,j+2
a p=2 choice a p=2 choice
i-1,] i-1,§
ij1 i ij-1 i.j i,j+1

i+1,j

a p=3 choice
a p=5 choice

Figure C-2. Examples of p-context arrays.

Let the loss suffered by taking action ay be denoted by )\(ﬂq.av) for some fixed
non-negative function A(:,’). The expected average loss (or risk) suffered over the N
classifications in the classification array is

Ry=E ~ T Ay .0y (Xy)) (1)
i.J
where the expectation is with respect to the distribution of the p-context array.

Now consider finding an optimal decision rule of the form
ey (Xy) = d(Xy) (?)

for a fixed function d(-) mapping p-vectors of observations to actions so that R4 is minim-
ized. If we require that the distribution of the p-context array is spatially invariant, i.e.
the value of the probability density for Xi; depends only on the measurement values in
X,; and the set of classifications in %; and not the location (i,j), the risk, R, can be writ-
ten as

Rg= %) G(3#) [ N(8,.a(XP))f (X7 |F)dX?
P en?

=/ B CWINS,.AEP)s X7 |2)dxw (3)
Penr
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where G(97), the contezt distribution, is the relative frequency with which ¥ occurs in
the array ¥, and ¥, is the p** element of ¥ . For any array ¥, a decision rule d{X?)
minimizing Ry can be obtained by minimizing the integrand in equation (3) for each X?;
thus for a specific Xy; (an instance of X7}, an optimal action is:
d{X;;) = the action (classification) @ which minimizes
Y CEPN(,.0)f Xy ). @
wPenP

In practice, a "0-1 loss function” is usually assumed, i.e.,

0, if9=a
AMB.@)= | y9ga .

Then equation (4) simplifies and the decision rule becomes:

d(Xy) = the action @ which mazimizes
X G ) Xy loF). 6]
enP,

-

iR

We now assume class-conditional independence for the observations. This assump-
tion means that the joint class-conditional density over the p-context array can be writ-
ten as

»
F&Xy!9®) = T1F (Xe|8e) (8)

Pl
where X, and ¥, are the k* elements of X;; and ¥*, respectively. Evidence that this is a

reasonable assumption may be found in reference [4]. With this assumption, the decision
rule in equation (5) becomes:

d(Xy) = the action @ which maximizes

>z G@)gf (Xi 1 8:) . (7)

enr,
~a

iy

The optimal choice of d(-) cannot be implemented in practice since it depends on
G(®”) and the f(X,|9:) which are unknown. Methods for estimating the f (Xi|®:) are
well established from considerable experience in using the conventional no-context max-
imum likelihood decision rule [1]. Methods for estimating G(¥*) are not so well esta-
blished. We can, however, expect that, at least for large N = N{xN;, a decision rule in
which G (%) is replaced by an estimate G(% ) based on the Xy will have risk R, approxi-
mating that of the optimal rule. This "bootstrap effect” is one aspect of this problem
explored in the following sections.
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2. Experimental Results

In last year’'s final report we explored the effectiveness of contextual classification
as applied to the analysis of multispectral remote sensing data. In doing so we used
three simulated data sets and two real Landsat data sets. The simulated data sets
demonstrated the effectiveness of the classifier given that the underlying assumptions
mentioned in Section 1 were satisfied.

The preliminary results reported last year indicated three main problem areas for
further research. These were:

1. A generally applicable method was needed for making adequate estimates of
the context distribution;

2. The originally implemented algorithm was too computationally intensive for
general use in practical classification problems; and

3. It was not clear what effect the assumptions made in developing the
classification model had upon the performance of the context classifier.

Several different approaches for dealing with the above problems have been thought
through, and some of these approaches have been investigated this past year. How these
approaches relate to the main research problems and to our major goals of (a) advancing
the theoretical understanding of this problem, and (b) developing a contextual
classification algorithm for use in practical problems is illustrated in Figure C-3.

2.1 Context Distribution Estimation

Simulated data sets were utilized in the earliest experiments exploring the
eflfectiveness of classifying multispectral remote sensing data using context classification
as defined by the set of discriminant functions in equation (7). This was done so as to
demonstrate the effectiveness of the classifier given that the underlying assumptions in
the classification model are satisfied. At first, the context distribution was found by sim-
ple tabulation from the true classification used as a template for the data simulation. As
reported last year, the classifier was very effective when the context distribution was
determined in this way.

When dealing with real data, there is no direct way of determining the context dis-
tribution. We cannot tabulate the context distribution from the true classification since
the true classification is not known. (If it were known, we would not have to perform a
classification!) As mentioned in the last section, we should be able to base an adequate
estimate of the context distribution on the data, X,;, or, more practically, on representa-
tive sections from the data designated as a training set. The most straightforward way to
develop an estimate of the context distribution from the training set would be to perform
a conventional no-context classification of the training set and use the context distribu-
tion as tabulated from this classification as an estimate of the true context distribution.
One could then further refine this estimate of the context distribution by making another
estimate from the contextual classification, and even iterate in this way until no further
improvements in classification accuracy were obtained.
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This iterative bootstrap method was tested on one simulated data set and two real
data sets. As reported last year, this method gave excellent results on the simulated
data set, but rather poor results on the real data sets.

The poor results using the iterative bootstrap method on the real data sets led to a
proposed alternative method for estimating the context distribution. This method is
based on the idea that ground truth information, if available, should improve the context
distribution estimate when incorporated into the estimate. The proposed ground-truth-
guided method for estimating the context distribution incorporates the ground truth into
the context distribution estimate in the following manner:

1. Perform a conventional no-context classification of the training set using
uniform prior probabilities as before, but with the following twist: The
classifier is allowed to choose only among spectral classes associated with the
information class designated by the ground truth.

2. Estimate the context distribution by tabulation from the resulting 100-
percent accurate classification of the training set.

3. Classify the entire scene with the contextual classifier and evaluate the
results over a test set disjoint from the training set.

Since last year's report, the ground-truth-guided method was tested on a 50-pixel-
square LACIE data set. (This Landsat data set is a large-field agricultural scene from
Hodgman County, Kansas. See last year’'s final report for a detailed description of this
data set.) The ground-truth-guided no-context classification was performed as described
over the first 25 lines of the data set and the context distribution was estimated over
those 25 lines. Contextual classifications of the scene were performed and classification
accuracy* was evaluated over the last 25 lines. The results (Figure C-4) show that thisis a
very effective way to estimate the context distribution. This easily implemented
automatic method for estimating the context distribution produced on this data set an
estimate of the context distribution which in turn produced contextual classifications
with significant improvement in classification accuracy over the conventional uniform-
priors no-context classification.

While this method can produce good estimates of the context distribution, it suffers
the limitation that an adequate number of sufficiently sized blocks of ground truth are
needed to make an accurate estimate of the context distribution. The method cannot be
used when blocks of ground truth test data are not available such as with the other data
set available (the Bloomington, Indiana data set deseribed in last year’'s report). A gen-
erally applicable method such as the iterative bootstrap method is still needed for such a
case.

The poor performance of the iterative bootstrap method on real Landsat data as
compared to simulated data may be due to the fact that the class-conditional probabili-
ties, f (X |9), were not modeled adequately for real Landsat data. Since the f (X; | %)
were modeled exaclly in the simulated data case, the initial no-context uniform-priors
classification was accurate enough for the iterative bootstrap method to work. The

overall number of correct classifications divided by the total number attempted.
Average- by- class accuracy is obtained by first computing the accuracy for each class
and taking the arithmetic average of the class accuracies. The latter is significant when
the classification results exhibit a tenidency to discriminate in favor of or against a subsot
of the classes

s
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Figure C-4. Performance using the ground-truth-guided method for estimating the con-
text distribution (LACIE data).




78

bootstirap effect did not perform satisfactorily in the real Landsat data cases because the
initial classifications were not accurate enough due to inaccuracies in modeling the
J (Xi |8;). The poor initial classifications in the real data cases produced estimates of the
context distribution, G(¥), which contained more erroneous class configuration counts
than in the simulated case, which in turn gave poorer context classifications results.

There are several ways in which the context distribution estimates from no-context
classifications of real data could be "cleaned up”. One could employ a procedure which
deletes all class configurations with counts below a certain threshold. Or one could divide
the count for each class configuration by a fixed number and take the integer part of the
result as the new count, deleting all class configurations with counts that become zero.

Both of the aforementioned clean-up procedures could result in totally eliminating
rarely occurring but valid classes from context classifications using the cleaned up esti-
mate of the context distribution. A context distribution estimate clean-up method that
does not suffer from this problem is the "Power Method.”

The Power Method raises the relative frequency count for each class configuration to
a power and uses the result as the context distribution estimate. For powers greater
than one, the class configurations with larger counts are favored more heavily than those
with relatively small (and possibly erronecus) counts. Conversely, for powers less than
one, the class configurations with large counts are not so heavily favored. Going to the
extreme of a power of zero results in all class configurations being equally favored as in a
uniform-priors no-context classification. In no case is a class configuration deleted from
the context distribution estimate.

The Power Method was tested on the Bloomington, Indiana data set. (This Landsat
data set is from an area to the southeast of Bloomington, Indiana, containing approxi-
mately equal amounts of urban and agricultural area. The agricultural portion of this
scene has generally smaller fields than in the LACIE data set.) The results of this test are
reported in detail in [5]. Using the Power Method with two-nearest-neighbors context
(neighbors to the north and east) based on an estimate of G@F) from the no-context
uniform-priors classification, the best classification was produced using a power of 5, for
which an overall accuracy of 87.0 percent and average-by-class accuracy of 86.1 percent
was achieved. This compares to the 85.3 percent overall accuracy and 84.8 average-by-
class accuracy acheived in two iterations of the bootstrap method. (Further iterations
produced no significant improvement.) The original no-context uniform-priors
classification had an overall accuracy of 83.1 percent and an average-by-class accuracy of
82.7 percent.

A second iteration of estimating G (¥ ), this time over four-nearest-neighbors con-
text, was then made based on first-iteration classifications using G (¥ ) raised to various
powers. The second estimate of ¢ (* ) based on the classification using the first estimate
raised to a power of 10 produced the best classification results with an overall accuracy
of 88.5 percent and an average-by-class accuracy of 87.5 percent (using & (9°) raised to a
power of 5).

A test of the Power Method was also performed on the LACIE data set. The results
were similar to the Bloomington, Indiana, data set results. Again using two-nearest-
neighbor context (neighbors to the east and west), the best classification was produced
using a power of 7. Here the overall and average-by-class accuracies were 83.7 percent
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and 73.8 percent, respectively, as compared to overall and average-by-class accuracies of
78.7 and 72.0 percent, respectively, for the uniform-priors no-context case (evaluated
over the entire scene). The best second iteration-resuit, using four-nearest-neighbor
context, was produced with an estimate of &£(¥°) made from the power of 15 first itera-
tion classification and raised to a power of 10. This classification had an overall accuracy
of 86.7 percent and average-by-class accuracy of 75.6 percent for an improvement of 8.0
percent and 3.6 percent, respectively, in overall and average-by-class accuracies. This
compares to improvements of 1.8 percent and 1.0 percent, respectively, in overall and

average-by-class accuracies produced by the iterative bootstrap method when evaluated
over the entire scene.

Prior to making the second-iteration estimates of G(1%) in the above tests, it was
assumed that a more accurate classification would necessarily produce a better estimate
of G(¥°). The results quoted here indicate this is not always the case. This makes the
Power Method more difficult to use, since classifications must be made using estimates of
G(¥”) based on several classifications from the previous iteration in order to find the best
estimate.

Estimation Over Information Classes. Instead of just "cleaning up” the context dis-
tribution through using such a method as the Power Method discussed in the previous
section, one could instead try to arrive at a better original estimate of the context distri-
bution that may not need to be cleaned up (or may need less cleaning up).

Up to this point we have assumed spectral-class context to be significant. It may
be, rather, that the information-class context is the important factor. For the common
case where the number of spectral classes may be half or a third the number of spectral
classes, estimating over information classes rather than spectral classes leads to a large
reduction of dimensionality of the context distribution. The large dimensionality of the
context distribution in the spectral class formulation may in and of itself be a significant
source of estimation error. If this is indeed the case, the lower dimensionality of the con-

text distribution estimated over information classes should lead to a more accurate esti-
mate.

Let the set Q={w,wp ..., ] represent spectral classes and let the set I'= 71,72, 7n ),
nsm, represent information classes. Let ¥?€()* and (P €l'? stand for p-vectors of classes
over spectral and information classes, respectively. If we assume that the spectral
classes carry no contextual information outside of that carried by their information class
membership, we can calculate the context distribution over spectral classes, G(¥P), tfrom
the context distribution over information classes, H (¢?), as follows:

c@n=Hwn§uwuu @)

The p (¥ [¢:) represent the various probabilities that given a particular information
class, {;, the spectral class, ¥, will be observed. Our context classification decision rule

from equation (7) can now be rewritten to explicity show that the context distribution
estimation is being done over information classes, viz:

d(X:;) = the action @ €Q which maximizes

Y B To @ 16) T1f Kel9e) ©)
WPenP, P pre)
9 w0

f
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Spectral classes do carry some contextual information. One would expect then, that
if the context distribution estimates are very accurate, the spectral-class estimate using
equation (7) would produce better results than the information-class estimate using
equation (9). This is precisely what happens when the context distributions are deter-
mined from the true classification for the simulated data set. Using two neighbor con-
text (north and west neighbors), the spectral-class estimate produced overall and
average-by-class accuracies of 93.0 and 78.4 percent. The corresponding information-
class estimate result was 91.2 and 74.0 percent. As expected, the information-class esti-
mate produced a significantly less accurate classification.

It would now be interesting to note what happens when the uniform-priors no-
context classification is used to form the context distribution estimate for the simulated
data set. Using two-neighbor context (north and west neighbors), the spectral-class esti-
mate of the context distribution produced overall and average-by-class accuracies of 78.4
and 81.1 percent. The corresponding information-class estimate result was 79.8 and 81.7
percent. Here the information-class estimate produced a slightly more accurate
classification.

These simulated data results would seem to indicate that although the information-
class estimate context distribution produces less accurate classifications when the con-
text distribution is known exactly, the information-class estimate is less sensitive to
errors in the estimate of the context distribution when it must be estimated imprecisely
as from a uniform-priors no-context classification. In the later case, the information-
class context distribution estimate may produce more accurate classifications than the
spectral-class estimate.

The first real-data test was performed using the Bloomingtion, Indiana data set. For
two-neighbor context (north and west neighbors), the spectral-class estimate produced
overall and average-by-class accuracies of 84.5 and B84.2 percent. The corresponding
information-class estimate result was 85.9 and 85.8 percent. These results are quite
similar to the two-neighbor simulated data-results.

