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Abstract-In this paper, we propose a self-learning and self-improving adaptive classifier
to mitigate the problem of small training sample size that can severely affect the
recognition accuracy of classifiers when the dimensionality of the multispectral data is
high. This proposed adaptive classifier utilizes classified samples (referred as semi-
labeled samples) in addition to original training samples iteratively. In order to control
the influence of semi-labeled samples, the proposed method gives full weight to the
training samples and reduced weight to semi-labeled samples. We show that by using
additional semi-labeled samples that are available without extra cost, the additional class
label information may be extracted and utilized to enhance statistics estimation and hence
improve the classifier performance, and therefore the Hughes phenomenon (peak
phenomenon) may be mitigated. Experimental results show this proposed adaptive
classifier can improve the classification accuracy as well as representation of estimated
statistics significantly.

Index Terms-Adaptive iterative classifier, high-dimensional Data, limited training data
set, labeled samples, semi-labeled samples

I. INTRODUCTION

In remote sensing applications, increased spectral resolution brought about by the
current sensor technology has offered new potentials and challenges to data analysts. On
one hand, the availability of a large number of spectral bands makes it possible to identify
more detailed classes with higher accuracy than would be possible with the data from
earlier sensors. On the other hand, a large number of classes of interest and a large
number of spectral bands available require a large number of training samples, which
unfortunately are expensive or tedious to acquire. As a result, the class statistics must be
                                                
1 The work described in this paper was sponsored in part by the U.S. Army Research Office under Grant
Number DAAH04-96-1-0444.
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estimated from the limited training sample set. When the ratio of the number of training
samples to the number of spectral features is small, the parameter estimates become
highly variable, causing classification performance to deteriorate with increasing
dimensionality. This phenomenon where with finite training samples, classifier
performance rises with dimensionality at first and then declines, was studied in detail by
Hughes [1], and is later referred to as the Hughes phenomenon.      

An additional problem that usually exists in remote sensing applications is the
unrepresentative training sample problem. Since usually training samples are selected
from spatially adjacent regions, they may not be good representatives of the samples of
the entire class, which is likely distributed over the entire scene. This problem further
aggravates the difficulties in analyzing remote sensing data.

To mitigate the small training sample problem, a self-learning and self-improving
adaptive classifier is proposed in this paper. This adaptive classifier enhances statistics
estimation and hence improves classification accuracy iteratively by utilizing the
classified samples (referred as semi-labeled samples), in addition to the original training
samples, in subsequent statistics estimation. In this iterative process, samples are initially
classified based on the estimated statistics using the original training samples only. Then
the classified results are subsequently used with the original training samples to update
class statistics, and the samples are reclassified by the updated statistics. This process is
repeated until convergence is reached.

The proposed adaptive classifier potentially has the following benefits:

1) The large number of semi-labeled samples can enhance the statistics estimates,
decreasing the estimation error and therefore reduce the effect of the small sample
size problem, because the semi-labeled samples in effect enlarge the training
sample size.  

2) The estimated statistics are more representative of the true class distribution,
because samples used to estimate statistics are from a larger portion of the entire
data set.

3) This classifier is adaptive in the sense that it can improve the accuracy by using
the information extracted from its output. With proper conditions, a positive
feedback system can be formed, whereby better statistics estimation leads to
higher classification accuracy, and in return, higher classification accuracy results
in even better parameter estimation.  

4) In a way, this approach augments automation of the classifier. It is possible that
to start with a small number of training samples (minimum input from the
analyst) this classifier may be able to continuously extract useful information
from the data, adjusting itself accordingly, and eventually evolve automatically
to an optimal classifier which produces optimal classification accuracy with a
given data set. Hence the analyst’s effort can be greatly reduced.

Since the semi-labeled samples can be fed back before or after any feature extraction
is performed, it offers flexibility of implementation, that is, depending on the requirement
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of accuracy and the computation load, the semi-labeled samples can be used in more than
one way.

There are five sections in this paper. In the first section, the information available for
estimating the statistics of a mixture of two normal distributions is examined for training
samples and semi-labeled samples in terms of Fisher information matrices. In the second
section the effect of semi-labeled samples on the probability of error is investigated.

In the third section, a self-learning and self-improving adaptive classifier is presented
where both training and semi-labeled samples are used. In order to control the influence
from semi-labeled samples, the proposed method gives full weight to the training samples
and reduced weight to semi-labeled samples.

In the fourth section, experiments on the proposed adaptive classifier using simulated
and real data set are presented. With a large number of semi-labeled samples available,
the usual case in remote sensing applications, experimental results show this proposed
adaptive classifier can improve the classification accuracy significantly. Final remarks
are presented in the last section.

II. INFORMATION OF TWO NORMAL DISTRIBUTIONS

In this section, the information available for estimating the parameters of a mixture of
two normal distributions is examined in terms of the Fisher information matrix, denoted
by Is. According to the Crame-Rao inequality [2], if ˆ  is any absolutely unbiased
estimate of θ based on the measure data z, then the covariance of the error in the estimate
is bounded below by the inverse of the Fisher information matrix, assuming it exists.
Furthermore, if ˆ  is asymptotically (a large sample size) unbiased and efficient (for
example, maximum likelihood estimates always possess these properties [2]), then
cov( ˆ ) ≈ Is

−1 . Loosely speaking, with more information available, then the determinant
and trace of the inverse of the Fisher information matrix become smaller, and
correspondingly, the covariance of an unbiased estimate is smaller too. In other words,
the estimate becomes more stable.

