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ABSTRACT

Everman, Wesley J. M.S., Purdue University, December, 2002. The Application
of Remote Sensing for Detection of Plant Reflectance Response to Herbicide
Stress in Corn Cropping Systems. Major Professor: Thomas T. Bauman.

Increased use of site specific management in agriculture and weed
science has led to increased research efforts to map weed populations and the
dynamics of those populations that impact the spectral reflectance properties of
crops. It may be possible to find reflectance response patterns of individual
species that would open the future to a broad expanse of possibilities in the field
of remote sensing and site-specific weed management. To increase the ease of
research being conducted in this area, the impacts of herbicides on corn
reflectance response patterns are being researched. The identification of
herbicides that do not impact the spectral response pattern of corn could be used
for weed control over a large experiment area, with weeds of interest being
established in untreated areas. This would reduce hand-weeding costs required
to study reflectance response patterns of weed/crop population dynamics. PRE
corn herbicides evaluated were alachlor, atrazine, flufenacet + metribuzin,
isoxaflutole, metolachlor, and pendimethalin. POST corn herbicides included
atrazine + crop oil, bromoxynil, dicamba + diflufenzopyr, dicamba, nicosulfuron,
and primisulfuron-methyl.  Treatments were selected for their range of
symptomology as well as their common usage across the Midwestern corn belt.
Multispectral and hyperspectral data were collected over the test area. Ground-
based reflectance data were also collected with a field spectrometer mounted 7-
m above the crop canopy. Spectral properties of the various treatment regimes
were analyzed using SAS procedures and MultiSpec image analysis.




CHAPTER 1

LITERATURE REVIEW




INTRODUCTION

Growing concerns in agriculture regarding public awareness to pesticides
and pest control costs have led to increased efforts to find methods that
maximize pest control and minimize costs and effects on the environment.
Health and environmental concerns, low commodity prices, and weed control
costs have motivated researchers to seek ways to reduce herbicide inputs and
costs (Browner et al., 1993; Fernandez-Cornejo and Jans, 1999). Herbicides,
compared to cultivation, help reduce the labor and time needed for effective
weed management, which can lead to increased economic return for the farmer.
Reduced time and labor requirements for weed control can free resources
needed to expand farming operations (Ashton and Monaco, 1991).

Negative aspects of herbicide use include the health risks associated with
these chemicals. Data accumulated from laboratory animal and human case
studies indicate many pesticides are immunomodulatory and may be health risks
(Blakely et al., 1999). For example, 2,4-D acid can cause severe damage on the
lymphatic organs, thymus and spleen of rats (Kaioumova et al., 2001). The
triazine herbicides can cause reproductive complications in rats and pigs
(Kniewald et al., 1998). Atrazine can affect the reproductive ability of male rats
and ovarian function and endocrine profile of female rats (Cooper et. al., 1996).
Gojmerac et al. (1999) reported delayed oestrus of gilts treated with atrazine
serum. There are significant effects in human health studies as well. First-
trimester miscarriages of spouses of pesticide applicators in the Red River Valley
occur most frequently in the spring during the time when herbicides are applied
(Garry et al., 2002). The use of sulfonylurea and imidazolinone herbicides has
been statistically associated with those miscarriages.
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Herbicidal impacts on the environment, particularly our surface and
groundwater supplies, are another major concern. Battaglin et al. (2000)
detected acetochlor, alachlor, atrazine, cyanazine, and metolachlor in 90% or
more of 129 stream samples in the Midwest. At least one of the 16 sulfonylurea,
sulfonamide, or imidazolinone herbicides was detected above the method
reporting limit of 0.01 pg/L in 83% of 130 stream samples (Battaglin et al., 2000).
Kolpin et al. (2000) found that when herbicide degradates were included in tests,
the frequency of detection approached 90%. Rothstein et al. (1996) analyzed
eight tile lines draining a research field and correlated increased flow rates with
increase atrazine concentration in a stream. Baseline concentrations of atrazine
leaving the field ranged between 0 and 0.4 pg/L, however, immediately following
a 0.8 inch rainfall, 6 days after application of 1.4 kg/ha atrazine, the concentration
reached 34.5 pg/L. Due to these health and environmental concerns more
stringent herbicide regulations could lead to a reduction in the number and
amount of herbicides available in the future.

A growing concern in the agricultural sector is the regulation of atrazine, a
very effective and affordable herbicide used in corn (Zea mays L.). Without
atrazine, weed control costs in corn could increase an estimated $37 per hectare
(Pike et al., 1996). The cost of losing all the triazine herbicides for corn would be
about $45 per hectare annually. Nationally, this would amount to approximately
$680 million per year for the loss of atrazine and approximately $900 million per
year for the loss of all triazines. These figures do not take into account the cost
of additional soil erosion where tillage will be used as an alternative to atrazine.

Consideration must also be given to the application of the herbicides.
Conventional weed control programs generally rely on the assumption of
homogenous distribution of weed species within a given field. This usually
results in the over application of herbicides since much of the field is weed free
(Hughes, 1989; Thornton et al., 1990; Wiles et al.,, 1992). An area of growing
interest is in application procedures that limit herbicide use to only weed infested
areas. The use of remote sensing in locating weed infestations creates the




opportunity for producers to treat only the infested areas of fields. This could
reduce the volume of herbicides used in the environment as well as reduce
herbicide costs. Liliesand and Kiefer (2000) define remote sensing as the
science and art of obtaining information about an object, area, or phenomenon
through the analysis of data acquired by a device that is not in contact with the
object, area, or phenomenon. Although in the broad sense this may encompass
many technologies, researchers in the field of weed science have directed their
attention toward the sensing of light reflectance/absorbance differences. Light
reflectance of plants is typically measured by a sensor that quantifies the amount
of energy being reflected by the plant. Sensors are classified into two broad
categories based on their sensing ability, multispectral and hyperspectral
scanners.

Multispectral scanners operate on the principle of selective sensing of 3-7
spectral bands over a great range of the electromagnetic spectrum (Lillesand and
Kiefer, 2000). The specificity of multispectral scanners range from 300 to
approximately 2400 nm, including the ultraviolet (UV), visible, near-infrared (IR),
mid-infrared, and thermal infrared spectral regions (Lillesand and Kiefer, 2000).

Hyperspectral sensors acquire data in many (>30), very narrow,
contiguous spectral bands throughout the visible, near-IR, mid-IR, and thermal IR
portions of the spectrum. The data collected from 200 or more reflectance bands
enables the construction of an almost continuous reflectance spectrum for every
pixel in the image. Hyperspectral systems can discriminate among earth surface
features that have diagnostic absorption and reflection characteristics over
narrow wavelength intervals that are “lost” within the relatively coarse bandwidths
of the various bands of conventional multispectral scanners (Lillesand and Kiefer,
2000).

The introduction of hyperspectral sensors, and thus the collection of much
more detailed spectral data, provides greater opportunities for extracting useful
information from the data. However, these more detailed data require more
sophisticated data analysis procedures if their full potentials are to be achieved




(Landgrebe, 1999A). Multispectral data are represented quantitatively and
visualized in three principle ways, image, spectral, and feature space. Image
space represents the data in image form, spectral space represents the data as a
function of wavelength, and feature space illustrates how the response in the
different wavelengths relate to each other, i.e. response in a wavelength plotted
against that for the other wavelength.

The use of remote sensing for weed control has increased efforts to
understand weed population dynamics and factors that impact their spectral
reflectance properties. It may be possible to find reflectance response patterns
of individual weed species that would open the future to site-specific weed
management. Classification of weeds in crop and rangeland areas has been
accomplished (Menges et al., 1985; Everitt et al., 1995; Lass et al., 1996; Lass
and Callihan, 1997; Williams and Hunt, 2002; and Vrindts et al., 2002). Menges
et al. (1985) found that discrete weed community areas could be determined by
computer based image analyses with accuracies of 82% for Palmer amaranth
and 81% for johnsongrass in a replicated monoculture plot study. Vrindts et al.
(2002) correctly classified 90% of their remotely sensed data as crop or weed.

Medlin and Shaw (2000) found that simulated site-specific herbicide
management in soybean production systems resulted in higher estimated net
gains than broadcast herbicide management. This held true both for transgenic
and non-transgenic cropping systems. Estimated net gains for site-specific
herbicide management vs. broadcast herbicide management ranged from $13.32
to $29.66 per hectare in non-transgenic soybean, and from $22.15 to $29.45 per
hectare in glyphosate-tolerant soybean.

Although the positive attributes of a site-specific application system seem
endless, many hurdles must be overcome before the adoption of the technology.
One issue that must be overcome is the day to day variability of remotely sensed
data. Radiation reaching the surface of a material is subject to one or more of
several processes, reflection (diffuse, specular), transmission (with refraction), or
absorption compliant to the law of conservation of energy. This interaction of the




radiation with the surface is dependent on both the properties of the radiation as
well as the properties of the material (Suits, 1983). The radiance spectrum of the
sun differs from day to day and place to place, partly due to the changes in the
sun's surface, but in part due to changes of the earth’s atmospheric composition
absorbing part of the sun's radiation at particular wavelengths and the
illumination angle. Due to this variation of incidence spectral radiation, as well as
changes in the earth’s surface characteristics, the radiance spectrum refiected
from earth is highly variable. Therefore, to be able to compare spectral
measurements of surfaces acquired on different days and in different illumination
conditions, a currently nonexistent measure is required that is independent of
illumination variation, or that is calibrated for changing illumination.

A practical problem also remains in how to measure reflectance,
especially for remote sensing data. The measure of reflectance is the
dimensionless ratio of radiation reflected from a surface, to the radiation hitting
that surface. Different radiometric quantities can be ratioed to produce many
reflectance indices with a multitude of names (e.g. fluorescence). Generally the
reflectance of a surface can be measured in three different ways: the bi-
hemispherical reflectance which is measured with an integrating sphere mostly in
a laboratory, the hemispherical-conical reflectance which is measured with a flat
Lambertian reference panel and most commonly utilized in remote sensing
research conducted in the field, and the bi-directional distribution function which
is a theoretical concept and can not be measured in practice (Kimes and
Kirchner, 1982).

A third hurdle that must be overcome prior to widespread use of remote
sensing for weed management is the resolution needed to accurately identify
weeds in crops. The four types of resolution are spatial, spectral, radiometric,
and temporal. These resolution characteristics help to describe the functionality
of both remote sensing sensors and remotely sensed data. Spatial resolution is
the minimum size of terrain features that can be distinguished from the
background in an image (ERDAS, 1999). It is also defined by the area that a




pixel represents in a digital image file (e.g. 4-m by 4-m). Large scale in remote
sensing refers to imagery in which each pixel represents a small area on the
ground. Small scale refers to imagery in which each pixel represents a large
area on the ground.

Spectral resolution refers to the number and width of specific wavelength
intervals in the electromagnetic spectrum to which a sensor or sensor band can
record (ERDAS, 1999). Wide intervals in the electromagnetic spectrum are
referred to as coarse spectral resolution, and narrow intervals are referred to as
fine spectral resolution. Radiometric resolution refers to the dynamic range or
number of possible data values in each band. This is referred to by the number
of bits into which the recorded energy is divided. For 8-bit data, the total intensity
of the energy, from zero to the maximum amount the sensor measures, is broken
down into 256 brightness values. The data file values range from zero, for no
energy return, to 255, for maximum return, for each pixel.

Temporal resolution is a measure of how often a given sensor system
obtains imagery of a particular area, or how often an area can be revisited
(ERDAS, 1999). The temporal resolution of satellites is on a fixed schedule,
which allows for more repetitive views. This revisit capability makes it possible to
use several passes, perhaps covering two or three seasons or multiple years, for
interpretation.

If wide-scale use of remote sensing for weed control is to occur, the
impact of biotic and abiotic stresses on weed and crop reflectance must be
understood. For example, it is unknown whether commonly used herbicides will
impact the reflectance characteristics of tolerant weeds and crops. Plant stress
reflectance sensitivities are generally greatest in the orange and red specitra,
except for peaks in the violet and green spectra that accompany herbicide
damage (Carter, 1993). General plant stresses can be detected by an increase
in reflectance in the 695-725 nm wavelength range. This area is often
overlooked for spectral change detection due to the steep slope of the
reflectance curves in the far-red spectrum often producing an illusion that stress-




induced differences are negligible near 700 nm (Carter and Knapp, 2001). In
addition, Carter (1993) reported the maximum reflectance peak at 409 nm
responds differently for herbicide stress in persimmon than other stressors.
Persimmon showed reflectance sensitivities and differences in wavelength
ranges of 405-409, 519-573, 688-735, 1,384-1,401, and 1,875-1,905 nm with a
maximum near 409 nm when treated with diuron (Carter, 1993).

One of the largest problems facing the remote sensing field, especially
hyperspectral analysis, is that the number of training samples is usually not as
numerous as desired. The number of training samples needed to adequately
define the classes quantitatively, regardless of what discriminant function is used,
grows very rapidly with the number of spectral bands to be used. This suggests
that for a fixed number of training samples there is an optimal measurement
complexity. Too many spectral bands or too many brightness levels per spectral
band are undesirable from the standpoint of expected classification accuracy
(Landgrebe, 1999B). This is known as the Hughes effect.

However, there are ways to reduce or limit this effect. It has been found
that when the accuracy is below optimality due to limited training because of the
Hughes effect described above, a less complex classifier algorithm may provide
increased classification accuracy.

The classification rule that results from using the class conditional
maximum likelihood estimates for the mean and covariance in the discriminant
function, as if they were the true mean and covariance, achieves optimal
classification accuracy only asymptotically as the number of training samples
increases toward infinity. This classification scheme is not optimal when the
training sample is finite. When the training set is small, the sample estimated
covariance is most likely different from the true covariance. In fact, for p
features, when the number of training samples is less than p+1, the sample
covariance is always singular (Landgrebe, 1999B).
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In high dimensional cases, it has been found that feature extraction
methods are especially useful to transform the problem to a lower dimensional
space with the loss of little or no information (Kuo and Landgrebe, 2002).

Recent advances in personal computer storage and processing
capabilities have allowed more researchers to analyze complex images and data
sets. This increase in computer power has also led to the development of more
accurate data analysis techniques and algorithms.

The possibilities for the use of remote sensing as a “weed detection tool”
has increased research efforts to (1) manage monocultures or desired mixed
populations of certain species, and (2) determine the impact of production
practices on the spectral reflectance properties of the crop canopy. Therefore, if
a herbicide can be identified that does not impact the spectral response pattern
of a crop it could be used for weed control over a large experiment area. Weed
patches of interest, with known populations and locations, could be established in
untreated areas. Hand-weeding that is regularly needed to maintain species
compositions would be effectively reduced. Combined with research done to
identify the reflectance response patterns of individual weed species, the stage
would be set for an experiment that would test classification accuracy of weed
compositions in a field setting. This research could allow the integration of
remote sensing with site-specific application technologies for an integrated weed
control system.

