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SECTION Lo Sensor Studies

THE DEVELOPMENT OF MACHINE TECHNOLOGY PROCESSING FOR
EARTH RESOURCE SURVEY
by
D. A. Landgrebe
Laboratory for Applications of Remote Sensing

Purdue University
West Lafayette, Indiana

INTRODUCTION

Two earlier papers by R. B. MacDonald have described some of the
research being pursued at LARS/Purdue directed toward the applications
of remote sensing. The purpose of this presentation is to describe
research in the development of new technology. Several projects to be
discussed are of several years duration; current progress will be des-
cribed in these cases. In addition, several new programs have begun
and preliminary results will be presented.

THE REGISTRATION OF MULTISPECTRAL AND MULTITEMPORAL IMAGES

The first study to be described has to do with the registration
of multispectral images. This work began several years ago and has
passed through graded steps of increasing technological difficulty.

The ultimate objective is to develop a capability for accurately align-
ing data in image form gathered from different parts of the spectrum
and on different flight missions.

This first step in this process several years ago was to achieve
the capability to register image data from two different sensors
mounted aboard the same platform. Figure 1 serves to illustrate the
problem. Shown is a printout from a channel of data in the visible
portion of the spectrum (center) and data gathered at the same time
but with a different scanner operating in the thermal region. A con-
ventional panchromatic air photo is shown on the left for comparison.
Registration accuracy to better than plus or minus 1 resolution ele-
ment is desired.
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Since the two scanners may be running at slightly different
speeds, and creating other distortions of a local nature, a scheme
which assures correct registration on both a global and local basis
i8 necessary. The general approach chosen was to use two-dimensional
correlation as a basis for finding points of correspondence in the two
images. This approach provides the maximum flexibility which is re-
quired by a research situation as compared to an operational one. How-
ever, it quickly became apparent that images from widely separated parts
of the spectrum may not correlate well since the spectral separation
leads to fundamental differences in the data. It was found desirable
to preceed the correlation process by enhancing all the boundaries in
both images and then correlating to the boundary-enhanced image.

Thus, the first useful system contained three steps: a boundary
enhancement step; a two-dimensional correlation to determine the points
of coincidence in the two images; and finally, the overlaying of the
two data sets to form a new data set of dimensionality equal to the sum
of the previous two.

The next step in the development of the system was to provide it
with a measure of adaptability to the type of data being registered.
The registration process utilizing two-dimensional correlation as a
basis 18 clearly very scene-dependent. A different sized correlation
window is required when registering data over an agricultural scene,
for example, as compared to data from natural vegetation. Figure 2
shows the organization of the system aftar incorporating this capability.
A means for estimating the complexity of the image in terms of the degree
of difficulty in obtaining a proper two-dimensional correlation measure
has been added to the system. This results in a picture complexity index
from which the correlation window size is determined. Developments to
this point were reported in this meeting a year ago (see reference 1).

Since that time, a number of additional capabilities have been
added to the system., Chief among these has been the development of a
capability for accomplishing rotation and scale change in the imagery.
The current system diagram is shown in Figure 3 (see reference 2). The
system now is organized to permit the overlay of two ''slave'" images onto
a master. There is an opportunity to input scale and rotational correc-
tions of a global nature manually into the system. After suitable buff-
ering, the image boundary enhancement and complexity estimation step is
next. Then follows the image correlation step in which the points of
correspondence between the three images are determined. At this point
the more precise local scale and rotational correction factors are de-
termined and a capability for updating the global scale and rotation
factors is provided. The final step is that of utilizing the scene cor-
respondence points to achieve a single data tape on which have been
properly registered the three previous images.
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Two different methods of boundary enhancement techniques are
available. Figure 4 shows examples of each., The simplest and com-
putationally fastest means is a gradient technique utilizing the mag-
nitude of the first difference of adjacent scene points to determine
if a boundary exists. The result of such a computation is shown in
the center of Figure 4. On the right is shown the result of using a
clustering technique operating in a multivariant fashion to determine
boundaries (see reference 3).

The use of Temporal Information

The new capability which the modifications have provided enabled
initial studies in the use of multi-temporal multi-spectral data anal-
ysis, Figure 5 shows printouts of single channels of the two data sets
utilized. On the left is a printout of a channel of data from the June,
1969 mission. Due to a cross wind, an average yaw distortion of 11.7
degrees exists in the data. The August, 1969 data shown on the right
contains very little yaw distortion. It is readily apparent from these
two printouts that changes in the scene have taken place between June
and August, and this provides a graphic example of the considerable
scene dependence which exists in attempting to use two dimensional cor-
relation directly for registration of images. Note in the June data
that since the vegetation canopy does not fully cover the ground soil
patterns are readily apparent in this display; by August this is no
longer the case.