Consider a classification problem involving two multivariate classes which can be
represented as Gaussian distributions with probability density functions (pdf’s)
fi (x i , Σ i),i = 1,2 , where i, and i denote the mean vector and covariance matrix of

class i. The prior probabilities associated with the two classes are designated by P1 and
P2.  We consider the following case: n independent unlabeled observations (X1, X2,….,
Xn) are drawn from the mixture of these two classes, and are subsequently classified as
class one (C1) and class two (C2) based on the Bayes decision rule which assigns an
observation to the class with the highest a posteriori probability for minimizing the total
classification error:
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X ∈Ω1 ⇔ P1 f1(x) ≥ P2 f2(x)

X ∈Ω2 ⇔ P1 f1(x) < P2 f2(x)
               (1)

where Ω1 and Ω2 are two sub-spaces corresponding to class one and class two
respectively. Suppose n1 samples are correctly classified, and n2 samples are
misclassified, i.e., n1 + n2 = n . Denoting Isl as the Fisher information matrix for this case,
using the definition of Fisher information matrix [2], then we have:

Isl = nE [ log f(x , )][ log f (x, )]T
 
 
 

 
 
 

= n1P1E [ log f(x , )][ log f (x , )]T x ∈Ω1, x is C1
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+n2P2E [ log f(x, )][ log f(x , )]T x ∈Ω1,x  is C2

 
 
 

 
 
 

(2)

Without loss of generality, consider the canonical form where 1=0, and 2=[∆ 0…0]T
,

and 1= 2=Id, >0, 2 is the Mahalanobis distance between the two classes, and Id is a
d × d identity matrix (d is the dimension of the feature space). Since the error rate of
probability is the subject of our study in the next section and is invariant under
nonsingular linear transformation, the canonical form can be used here without loss of
generality. Any other two-class problem for which 1= 2 can be transformed into the
above form through a linear transformation [3]. Using these conditions, Eq. (2) can be
simplified as follows (the detailed derivation is shown at appendix A):   

Isl = n

P1k1

P1k2Id −1

P2k3

P2k4Id −1

 

 

 
 
 
 
 

 

 

 
 
 
 
 

 (3)

where
k1 = rc 1 +(1− rc)(1 − 1)

k2 = rc 1 + (1 − rc )(1 − 1)

k3 = rc 2 + (1− rc)(1 − 2)

k4 = rc 2 + (1 − rc )(1 − 2)
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HereΦ(t) and (t)are the cumulative distribution function (cdf) and probability density
function (pdf) of the standard normal distribution respectively, and rc is the classification
accuracy. From equation (3) we can derive the following interesting results:

1) If two classes are quite separated, i.e., ∆ >>1 , then t >>1 and hence Φ(t) ≈ 1 and
t (t) ≈ 0, 1 ≈ 2 ≈ 1 ≈ 2 ≈1 . In this case, equation (3) can be simplified as:

I sl ≈ n1

P1Id 0

0 P2Id

 

 
 
 

 

 
 
 ≤ n

P1Id 0

0 P2Id

 

 
 
 

 

 
 
 (4)

where the above inequality is a matrix inequality indicating that the right hand side minus
the left hand side is a positive semi-definite matrix. Notice that the right hand side of the
above inequality is the Fisher information matrix for estimating θ if the n randomly
drawn samples have been labeled. In particular, let Is  be the information matrix for this
case. One can write:

Is = n{P1E log f1(x)
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Therefore, inequality (4) reveals the conceptually appealing fact that the information
contained in n classified observations based on the Bayes decision rule is less than or
equal to that of n labeled observations. The missing information in this case using only
semi-labeled samples (referred as semi-supervised learning) is due to the mis-assigned
labels. From now on we refer to the right hand side of (4) as the “supervised bound”
for Isl . Usually, classification accuracy achieved by Bayes rule with known class
condition probability density functions goes up with the separation of classes. Therefore,
if two classes are quite separated, we have n1 >> n2  or n1 ≈ n , leading to Isl ≈ Is , which
implies more information can be gained from more correctly classified samples.

2) At the worst case where half of the samples are correctly classified and the remaining
half are misclassified, i.e., n1 = n2 = n

2  , Isl  can be written as:

Isl =
n

2

P1Id 0

0 P2 Id

 

 
 
 

 

 
 
 =

1

2
Is (6)

This indicates that at least 50% of class label information is generated after classification.