The use of this technology could be expanded to commercial applicators
and producers as well. If differences can be consistently be found in how
individual herbicides affect the reflectance of corn, previous herbicide treatments
could be determined and subsequent applications could be planned accordingly.

There is also potential for the use of herbicide identification using remote
sensing to identify areas of misapplication or to find herbicide drift. Specific rate
tests will need to be conducted to determine the spectral response of corn due to

herbicide applications below labeled rates.




10

Therefore the objective of this research is to assist future research
conducted in this area by investigating what impacts pre-emergence herbicides
alachlor, atrazine, flufenacet + metribuzin, isoxaflutole, metolachlor, and
pendimethalin at labeled rates have on corn canopy reflectance. The effects of
post emergence herbicides 2,4-D, atrazine, bromoxynil, dicamba + diflufenzopyr,
nicosulfuron, and primisulfuron-methy! at labeled rates will also be investigated.

These herbicides have been selected due to their common use in the
Midwestern Corn Belt, as well as their wide range of symptomology. No effect is
expected on corn canopy reflectance due to the pre herbicides alachlor, atrazine,
and metolachlor because they are metabolized quickly into inactive compounds,
however some level of injury, buggy whipping or interveinal chlorosis, can occur
when using these herbicides if weather or stress conditions slow growth and the
herbicide is accumulated. Spectral differences in corn treated with flufenacet +
metribuzin are anticipated damage to corn plants by inhibiting root and shoot
growth and inhibiting photosynthesis. Isoxaflutole causes bleaching and can
cause whitening of corn leaves when environmental conditions are right,
potentially causing spectral reflectance changes. Pendimethalin can possibly
cause a spectral change by inhibiting root development in corn and by causing
reddish or purple leaf margins on the plant.

Atrazine, nicosulfuron, and primisulfuron-methyl were selected as post
emergence treatments because they generally do not injure the corn plants, and
should not alter the spectral response corn. Atrazine can cause yellow leaf tips
or interveinal chlorosis if weather conditions are right or oil is used in hot
weather. Nicosulfuron can cause yellow flash on the leaf whorl, chorosis, buggy-
whipping, or purpling of the stem and leaves if corn is under stress or the
herbicide is applied at the wrong growth stage. Bromoxynil was selected due to
its tendency to cause oblong, oval shaped lesions on the leaves of corn plants.
This can be a result of weather conditions changing from cool to hot weather
before application, thinning the leaf cuticle. A spectral difference should be
easily detected if the spectral response of the leaves is changed due to the
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lesions. 2,4-D is an auxin growth regulator and can stress and affect the growth
of corn plants by onion-leafing the new leaves or bending the stem. These
actions would change the reflectance properties on the plant and shouid be
detectable using remote sensing methods. Dicamba + diflufenzopyr is a growth
regulator and should create similar spectral changes as the 2,4-D treatment.
These symptoms can sometimes be attributed to late application, soil type, or
shallow corn planting.
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INTRODUCTION

Growing concerns in agriculture regarding public awareness to pesticides
and pest control cost has led to increased efforts to find methods that maximize
pest control and minimize costs and effects on the environment. Health and
environmental concerns, low commodity prices, and weed control costs are the
basis for researchers seeking ways to reduce herbicide inputs and costs
(Browner et al., 1993; Fernandez-Cornejo and Jans, 1999).

Herbicides, compared to cultivation, help reduce the labor and time
needed for effective weed management, which can lead to increased economic
return for the farmer. Reduced time and labor requirements for weed control can
free resources needed to expand farming operations (Ashton and Monaco,
1991).

A growing concern in the agricultural sector is the regulation of atrazine, a
very effective and affordable herbicide used in corn. Without atrazine, weed
control costs in corn could increase an estimated $37 per hectare (Pike et al.,
1996). The cost of losing all the triazine herbicides for corn would be near $45
per hectare annually. Nationally, this would amount to approximately $680
million per year for the loss of atrazine and approximately $900 million per year
for the loss of all triazines. These figures do not take into account the cost of
additional soil erosion where tillage will be used as an alternative to atrazine.
Therefore, other ways of reducing weed control costs should be explored.

Conventional weed control programs generally rely on the assumption of
homogenous distribution of weed species within a given field. This usually
results in the over application of herbicides since much of the field is weed free
(Hughes, 1989; Thornton et al., 1990; Wiles et al., 1992). An area of growing
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interest is in application procedures that limit herbicide use to only those weed
infested areas. The use of remote sensing in locating weed infestations creates
the opportunity for producers to treat only the infested areas of fields. This could
reduce the volume of herbicides used in the environment as well as reduce
herbicide costs. Lillesand and Kiefer (2000) define remote sensing as the
science and art of obtaining information about an object, area, or phenomenon
through the analysis of data acquired by a device that is not in contact with the
object, area, or phenomenon. Although in the broad sense this may encompass
many technologies, researchers in the field of weed science have directed their
attention toward the sensing of light reflectance/absorbance differences. Light
reflectance of plants is typically measured by a sensor that quantifies the amount
of energy being reflected by the plant. Sensors are classified into two broad
categories based on their sensing ability, multispectral and hyperspectral
scanners.

The use of remote sensing for weed control has increased efforts to
understand weed population dynamics and factors that impact their spectral
reflectance properties. It may be possible to find reflectance response patterns
of individual weed species that would open the future to site-specific weed
management. Classification of weeds in crop and rangeland areas has been
accomplished (Menges et al., 1985; Everitt et al., 1995; Lass et al., 1996; Lass
and Callihan, 1997; Williams and Hunt, 2002; and Vrindts et al., 2002). Menges
et al. (1985) found that discrete weed community areas could be determined by
computer based image analyses with accuracies of 82% for Palmer amaranth
and 81% for johnsongrass in a replicated monoculture plot study. Vrindts et al.
(2002) correctly classified 90% of their remotely sensed data as crop or weed.
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Medlin and Shaw (2000) found that simulated site-specific herbicide
management in soybean production systems resulted in higher estimated net
gains than broadcast herbicide management. This held true both for transgenic
and non-transgenic cropping systems. Estimated net gains for site-specific
herbicide management vs. broadcast herbicide management ranged from $13.32
to $29.66 per hectare in non-transgenic soybean, and from $22.15 to $29.45 per
hectare in glyphosate-tolerant soybean.

If wide-scale use of remote sensing for weed control is to occur, the
impact of biotic and abiotic stresses on weed and crop reflectance must be
understood. For example, it is unknown whether commonly used pre-emergence
herbicides will impact the reflectance characteristics of tolerant weeds and crops.
Plant stress reflectance sensitivities are generally greatest in the orange and red
spectra, except for peaks in the violet and green spectra that accompany
herbicide damage (Carter, 1993). General plant stresses can be detected by an
increase in reflectance in the 695-725 nm wavelength range. This area is often
overlooked for spectral change detection due to the steep slope of the
reflectance curves in the far-red spectrum often producing an illusion that stress-
induced differences are negligible near 700 nm (Carter and Knapp, 2001). In
addition, Carter (1993) reported the maximum reflectance peak at 409 nm
responds differently for herbicide stress in persimmon than other stressors.
Persimmon, when treated with diuron, showed reflectance sensitivities and
differences in wavelength ranges of 405-409, 519-573, 688-735, 1,384-1,401,
and 1,875-1,905 nm with a maximum near 409 nm (Carter, 1993).

The possibilities for the use of remote sensing as a “weed detection tool”
has increased research efforts to (1) manage monocultures or desired mixed
populations of certain species, and (2) determine the impact of production
practices on the spectral reflectance properties of the crop canopy. Therefore, if
a herbicide can be identified that does not impact the spectral response pattern
of a crop it could be used for weed control over a large experiment area. Weed
patches of interest, with known populations and locations, could be established in




19

untreated areas. Hand-weeding that is regularly needed to maintain species
compositions would be reduced. Combined with research done to identify the
reflectance response patterns of individual weed species, the stage would be set
for an experiment that would test classification accuracy of weed compositions in
a field setting. This research could allow the integration of remote sensing with
site-specific application technologies for an integrated weed control system.
Therefore, the objective of this research is to assist future research
conducted in this area by investigating what impacts PRE applied herbicides
have on corn canopy reflectance. The herbicides alachlor, atrazine, flufenacet +
metribuzin, isoxaflutole, metolachlor, and pendimethalin were selected for use
due to their common use in the Midwestern Corn Belt, as well as their wide range
of symptomology. No effect is expected on corn canopy reflectance due to the
alachlor, atrazine, and metolachlor because they are metabolized quickly into
inactive compounds, however some level of injury, buggy whipping or interveinal
chlorosis, can occur when using these herbicides if weather or stress conditions
slow growth and the herbicide is accumulated. Spectral differences in corn
treated with flufenacet + metribuzin are anticipated damage to corn plants by
inhibiting root and shoot growth and inhibiting photosynthesis. Isoxaflutole
causes bleaching and can cause whitening of corn leaves when environmental
conditions are right, potentially causing spectral reflectance changes.
Pendimethalin can possibly cause a spectral change by inhibiting root
development in corn and by causing reddish or purple leaf margins on the plant.
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MATERIALS AND METHODS

Two field experiments were established at the Agronomy Center for
Research and Education near West Lafayette, Indiana to determine the effect of
preemergence herbicides on canopy reflectance of corn.  Six herbicide
treatments were evaluated and compared to an herbicide-free hand-weeded plot
(i.e. untreated control) and a bare ground plot for calibration purposes. All
treatments were maintained weed-free by hand weeding throughout the growing
season. The experimental design was a randomized complete block with four
replications. Individual plot dimensions were approximately 6 by 6 meter. The
experiments were planted on May 24, 2002 (referred to as early experiment) and
June 17, 2002 (referred to as late experiment). Preemergence herbicides were
applied on the early experiment on May 27, 2002, and on the late experiment on
June 18, 2002. No post emergence herbicides were used.

Preemergence corn herbicide treatments evaluated were 3.6 kg a.i/ha
acetochlor, 2.2 kg a.i/ha atrazine, 880 g a.i/ha flufenacet + 220 g a.i/ha
metribuzin, 120 g a.i./ha isoxaflutole, 2.1 kg a.i./ha metolachlor, and 2.0 kg a.i./ha
pendimethalin. These herbicides were selected to represent the majority of
chemicals used in the corn production systems throughout the Midwestern Corn
Belt. These herbicides also allowed for a broad range of active ingredients and
modes of action to be used on the plants with the potential to create a broad
range of plant reflectance response patterns.

A boom truck-mounted field GER 2600 field spectrometer, also known as
a spectroradiometer, was used to collect ground-based hyperspectral data
approximately 5 weeks after planting (June 28, 2002) for the early experiment
and approximately 4 weeks after planting (July 15, 2002) for the late experiment
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on clear days with less than 5% cloud cover. This spectrometer collects 640
bands of data in 1.5 nm increments. Using both silicon and lead sulfide sensors,
a spectral range from 350 nm to 2500 nm was obtained. Of the 640 bands of
data collected, approximately 500 bands outside of the major water absorption
bands were useable.

A highly diffuse, highly reflective reflectance panel was used to measure
the potential radiance from the area immediately prior to collecting the radiance
from the crop canopy. This panel was a 60 by 60 cm Labsphere panel made
with spectralon (Robinson and Biehl, 1979). The boom was extended over the
crop canopy at a height of 7 meters, and with the GER 2600 field of view of 9
degrees, the GER collected data from a 1.1 m? area at the top of the canopy.
The reflected radiance was measured from the canopy to determine the spectral
reflectance. The truck and boom were positioned so that shadows were
eliminated over the plot area.

Therefore, five measurements were collected for each plot, three
measurements with the sensor centered over a row of corn and two collections
taken with the sensor centered between rows (Figure 2.1).

Daughtry et. al. (1982) found more measurements are required at low
altitudes to obtain a representative sample of the canopy reflectance because
reflectance measurements tended to be erratic as the sensor was moved across
the rows. Therefore, measurements taken at half row spacing (on and off row)
were more efficient and representative of canopy reflectance than random
sampling methods and averaging of measurements across the plot.

This method also creates a more representative canopy reflectance for the
whole plot than if all samples were taken over the crop and none were taken
between rows. This is particularly true since during the early development of the
crop, there is not complete canopy closure and the soil can have a large impact

on the reflectance values.
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Figure 2.1. Placement of sensor for measurements in each plot showing on and off row
placement.

The measurements were converted to reflectance using a scene to

reference comparison with linear interpolation between two reference

observations using the formula:
Rs(6,A) = [Vs (B,A) - ds (M)]/ V/' (B,A) * R (8,A)

Where: V' (8,A) = Viy (B,A) —dyy (A) + [{ V2 (B,A) - dr2 () } —{ Vi1 (B,A) - dri (A) }]
* ts — tr / to— tr1

Where:
Vs (8,A) = GER 2600 response over corn canopy for solar illumination angle (6)
and wavelength (A).

Vi1 (8,A) = GER 2600 response over spectralon reflectance panel collected
before corn canopy observation.

V2 (8,A) = GER 2600 response over spectralon reflectance panel collected
after corn canopy observation.
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Rs (8,A) = Reflectance of corn canopy for solar illumination angle (6) and
wavelength (A).

R: (6,\) = Reflectance of spectralon panel for illumination angle (6) and
wavelength (A).

ds, di1, dr2 = Dark levels of GER 2600, all = 0.

ts, tr1, to = Time for data collection for corn canopy, reference before and
reference after, respectively.

Radiance data images were also collected from aerial flights obtained by
Agri-Vision' at an approximate altitude of 2,400 meters. The images were
composed of three bands of reflectance with the spectral ranges for the bands
were 510 — 590 nm 635 — 705 nm, and 736.5 — 863.5 nm for band 1, 2, and 3
respectively. The numerical reflectance data were extracted for analysis from the
aerial images using MultiSpec®. When aerial and ground-based data were
compared, only the wavelengths common to both the aerial and ground-based

data sets were used for analyses.

Data Analysis — Hyperspectral/Ground-based Data
Discriminant Analysis using SAS®
The 500 band hyperspectral data set was analyzed using PROC
STEPDISC and PROC DISCRIM (Medlin et al., 2000). PROC STEPDISC was
used first to determine if the reflectance properties of plots treated with herbicide
were different than the reflectance properties of the untreated check, then
second to select the reflectance bands important for differentiating between a

pair-wise comparison of each herbicide treatment and the untreated check.
PROC DISCRIM was then used to develop a model (from the bands selected
with PROC STEPDISC) for classifying the plots as herbicide treated or untreated,
and to determine the classification accuracy of the model. Discriminate analysis

! Agri-Vision, Columbus, Indiana 47201.
2 MultiSpec, West Lafayette, IN 47907.
3 SAS Institute Inc., SAS Campus Drive, Cary, NC 27513.
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techniques (SAS, 1992) were used to identify and model the reflectance of up to
twelve spectral bands from the ground-based data most useful for differentiating
between individual herbicide treatments and untreated plots. The models were
used to compare the impact of each herbicide treatment on the crop’s spectral
reflectance, relative to the unireated check. Both the resubstitution and the
cross-validation (leave-one-out) methods of checking classification accuracies
were calculated. Cross-validation summaries of classification results were used

to report classification accuracies of the ground-based and aerial analyses.