In the multi-temporal analysis experiment, a control classification
was run utili{zing the June data only. A classifier was ttained using
classes corn, soybeans, wheat and oats. The best four of the 12 channels
of data were selected for this classification. Data from the August
mission was registered onto the June data. The classification using the
same classes, training, and spectral bands of this August data was then
run for comparison. Next, the best four of the 8 channels (4 from June,
the same 4 from August) were selected and the same classification was
again carried out. The results of this experiment are shown in Figure 6.
Note that the capability to discriminate between corn and soybeans does
improve over that available from either of the data sets alone. It
should also be noted that by the August mission all wheat and oats in the
flightline had been harvested; these classes therefore did not exist by
the time of that mission.

This classification test, while preliminary in nature, does tend to
verify the expected increase in accuracy one should obtain by having
multi-temporal data available. It seems reasonable to speculate that
even greater accuracy should be possible if one permits oneself to select
the best four of the total number of channels available (24 in this case)
rather than constraining to the spectral bands which were favored for the
June data set. The above procedure was used, however, in order to simu-
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late the situation which might exist for a satellite sensor system in
which the spectral bands to be used throughout must be selected a priori.

On the Value of Image Data Registration

There are at least four major reasons why image data registration
is important. These are indicated in Figure 7. The desirability of
registration in the case of multiple sensors has already been discussed.
This was discussed within the context of visible and thermal data; how-
ever, the problem is similar in the case of data from the microwave
portion of the spectrum. In general, each new part of the spectrum
available in registered form should provide additional information about
the contents of the scene.

The above example tended to illustrate the importance of the use of
temporal information. However, not nearly enough experimentation has
been possible to date in order to develop the full importance of this
area.

A third reason for the importance of image data registration is
that it permits the automatic correction of various types of distortion
in image data. If a good quality image (from a photogrammetric stand-
point) exists of an area, this image could be made to serve as a master
upon which data from other sensors e.g. scanner, radar, television, etc.
could be registered; in this fashion, rectification and geometric cor-
rection of all types could take place as a normal part of achieving
multiband multi-temporal information.

Finally, the through-put rate for this type of information process-
ing is limited as much as anywhere at points at which ground data and
ancillary information must be merged into the multispectral image data
stream itself. Data registration can, in many cases, tend to alleviate
this difficulty. For example, in the case of an agricultural problem,
one need only establish field boundaries etc. once during a growing
season in order to have ground truth information referenced to the appro-
priate fields in this image data. Since the registration process estab-
ligshes scene point coincidences in the images it established this same
coincidence and referencing for all ground truth associated with given
scene points. Thus, training sample coordinates need be selected only
once during a season.

DIGITAL IMAGE DISPLAY SYSTEM

A second project underway for some time is the specification, design,
procurement, and implementation of a digital image displav system. A
pacing item in the development of a capability to rapidly collect, ana-
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lyze and disseminate information by remote sensing means is the capa-
bility for the human operator to rapidly interact with the image data
stream and collate with it literal or other information from other
sources. The purpose of the digital image display is to enable re-
search into techniques to alleviate this limitation.

The need for such a system and the general outline of its specifi-
cations was first identified in March, 1966. After a long series of
delays, the project was finally funded and a contract awarded for its
construction by the IBM Federal Systems Division in August, 1969. The
system has recently arrived on location at Purdue and is currently
undergoing acceptance tests. It consists of three major elements: a
control unit containing logic circuitry, interfacing circuitry, and a
disk image buffer; the display console including a light pen and function
keyboard for controlling software packages, and a photocopy unit used
to generate hard copy versions of images being displayed.

Figure 8 shows a photograph of the photocopy unit (right) and dis-
play console (left). The display system provides an image of 768 ele-
ments and 577 lines with a l6-step grayscale and a 30-frame-per-second
(with interlace) refresh rate. Figure 13 shows the output of image data
produced by the photocopy unit. Upon final acceptance of the system
from the manufacturer, work will begin on techniques for allowing the
human operator to use very large quantities of remote sensing data.