A test was also performed using four-nearest-neighbor context. The spectral-class
context distribution calculated from the information-class estimate by equation (8) had
to be thresholded in this case, i.e. context vectors, 97, with relative frequency of occu-
rance of less than a threshold value (here 6x10°%) were eliminated from the sum in equa-
tion (8). If a nonthresholded context distribution would be used here, there would be so
many separate context vectors to sum over in equation (8) that the computer program
would take an impractical amount of time, even over a small 50-pixel square test area.

The four-nearest-neighbor spectral-class estimate produced overall and average-
by-class accuracies of 84.5 and 84.1 percent. The thresholded information-class estimate
produced accuracies of 88.2 and 88.7 percent. This rather substantial increase in
classification accuracy was found to be even further improved by combining the Power
Method with estimation of the context distribution over information classes. (In imple-
menting the Power Method elements of ¢(¥*) calculated from equation (8) were raised to
a power rather than elements of H(¢7).) Using a power of 7 in this case produced overall
and average-by-class accuracies of 89.6 and 89.5 percent. These accuracies matched
those produced in two iterations of the Power Method when spectral class estimates of
the context distribution were used. Additional iterations in either case produced no
further improvement in classification accuracies. The Bloomington, Indiana data set
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results using four-nearest-neighbor context are summarized in Figure C-5.

The same tests were repeated using the LACIE data set. For two-neighbor context
(north and west neighbors), the spectral-class estimate produced overall and average-
by-class accuracies of 80.0 and 72.1 percent. The corresponding information-class esti-
mate produced accuracies of 80.4 and 72.4 percent. This accuracy improvement is much
smaller than that obtained with the Bloomington, Indiana data set, and may not even be
statistically significant. In the four-nearest-neighbor-context case, the information-class
estimate (thresholded at 6x107® and 4x10°%) produced poorer accuracies than did the
spectral-class estimate.

Whether or not the information-class estimate of the context distribution produces
better results than the spectral-class estimate is clearly data-set dependent. It may be
that a highly variable data set, such as the Bloomington, Indiana data set, will generally
produce better results using an information-class estimate. Conversely, a less variable
data set, such as the LACIE data set, may generally produce better results using a
spectral-class estimate. Data sets in the Tippecanoe County area of Indiana are presently
being developed for tests which may confirm this resuilt.

Unbiased Estimator. Another method for arriving at a better original estimate of
the context distribution may be to use an unbiased estimator for estimating the spectral-
or information-class context distribution. In all cases studied to date, estimates of the
context distribution have simply been tabulated from some template classification. Sim-
ple tabulation produces a biased estimate of the context distribution. It would seem
worthwhile to look into unbiased estimators of the context distribution (such as in Van
Ryzin[6]) as such estimators may produce significantly better estimates of the context
distribution. It is anticipated that research into this area will be completed in the com-
ing year. )

Predicting the Optimal p-Context Array. In all of the tests of the contextual
classifler described so far, the size and shape of the p-context array was chosen some-
what arbitrarily. For the data sets studied, experience has generally shown that
nearest-neighbors provide the most useful contextual information. When context arrays
of fewer than four nearest neighbors are used, however, it is not clear which neighbors
should be used. This could be a problem because the preliminary research indicated that,
for the first iteration of the bootstrap method, a smaller p-context array (p = 2 or 3) was
generally most effective, and which nearest neighbors were used as context seemed to
make some difference in classification results.

One could discover the optimal p-context arrays at each iteration by simply per-
forming a large number of contextual classifications over a training set. This could be
quite time consuming, however. A more desirable solution would be to predict the
optimal p-context array at each iteration from some "context measure” of the data
before actual classifications are performed.

Suppose that the context distribution, ¢ (¥°) is such that it can be written in pro-
duct form, i.e.,
G(F) = C1(8) Go(9") (10)

where ¥ and ¥ are, respectively, q and p-q vectors of classes. The elements of ¥ are
identical to the first q elements of 97, and the elements of 9" are identical to the last p-q
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Figure C-5. Summary of four nearest neighbor context classification results from the
Bloomington, Indiana data set. Here the Power Method is combined with both spectral
class and information class estimates of the context distribution as tabulated from the
vniform-priors no-context classification. Note that the power of zero result is equivalent
to the uniform-priors no-context classification.




g

83

elements of ¥ . If this factorization can indeed be realized, equation (7) can be rewritten
as

d(Xy) = the action @ which maximizes

P Gi@)Hf(Xk [Be) || X Ga '3") H J (Xe |8) (11)
en? ovenP e,
op-vu

where the ¥;, i=1,2,...,p, are the elements of ¥. Since the term in the first set of brack-
ets is independent of the decision @, it is just a constant term relative to the decision
process and can be ignored when classifying the point at (i,j).

If G(9°) can be factored as in equation (10), it is clear that the distribution G(9F) is
one of independence of ¥ and ¥'. This suggests that a measure of nonredundant contex-
tual information from the pixel positions in ¥ as compared to that from the pixel posi-
tions in B would be a measure of departure from independence of ¥ and ¥’ in the distri-
bution G@F) One measure of this departure is

2

AGE= ) (G1(®)Ga(8") ~ G(wP) (12)
en?

where G (1) and Gp(¥"') are the marginals of G{19). Here the departure of the factoriza-

tion of G(¥7) into its marginals from a true factorization is defined as the context meas-
ure AGY.

To investigate the use of the context measure AGE in predicting the optimal p-
context array we use the following approach. Establish B as a fixed (p-q)-dimensional
classification vector we shall call the "core array’. Note that this core array must
include the pixel which is to be classified. Calculate the values of AGY for various g-
dimensional classification vectors ¥ with elements distinct from the core array. {Only
those g-dimensional arrays that are expected to add significant contextual information
need be investigated.) The best p-context array would be the (p-q) pixel locations of B
combined with the q pixel locations of the ¥ that produced the largest value for AGE.

The predictor AGY cannot be used to predict the optimal size of the p-context array
for there is nothing in the theoretical development of AGE that would indicate anything
like a threshold value for AGf. Actually, the values of AGZ are totally incomparable for
different sized p-context arrays. For a fixed size p-context array, and a fixed core array,
however, the relative values of AG can be used to indicate which data point(s) would be
best to use as additional context.

AGY was tested as a context measure to predict the best p-context array in terms of
relative pixel locations as shown in Figure C-8. Usually pixel location 5 was the pixel to be
classified. In some cases pixel location 1 was used as the pixel to be classified. For a
more detailed presentation of test results see [5].

The first test of AG§ was performed on the simulated data with context distributions
estimated by tabulation from a perfect template. A comparison of various data points as
one neighbor context was performed in which AGP did quite well in predicting
classification accuracy. This test was repeated using context distributions estimated
from the uniform-priors no-context classification. Here the values of AGY did not
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Figure C-6. Pixel locations used in testing AGY.

correlate as closely with classification accuracy, but AG} still did fairly well in predicting
the best data point to use as one neighbor context.

Tests using the Bloomington, Indiana and LACIE data sets did not turn out as well as
the simulated data tests. Here the values of the context measure AG} did not seem to
correlate with the accuracy measurements. It seems that in these real data cases, the
context as estimated from the no-context classification contains enough error to confuse
the context measure AG. For AGY to function properly as a predictor of the optimal p-
context array, the contextual information contributed by the ¥ pixel locations must not
be so erroneous as to actually decrease classification accuracy.

Further tests with the Power Method on the two real data sets were performed to
see how significant this failure of AGJ to predict some best p-context array is in these
cases. Table C-1 summarizes the results of two iterations of the Power Method in which
various two-neighbor contexts were used in the first iteration. Four-nearest-neighbor
context was used for the second iteration.

For nearest-neighbor context, the choice of 1st-iteration context for the LACIE data
set makes virtually no difference in terms of 2nd iteration accuracies. There are some
differences in the Bloomington data set results. As indicated by by AGY, the non-nearest-
neighbor case (1st iteration pixel locations 3 and 7) produced a lower 2nd iteration accu-
racy. Comparing the values of AG§ among nearest-neighbor locations, however, gives no
indication that pixel locations 4 and 8 would produce better classification results than
any other combination of nearest-neighbor pixel locations. The fact that AG§ produced
larger values for pixel locations 4 and 8 versus pixel locations 2 and 8 for both real data
sets is not reflected at all in the accuracy results presented in Table C-1.

It should be noted that the Bloomington data set resulis were evaluated from just
over half the pixels in the 50-pixel square scene (1317 pixels) while the LACIE data set was
evaluated from ground-truth over the entire 50-pixel square scene. Also, the Blooming-
ton data set ground truth was derived from aircraft infrared photography while the LACIE
ground truth was from a ground survey. The combination of these facts may serve Lo
make the Bloomington data set results sufficiently noisy to make the variations in the
accuracies displayed in Table C-1 statistically insignificant.

LR
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Table C-1. Power Method resulls varying pixel locations of the two-neighbors used for
first-iteration context. Classified pixel location is location 5. Second iteration uses four-
nearest-neighbor context.

2nd Iteration Accuracy, %
1st Iteration Best Power Best Power

Data Set Context st 2nd Overall Average-

Pixel Locations Iteration Iteration By-Class
LACIE R& ¢ 15 10 86.7 75.6
LACIE 2&8 15 10 86.7 75.6
LACIE 486 15 10 86.7 75.8
Bloomington 2&6 10 5 88.5 87.5
Bloomington 2&8 10 5 88.6 87.8
Bloomington 4&6 7 3 88.2 88.2
Bloomington 4&8 10 5 88.7 89.2
Bloomington 3&7 7 3 87.2 87.1

If indeed no one particular nearest-neighbor is better as context in these two real
data cases, it remains to be explained why AG} consistently produced a larger value for

pixel locations 4 and 6 versus pixel locations 2 and 8 on both the Bloomington data set
and the LACIE data set.

It is interesting to note that the Landsat sampling rate is significantly finer along
the east-west direction than for the north-south direction. With such a difference in sam-
pling rate we might expect from AGE exactly the kind of behaviour we have observed with
these two data sets.

The research reported above raises doubt as to the usefulness of AG} as a predictor
of the optimal p-context array. A closer look at the problem seems to indicate, for-
tunately, that such a predictor may not be needed. It may indeed be the case that for
general data sets, when less than four-neighbor context is used, any particular choice of
nearest neighbors as context will be as good as any other choice of nearest neighbors.
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2.2 Reducing Computation Time

The contextual classifier is very computationally intensive, typically requiring a
large amount of computer time. To reduce execution time, one could exploit the latest
improvements in the raw speed of computer components and/or one could take advan-
tage of special computer architectures involving multiple processing elements. This type
of approach is discussed in Sections 3 through 8. Here we will limit ourselves to discuss-
ing modifications to the context classification algorithm itself aimed at reducing the
computation necessary to perform a contextual classification.

Hybrid Algorithm. At least two different approaches to such a modification of the
context classification algorithm are possible. One way to produce classifications of accu-
racy comparable to the original contextual classification algorithm but with less compu-
tation may be to use a "hybrid” algorithm. Such an algorithm would use a conventional
no-context classifier whenever that classifier can classify a given point "confidently”,
resorting to the contextual classifier only on "difficult” pixels.

A simple test of the "confidence” of classification by a conventional no-context
classifier (as in [1]) would be to compare the difference between maximum discriminant
function and the next largest discriminant function for the classifier at a given point with
a threshold value. If the value equals or exceeds the threshold value, the conventional
classification would be used. Otherwise, the contextual classifier would be employed.
Such a method should save considerable computation time depending on the percentage
of pixels that are classfied conventionally. Classification accuracy should not suffer
significantly because the pixels classified “confidently” by ithe conventional no-context
classifier presumably would have been classified identically by the contextual classifier.

Approximate Algorithm. Another approach to reducing the computation required to
do contextual classification is to look for a less computationally intensive algorithm which
approximates the original contextual classification algorithm. Such an approximate algo-
rithm has been studied during this contract year. For a detailed report on this approxi-
mate algorithm see [7]. If such an algorithm produces classifications that do not differ
significantly in accuracy from those produced by the original algorithm, the approximate
algorithm would be preferred for practical applications.

In studying the original algorithm, it was discovered that a single term of the sum in
equation (7) usually dominated all other terms for each possible classification action a.
This observation suggested the following approximation to the decision rule d(:) given in
equation (7):

d(Xy) = the action a which maximizes, for all ¥ €0® with v =a,

c@’)ﬁf(xnm. (13)

Comparing equations (7) and (13), we see that the summation in equation (7) is
eliminated. This not only saves the computer time needed to perform the summation,
but also allows the use of a discriminant function proportional to (13) which is much
easier to calculate. Again, see [7] for the details. Based on these considerations, we
would expect that an approximate algorithm based on {13) will take less computation
time than the original algorithm for any data set. However, the effect of the approxima-
tion on classification accuracy may be data dependent.
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It now remains to be tested empirically whether the lower computational require-
ments of the approximate algorithm result in a significant savings in computer costs
when compared to the original algorithm and whether the classifications produced by the
approximate algorithm differ significantly from the classifications produced by the origi-
nal algorithm.

The approximate algarithm was compared for accuracy with the original algorithm
in tests using the simulated data set and the real data sets mentioned earlier. Included
in the comparisons were algorithms that take only the three or flve maximum terms in
the summation in equation (7). These additional algorithms serve to give an indication of
how many terms in the summation are needed to produce classifications equivalent to
those produced by the original algorithm. See [7] for a detailed presentation of experi-
mental results.

The approximate algorithm performed very well when compared to the original algo-
rithm, with overall accuracy differing by less than 0.2 percent for all data sets. The
results also show that in the two real data sets, the five largest terms of the sum in equa-
tion (77) are all that are needed to produce identical classifications to those produced by
the full sum (the original algorithm).

The approximate algorithm was compared in terms of computer timings with the
original algorithm on the simulated data set and the two real Landsat data sets. Highly
optimized versions of each algorithm (written in the "C" programming language) were run
on PDP-11/45 and PDP-11/70 computers.

The length of time the classifier takes to process a 50-pixel square data set varies
depending primarily on the number of nonzero elements of the context distribution.
(The number of terms that need to be evaluated in the sum in equation (7) and the
number of terms to be compared in the maximization of equation (13) are equal to the
number of nonzerc elements in the context distribution.) In the test the ratio of timings
between the two programs remained fairly consistent, however, across all data sets and
for both computers. The results show that the approximate algorithm averaged less than
half the real and user time* taken by the original algorithm. This amounts to a
significant improvement in computation time.