Analysis Using MultiSpec

As a second means of analyzing the hyperspectral data collected with the
GER spectrometer, these data were converted into .bip (band interleaved by
pixel) image files using Matlab®. The image files were then analyzed using
remote sensing techniques to determine classification effectiveness and

treatment separability using MultiSpec (Figure 2.2).

Each of the five observations per plot was represented as a pixel,
positioned on-off-on-off-on the rows of corn. Cluster maps, created using the
isodata clustering algorithm (within eigenvector volume, six to eight clusters, and
98% convergence) within MultiSpec, were compared to treatment maps and plot
plans to determine if any initial correlation or separation between plots was
evident. These correlations or differences were then used to help in training and
test sample determination for a supervised classification.

Several factors were controlled in the MultiSpec classification analysis.
First, the number of bands was reduced to either (1) the bands included in the
range of the multispectral aerial image bands, a reduction in the number of bands
from 640 to 189 bands, or (2) the bands selected by the SAS STEPDISC
procedure (Table 2.1).

* The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098




25

! ~ Cluster
' (Unsupervised Classification) |

‘ Select Training &
Test Samples

: Feature

Extraction

Figure 2.2. Diagram of the classification process used to analyze images in MultiSpec.

The high dimensionality of the data warranted band reduction to avoid the
Hughes phenomenon. The Hughes phenomenon is a decrease in the accuracy
of statistics estimation as dimensionality increases, which leads to a decline in
the accuracy of classification (Figure 2.3). Although increasing the number of
spectral bands or dimensionality potentially provides more information about
class separability, this positive effect is diluted by poor parameter estimation. As
a result, the classification accuracy first grows and then declines as the number

of spectral bands increases (Kuo and Landgrebe, 2001).
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Figure 2.3. Concept of the Hughes Effect with wavelengths on the x-axis, mean recognition
accuracy on the y-axis, and number of training samples next to the representative curve.
(Landgrebe, 1999)

A leave—one-out covariance (LOOC) matrix was used for all
classifications. LOOC is a method used to estimate the sample covariance for
those cases when the number of training samples for a class is equal to the
number of channels being used or fewer. This estimator examines the sample
covariance and the common covariance estimates, as well as their diagonal
forms, to determine which would be most appropriate.

The value of the mixing parameter is selected by removing one sample,
estimating the mean and covariance from the remaining samples, then
computing the likelihood of the sample which was left out, given the mean and
covariance estimates. Each sample is removed in turn, and the average log
likelihood is computed. Several mixtures are examined by changing the value of
the mixing parameter then the value that maximizes the average log likelihood is

selected.
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Though an estimated covariance matrix is ordinarily singular and therefore
not usable when the number of samples used to estimate it is less than or equal
to the number of features, the LOOC returns a usable covariance matrix estimate
when the number of samples available is at least three or more (Landgrebe and
Biehl, 2001).

Training and test class selection was done two ways to evaluate the affect
samples had on classification accuracy. For the first classification, the left three
pixels of the five observations per plot were used to train the classifier. The right
three pixels of the plot were used as the test samples to test the accuracy of the
classifier. The center pixel was used in both the training and test samples to
include more vegetation to influence the classification. The classification
accuracies of the left and right training classifications were averaged together to

give accuracy for the whole plot (Table 2.2).

Data Analysis — Multispectral/Aerial Data
Discriminant Analysis using SAS _

The multispectral data set with three bands of aerial reflectance data were
analyzed using PROC STEPDISC and PROC DISCRIM (Mediin et al., 2000).
Twenty-five reflectance values representing the pixels totally contained within the
plot, to avoid edge effect, were averaged together by band to get a composite
pixel value for each plot. PROC STEPDISC was used first to determine if the
reflectance properties contained in the bands of reflectance could be used to
differentiate between plots treated with herbicide and the untreated check, then
second to select the reflectance bands important for this differentiation process.
PROC DISCRIM was then used to develop a model (from the bands selected
with PROC STEPDISC) for classifying the plots as herbicide treated or untreated,
and to determine the classification accuracy of each model.

The STEPDISC procedure performs a stepwise discriminant analysis to
select a subset of the quantitative variables for use in discriminating among the
classes using forward selection, backward elimination, or stepwise selection
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(SAS, 1992). Stepwise selection begins with no variables in the model. At each
step, the model is examined. If the variable(s) in the model that contributes least
to the discriminatory power of the model fails to meet the criterion to stay, it is
removed. Otherwise, the variable not in the model that contributes most to the
discriminatory power is entered into the model. When all variables in the model
meet the criterion to stay and none of the other variables meet the criterion to
enter, the stepwise selection process stops (SAS, 1992).

Analysis Using MultiSpec

Aerial images were also analyzed in MultiSpec. The images did not have
to go through the band selection required for the GER data since the data
consisting of only three bands. Training and test sample selection differed as
well. For the aerial data, 25 pixels in the center of each plot were selected to
reduce the edge effect from neighboring treatments. Only data from one
replication were used to train the classifier, while data from the other three
replications were used for test samples.

Classification was done using quadratic maximum likelihood, Fisher linear
likelihood, and Spectral Angle Mapper (SAM) classification algorithms in
MultiSpec, listed in decreasing order of classifier complexity. The quadratic
maximum likelihood classifier uses a discriminant function, which includes the
means and covariance estimates for each class. A pixel is assigned to the class
whose distribution function gives the highest likelihood for that pixel belonging to
it. Fisher linear likelihood uses the same principal as maximum likelihood,
however it uses the common covariance matrix from all the classes instead of the
class covariance matrix from each class. Spectral Angle Mapper (SAM) is a
correlation classifier used to compare the shape of a sample’s spectral response
to the mean for each training class using a correlation coefficient and ignoring the
absolute difference or offset between the spectral response curves. All the
methods of classification were examined for the algorithm with the highest
reference and Kappa Statistic accuracy ratings.
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For each classification, two accuracies were given, reference and
reliability. The reference accuracy represented how often the treatment was
correctly classified in a pair-wise comparison with the untreated check. The
reliability accuracy percentage indicates how accurate the classifier is at
identifying the treatment. Reference classification accuracy near 50% indicates a
treatment is virtually indistinguishable from the untreated check (i.e. 50% of the
time the treated plots were classified as untreated) and reliability accuracy near
50% indicates the untreated check is nearly indistinguishable from the treatment
(i.e. the same number of treated and untreated plots were classified as treated).
For comparison purposes, the reference accuracy will be used when discussing
classification results. The Kappa Statistic is an accuracy based upon analysis of
the classification matrix’s major diagonals, which indicates actual agreement
between reference & classified data, and the row and column totals, which
indicates chance agreement, i.e. it is a measure of how much better the
classification was compared to a random classifier. Kappa Statistic accuracies
were characterized by Landis & Kock (1977) into three groups based on
percentages. Greater than 80% indicates strong agreement, 40 — 80% means
moderate agreement, and less than 40% implies poor agreement.
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RESULTS

Analysis of Hyperspectral/Ground-based Data

In Early experiment, plots treated with metolachlor could not be separated
from the untreated plots using STEPDISC methods (Table 2.1). This indicated
any change in the reflectance properties of corn treated with metolachlor were
undetectable using these statistical procedures. The reflectance properties of
corn treated with atrazine, isoxaflutole, pendimethalin, alachlor, or flufenacet +
metribuzin were altered enough to allow those plots to be separable from the
untreated check using discriminant analysis procedures in SAS. Atrazine,
pendimethalin, alachlor, and flufenacet + metribuzin treated plots were classified
as such with 100% accuracy in pair-wise comparisons with the untreated check
in the early experiment (Table 2.2). Plots treated with isoxaflutole were correctly
classified 75% of the time.

Using the Fisher linear discriminant classification method in MultiSpec,
changes in the spectral responses of alachlor, atrazine, isoxaflutole, metolachlor,
and pendimethalin treated plots were detectable and separable with 75% to 96%
accuracy (Table 2.2).

Classification accuracies were generally lower for the quadratic maximum
likelihood classifier or the correlation (Spectral Angle Mapper) classifier than for
the SAS discriminant or Fisher linear discriminant classifications. In general,
quadratic maximum likelihood classifications did not reproduce similar resuits to
the SAS discriminant analysis. [n addition, all the Kappa Statistics for the
quadratic maximum likelihood classifier were below 40%, which makes the

usefulness of the accuracies suspect for treatment separability.
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Flufenacet + metribuzin treated plots were highly separable (100%) using
discriminant analysis techniques in SAS, and only marginally separable (42%,
17%, or 42%) using Fisher's linear discriminant analysis, quadratic maximum
likelihood classification, or correlation classification techniques, respectively.
Flufenacet + metribuzin has quadratic maximum likelihood and correlation
classification reference accuracies of 17% and 42%, therefore, it is virtually
indistinguishable from the untreated check, using these analytical methods.

The treatment most difficult to distinguish from the untreated check was
metolachlor. The metolachlor treatment was inseparable with discriminant
analysis techniques in SAS and had classification accuracies of 92%, 92% (23%
Kappa), and 58% with Fisher's linear discriminant analysis, quadratic maximum
likelihood classification, and correlation classification techniques, respectively.
Therefore, with the low Kappa Statistic for the quadratic maximum likelihood
classification, three out of four analysis procedures rendered metolachlor virtually
indistinguishable from the untreated check.

in the late experiment, when the data were analyzed with PROC
STEPDISC, none of the treatments were found to be separable from the
untreated (Table 2.2). However, when the data were analyzed using MultiSpec,
results similar to early experiment in 2002 were obtained. Fisher linear
discriminant classification had the highest overall classification accuracy (Table
2.2). Isoxaflutole treated plots were inseparable using SAS discriminant analysis
techniques, and had low Fisher's, quadratic maximum likelihood, and correlation
classification accuracies, 58%, 42%, and 56% respectively. Therefore, no
classifiers were able to separate isoxaflutole from the untreated. The low
reliability accuracies or Kappa Statistics (below 40%) for quadratic maximum
likelihood and correlation classification indicate that those classifiers had difficulty
distinguishing between treated and untreated plots. Once again, metolachlor
treated plots were not separable from the untreated using discriminant analysis
methods in SAS. Results from the MultiSpec analysis were 92%, 75%, and 67%
reference accuracies for Fisher's, quadratic maximum likelihood, and correlation
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classifications, respectively, however, low reliability accuracies for Fisher linear
discriminant (58%) and correlation (53%) classifications indicate approximately
50% of the pixels classified as metolachlor were in fact untreated. Additionally,
the low Kappa Statistics indicate the untreated checks could not be classified
separately from metolachlor, therefore, we can conclude that the reflectance of
the corn canopy was virtually unchanged from the preemergence metolachlor
application.

For the two experiments, the results using the quadratic maximum
likelihood classifier did not show similarities to the SAS STEPDISC procedure
(Table 2.2). Low Kappa Statistics across all treatments of both experiments
indicate a low ability to distinguish between treated and untreated when using the
quadratic classifier. Fisher linear discriminant classification had high Kappa
Statistics across most treatments in both experiments, indicating classifications
that are robust (Table 2.2). For the early experiment in 2002, Fisher linear
discriminant classification of metolachlor had a Kappa Statistic of 83% lending
credibility to the classification. This result is considerably different from the late
experiment in 2002 where metolachlor treated plots were similar in reflectance to
the untreated check across all analytical procedures.

Accuracies for the correlation classification were low compared to resuits
using the Fisher classification. Low reference accuracy combined with low
reliability and Kappa Statistics make the correlation classification more like the
SAS STEPDISC results. The reference accuracies indicate there was difficulty
discriminating treated plots from untreated plots and reliability accuracies indicate
difficulty in discriminating the untreated plots from the treated plots (Table 2.2).

Using SAS for Band Selection and MultiSpec for Data Analysis
To determine the accuracy of the band selection method in SAS, the
bands selected by STEPDISC in the early experiment in 2002 were used to
classify the image created from that data in MultiSpec (Table 2.3). Metolachlor
was not separable using discriminant analysis techniques in SAS, so it was left
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out of the MultiSpec classification. Using only those reflectance bands selected
by STEPDISC, classification accuracies with Fisher linear discriminant
classification were similar to the SAS techniques, however the treatments also
had low Kappa Statistics (Table 2.3), which indicates low agreement in the
classification. This is more like the SAS analysis of the late experiment in 2002,
where none of the treatments was separable from the untreated.

To determine if bands from one experiment can be used to classify data
from another experiment, hyperspectral ground-based wavelengths selected by
the SAS models for the early experiment were used to classify the hyperspectral
ground-based data from the late experiment using MultiSpec.

Reference accuracies using Fisher linear discriminant, quadratic
maximum likelihood, and correlation classifications were low, from 46% to 75%,
for all pair-wise comparisons. Likewise, reliability accuracies using the MultiSpec
classifiers for all pair-wise comparisons ranged from a low of 45% to a high of
77% (Table 2.3) indicating very little separation from the untreated plots. These
accuracies, combined with Kappa Statistics all below 50%, indicate there is
minimal separability between the treatments and the untreated checks when
using bands selected for the early experiment to classify data from the late
experiment. This is also supportive of the results of the SAS discriminant
analysis for the late experiment that no treatments are separable. It is possible
that the treatments were separable in the early experiment, but were not in the

late experiment due to environmental factors.

Analysis of Aerial Collected Data
Multispectral reflectance data were analyzed using SAS PROC
STEPDISC and PROC DISCRIM to focus on only those bands useful in class
discrimination. Plots treated with flufenacet + metribuzin were correctly identified
75% of the time in the early experiment (Table 2.4). Atrazine, metolachlor,
isoxaflutole, pendimethalin, and alachlor treatments could not be separated from
the untreated plots using SAS techniques in either experiment (Table 2.4).
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All treatments were classified using a linear discriminant function in SAS
to cross-validate the stepwise discrimination for the early experiment (Table 2.5).
Isoxaflutole (75%) and the bare soil (100%) were the only treatments correctly
classified when all treatments were analyzed together (Table 2.5). However, in
pair-wise classifications isoxaflutole was not separable from the untreated. It is
also notable that flufenacet + metribuzin was not separable when all classes
were used for SAS analysis, but was separable in a pair-wise classification with
the untreated.