In summary, for the canonical two component normal mixtures with unknown means,
after the classification is performed based on the Bayes decision rule, the Fisher
information matrix Isl  is bounded as follows:

n
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P1Id 0
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Under suitable regularity conditions the inverse of the Fisher information matrix ( I−1 )
is the asymptotic (large sample) variance-covariance matrix for the maximum likelihood
estimates [2]. For the equal prior probability case (P1=P2=0.5), by inverting the bounds in
Eq. (7), the asymptotic covariance of the ML (Maximum Likelihood) estimate of

=[ 1
T , 2

T ]T can be bounded from above and below. Notice that for any two positive

definite matrices A and B, if A≥B, then B-1≥A-1[4]. Denoting ˆ  as the ML estimate of 
obtained by using semi-labeled samples, then cov( ˆ )  is bounded as follows:

cov( ˆ ) ≤
1
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and
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Using || and tr to denote the determinant and trace operators respectively then | I−1 | and
tr(I −1 ) represent the asymptotic generalized and total variance [5]. Using Eq. (7) we can
obtain the trace and determinant of (Isl)

−1:
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and
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−1 |= (

1

P1P2n
)d (

1
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)d −1       (9b)

Figure (1a) to (1b) illustrate the variation of asymptotic total variance with the
accuracy, the number of samples, separations for semi-supervised learning (only semi-
labeled samples are used) and supervised learning (only labeled samples are used). Note
that accuracy achieved by Bayes rule is approximately 69% for ∆=1, and 99% ∆=5 with
equal prior probabilities [3].  From these figures it is seen that 1) asymptotic total
variance decreases with increase of classification accuracy. It drops faster when two
classes are more separated; 2) Asymptotic total variance increases with increase of
dimensionality, but decreases dramatically with increase of the number of samples; 3)
The difference of asymptotic total variance using labeled and semi-labeled samples
reduces with classification accuracy and separability of two classes.
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The above results imply that when semi-labeled samples are used, 1) the
improvement of classification accuracy may reduce the total variance and hence enhance
the estimation of statistics, and in return, the enhanced statistics can further improve the
classification accuracy. This implies when semi-labeled samples are used to integrate
statistics estimation with classification, a positive feedback can be established where
statistics estimation and classification enhance each other and eventually a close to
optimal classification accuracy can be reached with a given data set. 2) The large number
of semi-labeled samples may significantly reduce the total variance and therefore
mitigate the effect of small training sample size problem. 3) Semi-labeled samples can
provide comparable class label information when two classes are quite separable and
classification accuracy is high.

III. BOUND ON PROBABILITY OF ERROR

A. Semi-Supervised Learning

 In the equal covariance case (Σ1 = Σ2 = Σ), the optimal classifier is linear:
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When the true parameter values are used to evaluate h(x), the above linear classifier
minimizes probability of error, which is referred as the Bayes probability of error. If the
parameters are replaced by their estimates in h(x), the error rises. The probability of error
is therefore a convex function of the parameters in the neighborhood of the true
parameter values [2]. The expected probability of error using estimated parameters can be
written as [3]:

E{e ˆ r r} ≈ err* + 1
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(11)

For the canonical form where 1=0, and 2=[∆ 0…0]T
,  and 1= 2=Id, >0, we have:
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The integrals in (11) can be computed by the method provided in [3]. Replacing cov( ˆ )
in (8) by its upper and lower bounds described in Eq. (12a) through Eq. (12b) leads to the
following inequalities for the bias of e ˆ r r :
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bias(e ˆ r r) ≤
2

n 2 ∆
e

− ∆2

8
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                     (13c)

Here the supervised lower bound is applied for supervised learning where n samples are

labeled. It is possible to show that the variance of e ˆ r r is O(
1

n2 ) [5] and is therefore

negligible.

Figure (2a) and (2b) show the bounds on the number of semi-labeled samples
required to maintain the bias of classification error to less than 1% when dimensionality
varies. Figure (3) shows the upper and lower bounds of the bias of the probability of error
(in percent) versus ∆ (Square root of the Mahalanobis distance), when P1=P2, d=4, and
n=1000. Notice that as ∆ goes up the semi-supervised curves gets closer to the supervised
lower bound indicating when classes are far away from each other, semi-supervised
learning can achieve comparable performance to supervised learning.
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(P1=P2, d=4, and n=1000)

B. Combined Supervised and Semi-Supervised Learning

In practical applications, usually both training and semi-labeled samples are available.
Assuming that the training and semi-labeled samples are statistically independent, one
can write the Fisher information matrix corresponding to the combined supervised and
semi-supervised learning as the sum of the Fisher information matrices corresponding to
the training and semi-labeled samples. This implies that if both training samples and
semi-labeled samples are used simultaneously to estimate the parameters of the decision
rule, better performance with lower bias and variance can be achieved than when using
training samples alone [6]. By using the bounds obtained for the Fisher information
matrix corresponding to the semi-labeled samples in equation (7), similar bounds can be
obtained for the combined supervised and semi-supervised learning case. These bounds
can then be utilized to determine the upper and lower bounds for bias of classification
error as is done in the previous section for the semi-supervised case.

Assume that in addition to the n semi-labeled samples, n1t labeled samples from class
1 and n2t labeled samples from class 2 are also available for training the classifier. If the
estimate of the parameter set =[ 1

T  1
T ]T obtained by using all of these samples in the

decision rule (10), the bias of the classification error, for the case P1=P2, is bounded as:
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The variance of e ˆ r r is again negligible since it is inversely proportional to the square of
the number of training samples.