Experimental results from one simulated and two real data sets show that on these
data sets the approximate algorithm takes significantly less computer time while produc-
ing classifications that do not differ significantly in accuracy from classifications pro-
duced by the original algorithm. By the nature of the approximate algorithm, it is
expected that similar time savings will occur when the approximate algorithm is used on
other data sets. Whether or not the accuracy results presented here can be expected
with other data sets depends on the extent to which the data sets tesied here are
representative of remotely sensed data in general. We believe that they are fairly
representative. Further tests are planned to confirm that the approximation does not
significantly affect classification accuracy.

program is swapped out for other tasks. User time is essentially time spent doing com-
putations.
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2.3 Study into Initial Assumptions

Certain assumptions were made in the initial development of the context classifier
{see Section 1). Probably the most important assumption was class-conditional indepen-
dence for the observations as expressed by equation (6).

Elimination of Class-Conditional Independence Assumption. For contextual
classifications using an arbitrary p-context array, the class-conditional density f (X;; |%)
of equation (5) could be estimated by clustering in a similar manner to the way the densi-
ties f (Xi |®k) of equation (7) are estimated (see [1]). In this case, however, the cluster-
ing must be done over the mxp dimensional Xy rather than the n-dimensional X;.
Significant clusters of the observation vectors, X ij» could then be identified with a partic-
ular classification vector, ¥, and a normal density model for f (X [9”) could be deter-
mined. Clustering done in such a way would provide class-conditional densities f 0.4 i | _19")
without the independence assumption for use in comparison to classifier tests using
class-conditional densities assumed to be independent among all image locations.

The use of the class-conditional density f (X;;|97) presents the practical problem of
effectively working with a multispectral data set with a large number of channels. Some
of the dimensionality reduction techniques used in working with other large-dimensioned
data sets may also be useful in this case.

Research into the class-conditional independence assumption is planned for later in
the coming year.

Classification Over Information Classes. Not explicitly pointed out in Section 1 is the
assumption that results in the original context classifier classifying into spectral classes
rather than information classes. Since classification results are normally evaluated with
respect to information classes rather than spectral classes, it may prove beneficial to
classify directly over information classes. Scholz et al [8] reported a small improvement
in classification accuracy in certain cases where a maximum likelihood no-context
classification was done directly into information classes rather than into spectral classes.
It would be of interest to test if classifying over information classes would significantly
improve the performance of the contextual classifier.

Let the set Q={w;,wy...,w,m} represent spectral classes and the set I'={y,72....7. 1,
n<m, represent information classes. Note that each element of I' is a set of spectral

n
classes where the % are such that if a4 € % then @ #% fork#jand v =T.
Jet

Where the possible actions are defined over information classes and the contextual
information is defined in terms of spectral classes, the decision rule is obtained by max-
imizing a function as in equation (5) summed over the spectral classes contained in the
action (information class) considered. Invoking the class-conditional independence
assumption as in equation (7), the decision rule becomes:

d{X;;) = the action a €T which maximizes

S % ) lr i) . (14)
oEa fem’, kel

r
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where the o are the spectral classes comprising information eclass ¢. This decision ruie
can also be used in the case where informalion classes are assumed to carry all of the
contextual information by using equation (8) tc calculate G (W ).

The information-class decision rule was compared to the spectral-class decision rule
using a simulated data set and the two real Landsat data sets. Table C-2 lists the results
obtained using the simulated data set and spectral-class context. Results were similar
for the two real data sets and when information-class context was used.

Table C-2. Comparison of classification results from using the information-class decision
rule of equation (14) versus results from using the spectral-class decision rule of equation
(7). Simulated data and spectral-class context were used.

Accuracy, %
Information Spectral
Classification Class Rule Class Rule
Overall Ave-by-Class Overall Ave-by-Class
uniform-priors,
no-context 72.1 78.2 70.4 77.5
estimated-priors,
no-context 87.8 85.6 87.5 65.4
2-nearest-neighbors
(west and north) 93.2 78.5 83.0 78.4
4-nearest-neighbors 97.1 87.5 97.1 87.5
8-nearest-neighbors 98.2 92.0 98.2 92.0

The results indicate that while there may be some advantage in using the informa-
tion class decision rule when classification accuracies are low, there is apparently no
advantage to using the information class decision rule when classification accuracies are
high. We would actually be disadvantaged by using the information class rule if we would
want to use an iterative process using spectral class context, for we would not have a
spectral class classification for use in continuing the iterative process.




90

3. Examples of Contextual Classifiers

This section reviews the theory presented in Section 1 and gives
examples of the calculations needed to perform contextual classifica-
tions. This will serve as background for the implementations sections
that follow. ‘

The image data to be classified are assumed to be a two-dimensional
I-by~-J array of multivariate pixels. Associated with the pixel at "row
i" and "column j" is the multivariate measurement n-vector X;. ¢ RT and
the true class of the pixel Gi. e N = {wl,...,w }. The measurements
have class-conditional densitie% f(X|wk), k=1,2,...,C, and are assumed
to be class-conditionally independent. The objective is to classify the
pixels in the array.

In order to incorporate contextual information into the classifica-
tion process, when each pixel is to be classified, p-1 of its neighbors
are also examined. This neighborhood, including the pixel to be classi-
fied, will bé referred to as the p-array. Intuitively, to classify each
pixel, the contextual classifier computes the probability of the given
observed pixel being in class k by also considering the measurement vec-
tors (values) observed for the neighbor pixels in the p-array. Specifi-
cally, for each pixel, for each class in Q, a discriminant function g is
calculated. The pixel is assigned to the class for which g is greatest.
Each value of g is computed by summing the weighted probabilities of the
p-1 neighbor pixels occurring in all possible classification states.
This is described below mathematically for pixel (i,J) being in class
wk-

The description is followed by an example to clarify the notation
used. Further details may be found in [5,9-11].

P
= P
g (% ) Z i o lo) o)
6.. e af, |e=1
1]

where

xlezij is the measurement vector from the 2th pixel in the p-array
(for pixel (i,j))

2

f(X£|6£) is the class~conditional density of X2 given that the 2th
pixel is from class 82 :

9 Qgij is the class of the 2th pixel in the p-array (for pixel (i,j))

Gp(gij) = GP(el,ez,...,ep) is the a priori probability of observing
the p-array 61,62,...,6p.

i ST

b

-

P AsS
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Within the p-array, the pixel locations may be numbered in any con-
venient but fixed order. The Jjoint probability distribution GP  is
referred to as the context distribution. The class-conditional density
of pixel measurement vector x given that the pixel is from class k is:

f(x|k) = e_[loglEk|+(x‘mk)TZk—1(X—mk)]/2

where the measurement vector for each pixel is of size four, Iy 1 is the
inverse covariance matrix for class k (four-by-~four matrix), my is the
mean vector for class k (size four vector), "T" indicates the transpose,
and "log" is the natural logarithm. This 1is the same function as used
for maximum likelihood classification [1].

To clarify the computation of the discriminant function, consider
the following example. Let the context array (neighborhood) be the p=3
choice shown in Figure C-7. This type of neighborhood is called hori-
zontally linear[10]. As shown in the figure, the pixels are numbered
such that the pixel (i,j) to be classified is associated with X, and 8,
pixel (i, j-1) is associated with X, and 6, and pixel (i,j+1) is associ-
ated with X, and 63. Assume there are two possible classes: @ = {a,bl.
Then the discriminant function for class b is explicitly:

3
3
g (X..) = E T orx,le,) 678,
b ™i] o e =1 Y +J

£(x,la)£(x, [D)£(X4la)G(a,b,a)

+

f‘(Xl]a)f‘(Xz[b)f‘(X3|b)G(a,b,b)

+

£(X, [D)F(X, [b)F(X 4 |a)G(b,b,a)

+

£(X[b)£(X,[b)£(X4]b)G(b,b,b)

(Recall G3(§dj) = G(el,92,93) is the a priori probability of observing
the specific ~“neighborhood configuration (6,6 ,93).) After computing
the discriminant functions of g, and g, for pixel (i,j), pixel (i,j) is
assigned to the class which has the larger discriminant value.

Consider the case where there is a non-linear three-by-three con-
text array (neighborhood), i.e., p=9. This is shown in Figure C-8. The
pixels are numbered such that pixel (i,j) is the pixel to be classified
and it is numbered as pixel 5 in the neighborhood. The indices and num-
bers of the other pixels are shown in Figure C-8. This numbering will
be used to demonstrate the computations required by the general formula
above.
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1 2 3
(lrj-l) (1rj) (irj""l)

Figure C-7. A p=3 context array (neighborhood). The
number above the row and column indices is the pixel

number for that position in the neighborhood.

1 2 3
(i-1,3-1) (i-1,3) (i-1,3+1)
4 5 6
(i,3-1) (i,3) (i,3+1)
7 8 9
(i+1,3-1) (i+1,3) (i+1,3+1)

Figure C-8. Three-by~three neighborhood for classifying
pixel (i,j). The number above the row and column indices

is the pixel number for that position in the neighborhood.
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For the sake of a simple example, assume there are only two
classes: @ = {a,bl. Let the pixel number % be associated with X, and
8,5 1 < 2 <9, Then the discriminant function for pixel (i,j) being in
c%ass b is explicitly:

9
9
= f .
gb(gt_ij) eizjegg 2‘731‘1 (x,l6,) 678, ))
65=b

This is shown in its expanded form in Figure C-9.

As is demonstrated by the figure, the number of product terms is
2 . In general, the number of product terms will be CP~l where C is the
number of classes being considered and p is the size of the neighbor-
hood. This must be repeated for each class for each pixel to be classi-
fied. Thus theoretically, C#CP-1 = CP of these p+1 element products
must be computed for each pixel. Typically 10 < C < 60 for the analysis
of Landsat data. This demonstrates the potential computation complexity
of contextual classification.

In the following sections, uniprocessor, CDC Flexible Processor
system, and SIMD algorithms for the size three linear and size nine
non-linear neighborhood classifiers will be presented. The improvement
in the execution speed of the algorithms provided by the Flexible Pro-
cessor system and SIMD approaches will be discussed.

4. Uniprocessor Contextual Classifiers

This section presents high-level language algorithms for executing
the size three and size nine neighborhood contextual classifiers that
were described in the previous section. These uniprocessor algorithms
will be used as a basis for the multiprocessor algorithms that follow.

Algorithm 1, shown in Figure C-10, is one way to implement the con-
textual classifier using a horizontally 1linear neighborhood of size
three which was described in Section 3. This implementation is a
straightforward approach presented to clarify the computations neces-
sary. After presenting this algorithm, a second, more efficient algo-
rithm will be given.

First consider the main loop of Algorithm 1, shown in Figure C-10.
Let the original image to be classified be an I-by-J array called A.
Columns O and J-1, the two side edges of the image, are not classified
since these pixels will not have both right and left neighbors. The
variable "value" will contain the maximum "g" (discriminant function)



f(Xlla)f(lea)f(X3|a)f(X4|a)f(X5|b)f(X6|a)f(x7la)f(X8[a)f(x9Ia)G(a,a,a,a,b,a,a,a,a)
f(Xlla)f(lea)f(X3'a)f(X4|a)f(X5|b)f(X6la)f(X7|a)f(x8]a)f(xg|b)G(a,a,a,a,b,a,a,a,b)
f(Xlla)f(lea)f(X3[a)f(X4la)f(X5|b)f(X6|a)f(X7!a)f(X8'b)f(x9|a)G(a,a,a,a,b,a,a,b,a)

f(xlla)f(X2|a)f(X3la)f(X4]a)f(x5|b)f(xsla)f(x7|a)f(x8]b)f(x9lb)G(a,a.a,a,b,a,a,b,b)

£(X) [PY£ (X [b) £(X5]0) £(Xy|b) £ (X5 | b) £ (Xg |B) £(X, | b) £(Xg|b) £(Xg|a) G(bsb,b,b,b,b,b,b,a)

£(X; [b) £(X;|b) £(X4[b) £(Xyb) £ (X5 |b) £ (X | b) £ (X, | b) £(Xg | b) £ (Xg|b) G(b,b,b,b,b,b,b,b,b)

Figure C-9. The calculations required for the discriminant
gb(gij) for a size nine neighborhood and two classes. Note
that the "..." represents 28 - 6 = 250 product terms.

%6
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Main Loop for Algorithm 1

/* straightforward uniprocessor implementation of a contextual
classifier using a size three horizontally linear neighborhood */
for i = 0 to I-1 do /* row index */
begin

for j =1 to J-2 do /* column index */

begin /* for each pixel */
value = -1 /* initialize variable to hold max "g" */
class = -1 /* initialize variable for class with max "g" */

for k =1 to C do /* for each class */
begin
current = g(i,j,k) /* compute "g" for pixel i,j and
class k */
if current > value /* compare new "g" with max */

then

begin

value = current /* update max */

class k /* update max class */

end

end

print pixel (i,j) is classified as "class"

end

end

Figure C-10(a). Main loop of Algorithm 1, a straightforward
uniprocessor implementation of a contextual classifier for

a horizontally linear neighborhood of size three.




96

Discriminant Function Calculation

function g(i,3,k) /* discriminant for pixel (i,j) and class k */
sum = 0 /* initialize sum, used to accumulate g(i,j, k) */
for r = 1 to C do /* all possible classes for pixel (i,j-1) */
begin
for g =1 to C do /* all possible classes for pixel (i,j+1l) */
begin
sum = compf(i,j~1l,r) * compf(i,j,k)
* compf(i,j+l,q) * G(r,k,qg) + sum
end
end

return (sum) /* sum contains value of g(i,j,k) */

Class—-Conditional Density Calculation

function compf(a,b,k) /* for pixel (a,b), class k */
x = A(a,b) /* x is the pixel (a,b) measurement vector */
expo = -[log|f| + (x-m) eyt (x-m ) 1/2

expo,

return (e /* return value of f(A(a,b)|k) */

Figure C-10(b). Algorithm 1 subroutines "g(i,j,k)" and "compf(a,b,k)."
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value calculated for pixel (i,Jj). This variable may be updated as the
"g" for each class calculated. The variable "class" is the class asso-
ciated with "value." In the main loop, "g(i,j,k)" is a call to a func-
tion to calculate the discriminant function for pixel (i,j) and class k.
This function is called I * (J-2) * C times, once for each class for
each pixel being classified.

Consider the calculation of g(i,j,k), shown in Figure C~10. The
class of pixel (i,j) is held constant at k, while all other possible
class assignments are considered for pixels (i,j-1) and (i,j+1). For
each assignment of classes for the pixels neighboring pixel (i,j), of
which there are C¥*C, the product of the class-conditional densities
("compf") is weighted by "G(r,k,q)", the a priori probability of observ-
ing the 3-array (wr,wk,w ). The "G" array is predetermined and pre-
stored. For each call to "g(i,j,k)" the value of "sum" for that i, I,
and k is calculated. "Sum" is then returned as the value of "g(i,j,k)."
In this straightforward version of the g(i,j,k) routine, the function to
compute a class-conditional density ("compf") is called C*¥C times each
time "g" is called.