Fisher linear discriminant and correlation classifications of aerial data
collected from the early experiment produced no Kappa Statistics over 50%,
indicating alachlor, atrazine, flufenacet + metribuzin, metolachlor, and
pendimethalin treatments were practically identical to the untreated plots with this
analysis (Table 2.4). Isoxaflutole had Kappa Statistics of 48, 54, and 45% and
reference classification accuracies of 61, 84, and 48% for Fisher, quadratic
maximum likelihood, and correlation classifiers, respectively.  Therefore,
isoxaflutole was separable using three of the four classification methods (78%
reliability accuracy for correlation classification). This shows some similarity to
the cross-validation of the aerial data in SAS for all classes (Table 2.4).

SAS discriminant analysis techniques failed to show treatments to be
separable from the untreated for the late experiment (Table 2.4). Similarities
between the SAS discriminant analysis and the MultiSpec classifications were
apparent (Table 2.4). For the Fisher linear discriminant, quadratic maximum
likelihood, and correlation classifications, all treatments had a Kappa Statistic
below 45%, and Fisher linear discriminant classification had reference
classification accuracies near or below 50% for alachlor, atrazine, isoxaflutole,
metolachlor, and pendimethalin. Therefore, all treatments were inseparable from

the untreated MultiSpec classifiers were used.
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DISCUSSION

Analysis of the hyperspectral ground-based data can be used for
separating treated corn from untreated corn. SAS techniques and Fisher linear
discriminant classifications seem the most capable of finding differences in
spectral properties. The quadratic maximum likelihood classifier may be too
complex with the statistics becoming confounded with the high dimensional data
with limited training samples. Aerial data was not useful for separating treated
corn from untreated corn. This is most likely due to the flights coming later in the
growing season than the hyperspectral ground-based data collection. Most of
the herbicide would have been metabolized by the corn plants by then, and any
symptoms present would have disappeared.

Alachlor, atrazine, and metolachlor treatments were not expected to affect
the spectral properties of corn, however, alachlor and atrazine had an effect. In
general, the reflectance properties of metolachlor were unchanged compared to
the reflectance properties of the untreated check. Excluding Fisher linear
discriminant classification, this was the case with every analytical procedure
used, whether hyperspectral or multispectral data were used in the analysis, and
for both the early experiment and the late experiment. These results are similar
to what was expected based on metabolism by the corn plant and mode of
action.

Alachlor was expected to have a similar effect on the reflectance of the
corn as metolachlor, however, alachlor was separable using Fisher linear
discriminant and SAS techniques to analyze the early experiment data, but was
virtually identical to the untreated using SAS techniques, quadratic maximum

likelihood, and correlation classifiers for the late experiment.
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Atrazine treated plots were separable using the hyperspectral ground
based data, but not separable when the aerial image data was used. The effect
of atrazine on reflectance may be on leaf level and not on an overall canopy
level, unless environmental conditions are right as a symptom of atrazine can be
stunted growth patches in a field.

Surprisingly, isoxaflutole was only separable from the untreated when
SAS techniques and Fisher linear discriminant classification were used to
analyze the hyperspectral data. None of the other classification methods could
separate isoxaflutole treated plots from the untreated plots. The warm weather
combined with average rainfall allowed for normal growing conditions for both
experiments and did not resuit in any bleached corn, which would have
influenced the spectral properties of corn.

Flufenacet + metribuzin impacted the reflectance properties of the plots
with one method of classification in both trials and in the hyperspectral and
multispectral data sets. This spread of separability across experiments and data
types indicates factors have an influence on spectral change in a corn plan when
flufenacet + metribuzin are absorbed. These may be variable due to
environmental factors, amount of herbicide absorbed, or metabolism of the
herbicide.

Pendimethalin treated plots in the early experiment were separable from
the untreated plots for all classification methods except quadratic maximum
likelihood classification. Pendimethalin plots were also separable in the late
experiment using Fisher linear discriminant classification. The plots were not
separable, however, when the aerial data was used. The plant would have
recovered from any effects on the root system by this time in the season.

The results show that hyperspectral data may prove to be a useful tool in
the future if wavebands specific to herbicide treatments can be found. This could
be used for insurance purposes, herbicide use surveys, or for herbicide misuse
cases. Spectral libraries could be developed for use by commercial applicators
and crop consultants to use for recommendations based on previous
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applications. Commercial applicators and insurance companies could use
spectral tendencies to determine misapplications or drift concerns, eliminating
the need for costly chemical analysis of plant tissues, and relieve confusion over
symptomologies common to several herbicide families.

Ground-based hyperspectral data was much more sensitive to minor
changes brought about by these herbicide applications than muitispectral data
collected from the aerial platform. Therefore, multispectral aerial data may be
useful in future research where minor changes brought about by herbicide

applications would not confound the data of interest.
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Table 2.1. Wavelengths used by the SAS PROC DISCRIM procedure to separate treatments in pair-wise comparisons with the untreated
check in the PRE early experiment. Models could not be formed to differentiate metolachlor from the untreated check.

Treatment Bands used in SAS DISCRIM procedure (micrometers)
Alachlor 0.76, 0.893, 0.997

Atrazine 0.472, 0.585, 0.66, 0.76, 1.069, 2.015

Flufen.+metr. 0.76, 0.763

Isoxaflutole 1.332, 1.345

Metolachlor ND?

Pendimethalin 0.397, 0.519, 0.576, 0.701, 1.168
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Table 2.2. Classification accuracy of pair-wise comparisons of preemergence herbicide treatments used in corn based on reflectance
properties using various analysis techniques with bands included in multispectral image bands on ground collected reflectance data.

Herbicide
Exp. Analysis_Procedure Alachlor Atrazine Flufen.+Metr. |soxaflutole Metolachlor Pendimethalin
Early DA?® PROC DISCRIM % 100 100 100 75 ND°® 100
FLD® Reference Accuracy % 96 88 42 75 92 100
Kappa Statistic % 79 82 24 75 83 96
QML® Reference Accuracy % 50 100 17 21 92 29
Kappa Statistic % 28 26 13 11 23 26
CC?®  Reference Accuracy % 79 54 42 79 58 83
Kappa Statistic % 50 24 24 50 28 50
Late DA PROC DISCRIM % ND ND ND ND ND ND
FLD Reference Accuracy % 67 83 92 58 92 92
Kappa Statistic % 54 54 71 67 46 63
QML Reference Accuracy % 42 58 83 42 75 33
Kappa Statistic % 17 44 33 11 71 8
CC Reference Accuracy % 50 50 58 56 67 67
Kappa Statistic % 17 0 8 21 18 17

# Discriminant analysis using the PROC STEPDISC and PROC DISCRIM procedures in SAS.

® Fisher linear discriminant classification using MultiSpec.

° Quadratic maximum likelihood classification using MultiSpec.

¢ Correlation classification (Spectral Angle Mapper) using MultiSpec.

® Treatment could not be differentiated from the untreated check using the discriminant analysis procedures in SAS.
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Table 2.3. Ciassification accuracy of pair-wise comparisons of preemergence herbicide treatments used in corn based on reflectance
properties using various analysis techniques with bands used in SAS analysis from the early experiment ground collected reflectance data.
Metolachlor is left out of the table because models couid not be formed in SAS to separate it from the untreated check.

Herbicide
Exp. Analysis Procedure Alachlor Atrazine  Flufen.+Metr. Isoxaflutole Pendimethalin
Early DA? PROC DISCRIM % 100 100 100 75 100
FLD® Reference Accuracy % 71 71 75 71 63
Kappa Statistic % 40 46 40 38 35
QML ® Reference Accuracy % 71 83 75 75 63
Kappa Statistic % 40 66 32 28 66
CC d Reference Accuracy % 58 58 42 75 Al
Kappa Statistic % 19 15 0 54 44
Late DA PROC DISCRIM % ND ND ND ND ND
FLD Reference Accuracy % 46 58 50 71 50
Kappa Statistic % 4 9 10 48 10
QML Reference Accuracy % 54 63 54 58 54
Kappa Statistic % -4 26 -4 45 31
CcC Reference Accuracy % 67 54 54 75 67
Kappa Statistic % 33 -7 15 25 33

# Discriminant analysis using the PROC STEPDISC and PROC DISCRIM procedures in SAS.

® Fisher linear discriminant classification using MultiSpec.

° Quadratic maximum likelihood classification using MultiSpec.

4 Correlation classification (Spectral Angle Mapper) using MultiSpec.

® Treatment could not be differentiated from the untreated check using the discriminant analysis procedures in SAS.
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Table 2.4. Classification accuracy of pair-wise comparisons of preemergence herbicide treatments used in corn based on reflectance

properties using various image analysis techniques and SAS analysis on aerial image data.

B

r

Late

Analysis Procedure

D_Aa

O
=
=

|O
O

PROC DISCRIM %

Reference Accuracy %
Kappa Statistic %

Reference Accuracy %
Kappa Statistic %

Reference Accuracy %
Kappa Statistic %

PROC DISCRIM %

Reference Accuracy %
Kappa Statistic %

Reference Accuracy %
Kappa Statistic %

Reference Accuracy %
Kappa Statistic %

Isoxaflutole Metolachlor

Herbicide
Alachlor Atrazine Flufen.+Metr.

ND © ND 75 ND
16 48 77 61
9 -1 26 48
68 73 72 84
41 20 26 54
24 36 56 48
-24 -17 25 45
ND ND ND ND
52 45 67 28
7 -24 36 19
68 59 33 76
18 6 42 10
65 51 73 28
3 -20 31 27

ND

63
-9

ND

47
18

53
27

55
22

Pendimethalin

ND

75
27

91
38

20
-24

ND

24
19

56
44

8
8

? Discriminant analysis using the PROC STEPDISC and PROC DISCRIM procedures in SAS.
® Fisher linear discriminant classification using MultiSpec.

° Quadratic maximum likelihood classification using MultiSpec.

4 Correlation classification (Spectral Angle Mapper) using MultiSpec.

® Treatment could not be differentiated from the untreated check using the discriminant analysis procedures in SAS.
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Table 2.5. Cross-validation summary showing classification accuracies using the linear discriminant function in SAS comparing all treatments

in the early experiment test. Data points consisted of 100 values for each treatment.

Number of Observations and Percent Classified into Herbicide Treatment

Herbicide Atrazine Metolachlor Isoxaflutole Pendimethalin  Alachlor Flufen.+metr. Untreated Bare Total
Soil
Atrazine 0 1 0 0 1 2 0 0 4
%o 0 25 0 0 25 50 0 0 100
Metolachlor 2 0 0 0 0 0 2 0 4
% 50 0 0 0 0 0 50 0 100
Isoxaflutole 0 0 3 0 0 1 0 0 4
% 0 0 75 0 0 25 0 0 100
Pendimethalin 0 0 2 0 0 1 1 0 4
%o 0 0 50 0 0 25 25 0 100
Alachlor 0 1 2 1 0 0 0 0 4
% 0 25 50 25 0 0 0 0 100
Flufen.+metr 1 1 1 0 0 0 1 0 4
% 25 25 25 0 0 0 25 0 100
Untreated 0 2 0 0 1 1 0 0 4
% 0 52 0 0 25 25 0 0 100
Bare Soil 0 0 0 0 0 0 0 4 4
% 0 0 0 0 0 0 0 100 100
Total 3 5 8 1 2 5 4 4 32
%o 9 16 25 3 6 16 13 13 100
Priors 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125
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CHAPTER 3

THE EFFECT OF POSTEMERGENCE HERBICIDES ON THE SPECTRAL
RESPONSE CHARACTERISTICS OF CORN CANOPY REFLECTANCE

46
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INTRODUCTION

Growing concerns in agriculture regarding public awareness to pesticides
and pest control costs have increased the need to maximize pest control and
minimize environmental effects. Health and environmental concerns, low
commodity prices, and weed control costs are the basis for researchers seeking
ways to reduce herbicide inputs and costs (Browner et al., 1993; Fernandez-
Cornejo and Jans, 1999).

Herbicides, compared to cultivation, help reduce the labor and time
needed for effective weed management, which can lead to increased economic
return for the farmer. Reduced time and labor requirements for weed control can
free resources needed to expand farming operations (Ashton and Monaco,
1991).

A growing concern in the agricultural sector is the regulation of atrazine, a
very effective and affordable herbicide used in corn. Without atrazine, corn weed
control costs could increase an estimated $37 per hectare (Pike et al., 1996).
The cost of losing all the triazine herbicides for corn would be about $45 per
hectare annually. Nationally, this would amount to approximately $680 million
per year for the loss of atrazine and approximately $900 million per year for the
loss of all triazines. These figures do not take into account the cost of additional
soil erosion where tillage will be used as an alternative to atrazine. Therefore,
other ways of reducing weed control costs should be explored.

Conventional weed control programs generally rely on the assumption of
homogenous distribution of weed species within a given field. This usually
results in the over application of herbicides since much of the field is weed free
(Hughes, 1989; Thornton et al., 1990; Wiles et al., 1992). An area of growing
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interest is in application procedures that limit herbicide use to only those weed
infested areas. The use of remote sensing in locating weed infestations creates
the opportunity for producers to treat only the infested areas of fields. This could
reduce the volume of herbicides used in the environment as well as reduce
herbicide costs. Lillesand and Kiefer (2000) define remote sensing as the
science and art of obtaining information about an object, area, or phenomenon
through the analysis of data acquired by a device that is not in contact with the
object, area, or phenomenon. Although in the broad sense this may encompass
many technologies, researchers in the field of weed science have directed their
attention toward the sensing of light reflectance/absorbance differences. Light
reflectance of plants is typically measured by a sensor that quantifies the amount
of energy being reflected by the plant. Sensors are classified into two broad
categories based on their sensing ability, multispectral and hyperspectral
scanners.

The use of remote sensing for weed control has increased efforts to
understand weed population dynamics and factors that impact their spectral
reflectance properties. It may be possible to find reflectance response patterns
of individual weed species that would open the future to site-specific weed
management. Classification of weeds in crop and rangeland areas has been
accomplished (Menges et al., 1985; Everitt et al., 1995; Lass et al., 1996; Lass
and Callihan, 1997; Vrindts et al., 2002; and Williams and Hunt, 2002). Menges
et al. (1985) found that discrete weed community areas could be classified by
computer based image analyses with accuracies of 82% for Paimer amaranth
and 81% for johnsongrass in a replicated monoculture plot study. Vrindts et al.
(2002) correctly classified 90% of their remotely sensed data as crop or weed.

Medlin and Shaw (2000) found that simulated site-specific herbicide
management in soybean production systems resulted in higher estimated net
gains than broadcast herbicide management. This held true for transgenic and
non-transgenic cropping systems. Estimated net gains for site-specific herbicide
management vs. broadcast herbicide management ranged from $13.32 to $29.66
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per hectare in non-transgenic soybean, and from $22.15 to $29.45 per hectare in
glyphosate-tolerant soybean.