Figure (4) shows the bounds of the bias of the probability of error versus ∆ when
P1=P2, d=4, n=100, and n1t=n2t=10. The no-semi-labeled curve in this figure refers to the
case when only labeled samples are used. It is seen that by using additional semi-labeled
samples, the bias of the classification error is substantially reduced. The amount of the
reduction depends on the separation between two classes as characterized by ∆.
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Figure 4. Bounds on the bias of the classification error for combined learning

In conclusion, semi-supervised learning can achieve comparable performance to
supervised learning when the classes are relatively separated. When the classes are highly
overlapped, a large number of semi-labeled samples are necessary for designing a
classifier that matches the performance of the one designed by supervised learning. When
both training and semi-labeled samples are available, the combined supervised and semi-
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supervised learning that uses these two kinds of samples can outperform supervised
learning. This result is significant for the remote sensing applications where the number
of training samples is usually limited compared to the dimensionality of data obtained by
high spectral resolution sensors, while a large amount of semi-labeled samples are
available after the classification is performed without additional effort. In such cases,
utilizing semi-labeled samples may mitigate the Hughes phenomenon [1]. If we know
which samples have been correctly classified and use them accordingly to re-estimate
statistics in addition to original training samples, the estimated statistics should be more
precise because the actual training samples have been enlarged. Since usually we have no
knowledge of classification accuracy for each individual sample, the key is to design a
scheme that is able to apply a control factor that is related to the likelihood of a semi-
labeled sample to a class. In the next section, an adaptive classifier is designed to achieve
this goal.

IV.DESIGN OF AN ADAPTIVE CLASSIFIER

If we assume every sample in the data set is unique, i.e. it belongs only to one class,
we would expect it should only contribute to statistics of the only class to which it
belongs. In the EM algorithm [8] and its application in remote sensing [6], each unlabeled
sample has a certain amount of membership for each class and correspondingly has
weighted contribution to the statistics of every class. Even though this is reasonable at
this point because the sample labels are completely unknown, the contribution of the
sample to the class to which it does not belong is definitely undesired. This negative
influence may be significant enough to cause the estimated statistic to deviate from the
true one, especially when a large number of unlabeled samples are used, or there exists a
class whose statistics are quite different from the rest of classes. For example, if the class
proportion is quite unbalanced, i.e., a few classes are quite dominant in the given data set,
then the large number of unlabeled samples used may be mostly from these dominant
classes. With small numbers of training samples, the estimated statistics of minority
classes will be overwhelmed by the unlabeled samples and consequently may deviate
from the true one. This phenomenon has been observed in practice, and it has been
noticed that better classification accuracy could be achieved by using approximately the
same number of unlabeled samples as the number of training samples, which is small.
This is unfortunate because more information can be obtained and utilized with additional
unlabeled samples [6][7].

In this section, an adaptive classifier based on the Maximum Likelihood (ML) rule is
proposed to enhance the statistics estimation by using semi-labeled samples in addition to
training samples. In this new classifier, the partial information of the class label obtained
in the process of classification is utilized in such a way that each semi-labeled sample
only affects the statistics of the extract class into which it has been partitioned.
Furthermore this classifier assigns full weight to training samples, but automatically gives
reduced weight to semi-labeled samples. Therefore, it utilizes the additional class label
information provided by correctly classified semi-labeled samples and at the same time
limits the undesired influence from misclassified samples. Before we describe the
proposed adaptive classifier, we first provide a brief review of Expectation Maximization
(EM) algorithm.
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The EM algorithm is an iterative method for numerically approximating the
maximum likelihood (ML) estimates of the parameters in a mixture model. Under the
mixture model, the distribution of an observation x∈RP is given as:

f (x | Φ) = i
i =1

L

∑ fi(x | i)

where α1, …, αL are the class prior probabilities and thus the mixing proportions, fi is the
component density parameterized by φi and L is the total number of components. The
mixture density f is then parameterized by Φ = ( 1,...., L ,  1 ,... L) .

Assume that y = (y1,..., ymi) are the mi  training samples from class i. Also, there are

L  classes and a total of n unlabeled samples denoted by x = (x1,..., xn) . The parameter set

Φ  then contains all the prior probabilities, mean vectors and covariance matrices.
Assume that 1,..., L are mutually independent. The EM algorithm can then be expressed
as the following iterative equation [8]:

E-step:

ij
c = i(x j | i

c ) = i
c fi(x j | i

c )/ i
c fi(x j | i

c )
i = 1

L

∑ (15)

where ij
c   is the posterior probability that x j  belongs to class i .

M-step:

i
+ = ij

c

j =1

n

∑ / n                             (16a)

i
+ ∈argmax

i ∈Ω
( ln(

k =1

m i

∑ fi(yk | i))

+ ik ln(
k =1

n

∑ fi(xk | i)))

                 (16b)

Equation (16b) indicates that the optimal i  maximizes the weighted summation of the
log likelihood of training samples and unlabeled samples. For every training sample, the
weighting factor is one, and for every unlabeled sample, the weighting factor is the
posterior probability. If L  classes can be represented as Gaussian distributions, Eq. (16a)
and  (16b) yield:
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(17b)

In [6][7], the EM algorithm has been studied and applied to remote sensing data. It
was shown that by assuming a mixture model and using both training samples and
unlabeled samples in obtaining the statistics estimates, the classification performance can
be improved, and the Hughes phenomenon can then be delayed to a higher
dimensionality and hence more features can be applied to achieve better performance. In
addition, the parameter estimates represent the true class distribution more completely.