Now consider the "compf" routine. This calculates the class-condi-
tional density for pixel (a,b) and class k using the following equation:

ex i) = e~ [o8l T rGem) s " Gem ) 172

whire X 1s the measurement vector for pixel (a,b) and is of size four,
I~ is the inverse covariance matrix for class k (four-by-four matrix),
my is the mean vector for class k (size four vector), "T" indicates the
transpose, and "log" is &he natural logarithm. For each class, the
algorithm uses log|2 s Zk_ , and m, as precomputed constants. For each
call to "compf (a,b,k)," the value of "e®*PO" for that a, b, and k is
calculated. "e®XPO" is then returned as the value of "compf(a,b,k)."

Algorithm 1 executes the "compf" subroutine I * (J-2) #* C3 times.
Since for each pixel there are C "f'"s (class-conditional densities),
this approach is inefficient by a factor of C2. Algorithm 2 rectifies
this problem by saving certain "f" values rather than recalculating
them. )

Algorithm 2, shown in Figure C-11, implements the contextual clas-~
sifier without the redundant executions of "compf" that occur in Algo-
rithm 1. Let "hold(m,k)" be a two-dimensional array of size three-by-C.
i.e., 0 <m<2and 1 <k <C. For m=cr, hold(cr,k) is a vector
of length C containing the class-conditional density values ("compf"s)
for the pixel (i,j) ("er" is an abbreviation for center). For example,
hold(er,1) is the class-conditional density for pixel (i,j) and class 1.
hold(1lt,k) and hold(rt,k) are the analogous vectors for the pixel
(i,J-1) (the left ("1t") neighbor) and pixel (i,j+1) (the right ("rt")
neighbor), respectively. By using this array to save the class-condi-
tional densities, each density (for a given pixel and class) is calcu-
lated only once, instead of C2 times.
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Main Loop for Algorithm 2

/* Algorithm 1 without redundant "compf" calculations */
for i = 0 to I-1 do /* row index */
for k = 1 to C do /* for each class */
for m = 0 to 2 do hold(m,k) = compf (i, m,k) /* cols.0-2 */

1t = 0 /* hold(lt,k) is left neighbor */

cr = 1 /* hold(cr,k) is pixel being classified */
rt = 2 /* hold(rt,k) is right neighbor */
for j = 1 to J-2 do /* column index */

value = -1; class = -1 /* max "g" and class */
for k = 1 to C do /* for each class */

/* "g" for pixel i,j class k */

current = g‘(;t,cr,rt,k)

if current > value /* compare with max */

then value = current; class = k

print pixel (i,]) is classified as "class"
if j # J-2 then /* not last column */
/* update hold pointers */
tp = 1t; 1t = cr; cr = rt; rt = tp
for k = 1 to C do /* compf's for next col */

hold(rt,k) = compf(i,j+2,k)

Figure C-1ll(a). Main Loop of Algorithm 2.
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Discriminant Function Calculation for Algorithm 2

function g'(lt,cr,rt,k)

/* discriminant for pixel "cr" (whose neighbors

are "1t" and "rt") and class k */
sum = 0 /* initialize sum, used to accumulate g'(lt,cr,rt,k) */
for r = 1 to C do /* all possible classes for pixel (i,j-1) */
begin
for g =1 to C do /* all possible classes for pixel
(i,3+1) */
begin
if G(r,k,q) # 0 /* do not do multiplications if G = 0 */

then

sum = hold(lt,r) * hold(cr,k) * hold(rt,q)
* G(r,k,q) + sum
end

end

Figure C-11(b). Algorithm 2 subroutine "g' (lt,cr,rt,k)."
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The main loop of Algorithm 2 is modified to calculate the
class-conditional densities for the first three columns each time a new
row is considered (i.e., each time "i" is incremented). Each time a new
pixel in a given row is to be classified (i.e., just before "j" is
incremented), these values are updated. In particular, the "er" vector
becomes the "1t" vector, the "rt" vector becomes the "cr" vector, and a
new "rt" vector is computed.

The new discriminant function calculation, g', does not call the
subroutine "compf." It gets the values it needs from the "hold" array.
For each call to "g'(lt,cr,rt,k)," the value of "sum" for that k is cal-
culated. "Sum" is then returned as the value of "g'(lt,cr,rt,k)."

In the function "g(i,j,k)" for Algorithm 1, the_ computation of
"sum" involved 3*C“ floating point multiplications and C“ floating point
additions. To reduce the number of floating point operations in
"gt(lt,cr,rt,k)" for Algorithm 2, the sum is updated only if "G(r,k,q)"
is non-zero.

The same "compf" routine is used for both Algorithms 1 and 2.
Algorithm 1 calls this routine I*#(J-2)*C3 times, while Algorithm 2 calls
it only I*(J-2)*C times.

The serial complexity of Algorithm 2 can be calculated in terms of
assignment statements, multiplications, additions, and "compf" calcula-
tions. To set "hold" for new rows, 3*I*(C+l) assignments and I*C*3 calls
to "compf" occur. For each pixel, at most C+1 assignments to "value"
and "class" occur, C assignments to "current" occur, and C calls to
"gt'(lt,cr,rt,k)" occur. In addition, for each row, "hold" is updated
J-3 times, each update using C+4 assignments and C calls to "compf."
Each execution of "g'(lt,cr,rt,k)" uses 3*C2 multiplications, CZ2 addi-
tions, and C2+1 assignments. Thus, the total complexity for Algorithm 2
is:

I(J(C3+SC+6)—2C3—SC—13) assignments;
3¢31(9-2) multiplications;
c3rg-2) additions; and
I*J%C "compf" calculations.

The growth is proportional to I*J*C3 assignments, multiplications, and
additions, and I*J*C "compf" calculations.

Algorithm 2 can be extended for a non-linear contextual classifier
with a neighborhood of size nine (as shown in Figure C-8). The_ complex-
ity of the algorithm would have growth proportional to I*J*C9 assign-
ments, multiplications, and additions. The number of "compf" calcula-
tions would still be I*®J¥*C.

For the size nine square neighborhood case, "hold" would be a
(2%J+3)-by-C array (assuming the neighborhood window moves along rows).
The "C" term is for holding the C "compf" values that are calculated for
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a pixel. The 2%J+3 pixels whose "compf" values are stored in "hold" are
chosen to make it unnecessary to perform redundant "compf" calculations.
In general, when classifying pixel (i,j), "hold" has the "compf" values
for pixels j-1 to J=-1 of row i-1, pixels 0 to J-1 (all of) row i, and
pixels 0 to j+1 of row i+1. After the classification of pixel (i,]j),
the values for pixel (i-1,j-1) are removed from "hold" and values for
(i+1,j+2) are added. When the pixels on a new row are to be classified,
call it 1i', then the values for pixels (i'-2,J-3), (it-2,J-2), and
(i'-2,J-1) are removed and the values for (i'+1, 0), (i'+1, 1) and
(i'+1, 2) are added. (This assumes row i 1is classified after i -1.)
If J > I, then moving the neighborhood window along columns would save
space, since "hold" would then be of size (2¥I+3)C. Given this, the
rest of transforming Algorithm 2 for the size nine square neighborhood
case is straightforward.

In summary, Algorithm 2 for implementing a contextual classifier
based on horizontally linear neighborhood of size three using a unipro-
cessor system was presented and its computational complexity analyzed.
The extension of Algorithm 2 to implementing a contextual classifier
based on a non-linear square neighborhood of size nine, using a unipro-
cessor was discussed. In the following sections, the ways in which the
CDC Flexible Processor system and an SIMD machine can be used to reduce
the execution time of these classifiers is examined.

5. The CDC Flexible Processor System

The Control Data Corporation Flexible Processor system is a commer-
cially available multiprocessor system which has been recommended for
use in remote sensing[12-14]. 1In this section, the system is briefly
overviewed.

The basic components of a Flexible Processor (FP) are shown in Fig-
ure C-12. An example of the way in which N FPs may be configured into a
system is shown in Figure C-13. There can be up to 16 FPs linked
together, providing much parallelism at the processor level. The FPs
can communicate among themselves through the high-speed ring or shared
bulk memory. The clock cycle time of each FP is 125nsec (nanoseconds).
Since 16 FPs can be connected in a parallel and/or pipelined fashion,
the effective throughput can be drastically increased, resulting in a
potential effective cycle time of less than 10nsec.

An FP is microprogrammed in micro-assembly language, allowing
parallelism at the instruction level. For example, it is possible to
conditionally increment an index register, do a program jump, multiply
two 8-bit integers, and add two 32-bit integers -- all simultaneously.
This type of operational overlap, in conjunction with the multiprocess-
ing capability of the FPs, greatly increases the speed of the FP array.

The following list summarizes the important architectural features
of an FP:
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DATA PATHS IN A FLEXIBLE PROCESSOR
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Figure C-12. Data path organization in the CDC Flexible Processor.
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Figure C-13. Block diagram of typical Flexible Processor array.
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User microprogrammable.

Dual 16-bit internal bus system.

Able to operate with either 16- or 32-bit words.

125nsec clock cycle.

125nsec time to add two 32-bit integers.

250nsec time to multiply two 8-bit integers.

Register file (with 60nsec access time) of over 8,000 16-bit words.

In order to debug, verify, and time FP algorithms, we have devel-
oped a simulator for an array of up to 16 FPs. We have also developed
an assembler for the micro-assembly language. The assembler and simula-
tor run under the UNIX operating system at Purdue. They are described
in [15,16]. Their use in programming and executing a maximum likelihood
classifier is discussed in [10,16].

The experience gained through the use of the simulator has made
evident the following advantages and disadvantages of the system.

Advantages:

Multiple processors (up to 16).

User microprogrammable -- parallelism at the instruction level.
Connection ring for inter-FP communications.

Shared bulk memory units.

Separate arithmetic logic unit and hardware multiply.

Disadvantages:
No floating-point hardware.
Micro-assembly language —- difficult to program.

Program memory limited to 4k micro-instructions.

This brief overview was provided as background for the following
section. Further details can be found in the references mentioned.

6. Flexible Processor System Implementation
of Contextual Classifiers

Consider using a Flexible Processor system to implement the contex-
tual classifier based on a horizontally linear neighborhood of size
three (as shown in Figure C-7). Divide the A-by-B image into subimages
of B/N rows A pixels long, as shown in Figure C-14. Assign each sub-
image to a different FP. The entire neighborhood of each pixel is
included in its subimage. Each FP can therefore execute the uniproces-
sor algorithm presented in Section 4 on its own subimage. No interac-
tion between FPs is needed, i.e., each FP can process its subimage inde-
pendently.

An FP micro-assembly language version of Algorithm 2 (Figure C-11)
has been coded and debugged. The LARS Flexible Processor micro-assembler
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Figure C-14. An A-by-B image divided among N Flexible Processors.
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Figure C-15. Horizontally linear neighborhoods. Each box is one pixel.
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Figure C-16. Vertically linear and diagonally linear neighborhoods.
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Figure C-17. Non-linear neighborhoods. Each box is one pixel.
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and simulator are being used to gather statistics on the execution time
for the size three horizontally linear neighborhood contextual classi-
fier. Because each Flexible Processor is microprogrammable, determining
program correctness and analyzing execution times is done through the
use of the micro-assembler and simulator. The current implementation of
the contextual classifier uses 780 microprogram instructions, stored in
the micro memory (see Figure C-12). Execution times per pixel vary
because all floating point operations are done in the software. The
classification time associated with the first pixel on a line is diffe-
rent from the classification of the rest of the pixels on the same line.
This difference is accounted for by the three-pixel window. Data must
be calculated for each of the pixels in the window for the first pixel
on the line while for the rest, data must be calculated for only one
pixel.

The format of the data words of the pixel measurement vectors,
covariance matrices, etc., consists of a 14-bit two's complement expo-
nent and a 17-bit sign-magnitude mantissa. The covariance matrices,
logarithms of the determinants of the covariance matrices, a priori
probabilities (GP), and the hold array are all stored in the Large File
(see Figure C-12). In this way, each FP has all the information it
needs for performing the classification on its subimage.

The contextual classifier requires a matrix multiplication of the
form: T
(X-M)~ (C) (X-M),

where X-M is the normalized data vector, and C is a symmetric matrix.
Consider the standard method of matrix multiplication.

- - =
C1 C2 C4 C7 X1
C,C, C. C X
2 37578 2
[Xl X2 X3 XA] X b4
C4 C5 C6 C9 X3
€7 Cg G Cyp X,
An intermediate result is: - _
ClX1+CZX2+CAX3+C7X4
X X X C2X1+C3X2+C5X3+C8X[+
[ 17273 4] X
C4X1+CSX2+C6X3+C9X4
f7X1+C8x2+C9X3+ClOX4
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From the intermediate result, it can be seen that this matrix mul-
tiplication requires 20 floating point multiplies and 15 floating point
additions.

Carrying the matrix multiplication to its conclusion and grouping-
like terms yields:

2
C1X +2C X X +2C4X1X3+2C7X1X4+C3X2

2 2
+2C5X2X3+2C X X4+C X +209X3X4+C10X4

Factoring out like terms yields:

+2C, X,+2C_X
xl[clxl-+zc X, +2C,X 4]

+x2[c X5

+2C X 4+2C x4]

2
+x3[c6x3+2c9x4] +C X,

This implementation requires 14 floating point multiplies and 9
floating point adds in addition to 6 fixed multiplies requiring one
step. The total savings in process calls is about 30%. Since the
floating point operations are done in the software and not in the hard-
ware, it is important that these are as efficient as possible.

In the Landsat data used in the _testing described in [11], the per-
centage of a priori Brobabilities (G7s) that were non-zero was about 1%.
Thus, most of the G’s that are stored are zeroes. The memory require-
ments of the classifier can be reduced greatly if the zero values are
ignored. One method for the "data compaction" would be useful if less
than 50% of the data were non-zero. Consider the following format for a
neighborhood of size three.