If wide-scale use of remote sensing for weed control is to occur, the
impact of biotic and abiotic stresses on weed and crop reflectance must be
understood. For example, it is unknown whether commonly used preemergence
herbicides will impact the reflectance characteristics of tolerant weeds and crops.
Plant stress reflectance sensitivities are generally greatest in the orange and red
spectra, except for peaks in the violet and green spectra that accompany
herbicide damage (Carter, 1993). General plant stresses can be detected by an
increase in reflectance in the 695-725 nm wavelength range. This area is often
overlooked for spectral change detection due to the steep slope of the
reflectance curves in the far-red spectrum often producing an illusion that stress-
induced differences are negligible near 700 nm (Carter and Knapp, 2001). In
addition, Carter (1993) reported the maximum reflectance peak at 409 nm
responds differently for herbicide stress in persimmon than other stressors.
When used on persimmon, Diuron herbicide created reflectance sensitivities and
differences in wavelength ranges of 405-409, 519-573, 688-735, 1,384-1,401,
and 1,875-1,905 nm with a maximum difference near 409 nm (Carter, 1993).

The possibilities to use remote sensing as a “weed detection tool” has
increased research efforts to (1) manage plant monocultures or desired mixed
populations of certain species, and (2) determine the impact of production
practices on the spectral reflectance properties of the crop canopy. Therefore, if
a herbicide can be identified that does not impact the spectral response pattern
of a crop it could be used for weed control over a large experiment area. Weed
patches of interest, with known populations and locations, could be established in
untreated areas. Hand-weeding that is regularly needed to maintain species
compositions would be effectively reduced. Combined with research done to
identify the reflectance response patterns of individual weed species, the stage
would be set for an experiment that would test classification accuracy of weed
compositions in a field setting. This research could allow the integration of
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remote sensing with site-specific application technologies for an integrated weed
control system.

Therefore, the objective of this research is to assist future research
conducted in this area by investigating what impacts POST applied herbicides
have on corn canopy reflectance. The herbicide treatments 2,4-D, atrazine,
bromoxynil, dicamba + diflufenzopyr, nicosulfuron, and primisulfuron-methyl were
selected since they are commonly used in corn systems in the Midwest, as well
as for their range of symptoms and modes of action.

Atrazine, nicosulfuron, and primisulfuron-methyl were selected as
postemergence treatments because they generally do not cause visible injury to
the corn plants, and are not expected to alter the spectral response corn.
Atrazine can cause yellow leaf tips or interveinal chlorosis under certain weather
conditions or when applied with crop oil under hot conditions. Nicosulfuron can
cause yellow flash near the whorl, chorosis, buggy whipping, or purpling of the
stem and leaves if corn is under stress or if the herbicide is applied at the wrong
growth stage.

Bromoxynil, 2,4-D, and dicamba + diflufenzopyr were selected due to their
propensity to cause visible injury or stress to corn after application. Bromoxynil
was selected due to its tendency to cause oblong, oval shaped lesions on the
leaves of corn plants. This can be a result of weather conditions changing from
cool to hot weather before application and thinning of the leaf cuticle. A spectral
difference should be easily detected if the spectral response of the leaves is
changed due to the lesions. Due to its growth regulator function in plants, 2,4-D
can stress corn plants by onion-leafing the new leaves or bending the stem.
These actions would change the reflectance properties of plants and should be
detectable using remote sensing methods. Dicamba + diflufenzopyr is a growth
regulator and should create similar spectral changes as the 2,4-D treatment.
These symptoms can sometimes be attributed to late application, soil type, or

shallow planted corn.
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MATERIALS AND METHODS

Field experiments were established in 2001 and 2002 to determine the
effect of postemergence herbicides on canopy reflectance of corn. Six herbicide
treatments were used, as well as a herbicide-free, hand-weeded plot for a control
and a bare ground plot for calibration purposes. All treatments were maintained
weed-free by hand weeding throughout the growing season. The experiments
were conducted at the Agronomy Center for Research and Education near West
Lafayette, Indiana. Experimental design was a randomized complete block with
four replications. Individual plot dimensions were 6 by 6 meter. The 2001 test
was planted on May 2, 2001 (POST 2001) with postemergence herbicides
applied on June 7, 2001. The 2002 test was planted on May 24, 2002 (POST
2002) with postemergence herbicides applied on June 16, 2002. All herbicides
were applied at labeled rates, and no preemergence herbicides were used.

Postemergence corn herbicide treatments evaluated were 1.7 kg a.i./ha
atrazine + .95 L/ha COC, 560 g a.i./ha bromoxynil + 1% v/v COC, 798 g a.i./ha.
2,4-D, 212 g a.i./ha dicamba + 83 g a.i./ha diflufenzopyr + 0.25% v/v NIS, 70 g
a.i./ha nicosulfuron + 1% v/v COC, and 40 g a.i./ha primisulfuron-methyl + 0.25%
v/iv NIS. The herbicides were selected to represent a large percentage of the
chemicals used in the Midwest and those that have varying modes of action that
can result in various corn injury symptoms. This range of symptomology has the
potential to create a broad range of plant reflectance response patterns.

A boom truck-mounted field GER 2600 field spectrometer, also known as
a spectroradiometer, was used to collect ground based spectral data. This
spectrometer collects 640 bands of data in 1.5 nm increments. Using both silicon
and lead sulfide sensors, a spectral range from 350 nm to 2500 nm was
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obtained. Of the 640 wavelengths of data collected, approximately 500
wavelengths outside of the major water absorption bands were useable.

A highly diffuse, highly reflective reflectance panel was used to measure
the radiance between plot measurements. This panel was a 60 by 60 cm
Labsphere panel made with spectralon (Robinson and Biehl, 1979). The boom
was extended over the plot area at a height of 7 meters above the canopy. The
GER 2600 had a field of view of 9 degrees, allowing it to collect data from a 1.1
m? area on the ground. The reflectance radiance was then measured from the
canopy to determine the spectral reflectance. The truck and boom were
positioned so that shadows were not created over the plot area.

Five samples were taken for each plot with three “on-row” samples
collected with the sensor centered over a crop row and two “off-row” samples
collected with the sensor centered between the crop rows (Figure 3.1). This
method allowed for a sampling pattern that created more representative canopy
reflectance for the plot when the five samples were averaged than if all samples
were taken over the crop row and none were taken between the crop rows.

Daughtry et. al. (1982) found more measurements are required at low
altitudes to obtain a representative sample of the canopy reflectance because
reflectance measurements tended to be erratic as the sensor was moved across
the rows. Therefore, measurements taken at half row spacing (on and off row)
were more efficient and representative of canopy reflectance than random

sampling methods and averaging of measurements across the plot.
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Figure 3.1. Placement of sensor for measurements in each plot showing on-row and off-row

placement.

The spectrometer data were collected once for each test, approximately 6
weeks after planting for the POST 2001 trial on June 16, 2001 and approximately
5 weeks after planting for the POST 2002 trial on June 28, 2002. Data collection

occurred on a clear day with less than 5% cloud cover near solar noon.

The measurements were converted to reflectance using a scene to

reference comparison with linear interpolation between two reference

observations using the formula:
Rs(8,A) =[Vs (B,A) - ds (N)]/ V' (B,A) * R: (B,A)

Where:

Vr1 (9,)\) = Vr1 (e,)\) - dr1 ()‘) + [ { Vr2 (e,)‘) - dr2 ()\) } - { Vr1 (9,)\) - dr1 ()\) }]

*ts — bt / ta— 1

Where:
Vs (8,A) = GER 2600 response over corn canopy for solar illumination angle (6)

and wavelength (A).
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Vi1 (8,A) = GER 2600 response over spectralon reflectance panel collected
before corn canopy observation.

V2 (6,A) = GER 2600 response over spectralon reflectance panel collected
after corn canopy observation.

Rs (8,A) = Reflectance of corn canopy for solar illumination angle (6) and
wavelength (A).

R: (8,A) = Reflectance of spectralon panel for illumination angie (6) and
wavelength (A).

ds, dr, dr2 = Dark levels of GER 2600, all = 0.

ts, tr1, tr2 = Time for data collection for corn canopy, reference before and
reference after, respectively.

Aerial data, obtained from Agri-Vision‘, were collected over each
experiment to supplement the ground-based data at an approximate altitude of
2,400 m on July 2, 2001 and July 2, 2002. The images were composed of three
spectral bands with the spectral ranges centered at 550 nm, 655 nm, and 800 nm
for band 1, 2, and 3, respectively. The numerical reflectance data were extracted
for analysis from the aerial images using MultiSpec®. When aerial and ground-
based data were compared, only the wavelengths common to both the aerial and
ground-based data sets were used for analysis.

Data Analysis — Hyperspectral/Ground-based Data
Discriminant Analysis using SAS®
The hyperspectral reflectance data collected with the GER field
spectrometer were analyzed using PROC STEPDISC and PROC DISCRIM
(Medlin et al., 2000). PROC STEPDISC was used (1) to determine if the
reflectance properties of the corn treated with herbicide were different than the
reflectance properties of the unireated check and (2) to select the reflectance

! Agri-Vision, Columbus, IN 47201.
2 MultiSpec, West Lafayetts, IN 47907.
8 SAS Institute Inc., SAS Campus Drive, Cary, NC 27513.
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bands important for differentiating between each herbicide treatment and the
untreated check. PROC DISCRIM was then used to develop a model from those
selected bands for classifying the plots as herbicide treated or untreated, and to
determine the classification accuracy of the model.

The STEPDISC procedure performs a stepwise discriminant analysis to
select a subset of the quantitative variables for use in discriminating among the
classes using forward selection, backward elimination, or stepwise selection
(SAS, 1992). Stepwise selection begins with no variables in the model. In the
first step, the band that adds the most discriminator power to the model is
included. At each step, the model is examined. If the variable in the model that
contributes least to the discriminatory power of the model fails to meet the
criterion to stay, then that variable is removed (Tables 3.1, 3.2, 3.3, & 3.4).
Otherwise, the variable not in the model that contributes most to the
discriminatory power of the model is entered. Up to twelve bands of reflectance
were allowed to enter any given model. When twelve or fewer variables in the
model met the criterion to stay and none of the other variables met the criterion
to enter, the stepwise selection process was stopped (SAS, 1992). The models
were then used to compare the impact of each herbicide treatment on the crops
spectral reflectance, relative to the untreated check. If, in the first step, none of
the bands contributed to the discriminatory power of the model, the process was
stopped and the treatment and the untreated check were assumed to be similar
in their reflectance characteristics.

Analysis Using MultiSpec

The hyperspectral data collected with the GER spectrometer were
converted into .bip (band interleaved by pixel) image files using Matlab®. They
were then analyzed using remote sensing techniques to determine classification
effectiveness and treatment separability using MultiSpec (refer to Figure 2.2 in
chapter 2). Each of the five observations per plot is represented as a pixel,

* The MathWorks, Inc., Natick, MA 01760-2098
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positioned on-row or off-row depending on its orientation according to data
collection. Cluster maps, created using the isodata clustering algorithm (within
eigenvector volume, six to eight clusters, and 98% convergence) within
MultiSpec, were compared to treatment maps and plot plans to determine if any
initial correlation or separation between plots were evident. These correlations or
differences were then used to help in training and test sample determination for a
supervised classification.

When running classifications, several factors can be controlled. First, the
number of bands used was either the bands included in the aerial bands or
bands selected by the SAS STEPDISC procedure. Second, feature extraction
was included on some of the classifications. Discriminant Analysis Feature
Extraction (DAFE) was the primary method used. Decision Boundary Feature
Extraction (DBFE) was also investigated briefly, then determined to be less
effective than DAFE. Feature extraction was used to reduce the dimensionality
of the image data. The high dimensionality of the data warranted band reduction
and feature extraction to avoid the Hughes effect (Figure 3.2). The Hughes
phenomenon is a decrease in the accuracy of statistics estimation as
dimensionality increases, which leads to a decline in the accuracy of
classification. Although increasing the number of spectral bands or
dimensionality potentially provides more information about class separability, this
positive effect is diluted by poor parameter estimation. As a result, the
classification accuracy first grows and then declines as the number of spectral

bands increases (Kuo and Landgrebe, 2001).
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Figure 3.2. Concept of the Hughes Effect with wavelengths on the x-axis, mean recognition
accuracy on the y-axis, and number of training samples next to the representative curve.
(Landgrebe, 1999)

Finally, a leave one out covariance (LOOC) matrix was used for all
classifications. LOOC is a method used to estimate a value for the sample
covariance for those cases when the number of training samples for a class is
equal to the number of channels being used or fewer. This estimator examines
the sample covariance and the common covariance estimates, as well as their
diagonal forms, to determine which would be most appropriate. The value of the
mixing parameter is selected by removing one sample, estimating the mean and
covariance from the remaining samples, then computing the likelihood of the
sample which was left out, given the mean and covariance estimates. Each
sample is removed in turn, and the average log likelihood is computed. Several
mixtures are examined by changing the value of, and the value that maximizes
the average log likelihood is selected. Though an estimated covariance matrix is
ordinarily singular and therefore not usable when the number of samples used to
estimate it is less than or equal to the number of features, the LOOC returns a
usable covariance matrix estimate when the number of samples available is at

least three or more (Landgrebe and Biehl, 2001).
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Training and test class selection was done two ways to see what affect the
samples had on classification accuracy. For the first classification, the left three
pixels were used to train the classifier. The right three pixels were used as the
test samples to test the accuracy of the classifier. The center pixel was used in
both the training and test samples to include more vegetation to influence the
classification. Then the test and training samples were switched and the
classifications were averaged together to obtain representative classifications for
each treatment (Table 3.5). The second classification was done using three
replications to train the classifier and one replication to test the classifier (Table
3.6). This provided 15 training pixels and five test pixels. This was repeated until
each replication was used as the test data set. The classifications showed no
similarity to the SAS analysis when reps 1, 2, or 4 were used to test the classifier.
However, when rep 3 was used to test the classifier and reps 1, 2, and 4 were

used as training classes, results were similar to the SAS analysis.

Data Analysis — Multispectral/Aerial Data

Aerial images were also analyzed in MultiSpec. Band selection was not
required for the aerial images since the data were composed of only three bands.
Training and test sample selection differed as well. For the aerial data, 25 pixels
in the center of each plot were selected to reduce the edge effect from
neighboring treatments. Only data from one replication was used to train the
classifier, while the other three replications were used as test samples.

Classification was done using Quadratic maximum likelihood, Fisher linear
likelihood, and Correlation classification algorithms in MultiSpec. All the methods
of classification were examined, to determine the algorithm with the highest
reference and Kappa Statistic accuracies.

The quadratic maximum likelihood classifier uses a discriminant function,
which includes the means and covariance estimates for each class. A pixel is
assigned to the class whose distribution function gives the highest likelihood for
that pixel. Fisher linear likelihood uses the same principal as maximum
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likelihood, however it uses the common covariance matrix from all the classes
instead of the class covariance matrix from each class. Spectral Angle Mapper
(SAM) is a correlation classifier used to compare the shape of a sample’s
spectral response to the mean for each training class using a correlation
coefficient and ignoring the absolute difference or offset between the spectral
response curves.