As indicated by Eq. (15) through Eq. (17b), in the EM algorithm each unlabeled
sample contributes to the statistics of all classes selected, and the amount of contribution
is weighted by the sample’s posterior probability. This is reasonable because at this stage
the class label information of an unlabeled sample is completely missing. However, if we
assume each sample has a unique class label, apparently the influence from one of the
unlabeled samples k of the j th class to the i thclass statistics ( i ≠ j ) is undesired,
specifically, if i th and j th are quite different, and it is possible sample k has a large
posterior probability for i th class. This negative influence may be significant enough to
cause the estimated statistics to deviate from the true ones. As a result, the iteration may
converge to erroneous solutions. This situation can become very severe when a large
number of unlabeled samples are used. For example, if the class proportion is quite
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unbalanced, i.e., there are a few classes that are quite dominant in the given data set, then
the large number of unlabeled samples used may be mostly from these dominant classes.

An alternative way is to replace unlabeled samples by semi-labeled samples, which
contain partial information of class origin obtained by a decision rule in the classification
process. With the additional information of class labels, one can limit the effect of a
semi-labeled sample to one class to which it has been assigned with the highest
likelihood. In addition, by using semi-labeled samples, parameter estimation and
classification can be integrated in an iterative way such that they enhance each other
consistently. In this process, every bit of improvement from classification is fed back to
the process of parameter estimation and hence leads to better statistic estimation, and in
return a better classification accuracy can be achieved. In other words, a self-learning and
self-adapting process can then be established. This is advantageous for the analysis of
high-dimensional data with limited training samples. In high dimensional space, in
general, samples are more separable, and higher classification accuracy can be achieved
if class statistics can be estimated more precisely. In the following section, an adaptive
classifier will be proposed using both training samples and semi-labeled samples to
obtain close to optimal statistics estimation and classification iteratively.

The proposed adaptive classifier is an iterative method to numerically find close to
optimal performance for given data by integrating parameter estimation with
classification. Denote y = (y i1,..., yimi

) as the training samples for the i th class, whose pdf

is fi(x|φi), and x = (xi1,..., xin i
) are the semi-labeled samples that have been classified to

the i th class. Among these semi-labeled samples, there are two types of samples, the
correctly classified samples and misclassified samples. Correctly classified samples can
play a role as equivalent to training samples and enhance statistics estimation. On the
other hand, misclassified samples introduce undesired effects as information noise to the
estimated statistics. Ideally, one would like to just use those semi-labeled samples that
have been correctly classified. However, information about the classification accuracy for
individual sample is not available at this point. Therefore, in order to control the effect
from semi-labeled samples, a weighting factor is applied to represent this influence.

With this in mind, an adaptive classifier is designed, which obtains close to optimal
performance by maximizing the weighted log likelihood of training samples and semi-
labeled samples. Similar to the EM algorithm, it is an iterative approach and achieves the
optimal statistics estimation and classification by starting with initial estimate φ0 and
classification based on training samples only and repeating the following steps at each
iteration using training samples and semi-labeled samples:

1) Computing Weighting Factors:

wij
c =

fi(x ij | i
c)

f k(xij | k
c)

k =1

L

∑
                    (18a)
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2) Maximizing the mixed log likelihood:

i
+ = argmax

i ∈Ω
( ln

k =1

mi

∑ ( fi(yk | i))

+ wik
c ln(

k= 1

n i

∑ fi(xik | i)))

                           (18b)

3) Performing classification based on the maximum likelihood (ML) classification rule:

x ∈i ⇔ i = argmax
1≤ i≤ L

(ln( fi(x | i
+)))           (18c)

Here the superscript “c” and “+” designate the current and next value respectively. If all
L classes are Gaussian distributed, Eq. (18b) yields:
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and Eq. (18c) yields:
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)(minarg
1

xdiix i
Li≤≤

=⇔∈

where di  is a discriminant function [2] given by:

di(x) = (x − i
+ )(Σi

+)−1(x − i
+)T + ln Σ i

+

Note that in a manner similar to the EM algorithm, the mean vectors and covariance
matrices are weighted mixtures of ML estimates from training samples and semi-labeled
samples, and the weight for each sample is related to the relative likelihood, which is less
than one. But in this proposed adaptive classifier, unique membership is assumed and
each semi-labeled sample only has contribution to the same class to which is classified.
In addition, in this iterative process, the membership of each training sample remains the
same. However, the membership of each semi-labeled sample is being updated at every
iteration through the whole procedure.

V. EXPERIMENTAL RESULTS

In the following experiments, we test the performance of the proposed adaptive
classifier using both simulated and real multispectral data. The first two experiments use
simulated data of dimensionality of 6, 20, and 40. The third uses 12 dimensional real
data.

In experiment 1 and 2, there are three simulated classes with Gaussian distributions.
Three sets of labeled samples are generated independently. In the first set, there are 1000
samples for each class, and 10 samples are selected randomly from 1000 samples and
subsequently used for training; the other 990 samples are then classified and become
semi-labeled samples, which are used to estimate statistics at the following iteration. In
the second data set, there are 10,000 random samples for each class and they are used for
testing the performance of the classifier. The third data set is generated to benchmark the
performance of the proposed adaptive classifier. In this data set, there are 1000 random
samples for each class, and then all of them are used for designing a classifier, which is
then tested by using 10,000 test samples from the second data set. The convergence
criterion is that the relative difference of classification accuracy between two consecutive
iterations is less than 0.01%. Each experiment is repeated ten times, and the mean
classification accuracy and standard deviation are then estimated.