Large File
exponent of G(0,0,0) mantissa of G(0,0,0)
exponent of G(0,0,1) mantissa of G(0,0,1)
exponent of G(0,0,C) mantissa of G(0,0,C)
exponent of G(0,1,0) mantissa of G(0,1,0)

3
.

exponent of G(0,1,C) mantissa of G(0,1,C)
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exponent of G(0,C,C) mantissa of G(0,C,C)
exponent of G(C,C,C) mantissa of G(C,C,C)

This is the current format for the data to be stored. However, if the
data are stored as follows:

Large File
First non-zero r,k,q

exponent of G(r,k,q) mantissa of G(r,k,q)
Second non-zero r,k,q

exponent of G(r,k,q) mantissa of G(r,k,q)
Third non-zero r,k,q

exponent of G(r,k,q) mantissa of G(r,k,q)

then the data space can be greatly compressed. Each entry is a pair
consisting of class specification of the neighborhood and the a priori
probability corresponding to that configuration of classes. The three
values r, k, and q must be stored because zero values for G(r,k,q) are
not stored. Thus it is impossible to determine the value of r, k, and q
through indexing. Since the total pathwidth of the Large File is 32
bits, r, k, and q can occupy a total of up to 32 bits. Because r, k,
and q must be the same size (the Ilog2 Cl), each can be up to 10 bits.
This allows for up to 1024 classes per pixel. For a window of size nine
with eight-nearest neighbors, this would allow for eight classes per
pixel. The test area in [11] was classified with an eight-nearest
neighbor window with 14 classes. The total number of non-zero a priori
probabilities was 2134. When compared with 14 R which is the number of
distinct types of neighborhoods, this is much less than 1%. Thus, this
implementation will save space. The cost of such an operation is mini-
mal, as (in the size three case) the r,k,q (neighborhood class specifi-
cation) can be used as the index variables, which will actually save
time in the form of memory fetches. This will be demonstrated later.

Consider subroutine g for the calculation of the discriminant func-
tion, as is given in Algorithm 1. This function will go through each of
the a priori probabilities, whether zero or not, and will calculate
X(r)*Y(k)*Z(q)*G(r,k,q)+sum. If the a priori probability is zero for a
given r,k,q,  there will be four floating point operations that will be
executed needlessly. Further, if the number of non-zero a priori proba-
bilities is small (less than 50%), then this will use a large amount of
space for storage of zeroes.

Consider the following function (used with the proposed storage
format) which is a variation of subroutine g' of Algorithm 2:

function g'(k)

sum=0;
load r,k,q; /*this is stored in the Large File*/
old=k; /%*class of discriminant*/
while (k=old)
begin

sum=X(r)*Y(k)*Z(q)*G(r,k,q)+sum;
load r,k,q;
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end;
return (sum);
end function

By the nature of the function call, k will be held constant for all
values of r and q. Thus, if k is placed in the most significant posi-
tion of the r,k,q combination, the numbers can be stored in increasing
order. For example, if r=1, k=3, and q=5, the number stored in the
Large File would be 315. Since the r,k,q and the corresponding a priori
probability are stored contiguously in the Large File, the pointers to
r,k,q (the neighborhood class specification) and G(r,k,q) can be com-
bined into one pointer. The ability of the FP array to read from the
Large File and increment the Large File index register simultaneously
allows the programmer to read the data and update the pointer in one
program step [16].

The subimage data itself would be stored in a bulk memory (see Fig-
ure C-13). A multiple FP configuration which associates one bulk memory
with each FP would be best for this application.

For testing this FP contextual classifier program, the classifica-
tion of two rows of eight pixel measurement vectors (stored in the Large
File) wusing four classes was evaluated. The data were actual Landsat
data, as used in [11]. Evaluation of the serial Algorithm 2 from Sec-
tion 4 showed that a PDP-11/70 required .073 second per pixel, while a
single FP required .050 second per pixel. Furthermore, lack of exponent
range in the 11/70 floating point hardware yielded the incorrect results
due to rounding error. To overcome this error, by normalizing data it
would require approximately an extra .030 second per pixel; thus the FP
is about 100% faster. The floating point is implemented in software in
the FP and uses a 14-bit exponent to overcome this problem. These tests
are by no means exhaustive. The simulator must run for many hours just
to obtain a result for one pixel. Further testing is in progress.

Using .1 second per pixel as a rough approximation of the PDP pro-
cessing time, and .05 second per pixel as a rough approximation of a
single FP processing time, a 16 FP configuration, where each processor
had its own bulk memory, would perform contextual classifications at a
rate of 320 pixels per second as opposed to 10 pixels per second for a
single PDP-11/70.

Consider horizontally linear neighborhoods in general, such as
those shown in Figure C-15. When using N FPs together to process an
image, each FP handles 1/N-th of the image. Therefore, nearly a factor
of N improvement is attained over the time required for one FP to imple-~
ment the contextual classifier. (A perfect factor of N improvement
occurs if B is a multiple of N. The minor degradation in performance
when B is not a multiple of N is discussed in [10,16].) Vertically
linear and diagonally linear neighborhoods (Figure C-16) can be pro-
cessed in a manner similar to that for horizontally linear neighbor-
hoods [10,16 ].
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Consider non-linear neighborhoods, that is, neighborhoods which do
not fit into one of the linear classes. For example, all of the neigh-
borhoods in Figure C-17 are non-linear. It can be shown that there is
no way to partition an image into N (not necessarily equal) sections
such that a contextual classifier using a non-linear neighborhood can be
performed without sharing data among FPs. In order to minimize computa-
tion time, the FPs to which pixels are assigned will depend upon the
particular image size, number of FPs used, the time required for
inter-FP communications, and the shape and size of the neighborhoods.
The rest of this section 1is an examination of one way to implement a
contextual classifier based on the square non-linear neighborhood of
size nine shown in Figure C-8.

The speed at which the contextual classifier runs depends on the
hardware organization of the FP system. Since the floating point algor-
ithms are implemented in the software, it is necessary to exploit the
MIMD[17] nature of the array. Floating point routines done in software
require a variable amount of time based on the number of shifts required
to normalize the data. This can cause a bottleneck in the processing if
one FP is required to wait for another. Synchronization can require
large amounts of time if the full 16 processor array is used.

For the purposes of this report, consider a non-linear neighborhood
as shown in Figure C-8. Each box represents one pixel, while the num-
bers in each box refer to the numbering used to distinguish the various
pixels. The use of a non-linear context neighborhood implies that cer-
tain data must be shared among the FPs. For an example, assume that the
data for pixels 1, 2, 4, 5, 7, and 8 are stored in FP K, and that the
data for pixels 3, 6, and 9 are stored in FP K+1. FP K will need to
communicate with FP K+1 to obtain the data necessary to classify pixel
5.

The amount of inter-FP communication needed to perform a contextual
classification is dependent on the particular implementation chosen.
Figures C-18 and C-19 show two methods for dividing an I-by-J image
among the FPs, I > J. Figure C-18 assumes that there are P*¥Q=16 proces-
sors, and that I/P and J/Q are both integers. Call this the checker-
board allocation. This gives each processor a rectangular subimage of
1J/PQ pixels. Figure C-19 divides the image into PQ stripes of I/PQ
lines per subimage. Call this the striping allocation. Each method of
division has its advantages. The rectangular subimage requires that, in
general, data for

2 % ((I/p) + J/Q)) + 4

pixels be transferred into each FP. Striping the same image requires
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Figure C-18. Checkerboard scheme for classifying an image.
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PQ

Figure C-19.

Striping scheme for classifying an image.
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that 2J pixels be transferred from one FP to another. For

5 5| QlGa/p)+2]
o1

which will, in practice, be true, the rectangular subimage requires
fewer overall data transfers. However, using the checkerboard scheme to
minimize total data transfers requires that a given FP communicate with
eight other processors. For example, consider the scheme in Figure
C-20. FP K holds the data for pixels 4, 5, 7, and 8. The data for pix-
els 1 and 2 are held in processor K-I, while the data for pixel 3 are
held in processor K-I+1. Further, the data for pixels 6 and 9 are held
in processor K+1.

The FP array can be constructed with a high-speed inter-FP communi-
cation link. Figure C-13 shows that the configuration of the communica-
tion link is in a ring. According to [12,13], the data transfer rate of
the ring is 64M bytes/sec. This part of the hardware is capable of
doing the data transfers, but it requires the synchronization of the
FPs, forcing one FP to wait for another, wasting time.

An FP is capable of addressing up to three channels of 16-by-128K
bytes of bulk memory each[12,13] (Figure C-13). The sharing of bulk
memory is another potential scheme that can be used for shared data.
The data for each corner pixel in a given checkerboard rectangle will be
accessed by four FPs, as is shown in Figure C-20. The possibility for
contention is great. Further, since there are four corners in a given
rectangle, a FP would be required to share data with up to eight other
FPs.

The checkerboard scheme, because of reduced edge area, will require
fewer data transfers. The necessary data transfers are complicated in
that they require synchronization of the FPs, negating many of the gains
of MIMD (asynchronous) parallel processing.

If the image is divided in the striped scheme, as shown in Figure
C-19, each FP will have to communicate with, at the most, two other pro-
cessors. This requires that FP K communicate with FP K-1 and FP K+1,
reducing the communications requirement by a factor of four over the
checkerboard scheme.

One possible implementation is shown in Figure C-21. If border
areas are stored in the joint memory banks, a processor will begin pro-
cessing in banks of bus 1. Processing will continue through half the

banks in bus 1 to bank 0 on bus 2. After all the data in the banks on
data bus 2 have been processed, processing will continue to the banks on
bus 3.

Allowing 25% of FP i's data to be stored in the shared banks on bus
1, 50% of the data to be stored in the local banks on bus 2, and 25% of
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Figure C-20.
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the data to be stored in the shared banks on bus 3, no contention will
ocecur. Consider that for processor i to "catch up" with processor i+1,
processor i will have to process more than 75% of its data in the time
it takes processor i+1 to process less than 25% of its data. Thus, con-
tention, which is a common problem in MIMD systems, is not a problem in
this implementation.

The "compf" for a pixel is the same, whether it is in one window or
another. Thus, all the pixels along the borders will have redundant
calculations performed by both FPs. If the first FP to access data for
a pixel stores the "compf" values in the shared memory, the redundant
calculations can be eliminated, creating a higher utilization of the FP
system.

An FP will be allowed to address only half of its memory banks at
one time. This is done to facilitate double buffering. The other half
will be accessible by the host. This allows, for example, the FP to be
classifying the current image while the host unloads and stores the
results of the previous classification and then loads the next image to
be processed. All memory is dual port, so the host can load the memory
without the intervention of the FPs. Single-port memory can be used;
however, this may result in decreased efficiency of the overall system.
Effective use of cycle stealing should reduce the time losses.

In Figure C-22, L can be taken to be any even number less than or
equal to 16. For the purposes of this report, let L=16. This will
result in the maximum storage capabilities for the entire system. The
memory banks are arranged as shown in Figure C-22 to show which banks
will be used by a FP while the host is loading the other banks in the
memory .

The eight-nearest-neighbor contextual classifier is similar to the
previously discussed linear case. Differences arise in the calculation
of the discriminant function, the method of updating the data for a
given window, and the method of data storage.

The calculation of the discriminant function for a given class
requires that the class-conditional densities must be used from the
eight surrounding pixels, instead of the class-conditional densities for
the pixels on the left and the right. From probability and measure
theory, it can be seen that the increase in calculations is exponential
instead of linear. Further, the number of stored a priori probabilities
(GPs) increases by the same factor. Thus, the contextual classifier
with a size nine neighborhood requires c9 stored a priori probabilities,
while the same classifier with a size three neighborhood requires only
C”, where C is the number of classes. In order to remain within the
space limitation of the Large File, C must be kept very small. If the
previous method of storing only the non-zero a priori probabilities is
used, C can be allowed to grow.

Two constraints must be considered with respect to the storage of
G: (1) the space limitation of the Large File, and (2) the limit of 32
bits to specify the neighborhood of classes associated with a given
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non-zero G value. The Large File size may be too small to store all the
non-zero G's and the associated neighborhood class specification. When
this occurs, the G array can be stored in bulk memory, adding 250nsec
for each pixel for each non-zero G value. The other constraint is that
using only 32 bits to specify the neighborhood classes for each non-zero
G value 1limits the number of classes for a size nine neighborhood to
23=8. However, a second 32-bit specification word could be used for
each non-zero G value, allowing up to 7 bits per pixel in the neighbor-
hood, i.e., up to 27 = 128 classes.

The final difference between the linear neighborhood and the non-
linear neighborhood is that when the window is moved, the data in the
linear case are shifted from pixel 3 to pixel 2 and from pixel 2 to
pixel 1 (see Figure C-7), while in the non-linear case, the data must be
moved from pixel 3 to pixel 2, pixel 2 to pixel 1, pixel 6 to pixel 5,
pixel 5 to pixel 4, pixel 9 to pixel 8, and pixel 8 to pixel 7 (see Fig-
ure C-8). Further, in the current FP implementation, with each move of
the window, the size nine neighborhood must calculate "compf" values for
three pixels while the linear neighborhood must calculate "“compf" values
for only one. Due to the way in which the image is subdivided among
FPs, the window will be moved along columns instead of rows.

Timings run with data from Landsat data used in [11] show that, on
the average, the FP implementation of the four class, size nine square
neighborhood contextual classifier requires 194264 + (1028 X number of
non-zero a priori probabilities) machine cycles for classifying one
pixel. Only the non-zero a priori probabilities are stored and, as
indicated in Algorithm 2, only the non-zero a priori probabilities are
going to affect the computation time. The tests were run with approxi-
mately .7% of G's being non-zero. Using test data, the FP implementa-
tion required 2568926 machine cycles to perform a contextual classifier
for a four class, size nine square neighborhood on a given pixel. This
translates to 0.321 second per pixel. The above timing is based on only
18 test data samples, as the classifier is run on a simulator in a
time-shared environment and requires a 1long execution time. Further
tests are being run to achieve a more accurate estimate. The above tim-
ings assume that an FP has to load all data from the bulk memory, and
that all data are preformatted according to the needs of the program.

When the class of a given pixel has been determined, the window
must be repositioned so as to classify the next pixel. Changing the
context of a pixel will not change the "compf" values for that pixel, as
the "compf" values are dependent only on the measurement vector and
class dependent data. Thus, moving a window does not require recalcula-
tion of the "compf" values for each pixel within that window. A size
nine square window will use "compf" values for a given pixel nine times:
three times in the top row, three times in the middle row, and three
times in the bottom row. Maximum throughput can be achieved by storing
the data for each line. Thus, it is necessary to calculate only one set
of "compf" values for each move of the window. This was discussed in
Section 3.
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The current algorithm does not store the "compf" values for two
lines as the bulk memories are not yet implemented. This requires two
redundant calculations of "compf" values per pixel; thus the speed of
the algorithm is not maximal. Future plans include upgrading the simu-
lator to handle the large bulk memories and implementing the contextual
classifier with no redundant calculations.

In summary, the organization of an FP system given above will allow
contention~free sharing of data. This means that N FPs will be able to
operate N times faster than one FP. Furthermore, the double-buffered
memory scheme will allow the loading of images to be processed and sto-
rage of results by the host to be overlapped with the classification
operation of the FPs.