For each classification, two accuracies are given, reference and reliability.
The reference accuracy represents how often the treatment is correctly classified
in the pairwise comparison with the untreated check. The reliability accuracy
percentage indicates how accurate the classifier is at identifying the treatment
and how inaccurate the classifier is at identifying the untreated check. For
comparison purposes, the reference accuracy will be used when discussing
classification results. The Kappa Statistic is an accuracy based upon analysis of
the classification matrixX's major diagonals, which indicates actual agreement
between reference & classified data, and the row and column totals, which
indicates chance agreement. Kappa Statistic accuracies are categorized by
Landis and Kock (1977) into three groups based on percentages. Greater than
80% is strong agreement, 40 — 80% is moderate agreement, and less than 40%

is poor agreement.
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RESULTS

Analysis of Hyperspectral/Ground-collected Data

In the POST 2001 trial, corn treated with atrazine or primisuifuron could
not be separated from the untreated plots using STEPDISC methods. This
indicates the reflectance characteristics of the corn canopies treated with these
herbicides were not affected (Table 3.5). Bromoxynil, 2,4-D, dicamba +
diflufenzopyr, and nicosulfuron were separable from untreated corn using the
STEPDISC analysis procedures. The classification accuracies were 100% for
these treatments (Table 3.5).

Fisher linear discriminant classification accuracies for the 2001 trial did not
return the same findings as the SAS analysis. Treatments that were separable in
SAS were at least 96% separable with the Fisher linear discriminant
classification, however, with the Fisher linear classification analysis, atrazine and
primisulfuron-methyl treated plots were correctly classified 83 and 92% of the
time (Table 3.5). The Kappa Statistics for all treatments were greater than 80%
indicating a high level of agreement of the classifications.

Dicamba + diflufenzopyr, 2,4-D, and nicosulfuron were separable from the
untreated with at least 92% accuracy for three of the four classification
techniques, indicating these treatments influenced the reflectance properties of
corn (Table 3.5). Reliability classification accuracies for Fisher linear
discriminant, quadratic maximum likelihood, and correlation classifications were
near or above 90% for all treatments, indicating the untreated treatment was
highly separable from the herbicide treatments (Table 3.5).

Results from the POST 2002 trial were different from the POST 2001
results (Table 3.5). There were similarities in the discriminant analysis
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techniques for the POST 2002 experiment which were able to differentiate
between the untreated check and the 2,4-D or dicamba + diflufenzopyr treated
plots with 100% and 75% accuracy, respectively, compared to 100% for both
treatments in 2001. However, atrazine, bromoxynil, nicosulfuron, or primisulfuron
treated plots were not separable from the untreated using these same
discriminant procedures. This is considerably different from the 2001 results
where bromoxynil and nicosulfuron were not only distinguishable from the
untreated check, but were correctly classified 100% of the time in the pair-wise
comparisons.

Fisher linear classification resulted in moderate reference accuracies for
all classes (67 to 79%) (Table 3.5). 2,4-D and dicamba + diflufenzopyr had
higher Kappa Statistics (61% and 65%, respectively) indicating these data are
most likely more repeatable than some of the other treatments whose Kappa

Statistics are low (<40%).

Across Replication Model Evaluations

To evaluate the robustness of the models, three reps (1, 2, and 4) of the
POST 2001 data were used as a training data set and one replication (3) was
used as a test data set. Discriminant analysis, Fisher linear discriminant
classification, quadratic maximum likelihood, and correlation classifications of
these data were very similar (Table 3.6). Pair-wise comparisons of the 2,4-D,
dicamba + diflufenzopyr, or nicosulfuron treated plots with untreated check plots
resulted in high separation (near 100%). Bromoxynil treated plots were correctly
classified 100% with discriminant analysis and Fisher linear classifier but only
marginally classified using quadratic maximum likelihood or correlation
classifiers. The classification of atrazine or primisulfuron treated plots was
generally less than 50% and usually 0% regardless of the classification
procedure used. Discriminant analysis procedures were not able to differentiate
between the untreated check and primisulfuron treated plots. The atrazine
treatment was inseparable with discriminant analysis techniques and had
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classification accuracies of 0% with Fisher's linear discriminant, quadratic
maximum likelihood, and correlation classification techniques. This suggests that
these herbicides do not dramatically impact the reflectance properties of corn
and thus are not distinguishable from untreated corn.

The results from using replications 1, 2, and 4 of the POST 2002 trial for
the training data set and replication 3 as the test data set were very similar to the
results from 2001 (Table 3.6). In the 2002 data, discriminant analysis techniques
were unable to distinguish between the atrazine or bromoxynil treated plots and
the untreated check just as in 2001. In addition to these treatments, discriminant
analysis could not develop models for the bromoxynil or nicosulfuron treated
plots. However, using the Fisher linear discriminant classifier resulted in no more
than 60% classification accuracy of the pair-wise comparisons regardless of
herbicide treatment. This is drastically different from the 100% classification
accuracies from the similar 2001 analysis.

Primisulfuron treated plots were not separable using discriminant analysis
techniques in SAS, and were not separable (40%, 0%, & 20%) using Fisher's
linear discriminant, quadratic maximum likelihood, or correlation classification

techniques, respectively (Table 3.6).

Using SAS for Band Selection and MultiSpec for Analysis

Fisher linear discriminant, quadratic maximum likelihood, and correlation
classification techniques, using bands selected by SAS PROC STEPDISC,
resulted in at least 92% classification accuracy for bromoxynil, 2,4-D, dicamba +
diflufenzopyr or nicosulfuron treated plots (Table 3.7) in 2001. These results
reflect the results from discriminant analysis and support the ability of PROC
STEPDISC to determine bands used for treatment separability. Atrazine and
primisulfuron were not separable from the untreated check, when the bands for
analysis were determined by PROC STEPDISC, regardless of statistical
procedure used (Table 3.7).
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A similar analysis was conducted for the POST 2002 data using the bands
selected from the 2001 data set by the PROC STEPDISC procedure.
Classification accuracies of bromoxynil, 2,4-D, dicamba + diflufenzopyr, and
nicosulfuron were generally much lower than results from the POST 2001
experiment. However, atrazine, and primisulfuron were still indistinguishable
from the untreated check, regardless of analytical procedure used.

Classification accuracy of the POST 2002 trial using SAS for band
determination from the POST 2001 trial and MultiSpec for the actual analysis
were very positive (Table 3.7). However, when SAS was used to determine the
band selection from the POST 2002 trial and MultiSpec was for the analysis of
the 2001 and 2002 data sets, atrazine, bromoxynil, nicosulfuron, and
primisulfuron treated plots were not distinguishable from the untreated check
(Table 3.8). Fisher linear discriminant and quadratic maximum likelihood
classifier accuracies for classifications of 2001 data resulted in 100%
classification accuracy of 2,4-D treated plots. However, the 2,4-D plots classified
by MultiSpec in the 2002 data set resulted in less than 60% accuracy using the
Fisher linear classification or the quadratic maximum likelihood classification
techniques, and low Kappa statistics (<40%).

The conclusion can be drawn from the cross-classification using 2001
bands on the 2002 data and vice versa that the treatments were more separable
in 2001. Reference and reliability accuracies for the POST 2001 treatments,
when using the wavelengths selected from POST 2001 data using SAS
techniques, are all greater than 90% with Kappa Statistics greater than 90%
(Table 3.7). When the same wavelengths were used for POST 2002
classification, reference accuracies and Kappa Statistics indicate low
classification accuracies. The correlation classifier had the highest classification
accuracies, with Kappa Statistics greater than 70%. Quadratic maximum
likelihood and correlation classifiers had high reference accuracies for
nicosulfuron, but low Kappa Statistics make the high accuracies questionable
(Table 3.7). POST 2001 2,4-D treated plots were highly separable from the
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untreated using SAS selected bands with all classifiers, and high classification
accuracy was obtained for 2,4-D in POST 2002 using the correlation classifier,
although the Fisher linear discriminant and quadratic maximum likelihood
classifiers do not support this high accuracy. Fisher linear discriminant
classification accuracies for the POST 2001 2,4-D treated plots indicate 100%
separability from the untreated check using SAS selected bands from both 2001
and 2002 (Table 3.7 & 3.8). Accuracies for the POST 2002 2,4-D treated plots
are not as high using bands from either data set. The classification accuracies
for the classifiers are similar using the different bands. For example, using POST
2001 SAS bands, reference accuracy of the Fisher linear discriminant
classification of POST 2002 2,4-D was 54% with a 29% Kappa Statistic, and
using the POST 2002 SAS bands the reference accuracy was 58% with a 31%
Kappa Statistic (Table 3.7 & 3.8). Classification accuracies using the quadratic
maximum likelihood and correlation classifiers produce similar results. These
correlations, combined with the high classification accuracies for POST 2001 2,4-
D plots, show that similar results are obtained using wavelengths from both
years. The low accuracies for the POST 2002 2,4-D treated plots using both sets
of SAS selected bands show higher separation in POST 2001 data.

Analysis of Aerial collected data

In 2001, all herbicide treated corn plots could be separated from the
untreated plots using SAS PROC STEPDISC, which indicated canopy
reflectance of corn treated with these herbicides was altered (Table 3.9).
Classification accuracies for each treatment were at least 75% or better in pair-
wise comparisons with the untreated check. However, analysis of the POST
2002 data resulted in 75% classification accuracy of the 2,4-D treated plots and
lack of differentiation of all other treatments in pair-wise comparisons with the
untreated check.

Classification of all treatments by a single model using SAS discriminant
analysis techniques was done to determine where misclassifications were
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occurring (Table 3.10). The untreated check was misclassified as atrazine and
primisulfuron, and the atrazine and primisulfuron plots were misclassified as
untreated. This supports the resuits of the SAS discriminant classification for the
ground data, in that the reflectance properties of the untreated check plots were
similar to the atrazine or primisulfuron treated plots. As would be expected from
the previous analysis, 2,4-D and dicamba + diflufenzopyr were correctly
classified 75% of the time and never misclassified as the untreated check,
indicating that they are separable from the untreated (Table 3.10).

Discriminant analysis was conducted again after removing the bare soil
treatment from the data set (Table 3.11). By removing the bare soil treatment,
the accuracies of the classification became similar to the pair-wise classifications
of treatments. Dicamba + diflufenzopyr and 2,4-D were separable from the
untreated with accuracies of 100% and 75% respectively (Table 3.11). Atrazine
and nicosulfuron had 0% classification accuracies and untreated plots were
classified as primisulfuron and atrazine for 50% and 25% of the samples
respectively (Table 3.11).

The collected multispectral images were cropped to include only the test
areas. The image was then initially processed by running an isodata clustering
algorithm on the data in MultiSpec (within eigenvector volume, six to eight
clusters, and 98% convergence). In the POST 2001 image, collected July 2,
2001, subtle shading and color differences are apparent (Figure 3.3a). Notice
the bright blue areas, bare soil, dark red areas, healthy vegetation, and green /
gray areas, 2,4-D plots in the image.
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b. cluster classification image

a. color infrared image

Figure 3.3. POST 2001 aerial image collected July 2, 2001 before image classification (a) and
after clustering (b) showing replications and distinguishable reflectance differences for bare soil
(1), healthy corn (2), and 2,4-D treated corn (3) notice the plots of each distributed throughout the
other replications.

After the isodata clustering was performed on the image, areas of
separation were apparent (Figure 3.3b). Orange clusters represent bare sail,
green areas coincide with healthy vegetation, and blue and yellow areas indicate
stressed vegetation. The stressed areas are where the 2,4-D plots are located,
and the healthy areas are where corn was untreated or treated with primisulfuron
or atrazine. Color differences in the 2002 aerial data before clustering were
apparent with noticeable differences among replications rather than treatments
(Figure 3.4a). These differences became more apparent after clustering (Figure
3.4b). Bare soil areas are yellow, yellow and orange, or blue edged with green

after isodata clustering.

v Rep 4 : Rep 3 v Rep 2 ) Rep 1 i

a. color infrared image showing the light and dark areas present in the image before any
classification.

st
e '

b. cluster classification image showing that clusters are grouped according to replications instead
of by treatments

Figure 3.4. POST 2002 aerial image collected July 2, 2002 showing color differences before
image classification (a). and after clustering (b).
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After clustering, training and test samples were selected for the image
classification. Twenty-five pixels were selected to train the classifier, and
seventy-five pixels were chosen to test the classification accuracy. Samples
were selected in the center of the plots to avoid edge effect from neighboring

plots (Figure 3.5).
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Figure 3.5a. POST 2001 aerial image collected July 2, 2001 with white boxes outlining selection

areas for tralnln and test samles

Figure 3.5b. POST 2002 aerial image collected July 2, 2002 with white boxes outlining selection
areas for training and test samples.

Classification of the aerial images proceeded in two major steps. First, an
analysis was performed to determine the separability of the treatments with all
treatments incorporated into the analysis. Next, each treatment was classified
versus the untreated, in pair-wise comparisons similar to the SAS and MultiSpec
analyses conducted previously.

Classification of all 2001 treatments was done with quadratic maximum
likelihood, Fisher linear discriminant, and correlation classifiers (Tables 3.13,
3.14, & 3.15, respectively) for a comparison to the discriminant analysis done in
SAS. All classifiers (quadratic maximum likelihood, Fisher linear discriminant,
and correlation classifiers) were able to separate 2,4-D from all other treatments
with at least 88% accuracy. Classification accuracies of all other treatments
were less than 35%, regardless of classifier used. The untreated was not
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classified as 2,4-D when using any classifiers, or as dicamba + diflufenzopyr
when using quadratic maximum likelihood and Fisher's classifiers. This matches
the SAS aerial analysis and ground data classifications for 2,4-D. The low
classification accuracy of the other treatments, as well as the untreated checks
being classified as these various herbicide treatments, indicates the reflectance
properties of the corn were not drastically changed due to atrazine, bromoxynil,
nicosulfuron, or primisulfuron applications.

Pair-wise classifications using Fisher linear discriminant, quadratic
maximum likelihood, and correlation classifications were done comparing each
treatment to the untreated check (Table 3.9). Fisher classification accuracies for
bromoxynil, 2,4-D, dicamba + diflufenzopyr, and nicosulfuron were greater than
90% (Table 3.9), which is very similar to the ground-based data results (Table
3.5). Of the POST 2002 data set, only 2,4-D was separable using PROC
STEPDISC and was classified correctly 75% of the time using PROC DISCRIM
(Table 3.9). In the analysis of the aerial data, classification of all treatments
using PROC DISCRIM resulted with 2,4-D being the only treatment classified
correctly. Untreated checks were misclassified as atrazine, bromoxynil, and
primisulfuron, and similarly, bromoxynil and primisulfuron each had one
observation that was classified as untreated (Table 3.12).

Classifications using all treatments of the POST 2002 image are shown
(Tables 3.16, 3.17, & 3.18). The classifications show that none of the treatments
can be accurately separated from the other treatments. Using the Fisher linear
discriminant classifier, atrazine had a reference accuracy of than 60%, however,
all other treatments in that classification had samples classified into that class,
giving it low reliability accuracy (Table 3.17).