A. Experiment 1: Equal Spherical Covariance

1) d=6: In this experiment, the covariance matrix of all three classes is the identity
matrix, but each class had a slightly different mean vector. The mean of the first class is
at the origin; the mean of the second class is 3.0 in the first variable and zero in the other
variables. The dimension is d=6. The mean classification accuracy versus iteration
number is graphed in Fig. (5a).
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Here SC represents the mean classification accuracy and standard deviation of the
data where a sample covariance estimate is used as the initial estimate from training
samples, and the mixed sample covariance shown in Eq. (19b) is used for the later
estimation. The SC_Test represents the results for the testing data. LOOC represents the
results where a mixed covariance estimator, LOOC, is used to estimate covariance
matrices [9], and, similar to SC case, the mixed sample covariance shown in Eq. (19b) is
then used for the following covariance estimation. LOOC_Test represents the results of
the testing data.

The results show that with additional semi-labeled samples, the mean accuracy of
data and testing data increases steadily with iterations until it reaches convergence. Note
that in this data set, in the supervised learning process the mean classification accuracy
for training data (resubstution accuracy [3]) is 91.01% with a standard deviation 0.66%,
and for testing (hold out accuracy [3]) it is 90.67% with a standard deviation 0.15%. The
Bayes accuracy (optimal) is bounded between these two. Therefore, we believe the final
convergence solution is optimal within a range of standard deviation.  Also, it is observed
that the difference of the mean accuracy between data and test data are within a standard
deviation. Further, the standard deviation is reduced with iterations. The final one is
reduced by about five folds. Additional results not shown here indicate that the estimated
statistics become more and more representative to the true ones and more robust. This,
then, is a self-improving adaptive classifier where statistics estimation and classification
enhance each other.

Also, it is seen that without LOOC, the initial accuracy is lower, and as a result
convergence is attained more slowly but the final accuracy is very close to that with
LOOC. This further indicates that eventually semi-labeled samples can compensate for
the deterioration of classifier performance caused by lack of training samples.

2) d=20: In this experiment, the synthetic data from the experiment 1a is used with
the exception that the dimensionality is raised from 6 to 20. Hence, the number of
dimension is now greater than the number of class training samples but smaller than the
total number of training samples. This case represents a poorly posed problem where the
dimension size is greater than the training sample size. Mean classification accuracy is
plotted in Fig. 5b. Since the number of dimension is greater than the class training sample
size, the sample covariance matrix becomes singular and uninvertible. The covariance
estimator LOOC must be used for the initial iteration. In this experiment, for supervised
learning, the mean accuracy for data is 91.51% (std. dev. 0.59%) and for test data is 90.12
(std. dev. 0.12%).

Comparing with experiment one, even though the initial classification accuracy
reduces about 3% relatively, the classification accuracy still steadily increases and final
classification accuracy is only about 2% lower. These results indicate that even with the
poorly posed problem, this proposed adaptive classifier is still able to perform well.

3) d=40: Again, in this experiment the synthetic data from the experiment 1a is used
with the exception that the dimension is increased to 40. Hence, the number of
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dimensions is much greater than the number of class training samples and even greater
than the total number of training samples. This case represents an ill-posed problem
where the number of dimensions exceeds the total number of training samples, and the
number of parameters (2000) is twice the number of samples available. Mean
classification accuracy is plotted in Fig. 5c. Again, since the number of dimension is
greater than the class training sample size, the sample covariance matrix is singular and
uninvertible. The covariance estimator LOOC is again used for the initial iteration. In this
experiment, for supervised learning, the mean accuracy for data is 93.46% (std. dev.
0.57%) and for test data is 88.33 (std. dev. 0.28%).
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Figure 5. Mean Accuracy for Experiment 1.
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Compared to the results of LOOC in experiment one, even though the initial
classification accuracy is reduced about 10% relatively, the classification accuracy for the
data still steadily increases. Final classification is about 7% less, and the standard
deviation reduces with iterations as well. For testing data, the classification accuracy
converges more slowly, and the final value is a little lower than previous accuracy. But
overall these results show that this proposed adaptive classifier still is able to perform
relatively well even for an ill-posed problem.

B. Experiment 2: Unequal Spherical Covariance Matrices

1) d=6: In this experiment, the three classes have unequal mean vectors and spherical
covariance matrices. The mean vectors are the same as those in the experiment one. The
covariance matrices of class one, two and three are I, 2I and 3I respectively. In this case,
these three classes overlap more and are more difficult to discriminate than the equal
covariance case. Mean accuracy is plotted in Figure 6a. It is observed that these results
are similar to those in experiment 1a. In this experiment, for supervised learning, the
mean accuracy for data is 88.68% (std. dev. 0.75%) and for test data is 85.99 (std. dev.
0.20%).

2) d=20: In this experiment, the simulated data in Experiment 2a is used with
exception that the dimension is twenty, which is greater than the number of training
samples. This is thus again a poorly posed problem. Mean accuracy is plotted in Figure
6b. In this experiment, for supervised learning, the mean accuracy for data is 92.48%
(std. 0.56%) and for test data is 90.98 (std. 0.13%).

It is worth noting that even though the initial classification mean accuracy is reduced
by 7% relatively, the final increases by 5%. This shows the appealing fact that with semi-
labeled samples the proposed adaptive classifier is able to utilize the increment of
separability provided by additional dimensions, and then improve the classification
accuracy. In other words, Hughes phenomenon is mitigated.