DATA SYSTEMS PARAMETER STUDY

Figure 9 is a block diagram of a satellite-based remote sensing
system, Shown are the major elements of such a system, such as the
sensor, onboard processing and telementry, ground processing and data
reduction, and information consumption. In considering the design of
such a system, it is immediately apparent that there are a great number
of parameters to be chosen. Parameters such as the spectral and spatial
resolution of the sensor, the detector signal-to-noise ratio, the type
of telemetry, data compression scheme, etc. must all be selected.

Heretofore, research on individual elements of the system had not
proceeded far enough to permit the consideration of overall performance
relative to these parameters. It now appears, however, that this point
has been reached. As a result, a data system parameter study has been
defined. The approach to be used is to test the overall system sensi-
tivity to various key parameters. Generally, the index of performance
to be used is the pattern recognition classification performance on test
data sets. Preliminary results in several of these parameter studies
will now be described. !
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Classification Sensitivity to Additive Noise

A parameter of considerable importance to the design of new
sensor systems is the signal-to-noise ratio of the detector. For a
sensor material of given sensitivity the signal-to-noise ratio of the
data produced can generally be improved by degrading either the spec-
tral or spatial resolution or both. However, data analysts are gen-
erally not anxious to see this done and a trade-off must be made.
Quantitative information about desired signal-to-noise ratios for
specific analysis tests has previously been scarce.

In order to increase the understanding of the necessary signal-to-
noise ratio for various classification tests it was decided to carry
out a single test classification on a data set to which varying amounts
of noise have been added. Figure 10 shows a small portion of a scene
from which the data was selected. Shown are a panchromatic air photo
of the area and below it a printout of the original undegraded signal.
Printouts of the same data with two different levels of noise added
are shown on the right. Digital data of eight-bit precision was used.
Thus, a gray scale of 256 possible steps is available. The magnitude
of the noise (which was Gaussian and uncorrelated between channels) is
measured in terms of the number of bins out of 256 per standard deviation.

The noise was generated using a software-implemented random number
generator within the computer. It was decided to choose Gaussian noise,
uncorrelated from spectral band to spectral band, as this most nearly
approximates the type of noise generated within the sensor detector.
Figure 11 is a classification of a segment of the data for the no-noise
case and the two noise levels shown in Figure 10. The degradation of
accuracy is visibly apparent.

The graph of Figure 12 summarizes the overall results for the study.
This is a plot of the percent correct recognition for the classification
task as a function of the magnitude of noise added to the data. The
shapes of the curves which are in the form of the complement of the
Gaussian error function could easily be predicted. It is also not sur-
prising that the results for the training samples stayed consistently
above the results for the overall test samples.

An interesting result can be seen from the two individual classes
which are plotted. The data used for this test was of an agricultural
scene in Tippecanoe County in June, early in the growing season. At
this point in the season wheat is ready for harvest and, being golden
brown at this stage, is a relatively easy class to separate from the
rest of the scene. Thus, in the graph of Figure 12 the accuracy is
high. More importantly at this point though, it degrades relatively
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slowly. On the other hand, soybeans provides a much more challenging
classification since the percent of ground cover at this stage of the
season 1s very low. While the accuracy in the no-noise case is quite
high, one sees that the additive noise quickly degrades this accuracy
to a low value. These results tend to bear out the statement that as
the signal-to-noise ratio degrades, the more difficult classifications
will be affected most. That is, for simple classifications the signal-
to-noise ratio is not too important; however, it becomes so for more
difficult ones.

The classification used was a nine class classification. One would
assume that in an extrapolation to the right, these curves would become
asymptotic to chance performance which is 11 percent in this case. One
can also consider an extrapolation of these curves to the left. This
extrapolation should provide curves which become asymptotic to 100 per-
cent accuracy. Since the original data did not have an infinite signal-
to-noise ratio, it may be supposed that these curves provide an indi-
cation of the true original signal-to-noise ratio.

Data Compression based on Spatial Redundancy

The General Electric Company was awarded a contract some time ago
by NASA to study the possibility of using data compression techniques
on a sensor system of the type to be flown on the Earth Resources Tech-
nology Satellite. The techniques to be studied apparently are to be
those based primarily on the fact that a great deal of redundancy exists
in an image due to spatial correlation in the data. As a result of the
application of efficient data compression techniques, it is possible to
reconstruct the image transmitted to good but not perfect precision.

It is, therefore, desirable to learn the degree to which the data com-
pression technique will affect the ability of the data analyist to
achieve good results.