Pair-wise classification of aerial data in 2002 using Fisher linear
discriminant classifier resulted in similar classifications as the ground-based data,
separating bromoxynil, 2,4-D and dicamba + diflufenzopyr from the untreated
check 81%, 87%, and 65% of the time (Table 3.9). Using SAS discriminant
analysis techniques, Fisher linear discriminant, quadratic maximum likelihood,
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and correlation classifications, 2,4-D was highly separable from the untreated
check with accuracies of 75% for SAS analysis and 87% for MultiSpec
classifications (Table 3.9). The high classification accuracies combined with
Kappa Statistics greater than 60% indicate SAS classification of the aerial data is
similar to the image classification results.
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DISCUSSION

2,4-D and dicamba + diflufenzopyr treated plots were separable from the
untreated checks over both growing seasons using SAS discriminant analysis,
Fisher linear discriminant, quadratic maximum likelihood, and correlation
classifications using both the hyperspectral ground-based and multispectral
aerial data. These differences were most likely due to stress induced by
herbicide uptake. POST 2001 2,4-D and dicamba + diflufenzopyr treated corn
plants had bent stalks after application and during hyperspectral ground-based
data collection. The stalks straightened out, and the only visible symptom was
slight stunting when the aerial data was collected. Cool wet weather in the spring
of 2001 was a major factor in enhancing the effects of 2,4-D and dicamba +
diflufenzopyr treated corn. Two effects of the weather, slowed metabolism and
shorter plant height, contributed to injury due to the 2,4-D or dicamba +
diflufenzopyr application. The cool weather slowed the corn’s growth rate,
shortening plant height. This is a potential factor due to the method of
determining application restrictions for 2,4-D.  According to application
restrictions on the label, 2,4-D is not to be applied to corn taller than 10 cm. With
the cool, wet weather, the corn did not grow normally, and was more
physiologically mature than crop height indicated, creating potential for increased
crop injury. The other effect of the cool weather came when the weather warmed
after application. The corn plant was still absorbing the herbicide when it's
metabolism rate was slowed due to the temperature, and when the weather
warmed and a growth spurt occurred, the corn was not able to metabolize the
2,4-D or dicamba + diflufenzopyr present. 2002 did not have the abnormal
weather conditions, therefore POST 2002 neither 2,4-D nor dicamba +
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diflufenzopyr treated corn had bent stalks, and there was no visible stunting of
corn in either treatment. The symptomology and injury differences were factors
on the accuracy of classifications for POST 2001 and POST 2002. The visible
injury in POST 2001 correlated with high spectral separability. Although there
were not visible injury symptoms in POST 2002, 2,4-D and dicamba +
diflufenzopyr treated plots were separable from untreated plots, though not as
reliably as in POST 2001.

In situations where spectral reflectance change is not desired, neither 2,4-
D nor dicamba + diflufenzopyr should be used. These herbicides have high
potentials to change the spectral reflectance properties of corn. Through further
characterization of bands to distinguish 2,4-D and improved classification
procedures, areas treated with 2,4-D can be identified and potentially be used by
researchers, commercial applicators, or insurance agents. Accurate and reliable
identification of 2,4-D or other post applied herbicide application areas could
become a useful tool in the future in production and legal matters.

Atrazine and primisulfuron-methyl treated corn were indistinguishable from
untreated corn when discriminant analysis techniques and quadratic maximum
likelihood classifiers were used on both POST 2001 and POST 2002 data (Table
3.5). Classification accuracies of atrazine and primisulfuron-methyl POST 2002
data using classifiers in MultiSpec show low Kappa Statistics and are virtually
inseparable from untreated plots (Table 3.5). Likewise, SAS techniques were not
able to separate atrazine or primisulfuron-methyl treated corn from the untreated
corn in the 2002 aerial data (Table 3.9). The overall inability of the tested
classification methods to separate atrazine and primisulfuron-methyl is due to the
ability of the corn plant to quickly metabolize these herbicides into non-toxic
compounds. Atrazine and primisulfuron-methyl treatments would be good
candidates for postemergence applications where maintaining corn canopy
reflectance properties are essential.

More work is needed to determine whether bromoxynil and nicosulfuron
are consistently separable from the untreated since they were separable in 2001,
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but were inseparable in 2002. As with the 2,4-D and dicamba + diflufenzopyr
treated plots, separability of treated plots from untreated plots is mostly due to
the weather conditions. Again, the corn was stressed when the herbicides were
applied, and the corn was not able to metabolize the herbicides efficiently. Crop
height in relation to maturity could have been a factor as well for the nicosulfuron
treated corn.

Another area of emphasis for future research may be on the plant leve!
looking at what influences spectral change in plants after herbicide application,
particularly those herbicide products that are not expected to injure the crop for
which they are labeled. Sites used to sequester herbicides may impact the light
reflectance properties of the leaf by concentrating the herbicides or their
degradates. The herbicides may have their own reflectance properties, and may
influence the spectral response not by altering the plant, but rather by being
present in or on the plant.

Consideration should also be given for research to determine if herbicide
effect on spectral response of corn canopies can be correlated to herbicide
modes of action. 2,4-D and dicamba + diflufenzopyr indicate there may be some
correlation, however, nicosulfuron was not always similar to primisulfuron-methyl.
If similarities can be drawn with in modes of action, research time to produce a
useful tool to commercial applicators, crop advisors, or insurance representatives
will be greatly reduced. This is the case because not every herbicide will have to
be investigated initially, only the general classes of herbicides. Discrepancies
that arise through hands on use can be used by researchers to enhance spectral
databases.

Determination of the effects of postemergence herbicides on the spectral
properties of corn will be one more useful tool available to farmers in the

precision agriculture toolbox.
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Table 3.1. Classification accuracies for the SAS PROC DISCRIM procedure for pair-wise comparisons of POST treatments and the untreated
check in 2001 showing the wavebands used from the hyperspectral data. Models could not be formed to separate atrazine or primisulfuron-
methyl treated plots from the untreated check.

Treatment Cross-validation Summary Percent Classified Correctly Bands used in DISCRIM procedure (micrometers)
Bromoxynil 100% 0.364, 0.516, 0.669, 0.765, 0.774

2,4-D 100% 0.669, 0.76

Dicam.+diflu. 100% 0.663, 0.763

Nicosulfuron 100% 0.569, 0.694

Table 3.2. Classification accuracies for the SAS PROC DISCRIM procedure for pair-wise comparisons of POST treatments and the untreated
check in 2002 showing the wavebands used from the hyperspectral data. Models could not be formed to separate atrazine, bromoxynil,
nicosulfuron, or primisulfuron-methyl treated plots from the untreated check.

Treatment Cross-validation Summary Percent Classified Correctly Bands used in DISCRIM procedure (micrometers)
2,4-D 100% 0.548, 0.756, 0.997, 1.332, 1.54, 2.037
Dicam.+diflu. 75% 0.76, 0.787
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Table 3.3. Classification accuracies for the SAS PROC DISCRIM procedure using aerial data for pair-wise comparisons of POST treatments
and the untreated check in 2001 showing the wavelengths used.

Treatment Cross-validation Summary Percent Classified Correctly Bands used in DISCRIM procedure (micrometers)
Atrazine 75% 655 nm
Bromoxynil 100% 655 nm
2,4-D 100% 655 & 800 nm
Dicam.+diflu. 100% 655 nm
Nicosulfuron 75% 550 nm
Primisulfuron-methyl 75% 550 & 800 nm

Table 3.4. Classification accuracies for the SAS PROC DISCRIM procedure using aerial data for pair-wise comparisons of POST treatments
and the untreated check in 2002 showing the wavelengths used. Models could not be formed to separate atrazine, bromoxynil, dicamba +
diflufenzopyr, nicosulfuron, or primisulfuron-methyl treated plots from the untreated check.

Treatment Cross-validation Summary Percent Classified Correctly Bands used in DISCRIM procedure (micrometers)
2,4-D 75% 550 & 655 nm

L



Table 3.5. Classification accuracy of pair-wise comparisons, using the average accuracy of left and right test pixel classifications, of
postemergence herbicide treatments in corn based on reflectance properties using various analysis techniques and bands included in
multispectral image bands on ground collected reflectance data.

Herbicide
Year Analysis Procedure Atrazine Bromoxvnil 24-D Dicam.+Diflu. Nicosulfuron Primisulfuron
2001 DA? PROC DISCRIM % ND*® 100 100 100 100 ND
FLD" Reference Accuracy % 83 96 100 100 100 92
Kappa Statistic % 84 98 98 100 100 89
QML Reference Accuracy % 46 54 46 33 42 13
Kappa Statistic % 54 43 43 29 51 4
cct Reference Accuracy % 83 88 96 92 92 88
Kappa Statistic % 84 96 98 96 91 83
2002 DA PROC DISCRIM % ND ND 100 75 ND ND
FLD Reference Accuracy % 67 79 67 88 75 75
Kappa Statistic % 45 58 61 65 40 36
QML Reference Accuracy % 92 42 54 100 100 0
Kappa Statistic % 1 22 -14 8 1 -11
cC Reference Accuracy % 71 75 67 83 67 79
Kappa Statistic % 42 48 61 67 38 36

# Discriminant analysis using the PROC STEPDISC and PROC DISCRIM procedures in SAS.

® Fisher linear discriminant classification using MultiSpec.

¢ Quadratic maximum likelihood classification using MultiSpec.

4 Correlation classification (Spectral Angle Mapper) using MultiSpec.

® Treatment could not be differentiated from the untreated check using the discriminant analysis procedures in SAS.
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Table 3.6. Classification accuracy of pair-wise comparisons, using rep 3 to test the classifier, of postemergence herbicide treatments in corn
based on reflectance properties using various analysis techniques and bands included in multispectral image bands on ground collected data.

Herbicide
Year Analysis Procedure Atrazine Bromoxynil 24-D Dicam.+Diflu. Nicosulfuron Primisulfuron
2001 DA? PROC DISCRIM % ND°® 100 100 100 100 ND
FLD® Reference Accuracy % 0 100 100 100 100 40
Kappa Statistic % 55 100 100 100 100 42
QML ® Reference Accuracy % 0 20 100 100 80 0
Kappa Statistic % 27 14 100 55 46 7
cc! Reference Accuracy % 0 40 100 100 100 20
Kappa Statistic % 43 55 100 100 100 49
2002 DA PROC DISCRIM % ND ND 100 75 ND ND
FLD Reference Accuracy % 40 20 40 40 20 60
Kappa Statistic % 32 45 60 65 -15 40
QML Reference Accuracy % 100 40 100 60 0 0
Kappa Statistic % 0 37 -17 20 -26 -11
cC Reference Accuracy % 80 0 40 40 20 40
Kappa Statistic % 65 35 70 35 -15 30

a Dlscrlmmant analysis using the PROC STEPDISC and PROC DISCRIM procedures in SAS.
® Fisher linear discriminant classification using MultiSpec.
¢ Quadratlc maximum likelihood classification using MultiSpec.
¢ Correlation classification (Spectral Angle Mapper) using MultiSpec.
® Treatment could not be differentiated from the untreated check using the discriminant analysis procedures in SAS.
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Table 3.7. Classification accuracy of pair-wise comparisons of postemergence herbicide treatments in corn based on reflectance propetties
using various analysis techniques and bands used in 2001 SAS analysis on ground collected reflectance data. Models could not be formed to
separate atrazine and primisulfuron-methyl treatments from the untreated check using the PROC STEPDISC in SAS.

Herbicide
Year Analysis Procedure Bromoxynil 2,4-D Dicam.+Diflu. Nicosulfuron
2001 FLD? Reference Accuracy % 100 100 100 100
Kappa Statistic % 100 100 100 94
QML® Reference Accuracy % 92 96 100 100
Kappa Statistic % 96 97 99 95
CcC® Reference Accuracy % 92 96 100 100
Kappa Statistic % 94 98 100 94
2002 FLD Reference Accuracy % 63 54 75 54
Kappa Statistic % 37 29 40 12
QML Reference Accuracy % 71 33 75 96
Kappa Statistic % 56 21 25 12
CC Reference Accuracy % 79 96 79 88
Kappa Statistic % 65 75 65 50

% Fisher linear discriminant classification using MultiSpec.
® Quadratic maximum likelihood classification using MultiSpec.
¢ Correlation classification (Spectral Angle Mapper) using MultiSpec.
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Table 3.8. Classification accuracy of pair-wise comparisons of postemergence herbicide treatments in corn based on reflectance properties
using various analysis techniques and bands used in 2002 SAS analysis on ground coliected reflectance data.

Herbicide
Year Analysis Procedure 2,4-D Dicamba + Diflufenzopyr
2001 FLD? Reference Accuracy % 100 67
Kappa Statistic % 69 50
QML°® Reference Accuracy % 100 54
Kappa Statistic % 100 38
CcCc°© Reference Accuracy % 79 67
Kappa Statistic % 63 21
2002 FLD Reference Accuracy % 58 67
Kappa Statistic % 31 29
QML Reference Accuracy % 46 83
Kappa Statistic % 28 36
CC Reference Accuracy % 83 54
Kappa Statistic % 36 15

# Fisher linear discriminant classification using MultiSpec.

® Quadratic maximum likelihood classification using MultiSpec.

¢ Correlation classification (Spectral Angle Mapper) using MultiSpec.

? Treatment could not be differentiated from the untreated check using the discriminant analysis procedures in SAS.
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Table 3.9. Classification accuracy of pair-wise comparisons of postemergence herbicide treatments in corn based on reflectance properties
using various analysis techniques and analysis on aerial multispectral reflectance data.

Herbicide
Year Analysis Procedure Atrazine Bromoxynil 24-D Dicam.+Diflu. Nicosulfuron Primisulfuron
2001 DA? PROC DISCRIM % 75 100 100 100 75 75
FLD" Reference Accuracy % 69 92 100 91 92 57
Kappa Statistic % 41 66 97 72 67 39
QML°® Reference Accuracy % 65 93 100 92 87 60
Kappa Statistic % 46 81 98 82 68 50
CC d Reference Accuracy % 61 69 100 89 80 53
Kappa Statistic % 30 43 97 60 47 -6
2002 DA PROC DISCRIM % ND*® ND 75 ND ND ND
FLD Reference Accuracy % 68 81 87 65 9 5
Kappa Statistic % 10 33 68 29 2 7
QML Reference Accuracy % 8 8 87 52 4 4
Kappa Statistic % -9 17 72 38 3 11
CC Reference Accuracy % 16 61 87 60 27 40
Kappa Statistic % -8 41 68 53 18 10

# Discriminant analysis using the PROC STEPDISC and PROC DISCRIM procedures in SAS.

® Fisher linear discriminant classification using MultiSpec.