3) d=40: In this experiment, the simulated data in Experiment 2a is used with
exception that the dimension forty. Mean accuracy is plotted in Figure 6c. In this
experiment, for supervised learning, the mean accuracy for data is 96.27% (std. 0.40%)
and for test data is 93.07 (std. 0.14%).

With such a high ratio of the number of dimensions to the number of samples, it is
seen due to the Hughes phenomenon, the accuracy with only ten training samples is
greatly reduced, about 10%. However, with additional semi-labeled samples being fed
back to statistics estimation, the classification accuracy is able to clime up and quickly
converges to a value which is just slightly lower than the optimal with diminishing
standard deviation.
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(a) d=6
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Figure 6. Mean Accuracy for Experiment 2.
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C. Experiment 3: Flight line C1

This experiment is conducted using real samples from a data designated Flightline C1
(FLC1), which is 12-band multispectral data taken over Tippecanoe County, Indiana by
the M7 scanner [10] in June, 1966. The number of training samples and testing samples
in each class is listed in Table 1. The training sample size was deliberately chosen to be
very small, representing a poorly-posed problem where the number of training samples
for each class are comparable to dimensions. Since the testing data in this experiment is
very large, and in particular for some of classes with small number of samples almost
entire samples of these class are included in the testing data. For this reason, the testing
samples and majority of training samples are independent, and there are small overlap on
the testing data and training data. Also, for the same reason, test samples which are not
training samples are used as semi-labeled samples and are used to update the class
statistics. Otherwise, there may not be sufficient semi-labeled samples to modify the class
statistics for some minority classes. The classification results are plotted in Fig. 7, based
on available ground truth for the area, a test field map is provided in Fig. 8a, and thematic
map for the initial and final classifications are shown in Fig. 8b and 8c. It is seen from
Fig. 7, the classification accuracy increases and converges quickly, and the final accuracy
is slightly lower than 94.7%, the resubstution classification accuracy which is obtained by
using all testing samples as training samples. Also, comparing Fig. 8b with Fig. 8c, the
speckle error has been greatly reduced.

Table 1: Training and testing samples for Flight line C1

Class
Names

No.  of Testing
samples

No. of training
samples

Alfalfa 3,375 12
Br Soil 1,230 8
Corn 10,625 16
Oats 5,781 8
Red Clover 12,147 12
Rye 2,385 4
Soybeans 25,174 16
Water 18 4
Wheat-1 7,827 12
Wheat-2 2,091 16
Total 70,653 104

To illustrate how this proposed classifier improves itself iteratively by reducing the
class statistics estimation error, the close up snapshots of the classified map for two crops
are presented in Fig. (9) and Fig. (10).  Figure (9) is of the rye field a little below the
middle of the flightline (Figure 8). As shown in Fig. (9a), the rye training field of 4 pixels
was selected in it. As illustrated in figure (9b), due to poorly estimated statistics using
limited training samples only, the majority of pixels have been misclassified as
something else other than rye. However, at the second iteration when semi-labeled
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samples are added to enhance the statistics, there are more pixels around the training field
classified as rye. This trend continues and at the last iteration, a majority of pixels in the
field are eventually correctly classified as rye. In fact, some of the pixels in this rye field
are not actually rye.

The second close up example involves the field of oats within a doughnut shaped
wheat field just above the middle of the flightline. There are no training fields for oats in
this field, and instead oats training is located elsewhere in the flightline. As expected, at
the first iteration, on the test field for oats only very few pixels are correctly classified as
oats. However, at the second iteration, more pixels around those pixels that have been
previously classified as oats have been identified as oats. As this process continues, more
and more pixels on this test field for oats have been correctly identified as oats. In figure
(10f), at the fifth iteration a group of pixels of the shape of a strip across the oats field has
been misclassified as wheat, this is not an error of omission for the class oats. Instead,
this area is really a sod water way unplowed by the farmer. Since there are no training
samples for this class of ground cover, this result further indicates that the proposed
adaptive classifier adjusted itself to the next nearest class based on the information
provided by the semi-labeled samples.
 

To show how representative the estimated parameters are, the probability map [11]
associated with the classification is obtained. The probability map is determined by color
coding the Mahalanobis distance of each pixel for the class to which it is classified. Blue
pixels are ones that classified with low conditional probabilities. The color/likelihood
scale indicates increasing likelihood from blue to yellow to red with red pixels being the
ones that are classified with the highest likelihood. Figure 11 shows the probability map
for the rye field of Figure 9. It is seen from this figure that when only the initial
supervised learning is used the only bright spots are near the training fields. In other
words, the rest of the data are not represented well. By adding semi-labeled samples to
the estimation process, more representative estimates are obtained, and thus the
probability maps indicate increased likelihood by the brighter, red color.
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Figure 7. Classification Accuracy for Flight Line C1.
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Figure 8. Test and Classification Map for Flight Line C1.
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VI. CONCLUSION

This paper is begun by investigating the information contained in semi-labeled
samples of two Gaussian distributions in terms of the Fisher Information Matrix. Results
show that higher classification accuracy can provide more useful class label information
for statistical estimation, and so do the number of samples. The probability of error for
semi-supervised learning and combined learning process is also investigated. Results
indicate that when semi-labeled samples are fed back to the statistical estimation process,
higher accuracy and more semi-labeled samples may enhance statistics significantly and
consequently reduce the probability of error for the following classification.