7. SIMD Machines and PASM

The acronym SIMD stands for "single instruction stream -- multiple
data stream"[17]. Typically, an SIMD machine is a computer system con-
sisting of a control unit, N processors, N memory modules, and an inter-
connection network. The control unit broadcasts instructions to all of
the processors, and all active processors execute the same instruction
at the same time. Thus, there is a single instruction stream. Each
active processor executes the instruction on data in its own associated
memory module. Thus, there is a multiple data stream. The interconnec-
tion network, sometimes referred to as an alignment or permutation net-
work, provides a communications facility for the processors and memory
modules. Examples of existing SIMD machines include the Illiac IV and
STARAN[18,19].

One way to model the physical structure of an SIMD machine is shown
in Figure C-23. As indicated, there are N processing elements (PEs),
numbered from O to N-1, where each PE consists of a processor with its
own memory. The PEs receive their instructions from the control unit
and communicate through the interconnection network.

To demonstrate how SIMD machines operate, consider the following
simple task. Assume that A, B, and C are each one-dimensional arrays
(vectors) and that the task to be performed is the elementwise addition
of A and B, storing the result in C. 1In a uniprocessor system, this can
be expressed as:

for i = 0 to N-1 do
C(i) = A(i) + B(1)
This computation will take N steps on a serial machine.
Assume that A, B, and C are stored in a SIMD machine, with N PEs,
such that A(i), B(i), and C(i) are all stored in the memory of PE i, 0 <

i <N. To perform an elementwise addition of the vectors A and B and
store the result in C, all PEs would execute (simultaneously):
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Figure C-23. A general model of an SIMD machine.
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C=A+B
with PE i doing the addition of A(i) and B(i), storing the result in
C(i). Thus, in this case, the SIMD machine does in one step a task
requiring N steps on a serial processor.

Consider a variation on this example. Assume the N-step serial
task is:

for i = 1

IS

N-1 do
C(i) = A(i) + B(i-1)
c(0) = A(0)

Given the data allocation above (i.e., A(i), B(i), and C(i) in PE i) an
SIMD machine does this task in three different steps:

1. The value of B(i-1) is moved, through the interconnection net-
work, from PE i-1 to PE i, 1 < i <N. Most proposed and existing SIMD
interconnection networks can do this in one parallel data transfer[20].

2. InPE i, add A(i) to B(i-1) and store the result in C(i), 1 < i
< N (PE 0 is disabled).

3. Enable only PE 0 and execute C=A.

Thus, this example demonstrates the need for the interconnection network
and methods for disabling PEs.

This simple example was provided to familiarize the reader with the
concept of the SIMD mode of parallel processing. More complex examples
involvﬁng image processing and feature extraction can be found in
[21-2u].

PASM is a dynamically reconfigurable multimicroprocessor system
being developed at Purdue University for image processing and pattern
recognition tasks[25-311]. The PASM design will support as many as 1024
processors. Other computer architects have proposed parallel processing
systems with 214 to 216 microprocessors[32,33]. When considering SIMD
machine implementations of contextual classifiers in the following sec-
tions, these implementations will be based on PASM.

PASM can operate in SIMD mode or the asynchronous multiple instruec-
tion stream -- multiple data stream (MIMD)[17] mode. PASM is a PArti-
tionable SIMD/MIMD system, that is, it can be partitioned into SIMD
and/or MIMD systems of varying sizes.

The rest of this section will be a brief overview of PASM. The
overview is limited to those aspects of PASM that are needed to under-
stand the SIMD algorithms in the following sections.
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Figure C-24 1is a block diagram of PASM. The basic system
components are the Parallel Computation Unit, the Micro Controllers, the
Control Storage, the Memory Management System, the Memory Storage Sys-
tem, and the System Control Unit.

The heart of the system is the Parallel Computation Unit (PCU),
which contains N processors, N memory modules, and the interconnection
network. The PCU processors are microprocessors that perform the actual
computations. The PCU memory modules are used by the PCU processors for
data storage in SIMD mode. The interconnection network provides a means
of communication among the PCU processors and memory modules. PASM uses
data conditional and PE address masks to activate and deactivate PCU
processors in SIMD mode[28,34].

The Micro Controllers (MCs) are a set of microprocessors which act
as the control unit for the PCU processors in SIMD mode. Control Stor-
age contains the programs for the Micro Controllers. The Memory Manage-
ment System controls the loading and unloading of the PCU memory
modules. It employs a set of cooperating dedicated microprocessors.
The Memory Storage System stores these files. Multiple devices are used
to allow parallel data transfers. The System Control Unit is a conven-
tional machine, such as a PDP-11, and is responsible for the overall
coordination of the activities of the other components of PASM.

The processors, memory modules, and interconnection network of the
PCU are organized as shown in Figure C-25. A pair of memory units is
used for each PCU memory module so that data can be moved between one
memory unit and the Memory Storage System while the PCU processor oper-
ates on data in the other memory unit. This is controlled by the Memory
Management System. The processors communicate through the interconnec-
tion network. One network being considered is a multistage implementa-
tion of the "PM2I" network[35,36] called the Augmented Data Manipulator
(ADM) network[20,36-42]. The other network being considered is a mul-
tistage implementation of the "cube" network[35,36] called the General-
ized Cube network[20,39-417.

This very brief overview of PASM is provided as background for the
following sections. More details about PASM can be found in the refer-
ences mentioned above.

8. SIMD Implementation of Contextual Classifiers

This section examines the implementation of the contextual classi-
fiers discussed in Sections 2 and 3 on a microprocessor-based SIMD
machine. First consider the SIMD implementation of a contextual classi-
fier based upon a horizontally linear neighborhood with p=3. The
approach to decomposing the task will be similar to that used in Section
5 for the FP system. In both cases, the image is divided into N subi-
mages, and each subimage is assigned to a different processor for clas-
sification computations. However, there are three main differences:
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1. It is technologically and economically feasible to construct a
multimicroprocessor SIMD machine with many more than 16 processors.
Therefore, while the "N" for the FP system is limited by 16, the "N" for
the multimicroprocessor system could be as large as 256, 512, or 1024.

2. The differences in computational capabilities between an FP and
an off-the-shelf microprocessor must be considered. For example,
depending on the microprocessor chosen, 16 FPs may be faster than 32
microprocessors.

3. In the SIMD mode of parallelism, the program (Algorithm 2) is
stored in the control unit, not in each microprocessor. The control
unit broadcasts the instructions to the microprocessors. The control
unit would also store the GP array, broadcasting the appropriate array
element to all the microprocessors when it is needed. The control unit
(MCs) can decode the neighborhood class specification for the next non-
zero G value while the PEs in the PCU are performing the calculations
for the current non-zero G. In the FP system, each FP would store a
copy of the program and must store or have access to the GP array.

Thus, an SIMD machine can be used to perform the contextual classi-
fication based on a horizontally linear neighborhood of size three with-
out any inter-PE communication. As in the case of using the FP system
to implement the classifier, the implementation using an SIMD machine
with N microprocessors can achieve as much as a factor of N improvement
over the use of a single microprocessor. The exact improvement will be
a function of the image size and N.

To attain a perfect factor of N improvement, B (in Figure C-14)
would have to be a multiple of N. Since N in the SIMD case would be a
multiple of the N in the FP case, this is less likely to occur. When B
is not a multiple of N, then (a) some PEs may have to process more rows
than others (leaving some PEs underutilized), or (b) each PE would pro-
cess a subimage including a partial row (requiring inter-PE data trans-
fers). The alternative that is best would depend on the image size, the
way in which subimages are allocated to PEs, N, the processor speed, and
the interconnection network speed. The situation for vertically linear
and diagonally linear neighborhoods is similar.

Now consider the SIMD implementation of a size nine non-linear
square neighborhood contextual classifier on PASM. The approach taken
is somewhat different from that for the CDC FP system because:

1. The processors are synchronized.
2. There is no directly-wired shared memory between processors.

The I-by-J image is divided into N subimages, each an (I/VN)-by-
(J/VN) array (i.e., the image is divided like a checkerboard). This is
shown in Figure C-26. Each PE stores one such subimage. A1l of the PEs
execute Algorithm 2, modified for a size nine square neighborhood. This
is done in similar manner to the linear case (i.e., the control unit
will store the program and the GP array, etc.), except now inter-PE data
transfers will be necessary.
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Figure C-26. Dividing an image into subimages using a "checkerboard"
pattern. Each square represents one PE with a (I//N)-by(J//N) image.
The number in the square is the PE number.
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Each PE can classify all the pixels in its subimage which are not
on the subimage edges. All PEs can do this simultaneously. Thus, these
N * (((I//N)-1) * ((JWN)-1)) pixels can be classified in the time it
would take one PE to classify ((I/YN)-1) * ((J//N)-1) pixels. A factor
of N speedup is attained. (This will be degraded somewhat if I and J
are not divisible by N.)

To classify subimage edge pixels, the PEs must share data by pass-
ing information through the interconnection network. For example, in
order for PE 0 to classify pixel (0, (J/VN)-1) it needs to get the
"compf" values for pixel (0, J/YN) from PE 1.

The simplest way to do this is to have each PE first compute and
store the "compf" values for their edge pixels in a 2(I/YN) + 2(J/VN)
vector called EDGE. Later, when a PE needs the "compf" values for these
pixels in order to classify pixels in its own subimage columns 1 and
(J/AN)-1 and rows 1 and (I/VN)-1, they are fetched from EDGE, not recom-
puted.

Immediately after a PE calculates the "compf" values for edge pix-
els of its subimage and saves them in EDGE, it sends copies of these
values to the appropriate "adjacent" PE. For example, assume that for
rows 0 to (I/VN)-1 PE O contains column (J/v¥N)-1 of the original image
and PE 1 contains column (J/vVN) of the original image. Then PE 0 will
send PE 1 the "compf" values for rows 0 to (I/VN)-1 of column (J/VYN)-1
and PE 1 will send PE O the compf values for the same rows of column
(J/VYN). Each PE would save the value it receives in a vector OUTEREDGE.
Each PE would then access its own OUTEREDGE vector when it is ready to
classify its edge pixels. In general, PE i would send subimage column
(J/YN)-1 edge data to PE i+1, for all i, 0 < i < N, simultaneously.
(The PEs which contain pixels from column J-1 of the original image
would not have to send data.) A similar transfer is done for the other
three edges and the four outer-edge "corners." This method requires
only (2(I+J)/VN)+4 parallel data transfers. No redundant "compf" calcu-
lations are made.

A checkerboard division of the image was used since, in general, it
requires fewer inter-PE transfers than dividing the 1image by rows or
columns. Giving each PE J/N columns would imply that 2J inter-PE trans-
fers would be needed. Similarly, giving each PE I/N rows would imply
that 2I inter-PE transfers would be needed.

The timing complexity of this size nine neighborhood SIMD algorithm
is as follows:

1. Growth proportional to (I//N) * (J//N) * 09 = (I*J*Cg)/N

assignments, multiplications, and additions.
2. Exactly (I/VN) * (J//N) * C = (I*J*C)/N "compf" calculations.

3. Exactly (2(I+J)#N)+4 inter-PE data transfers.
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For arithmetic operations and "compf" calculations, a perfect
factor of N speedup 1is attained. This 1is done at the "cost" of
(2(I+J)/VN)+l4 inter-PE transfers. These data transfers are negligible
when compared with the (I*J¥C)/N "compf" computations.

In summary, both linear and non-linear neighborhood SIMD contextual
classification algorithms have been presented. It has been shown that
the SIMD mode of parallelism and contextual classification are well
suited for each other.

9. Summary

The preliminary results from the first year of study into the con-
textual classifier indicated three main problem areas for research, many
of which have been addressed in this year's research. In studying meth-
ods for estimating the context distribution, the ground-truth-guided
method has been shown to be an effective way of estimating the context
distribution when adequate ground truth is available. When this is not
the case, a combination of the Power Method with estimation over infor-
mation classes can give good results. Because the 1latter method does
not give as consistently good results as the ground-truth-guided method,
research is continuing in this area. Development of an unbiased estima-
tor of the context distribution is being considered as a possible
approach.

An approximation to the full contextual c¢lassification algorithm
has been shown to reduce computation time by about one-half and does not
significantly affect classification accuracy. A hybrid combination of
this approximate algorithm with a conventional no-context classifier
offers prospects for further significant reduction in computation time.

A third area of research concerns the major assumptions made in the
derivation and implementation of the contextual classification algor-
ithm. Of most theoretical interest is the assumption of class-condi-
tional independence of the observations as expressed by eq. (6). The
effects of this assumption will be investigated later in the coming
year. Another assumption made was that classifications should be made
into spectral classes rather than information classes. It has been
shown that there 1is some advantage to classifying into information
classes when classification accuracies are 1low, but this advantage
disappears at higher accuracies.

Algorithms for performing contextual classifications using a size
three horizontally linear neighborhood were presented. Algorithm 1 was
a straightforward approach; Algorithm 2 was a more efficient approach
that avoided unnecessary calculations. The serial complexity for per-
forming Algorithm 2 on an I-by-J image with C classes was shown to have
a growth proportional to I*J*C3 assignments, multiplications, and addi-
tions, and I*J*C ‘"compf" calculations. The way in which Algorithm 2
could be extended to a size nine non-linear square neighborhood was dis-
cussed.
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The use of N CDC Flexible Processors to implement contextual clas-
sifiers, based on linear neighborhoods, or size nine square non-linear
neighborhoods, which are N times faster than a single FP, was explained.
The type of FP system configuration which would be well suited for each
was described. Timing results obtained through the use of our FP simu-
lator were presented.

The use of N microprocessors in the SIMD mode of parallel process-
ing to do linear classifications N times faster than a single micropro-
cessor was discussed. For the case of a non-linear square neighborhood,
the use of SIMD parallelism greatly reduces the execution time required.
A perfect reduction in execution time of a factor of N is not attained
due to the "parallel overhead" of inter-PE transfers needed.

Through the use of parallel computer systems, such as the CDC Flex-
ible Processor system and PASM, the types of computations required for
contextual classifiers and other computationally demanding remote sens-
ing processes can be implemented efficiently. This not only reduces the
computation time required to do contextual classification but also
allows the investigation of techniques which must otherwise be consid-
ered infeasible. ’




10.

1.

129

References

Swain, P.H. and S.M. Davis, eds. 1978. Remote Sensing: The Quanti-
tative Approach. McGraw-Hill, Inc., New York.

Kettig, R.L. and D.A. Landgrebe. 1976. Classification of Multis-
pectral Image Data by Extraction and Classification of Homogeneous
Objects. IEEE Trans. Geos. Elect. Vol. 14, pp. 19-26.

Haralick, R.M., K. Shanmugam and I. Dinstein. 1973. Textural Fea-
tures for Image Classification. IEEE Trans. Systems, Man and
Cyberneties, Vol. 3, pp. 610-621.