It is desirable to determine these effects on both photointerpre-
tative based analysis systems and pattern recognition (machine oriented)
schemes. A co-operative program between LARS and GE was agreed upon in
order to accomplish a portion of this evaluation. Test data was selected
jointly by LARS and GE from among flightlines of data which had been
flown by the Michigan scanner system and digitized at LARS. The data
was provided to GE for the purpose of compressing and re-expanding it
using compression algorithms of General Electric Company design. The
four channels of the Michigan scanner system most nearly coinciding with
the four channels of the ERTS multispectral scanner were to be used.
After compression and re-expansion the data was returned to LARS and a
test classification run upon {it.
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The joint study has now progressed to the point that the first
compression algorithm has been tested. Figure 13 shows images gener-
ated from a small portion of the original data and the same data having
been processed by the compression algorithm. The algorithm is a pre-
liminary one for base line tests and is simply a procedure whereby only
every fourth sample of each channel is transmitted. Intermediate points
not transmitted are assumed on the ground to have been the same gray
scale intensity as the last previously transmitted point in that spec-
tral band.

Figure 14 shows the results of the test classification on the two
different data sets. Also shown is the results of the classification
of the same data but using the set of spectral bands which are pre-
ferred for this classification. Notice that the degradation provided
by the compression as compared with the uncompressed data is not major.
Full analysis of results must await the conclusion of the study includ-
ing the use of other compression schemes. These will be reported in due
course. However, some further comments about these results will be made
after having reported the results of another data compression study in
progress.

DATA COMPRESSION TECHNIQUES BASED ON SPECTRAL REDUNDANCY

A second data compression study has been underway for some time
based on the use of the redundancy between spectral bands. This study
is being conducted entirely by LARS, The point of departure of this
study is somewhat different than the one previously described in that a
larger number of spectral bands are assumed. An overview of the view
point is contained in Figure 15. We see on the left a multispectral
scanner sensor which produces data in M different channels. The tech-
nique here would be to design a data compression system which converts
the M channels into N features, N < M, The original data could be re-
covered to within some prescribed accuracy by processing the data at
this point through a reconstruction algorithm after which data analysis
could take place.

However, imagery could be generated in each of the N features in
exactly the same way that it could be generated in each of the M chan-
nels. In any case, the measure of the degree of compression in this
case is the ratio of M to N,

The compression algorithm tested is a type based upon a Karhunen-
Loeve expansion. It amounts, in fact, to a linear transformation in M-
dimensional space and, more specifically, a linear transformation which
is a rotation to principal co-ordinates. The same data and classifi-
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cation was used to test this scheme as used in the LARS/GE Data Compres-
sion Study and the Additive Noise Study. The results of this classifi-
cation are shown in Figure 16. The first line gives the results of the
control classification, that is, classification directly on the original
data.

When the 12 original channels were transformed and then half deleted
so that only six features remained in the N-dimensional feature space,
the accuracy of the classification did not change significantly., The
test was repeated for a 12- to 3-dimensional transformation and again
the accuracy was essentially unaffected. Not until all but two bands
in feature space were deleted did the accuracy begin to seriously deter-
iorate. The percent of mean square difference between the reconstructed
and the original image is shown on the right. These results have been
judged to be very encouraging and the scheme is now being extended to
include both spectral and spatial redundancy.

SOME COMMENTS ON SPECTRAL BAND SELECTION

Some of the results above raise some points that have to do with
the relative importance of a band selection capability. Notice from
Figure 14 that the overall classification accuracy for the preferred
channels (i.e. the best of the 12 available) was approximately 90%.

This is more than 102 higher than the performance figure for the same
data but using the ERTS channels. Thus, one may say from the data
analyst's viewpoint that being required to give up the capability to
tailor the band selection to the particuliar classification being carried
out is a more serious effect than accepting the degrading effects in the
data due to a data compression algorithm. This can be seen and under-
stood more clearly as follows:

Assume this case to be typical. Here, 12-channel data was available;
the band limits of the particular bands are shown in Figure 17, The pro-
blem of band selection comes to finding the four best channelsl of the 12
to use for the particular classification. The feature selection algorithm
implemented in the LARSYSAA programming system computes the relative sep-
arability of each class pair for each possible four-tuple of spectral bands.
The classes used in the test classification are shown on Figure 18. Beside
each is indicated a single symbol used to designate that class in two
following figures. Figure 19 shows the results of applying this algorithm
to this classification task. The numbers on the right of this figure are
the numbers indicating the relative separability of the class pairs.