Based on the above findings, a self-improving adaptive process is proposed which
integrates statistical estimation and classification using semi-labeled samples. It may
mitigate the Hughes phenomenon by iteratively utilizing the additional class label
information extracted from classification process.

A training field
for rye

Rye
Rye

Rye
Rye

(a) Initial iteration (b) Final iteration

Figure 11. Portion of Probability map for
Flight Line C1.
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The experimental results further reveal several benefits of this classifier. First, all
experiments show that the proposed adaptive classifier is able to raise classification
accuracy steadily and eventually drive it close to the optimal value. Higher initial
classification accuracy accelerates the rate of convergence but has little effect on the final
classification.

Second, as is shown in experiment results 6a and 6b, when the separability increases
with dimensionality, with semi-labeled samples, the peak performance is enhanced. In
other words, the information in the new feature measurements can be used to further
reduce the error. Without the semi-labeled samples, the peak performance occurs at a
lower dimension after which no further improvement can be obtained from new feature
measurements; instead performance deteriorates with dimensions.

Third, the estimated statistics are approaching the true ones with iterations. As is
shown through all the experiments, the standard deviation is greatly reduced with
iterations, indicating the estimated statistics are more and more robust. In particular, as
shown in the last experiment with semi-labeled samples, most of samples are classified
with high likelihood.

Despite the promising results, the proposed adaptive classifier has limitations. In
particular, for a very ill-posed problem, where the number of dimensions is far greater
than the number of training samples and the number of parameters is even greater than
the number of all semi-labeled samples, the initial classification can be very bad. As a
result a positive feedback could hardly be established and the proposed adaptive classifier
may not converge. This necessitates the use of an adaptive covariance estimator, where
semi-labeled samples are incorporated into the process to determine the optimal
covariance mixture.
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Appendix A: Derivation of Fisher Information Matrix for Two Normal
Distributions

Fisher information matrix expressed in Eq. (2) can be written as:

Isl = n1P1 Ω 1
[ log f(x, )][ log f (x , )]T f1(x 1, Σ1)dx∫

+n1P2 Ω 2
[ log f (x , )][ log f(x , )]T f2(x 2, Σ2 )dx∫

+n2 P1 Ω 2
[ log f (x , )][ log f(x , )]T f1(x 1,Σ1)dx∫

+n2 P2 Ω 1
[ log f(x, )][ log f(x , )]T f2(x 2, Σ2 )dx∫

Since the vector of unknown parameters is =[ 1
T , 2

T ]T , therefore:

log f1(x) =
1

f1(x)
f1(x) =

1

f1(x)

f1(x)(x − 1)Σ1
−1 (x − 1)

T

0

 

 
 
 

 

 
 
 

log f2 (x) =
1

f2(x)
f2(x) =

1

f2(x)

0

f2(x)(x − 2 )Σ2
−2 (x − 2)T

 

 
 
 

 

 
 
 
 

With 1 = 0 and Σ1 = Σ2 = Id , the above can be simplified as:

log f1(x) =
1

f1(x)
f1(x) =

1

f1(x)

f1(x)xxT

0

 

 
 
 

 

 
 
 

log f2 (x) =
1

f2(x)
f2(x) =

1

f2(x)

0

f2(x)(x − 2 )(x − 2)T

 

 
 
 

 

 
 
 

Also, in the canonical case under consideration, the subspaces Ω1 and Ω2 can be
determined as:

x ∈Ω1 ⇔ x1 ≤ t

x ∈Ω2 ⇔ x1 > t

where

t =
1

∆
log(

P1

P2

) +
1

2
∆
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If we define:

I1 = Ω 1
[ log f1(x)][ log f1(x)]T f1 (x 1,Σ1)dx∫

I2 = Ω 2
[ log f2 (x)][ log f2 (x)]T f2 (x 2, Σ2)dx∫

I3 = Ω 2
[ log f1(x)][ log f1(x)]T f1(x 1, Σ1)dx∫

I4 = Ω1
[ log f2 (x)][ log f2 (x)]T f2 (x 2 ,Σ2)dx∫

then we have:

I1 =
1 0 0

0 1Id −1 0

0 0 0

 

 

 
 
 

 

 

 
 
 

I2 =
0 0 0

0 2 0

0 2 Id −1

 

 

 
 
 

 

 

 
 
 

I3 =
1− 1 0 0

0 (1 − 1 )Id −1 0

0 0 0

 

 

 
 
 

 

 

 
 
 

I4 =
0 0 0

0 1− 2 0

0 0 (1 − 2 )Id−1

 

 

 
 
 

 

 

 
 
 

k1 = rc 1 +(1− rc)(1 − 1)

k2 = rc 1 + (1 − rc )(1 − 1)

k3 = rc 2 + (1− rc)(1 − 2)

k4 = rc 2 + (1 − rc )(1 − 2)

rc =
n1

n
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1 = Φ(t) − t (t)

1 = Φ(t)

2 = Φ(∆ − t) −(t − ∆) (t − ∆)

2 = Φ(∆ − t)

Φ(t) =
1

2
e

− x 2

2 dx
−∞

t

∫

(t) =
1

2
e

− t 2

2