Yamamoto, H. 1979. A Method of Deriving Compatibility Coefficients
for Relaxation Operators. Comp. Graph. Image Processing. Vol. 10,
pp. 256-271.

Tilton, J.C., P.H. Swain, and S.B. Vardeman. 1980. Context Distri-
bution Estimation for Contextual Classification of Multispectral
Image Data. Proc. of 1980 Machine Processing of Remotely Sensed
Data Symp., June 3-6, 1980. IEEE Catalog No. CH1533-99 MPRSD.

VanRyzin, J. 1966. The Compound Decision Problem With m x n Finite
Loss Matrix. Annals of Mathematical Statisties. Vol. 37, pp.
hi2-424,

Tilton, J.C. 1980. Contextual Classification of Multispectral
Image Data: Approximate Algorithm. Laboratory for Applications of
Remote Sensing (LARS), Purdue University, West Lafayette, In 47907.
AgRISTARS Report SR-P0O-00491; also LARS Technical Report 081580.

Scholz, D., N. Fuhs, M. Hixson, and T. Akiyama. 1979. Evaluation
of Several Schemes for Classification of Remotely Sensed Data:
Their Parameters and Performance. Laboratory for Applications of
Remote Sensing (LARS), Purdue University, West Lafayette, IN 47907.
LARS Technical Report 041279.

Swain, P.H., H.J. Siegel, and B.W. Smith. A Method for Classifying
Multispectral Remote Sensing Data Using Context. Proc. of 1979
Machine Processing of Remotely Sensed Data Symp., June 1979, pp.
343-353, IEEE Catalog No. 79CH1430-8 MPRSD.

Swain, P.H., H.J. Siegel, and B.W. Smith. Contextual Classifica-
tion of Multispectral Remote Sensing Data Using a Multiprocessor
System. IEEE Trans. on Geoscience and Remote Sensing, Vol. GE-18,
No. 2, Apr. 1980, pp. 197-203.

Swain, P.H.,S.B. Vardeman, and J.C. Tilton. Contextual Classifica-
tion of Multispectral Image Data. Laboratory for Applications of
Remote Sensing (LARS), Purdue University, West Lafayette, IN 47907,
Jan. 1980, 34 pp. LARS Contract Report 011080.




12.

13.

14,

15.

16.

17.

18.

19.

20.

21.

22.

23.

130

Control Data Corp., Cyber-Ikon 1Image Processing System Design
Concepts. Digital Systems Division, Control Data Corp., Minneapo-
lis, MN, Jan. 1977.

Control Data Corp., Cyber-Ikon Flexible Processor Programming
Textbook. Digital Systems Division, Control Data Corp., Minneapo-
lis, MN, Nov. 1977.

Kast, J.L., P.H. Swain, and T.L. Phillips. The Feasibility of
Using a Cyber-Ikon System as the Nucleus of an Experimental Agri-
cultural Data Center. Laboratory for Applications of Remote Sens-
ing (LARS), Purdue University, West Lafayette, IN 47907, Feb. 1978.
LARS Contract Report 021678.

Swain, P.H., P.E. Anuta, D.A. Landgrebe, and H.J. Siegel. Vol.
III: Processing Techniques Development, Part 2: Data Preprocessing
and Information Extraction Techniques. Laboratory for Applications
of Remote Sensing (LARS), Purdue University, West Lafayette, 1IN
47907, Nov. 1979. LARS Contract Report 113079.

Smith, B.W., H.J. Siegel, and P.H. Swain. A Multiprocessor Imple-
mentation of a Contextual Image Processing Algorithm. AgRISTARS
Report SR-PO-00474 (also LARS Technical Report 070180), Laboratory
for Applications of Remote Sensing (LARS), Purdue University, West
Lafayette, IN 47907, July 1980.

Flynn, M.J. Very High-Speed Computing Systems. Proc. of the IEEE,
Vol. 54, Dec. 1966, pp. 1091-1909.

Bouknight, W.J., et al. The Illiac IV System. Proc. of the IEEE,
Vol. 60, Apr. 1972, pp. 369-388.

Batcher, K.E. STARAN Parallel Processor System Hardware. AFIPS
Conference Proc., Vol. 43: 1974 Natl. Computer Conf., May 1974, pp.
4p5-410.

Siegel, H.J. Interconnection Networks for SIMD Machines. Compu-~
ter, Vol. 12, No. 6, June 1979, pp. 57-65.

Feather, A.F., L.J. Siegel, and H.J. 3iegel. Image Correlation
Using Parallel Processing. Proc. of Fifth Internatl. Conf. on Pat-
tern Recognition, Dec. 1980, pp. 503-507.

Mueller. P.T., Jr., L.J. Siegel, and H.J. Siegel. Parallel Algo-
rithms for the Two-Dimensional FFT. Proc. of Fifth Internatl.
Conf. on Pattern Recognition, Dec. 1980, pp. 497-502.

Siegel, L.J., P.T. Mueller, Jr., and H.J. Siegel. FFT Algorithms
for SIMD Machines. Proc. of 17th Annual Allerton Conf. on Communi-
cations, Control, and Computing, University of Illinois, Urbana,
IL, Oct. 1979, pp. 1006-1015.




24,

25.

26.

27-

28.

29.

30.

31.

32.

33.

34,

131

Swain, P.H., H.J. Siegel, and J. El-Achkar. Multiprocessor Imple-
mentation of Image Pattern Recognition: a General Approach. Proc.
of Fifth Internatl. Conf. on Pattern Recognition, Dec. 1980, pp.
309-317.

Mueller, P.T., Jr., L.J. Siegel, and H.J. Siegel. A Parallel Lan-
guage for Image and Speech Processing. Proc. of IEEE Computer
Society's Fourth Internatl. Conf. on Computer Software and Applica-
tions (COMPSAC '80), Oct. 1980, pp. 476-483.

Siegel, H.J. Preliminary Design of a Versatile Parallel Image Pro-
cessing System. Proc. of Third Biennial Conf. on Computing in
Indiana, Indiana University, Bloomington, IN, Apr. 1978, pp. 11-25.

Siegel, H.J., F. Kemmerer, and M. Washburn. Parallel Memory System
for a Partitionable SIMD/MIMD Machine. Proc. of 1979 Internatl.
Conf. on Parallel Processing, Aug. 1979, pp. 212-221. IEEE Catalog
No. T9CH1433-2C.

Siegel, H.J., P.T. Mueller, Jr., and H.E. Smalley, Jr. Control of
a Partitionable Multimicroprocessor System. Proc. of 1978 Inter-
natl. Conf. on Parallel Processing, Aug. 1978, pp. 9-17. IEEE
Catalog No. 78CH1321-9C.

Siegel, H.J. and P.T. Mueller, Jr. The Organization and Language
Design of Microprocessors for an SIMD/MIMD System. Proc. of Second
Rocky Mt. Symp. on Microcomputers: Systems, Software, Architecture,
Aug. 1978, pp. 311-340. IEEE Catalog No. 78CH1387-0.

Siegel, H.J., L.J. Siegel, F. Kemmerer, P.T. Mueller, Jr., H.E.
Smalley, Jr., and S.D. Smith. PASM: A Partitionable Multimicropro-
cessor SIMD/MIMD System for Image Processing and Pattern Recogni-
tion, School of Electrical Engineering, Purdue University, West
Lafayette, IN 47907, TR-EE 79-40, Aug. 1979, 69 pp.

Siegel, H.J., L.J. Siegel, R.J. McMillen, P.T.Mueller, Jr., and
S.D. Smith. An SIMD/MIMD Multimicroprocessor System for Image
Processing and Pattern Recognition. Proc. of 1979 1EEE Computer
Society Conf. on Pattern Recognition and Image Processing, Aug.
1979, pp. 214-224, IEEE Catalog No. 79CH1428-2C.

Pease, M.C. The Indirect Binary N-Cube Microprocessor Array. IEEE
Trans. on Computers, Vol. C-26, No. 5, May 1977, pp. 458-473.

Sullivan, H., T.R. Bashkow, and D. Klappholz. A Large-Scale Homo-
geneous, Fully Distributed Parallel Machine. Proc. of Fourth
Annual Symp. on Computer Architecture, Mar. 1977, pp. 103-124,
IEEE Catalog No. T7CH1182-5C.

Siegel, H.J. Controlling the Active/Inactive Status of SIMD
Machine Processors. Proc. of 1977 Internatl. Conf. on Parallel
Processing, Aug. 1977, p. 183. IEEE Catalog No. T7CH1253-4.




35.

36.

37.

38.

39.

4o.

4.

42,

132

Siegel, H.J. Analysis Techniques for SIMD Machine Interconnection
Networks and the Effects of Processor Address Masks, IEEE Trans. on
Computers, Vol. C-26, No. 2, Feb. 1977, pp. 153-161.

Siegel, H.J. A Model of SIMD Machines and a Comparison of Various
Interconnection Networks, IEEE Trans. on Computers, Vol. C-28, No.
12, Dec. 1979, pp. 907-917.

McMillen, R.J., G.B. Adams III, and H.J. Siegel. Permuting With
the Augmented Data Manipulator Network. Proc. of 18th Annual All-
erton Conf. on Communication, Control, and Computing, University of
Illinois, Urbana, IL, Oct. 1980, to appear.

McMillen, R.J. and H.J. Siegel. MIMD Machine Communications Using
the Augmented Data Manipulator Network, Proc. of Seventh Annual
Internatl. Symp. on Computer Architecture, May 1980, pp. 51-58.
IEEE Catalog No. 80CH1494-4,

Siegel, H.J. The Theory Underlying the Partitioning of Permutation
Networks. IEEE Trans. on Computers, Vol. C-29, No. 9, Sept. 1980,
pp. 791-801.

Siegel, H.J. and S.D. Smith. Study of Multistage SIMD Interconnec-
tion Networks. Proc. of Fifth Annual Symp. on Computer Architec-
ture, Apr. 1978, pp. 223-229. IEEE Catalog No. T8CH1284-9.

Smith, S.D. and H.J. Siegel. Recirculating, Pipelined, and Multis-
tage SIMD Interconnection Networks. Proc. of 1978 Internatl. Conf.
on Parallel Processing, Aug. 1978, pp. 206-214. IEEE Catalog No.
78CH1321-9.

Smith, S.D., H.J. Siegel, R.J. McMillen, and G.B. Adams IITI, Use
of the Augmented Data Manipulator Multistage Network for SIMD
Machines. Proc. of 1980 Internatl. Conf. on Parallel Processing,
Aug. 1980, pp. 75-78. 1IEEE Catalog No. 80CH1569-3.




133

D. AMBIGUITY REDUCTION FOR TRAINING SAMPLE LABELING

D. A. Landgrebe and H. M. Kalayeh

Relaxation labeling processes are iterative techniques which can
employ sources of ancillary information to reduce or eliminate the
ambiguity of labels of a set of objects. Our main objective is to
improve the performance of a spectrally determined classifier by proba-
bilistic relaxation operations. In that regard, we analyze some relaxa-
tion algorithms, explain the parameters which are important in controll-
ing these algorithms, present some means by which they can be utilized
in earth observational data analysis, and briefly introduce some new
algorithms.

1. Introduction

Our goal has been to improve the accuracy of a primary classifica-
tion by an updating of a decision function based on the relevant infor-
mation about the scene. Relaxation labeling procedures use two sources
of information, an initial (ambiguous) labeling, and information embed-
ded in ancillary data. Our work began by using spatial context as the
source of the ancillary information. It was later extended to the use
of elevation as well.

In the past five years the probabilistic relaxation processes have
been extensively used in picture processing [1,2], especially for line
and curve enhancement [3,4,5]. The convergence properties of relaxation
have been investigated by Rosenfeld, Zucker, and many others [2,8]. It
is suggested that relaxation algorithms, with some modification, can be
used for post classification processing of multispectral class maps
[12]. One of the important results which has been found [13] is that
during early iterations the accuracy of classification will be improved,
but after a few iterations the accuracy may begin to deteriorate. The
dotted curve of Figure D-1 shows an example of this. This result shows
the effect of a straightforward application of probabilistic relaxation
to classification results of a LACIE segment in Kansas. As we see, the
labeling error exhibits a minimum at a specific iteration and the final
error, though an improvement over its initial value, is worse than
necessary. This suggests that the relaxation process should be modified
in some way or be stopped after a minimum error is observed. However,
up to now there has not been any optimal criterion known for doing this.
By a concentrated effort to understand how deteriorations occur it was
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Figure D-1. Label error for the original relaxation algorithm (dotted curve) and an
improved procedure (solid curve) for a wheat /nonwheat classification exercise. The
image consists of 22932 pixels which were labeled initially as wheat or nonwheat by
using minimum distance to means classifier on multitemporal Landsat acquisitions
over Kansas.
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possible to determine modifications for the ' existing relaxation
algorithms which provide improved performance. The solid curve of Fig-
ure D=1 shows the results for one such case [13]. This is but one exam-
ple of the need for the thorough study of the relaxation process in
remote sensing context. This has been the intent of the work reported
herein.

In the following is provided further details of the algorithms and

the study results, including some new algorithm approaches which show
further promise.

2. Some of the Relaxation Algorithms

Let us first consider the probabilistic relaxation algorithms of
Rosenfeld, Hummel and Zucker [1,12]. Let P%(X) denote the probability
that on the kth iteration the ith pixel of a scene is from class A
Then define

k k
Q. (MP (V)
) =i i

PR
' E;Q‘i‘(mli‘m

where Q%(x) is called the neighborhood function and is defined by
k - k
Qf(A) = ?dj§'Pij()\|>\')Pj()\') ..... (2)

In this equation Pi-(klk') is the probability that pixel i is from class

A given that pixel 'j is from A'. The d;; are a set of weighting cons-
X R J

tants which satisfy Zdij = 1.

Let the denominator of the right side of equation (1) be denoted by DE.
In matrix-vector notation the equation has the following form:

i, - - 1 )
K+l ,
Pi (>\1) Qi(kl) 0 Pi( 1)
o k
k+1 k N
PR Q; (X)) P (A) s
. = Dli( .
. . .
Q; (A)
k+1 - N
Pl (xm)-1 | 0 D, ‘ pi(xm) |
Let q“(1) & Zde?()\) ..... )
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Q?(Al) P(xl|xl) P(xllxz) .. P(Allxm) qk(Al)
Q0 PO .o ROD) ()

where P?(X) is the kth estimate of the probability that A is the proper
label for the ith pixel; Qi(X) is the kth estimate of the neighborhood
function; Di is a normalization factor; and m is the number of classes
which are present in the data set. Since*

k k
A -
q ) ;Ldej( )

"N leE(X) + PO + 450 + a,Pr0) + diyi(x) e (6)

k
To evaluate neighborhood function, Q4(A), dj in expression (6) can be
equal to zero; if this is the case, it has been called exclusive neigh-
borhood [10,11]. Otherwise, it is termed inclusive neighborhood [11.