Class pairs are indicated by two symbols (SC for soybeans and corn, SW
for soybeans and wheat) at the head of each of these columns, The four-

1A preliminary determination as to the number of channels to be used must,
of course, be made. Four have been assumed.
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tuple of features (spectral bands) are then rank-ordered based upon
the average of these interclass separability measures. Thus, it can
be seen that bands 1, 9, 11 and 12 were selected as the hest feature
set and bands number 6, 9, 11 and 12 which are the ones most nearly
matching the ERTS channels are second.l

However, by using additional options available with the feature
selection algorithm it is possible to further tailor the band selection
to the classification task. Note that in Figure 19 some of the inter-
class pair separabilities are very large, indicating very obvious sep-
arability; on the other hand, other interclass separability measures
are quite small, It would be desirable to select feature sets so as
to increase the separability of the more difficult interclass pairs
at the expense of the classes with the more obvious separability. In
order to do this the feature selection algorithm has been provided with
an option permitting the imposing of a maximum interclass separability
measure which will be considered for the purpose of rank-ordering the
four-tuples. Figure 20 shows the results of using a maximum of 200.
Note that the preferred feature set now becomes 1, 6, 10 and 12 and that
the ERTS simulated channels 6, 9, 11 and 12 become 55th in ranking.

The validity of this re-ranking is borne out in the difference in
overall accuracy ultimately obtained in the two classifications. Approx-
imately 90Z for the preferred channels 1, 6, 10 and 12 as compared to
approximately 80%Z for the ERTS channels 6, 9, 11 and 12,2

Thus, by being forced to a sub-optimum choice of spectral bands an
overall 10 accuracy loss occured and the increased loss in accuracy
due to data compressions was only an additional 2 or 3 percent,

These results tend to suggest aht the capability to make a proper
selection of sepctral bands from a large set may indeed be far more
important than the effects of a perhaps lower signal-to-noise ratio, a
data compression scheme, and conceivably other system parameters. As a
matter of fact the scheme indicated in Figure 15 whereby in the space-
craft a scanner with many channels is operating but a compression algor-
ithm reduces the dimensionalitv for transmission to earth may provide a
more useful approach. Further investigations into this type of scheme
are under way.

1In the case of an actual satellite however, channel 1 would probably not
be as useful as it appears to be here, since it is well into the blue por-
tion of the spectrum and from space there would be considerable blue
scattering. These results tend to bear out the choice that the 4 ERTS
spectral bands are generally a good set.

2From these results one might tend to conclude that the ERTS channels
which are the best set of bands in general may be considerably sub-
optimum in specific cases.
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MULTI - TEMPORAL ANALYSIS
Scanner Data from June 8 August, 1969

PF24 Run 6900480I
Test Field Classification Accuracy

Figure 6

June August June /7Aug.
€h 3,6,9,12) (36,9,12) (6,9,12 June; I2 Aug)*
No. of
Samples
328i 80.2% 53.6% 86.4%
1738 83.3% 89.6 % 91.8%
396 71.5% —_— 75.5%
693 78.1% _— 67.5%
803% 57.4% 85.8%
Band *Best 4 of the 8 Available by the
52-.55u Divergence Analyser
.62 -.66p
80-1.0u
20-2.6u
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Image Data Registration
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Classification Performonce vs Noise
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GE/LARS Data Compression Study

Original Data Compressed

Figure 13
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MSS Data Compression
Based on Spectral Correlation

Compression Overall Mean Square
Ratio M/N  Performance Error in %
in %
12712 90. | o)
12/76 88.6 1.1
1273 89.5 22
272 60.7 6.6

Spectral Bands for Classification: 40-44, 52-.55, .66-.72
and .80-1.0um

Figure 16
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ERTS

Spectral Bands
.40-.44 7 .55-.58
.44—-.46 8 .58-.62
.46—.48 9 .62-.66 -ERTS
48-.50 |10 .66-.72
.50-.52 Il .72-.80 -ERTS
.52—-.55 12 .80-100 —ERTS

Figure 17
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Spectral Band Selection

Classes R - Red Clover
S - Soybeans A - Alfalfa
O - Oats W- Wheat |
C-Corn Y - Rye

M- Wheat 2 X - Bare Soil

Figure 18
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Individual Class Separability
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2
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