3. Analysis of the Algorithm

Consider equations (3) and (4):

Py = Ak ... N
s B -1
oy = (EFUICORTS (8)

k
where_ﬁ?(X) is mx1, Ak is an mxm diagonal matrix, Qi(A) is mx1, and T is
mxm.

*A neighborhood consisting of the pixels above, below and to both sides
of the "current" or ith pixel is assumed here for convenience of discus-
sion although any other neighborhood could be used.
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Our main concern here 1is to understand the effectiveness of the
parameters such as conditional probability P(X]A'), central pixel weight
dy, and initial probability estimate P(i’(x).

In probabilistic relaxation processes, first, the estimated initial
label probabilities must be found. For this purpose LARSYS software has
been revised to output the estimated posterior class probabilities.
Consider an m-class labeling task. Let p(X|wj), P(w;) be the density
function of the class i and prior probability for class i, respectively.
Then PQ(K) can be estimated as follows:

p(X|w,) P(w,)
P(i’(xj) ép(wjp{) = N .. ceeen (9)

m
Jz=:1p(><|wj) P(wj)

Then based on max Pg(k-), J=12,...m, the initial labeling may be
performed. Note that th% Bayes decision rule is used for initial label-
ing, but imperfect labeling is presumed.

Since the Bayes classification scheme assigns a class label based
upon the maximum likelihood only, a previously utilized source of infor-
mation which the relaxation exploits is the relative distribution of
label likelihoods as defined by equation (9).

4, Local Averaging in the Vicinity of Fixed Points
and Its Effect on Geometric Features

To study the role of che central pixel weight d; in the reduction
of ambiguity, assume that the relaxation process has reached a point
close to fixed point (the stage where the label estimates are at 0,1 is
called a fixed point in the process). Near fixed point we can write:

k+l ~ k — -> p =

Y 2R = B [1 - 4] .Y 0 ..... (10)
k+1 .k _ N _

Q) = i) = QM) M Tq; (M) ... (11)

This implies that near a fixed point the label estimate vector P;(A) and
neighborhood functions are constant or changes very 1little. Consider
equation (10) where P;()) is the eigenvector corresponding to zero
eigenvalue of [I-A] matrix. By considering the relaxation process at
its fixed point it is possible to predetermine a suitable value for di
based upon preserving corner pixels, line ends, or isolated pixels in
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the final results (12). Return to equation (10). Since

.0,
0
0
P.(A) = |0
- 1} <« at Zth'row
0
| O]
therefore,
) 12
Dy = 2 Py ) = G # 0 ... (12)
i=1
Q3 (A :
- Q) 0
Q; (1))
Q,(hp)
) ]
k
Q (A,
since S A
k
D,
i
Therefore, at fixed point
Qi(kj) ) Qi(xj) <
Dy Q; (Ap)
Q. (X))
l_—_l~—3- 0 J=132’ . M3 J%QI
’ QiO\Q') ) Qi()\j) >0 ¥ =1,2,...m; j # 2
m
’ kgl PAglh) = POy a0 > 0 e (14)

Now, let us consider 2-class labeling and also let a Al pixel be on
the boundary between Xl and A, regions. Then assume we have chosen dj
such that Aj will be preserved. Therefore, by considering the following
geometry at the fixed point, '

(13)
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equation (14) will be:

2
1;:1[?“1"*19 - pO, AT, () > 0

P.(AD)4P (A ))+P, (A ))+P, (7)) P.(A,) +...+ P,(7,)
a0 = LTI [Pi(xl)'- A R ]
PLA) =1 P1(A,) =0
Pz(Al) =0 PZ(XZ) =1
PB(Al) =0 P3(A2) =1

Pa(kl) =1 Pa(Az) =0

=
1l
(]

P, = Py (A

di 1 di
t3 ;) =5 -5

N

qi(kl) =

d, d,
= [OyAD - e, G+ 5D + IOy - p0L,1T G - 5D > 0

. 1 di 1 di
(220012 - 1] G+ + [1 - 220,131 G- >0
POLIAD = pOyIA) = [T+ pOy A - p(,1A )] d, >0
let P(A2|A2) - p(ll|Al) = 7 =>

4, > n(+ mt (15)
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Equation (15) was first derived in [13]. It allows one to predict a
suitable value for d; in order that Al corner labels not be lost.

Similarly, for the preservation of labels at ends of 1lines of A
pixels within Kz regions can be found from equation (14), which also is
given in [13].

. 3P(A2|A1) - P(Allkl) -1

. ceee. (16)
i 3P(X2|A2) - P(Xllkl) +1

Likewise, to preserve individual Xl labeled pixel in Ay region, it is
necessary that

> ZP(AZIXZ) -t
i 2P (X, %)

Equations (15), (16), and (17) have been used to estimate d;. Figure
D-2 shows the result of a test of this scheme [13]. Figure D-3 shows
the error rate vs. d; for another test with limiting values as deter-
mined from equations (15), (16), and (17). Figure D-U4 shows labeling
error versus number of iterations for selected values of di’ using the
data set of Figure D-1. Note that for d; less than optimum, labeling
error initially decreases, passes through a turning point, and increases
again before setting down to a pessimistic final value. For values of
d; near 0.15, the error curve does not exhibit the deterioration phase
and has a final value which is almost as low as the minimum in the pre-
vious curve. For large d;, while the curve is monotonically decreasing
the final error is larger than necessary. Ultimately for large di the
curve will remain constant at the initial labeling error.

5. Supervised Label Relaxation

Previously spatial information was utilized to improve classifica-
tion accuracy. Suppose now there is available a source of ancillary
data that has been used to compile another appropriate likelihood mea-
sure regarding the labels on each pixel [12]. In supervised relaxation
at each iteration the neighborhood function first is modified by the
neighborhood data. Then neighborhood function for the label most
favored by the ancillary data is increased and others decreased in pro-
portion to their support from the ancillary data source. The relaxation
algorithm does not know, of course, which are the correct and which are
the incorrect labels. It only "knows" which labels are consistent and
which are inconsistent with their neighbors and with the ancillary data.
Consequently, an image with initial labeling errors will be iterated
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Figure D-3. Remaining labeling error as a function of the central pixel
neighbor weight d;, after 100 iterations of relaxation on the 40x100
pixel small image. (100 iterations are sufficient to achieve the final
labeling.) The compatibilities have been chosen as discussed in the text.
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Figure D-4. Labeling error vs. number of iterations when relaxation is
applied to the 117x196 pixel image, using several values of di’




until consistency between spatial, spectral and ancillary information is

achieved.
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Consider the relaxation algorithm:

k+1 - k
LUV IR WOV

r

k
Q. ()
i kl 0
D,
i
k
. Q; (A
A = K
D.
i
k
. Q; (A )
Dk
1 o
k k k k _ k
D, = ZPi(A)Qi(A) s Qi(X) = Tq (A)

A

where_ﬁ?(x), QE(A), D?, T and gF(A) are the same as we defined earlier.
Now, Tet % (X) = 1+ 8[mo,(X) - 1] be an appropriate 1likelihood which
determines ancillary data Influence for the ith pixel with respect to
label A. In this equation ¢;(A) is the probability that A is the cor-
rect label for the ith pixel in view of the available ancillary data, m
is the number of possible labels, and 8 is a parameter that adjusts the

degree of supervision. As we mentioned, Q%(A) first 1is modified by
Y (0.
Koy =odfmy-v.on 18
Let R;/(M) = Q; (M) ¥, (V) (18)
where 1 - 8 < Y. S 14 Bm-1) ... (19)
Therefore
k k
P, (MR, (D)
Py = . (20)
%Pi(A)Ri(A)
kK ok, k
Di = §Pi(A)Ri(k)

To test this scheme multispectral Skylab data from northeast of the
Vallecito Reservoir region in the Colorado Rockies was classified into a
number of tree species using maximum likelihood classification. Then
the classification map so produced was re-arranged for simplicity into
the two categories of spruce fir and others. For the region elevation
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data as well as a probability model for the occurrence of spruce fir vs.
elevation are available. Consequently, elevation was chosen as an
ancillary data variable. The result of the test is shown in Figure D-5.

6. Convergence and Fixed Points of Supervised Relaxation

When the supervised relaxation process has converged to a fixed
point,
2.1‘<+1

k
T = By) = )

0
where P.(N\) = 1 « gth row
—1
0
As before, we can write:
[ RO 1 [ o]
1-i—D—l— 0 0
i 0
R, (X)) )
i 2 -
1 - Di 1 = 0
0
0
0 1= Ri(xm) 0
D. :
i .
L J . 0 .
= - > i
- Di Ri(kg) £ 0, Ri(Az) Ri(Xj) 0, ¥j i#F L ..., (2D)

Equations similar to (15), (16) and (17), found for unsupervised relaxa-
tion, can be found for supervised relaxation and are given by:

n + Wi(kz) -1

d, > ceee. (22)
i n + Wi(kz)
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Figure D-5. Labeling error vs. degree of supervision, where the supervisory data used was probability
of tree species occurrence vs. elevation. The elevation of each pixel had previously been associated
with the multispectral response of that pixel.
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This is the condition for a corner pixel to be preserved. Similarly,
for a Al line end in a Az region:

P, 10, = PN = 3+ 2, 00)

d, > =T T TR 7T e (23)
i 3P(A21A2) - P(xlixl) -1+ 2¥, (X))
and for an isolated pixel to be preserved:
2P(A, X)) = 2 + ¥ (X))
4. > 22 i2 L (24)

17 2P0, - L+ ¥, (%)

7. Modified Probabilistic Relaxation Algorithm

As we said, our objective has been to use all available ancillary
information to reduce the initial labeling ambiguity. Several new
algorithms have been considered, and we shall describe some of them_now.
Recall the relaxation algorithms which were wused in [12] and [13} and
discussed above:

K, 11k
Q. (VP (N)
p?+1(x) - —Eﬁ€—‘£%2"‘— ..... (25)
RAGLAC
L ek L. 26
QM) = %dji'Pij(X‘X )P ( ) (26)

where the various parameters are as defined PPeViOUS1¥4l Now, it may be
argued that an equally logical means for computing P§ ~(A) (the proba-
bility that ) is the proper label for pixel i at k+1th iteration) is

CO I
Ty 0 uW
£Q, (A)
le
. k = L k 1
Since Q. (M) = Zdji'Pij(XlA )Pj(A )
one can write:
' "y = P, (A, veee. (27)
Pij(XIA )pj(x ) lJ( )

Y =P, (A e 28)
§‘Pij(k,k ) Pij(X) (
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Note that P,.()) still depends on pixel j, one of the neighbors of pixel
i, since i%J is obtained by summing over the labels of pixel j. Our
problem is to estimate initial label probabilities iteratively, and we
hypothesize that by proper use of spatial and any other source of ancil-
lary information that these estimates converge to the true values. To
compute a new estimate P§+l(k), we suggest the simplest way is to make
an arithmetic average over all neighbors. So, by using arithmetic aver-
age

= Zd.P..(A) eeenn 29
Pi(x) %deij(A) (29)

Now

(A[A')Pj(k') ..... (30)

. = . P_'>\>\' =Zd.z P..
TPy ) = T4jE PO = BT

By letting P§+l(x) be our estimate at k+1th iteration, we can write

k
Q. (A)
Py = 1~

) - Q?(X) ..... (31)
EQ @)

|

i
Note that ZQX(A) = 1 provided rd. = 1
Al jJ

Iif Pij(A|A') is not dependent on i and j, then equation (31) in matrix-
vector notation can be written as:

- 1 ™~ - r " -

k+1 k k
P. () POGIAD  POYIA) v o PGYIL) §djpj(xl) d;P (M)
k+1 k
PO P(lexl) P(A2|Az) Coe P(lexm) §djpj(xz) +
It | ok k
) (xmz P(xm|xl) P(Amlxz) ... P(Amlxm) §djpj(xz) gipi(xm{
The supervised form of (31) is (32)
k
Q, (MY, (M)
oy - A — (33)

k
2Q; (0¥, ()




148

where Y;(X) = 1 + 8[N®1(1) - 1] as we defined before and the supervised
form of original algorithm is

K K
W1 GOV 0PEQ) (3
Pi ()\) = k k -----

205 (0¥, WP

The performance of the two supervised relaxation algorithms will be
demonstrated using a forestry classification example. Multispectral
Skylab data northeast of the Vallecito Reservoir region in the Colorado
Rockies was classified into two categories of spruce fir (Engleman

. spruce and subalpine fir) and other, after which the ambiguity reduction
algorithms were applied. The performance of the two algorithms is given
in Figure D-6. The new algorithm has an improved performance over that
of the original algorithm.

A simple non-iterative algorithm which was considered in the follow-
ing

Q, (DY, (M

PN = 55V 0)
S OO NCY

or mix Qi(k)wi(k) ..... (35)

It is obvious that the label probability P;(}) is not a function of
iteration, k. In equation (35) effective use of spatial and available
ancillary information reduces the initial ambiguity. Again the perfor-
mance of this new non-iterative scheme was compared to that of a super-
vised relaxation algorithm [13] where the final labeling was achieved
after 80 iterations.

The result is shown in Figure D-T7. Note that the performance of
the modified algorithm equals or exceeds that of the original one and
may suggest the use of a supervised non-iterative approach for reduction
of label ambiguity.

8. Conclusion

In the probabilistic relaxation process three new sources of infor-
mation may be utilized: the initial labeling probability distribution,
spatial context and other ancillary data. Since there is always ambigu-
ity and error as a result of the initial labeling, the new sources of
information may be useful in reducing both the ambiguity and errors.
Several algorithms have been studied for this purpose. So, our new
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estimate at each iteration is a function of initial label probability,
spatial, and possibly ancillary information. This function has had
different forms only because there has not been any criterion of opti-
mality in regard to estimation of label probabilities.

As mentioned before, spatial information is a very important factor
in the reduction of ambiguity and the improvement of final labeling
accuracy. Spatial information has been incorporated by utilizing the
compatibility coefficients rij(K}X') or Pij(A|A'), label probabilities
of neighboring pixels, and weighting coefficients di. Rather than
attempt to seek an optimal way to estimate the dy, estimation means
based upon expected scene geometries has been provided. The third
source of information which may be available to us is the ancillary
data, and the supervised technique allows relaxation to be controlled
from any pixel-oriented external source. There is assumed to be an
optimum value of degree of supervision (B) that should be found; the
value probably depends on the quality of the ancillary data and its
relationship to the classes of interest.
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