¢ Quadratic maximum likelihood classification using MultiSpec.

4 Correlation classification (Spectral Angle Mapper) using MultiSpec.

¢ Treatment could not be differentiated from the untreated check using the discriminant analysis procedures in SAS.
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Table 3.10. Cross-validation summary showing classification accuracies of aerial data using the linear discriminant function in SAS comparing
all treatments in 2001. Data points consisted of 100 values for each treatment.

Number of Observations and Percent Classified into Herbicide Treatment

Herb Treatment Nicosulfuron  Atrazine Dicam.+diflu. Primisulfuron 2.4-D Bromoxynil Untreated Bare Soil Total
Nicosulfuron 0 0 2 1 0 0 1 0 4
0.00 0.00 50.00 25.00 0.00 0.00 25.00 0.00 100.0
Atrazine 0 1 1 0 0 1 1 0 4
0.00 25.00 25.00 0.00 0.00 25.00 25.00 0.00 100.0
Dicam.+diflu. 0 0 3 0 0 1 0 0 4
0.00 0.00 75.00 0.00 0.00 25.00 0.00 0.00 100.0
Primisulfuron 0 0 0 2 0 1 1 0 4
0.00 0.00 0.00 50.00 0.00 25.00 25.00 0.00 100.0
2,4-D 0 0 1 0 3 0 0 0 4
0.00 0.00 25.00 0.00 75.00 0.00 0.00 0.00 100.00
Bromoxynil 1 2 1 0 0 0 0 0 4
25.00 50.00 25.00 0.00 0.00 0.00 0.00 0.00 100.0
Untreated 0 1 0 2 0 0 1 0 4
0.00 25.00 0.00 50.00 0.00 0.00 25.00 0.00 100.0
Bare Soil 0 0 0 0 0 0 0 4 4
0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.0 100.0
Total 1 4 8 5 3 3 4 4 32
3.13 12.50 25.00 15.63 9.38 9.38 12.50 12.50 100.0

Priors 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125
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Table 3.11. Cross-validation summary showing classification accuracies using the linear discriminant function in SAS comparing all
treatments in 2001 after removing Bare Soil from the classification. Data points consisted of 100 values for each treatment.
Number of Observations and Percent Classified into Herbicide Treatment when Bare Soil is Removed

Herb Treatment Nicosulfuron  Atrazine Dicam.+diflu. Primisulfuron 2,4-D Bromoxynil Untreated Total
Nicosulfuron 0 1 2 1 0 0 0 4
0.00 25.00 50.00 25.00 0.00 0.00 0.00 100.00
Atrazine 1 0 0 0 0 2 1 4
25.00 0.00 0.00 0.00 0.00 50.00 25.00 100.00
Dicam.+diflu. 0 0 4 1 4] 0 0 4
0.00 0.00 100.00 0.00 0.00 0.00 0.00 100.00
Primisulfuron 1 0 0 1 0 0 2 4
25.00 0.00 0.00 25.00 0.00 0.00 50.00 100.00
2,4-D 0 0 1 0 3 0 0 4
0.00 0.00 25.00 0.00 75.00 0.00 0.00 100.00
Bromoxynil 0 2 1 0 0 1 1 4
0.00 50.00 25.00 0.00 0.00 25.00 0.00 100.00
Untreated 0 1 0 2 0 0 1 4
0.00 25.00 0.00 50.00 0.00 0.00 25.00 100.00
Total 2 4 8 4 3 3 4 28
7.14 14.29 28.57 14.29 10.71 10.71 14.29 100.00

Priors 0.14286 0.14286 0.14286 0.14286 0.14286 0.14286 0.14286
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Table 3.12. Cross-validation summary showing classification accuracies of the aerial data using the linear discriminant function in SAS
classifying all treatments in 2002. Data points consisted of 100 values for each treatment.

Number of Observations and Percent Classified into Herbicide Treatment

Herb Treatment Nicosulfuron Atrazine  Dicam.+diflu. Primisulfuron 24-D Bromoxynil Untreated Bare Soil Total
Nicosulfuron 0 1 1 1 1 0 0 0 4
0.00 25.00 25.00 25.00 25.00 0.00 0.00 0.00 100.00
Atrazine 1 0 0 2 0 1 0 0 4
25.00 0.00 0.00 50.00 0.00 25.00 0.00 0.00 100.00
Dicam.+diflu. 1 0 0 1 1 1 0 0 4
25.00 0.00 0.00 25.00 25.00 25.00 0.00 0.00 100.00
Primisulfuron 1 2 0 0 0 0 1 0 4
25.00 50.00 0.00 0.00 0.00 0.00 25.00 0.00 100.00
2,4-D 0 0 0 0 2 2 0 0 4
0.00 0.00 0.00 0.00 50.00 50.00 0.00 0.00 100.00
Bromoxynil 1 0 1 0 1 0 1 0 4
25.00 0.00 25.00 0.00 25.00 0.00 25.00 0.00 100.00
Untreated 0 1 0 1 0 2 0 0 4
0.00 25.00 0.00 25.00 0.00 50.00 0.00 0.00 100.00
Bare Soil 0 0 0 0 0 0 0 4 4
0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 100.00
Total 4 4 2 5 5 6 2 4 32
12.50 12.50 6.25 - 15.63 15.63 18.75 6.25 12.50 100.00

Priors 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125
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Table 3.13. Classification of 2001 test pixels using the quadratic maximum likelihood classifier in MultiSpec.

Number of Samples Classified into Class using Quadratic Maximum Likelihood Classification

Class Reference Number
Accuracy Samples
(%) Atrazine Bromoxynil Dicam.+diflu. 2,4-D Nicosulfuron Primisulfuron Untreated Bare Soil
Atrazine 16 75 12 30 2 2 13 15 1 0
Bromoxynil 34.7 75 20 26 5 0 18 6 0 0
Dicam.+diflu. 16 75 17 31 12 7 1 3 4 0
24-D 100 75 0 0 0 75 0 0 0 0
Nicosulfuron 24 75 19 15 3 11 18 9 0 0
Primisulfuron 24 75 11 19 1 2 10 18 14 0
Untreated 25.3 75 16 16 0 16 8 19 0
Bare Soil 100 75 0 0 0 0 0 0 75
TOTAL 600 95 137 23 97 76 59 38 75
Reliability 12.6 19 52.2 77.3 23.7 30.5 50 100

Accuracy (%)

OVERALL CLASS PERFORMANCE (255 / 600) = 42.5%
Kappa Statistic (X100) = 34.3%. Kappa Variance = 0.000520
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Table 3.14. Classification of POST 2001 test pixels using the Fisher linear discriminant classifier in MultiSpec.
Number of Samples Classified in Class using Fisher Linear Discriminant Classification

Class Reference Number

Number Accuracy Samples

(%) Atrazine Bromoxynil Dicam.+diflu. 2,4-D Nicosulfuron Primisulfuron Untreated Bare Soil
Atrazine 1.3 75 1 25 11 0 21 17 0 0
Bromoxynil 20 75 13 15 9 0 36 2 0 0
Dicam.+diflu. 13.3 75 13 38 10 4 10 0 0 0
2,4-D 88 75 0 9 0 66 0 0 0 0
Nicosulfuron 24 75 16 18 12 8 18 3 0 0
Primisulfuron 20 75 2 20 4 0 17 15 17 0
Untreated 18.7 75 9 4 0 0 39 9 14 0
Bare Soil 100 75 0 0 0 0 0 0 0 75
TOTAL 600 54 129 46 78 141 46 31 75
Reliability
Acouracy (%) 1.9 11.6 21.7 84.6 12.8 32.6 45.2 100

OVERALL CLASS PERFORMANCE (214 / 600) = 35.7%
Kappa Statistic (X100) = 26.5%. Kappa Variance = 0.000497
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Table 3.15. Classification of POST 2001 test pixels using the correlation classifier in MultiSpec.

Number of Samples in Class using correlation Classification

Class Reference Number
Number Accuracy Samples
(%) Atrazine Bromoxynil Dicam.+diflu. 2,4-D Nicosulfuron Primisuifuron Untreated Bare Soil
Atrazine 2.7 75 2 15 16 2 20 14 6 0
Bromoxynil 14.7 75 13 11 26 0 25 0 0 0
Dicam.+diflu. 25.3 75 12 32 19 7 5 0 0 0
2,4-D 100 75 0 0 0 75 0 0 0 0
Nicosulfuron 21.3 75 14 12 21 10 16 2 0 0
Primisulfuron 13.3 75 1 18 9 1 21 10 15 0
Untreated 6.7 75 4 9 15 0] 26 16 5 0
Bare Soil 100 75 0 0 0 0 0 0 0 75
TOTAL 600 46 97 106 95 113 42 26 75
Reliability
Accuracy (%) 4.3 11.3 17.9 78.9 14.2 23.8 19.2 100

OVERALL CLASS PERFORMANCE (213 / 600) = 35.5%
Kappa Statistic (X100) = 26.3%. Kappa Variance = 0.000481
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Table 3.16. Classification of POST 2002 test pixels using the quadratic maximum likelihood classifier in MultiSpec.

Number of Samples Classified into Class using Quadratic Maximum Likelihood Classification

Reference
Class Accuracy Number

Number (%)  Samples Atrazine Bromoxynil Dicam.+diflu.2,4-D  Nicosulfuron Primisulfuron Untreated Bare Soil
Atrazine 0 75 0 7 25 6 1 0 36 0
Bromoxynil 53 75 9 4 31 16 2 3 10 0
Dicam.+diflu.  33.3 75 11 11 25 13 0 0 13 2
2,4-D 9.3 75 4 1 44 7 3 1 6 9
Nicosulfuron 0 75 1 0 a7 1 0 0 24 2
Primisulfuron 4 75 4 11 25 3 0 3 29 0
Untreated 26.7 75 8 23 5 0 15 20 0
Bare Soil 100 75 0 0 0 0 0 0 0 75

TOTAL 600 37 38 220 51 6 22 138 88

Reliability

Accuracy (%) 0 10.5 11.4 13.7 0 13.6 14.5 85.2

OVERALL CLASS PERFORMANCE (134 / 600) = 22.3%
Kappa Statistic (X100) = 11.2%. Kappa Variance = 0.000341
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Table 3.17. Classification of POST 2002 test pixels using the Fisher linear discriminant classifier in MuitiSpec.

Number of Samples Classified in Class using Fisher Linear Classification
Class Reference Number
Number  Accuracy Samples

(%) Atrazine Bromoxynil Dicam.+diflu. 2,4-D  Nicosulfuron Primisulfuron Untreated Bare Soil

Atrazine 60 75 45 0 5 0 0 6 19 0
Bromoxynil 53 75 51 4 6 0 0 4 10 0
Dicam.+diflu. 8 75 48 0 6 0 0 3 18 0
2,4-D 6.7 75 47 0 8 5 3 0 6 6
Nicosulfuron 0 75 50 0 0 0 0 9 16 0
Primisulfuron 12 75 43 0 0 0 0 9 23 0
Untreated 12 75 47 1 3 1 0 14 9 0
Bare Soil 100 75 0 0 0 0 0 0 0 75

TOTAL 600 331 5 28 6 3 45 101 81

Reliability

Accuracy (%) 13.6 80 21.4 83.3 0 20 8.9 92.6

OVERALL CLASS PERFORMANCE (153 / 600) = 25.5%
Kappa Statistic (X100) = 14.9%. Kappa Variance = 0.000346
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Table 3.18. Classification of POST 2002 test pixels using the Correlation classifier in MultiSpec.

Number of Samples in Class using Correlation Classification
Class  Reference Number
Number  Accuracy Samples

(%) Atrazine Bromoxynil Dicam.+diflu. 2,4-D Nicosulfuron Primisulfuron Untreated Bare Soil

Atrazine 5.3 75 4 4 2 0 2 29 34 0
Bromoxynil 1.3 75 32 1 1 8 13 8 12 0
Dicam.+diflu. 6.7 75 20 2 5 22 2 23 1 0
2,4-D 9.3 75 3 1 1 7 57 2 4 0
Nicosulfuron 53 75 2 4 3 12 4 33 17 0
Primisulfuron 40 75 6 3 13 3 0 30 20 0
Untreated 38.7 75 8 4 1 3 3 27 29 0
Bare Soil 100 75 0 0 0 0 0 0 0 75

TOTAL 600 75 19 26 55 81 152 117 75

Reliability

Accuracy (%) 5.3 5.3 19.2 12.7 4.9 19.7 24.8 100

OVERALL CLASS PERFORMANCE (155 / 600) = 25.8%
Kappa Statistic (X100) = 15.2%. Kappa Variance = 0.000393

16
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CHAPTER 4

THE EFFECT OF TRAINING PIXEL SELECTION ON THE CLASSIFICATION
ACCURACY OF HYPERSPECTRAL DATA WITH A LIMITED NUMBER OF
TRAINING SAMPLES
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INTRODUCTION

The introduction of hyperspectral sensors, and thus the collection of much
more detailed spectral data, provides greater opportunities for extracting useful
information from reflectance data. However, these more detailed data require
more sophisticated data analysis procedures if their full potentials are to be
achieved (Landgrebe, 1999A). Multispectral data are represented quantitatively
and visualized in three principle ways, image, spectral, and feature space.
Image space represents the data in image form, spectral space represents the
data as a function of wavelength, and feature space illustrates how the response
in the different wavelengths relate to each other, i.e. response in a wavelength
plotted against that for the other wavelength.

One of the largest problems facing the remote sensing field, especially
hyperspectral analysis, is that the number of training samples is usually not as
numerous as one would desire. The number of training samples needed to
adequately define the classes quantitatively, regardless of what discriminant
function implementation is used, grows very rapidly with the number of spectral
bands to be used. This suggests that for a fixed number of training samples
there is an optimal measurement complexity. Too many spectral bands or too
many brightness levels per spectral band are undesirable from the standpoint of
expected classification accuracy (Landgrebe, 1999B). This is known as the
Hughes effect.

However, there are ways to limit this effect. It has been found that when,
the accuracy is below optimality due to limited training because of the Hughes
effect, a less complex classifier algorithm may provide increased classification

accuracy.
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The classification rule that results from using the class conditional
quadratic maximum likelihood estimates for the mean and covariance in the
discriminant function as if they were the true mean and covariance achieves
optimal classification accuracy only asymptotically as the number of training
samples increases toward infinity. This classification scheme is not optimal when
the training sample is finite. When the training set is small, the sample estimate
of the covariance can vary from the true covariance. In fact, for p features, when
the number of training samples is less than p+1, the sample covariance is always
singular (Landgrebe, 1999B).

Therefore, in high dimensional cases, it has been found that feature
extraction methods are especially useful to transform the problem to a lower
dimensional space without loss of information (Kuo and Landgrebe, 2002).
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MATERIALS AND METHODS

A boom truck-mounted field GER 2600 field spectrometer, also known as
a spectroradiometer, was used to collect ground-based hyperspectral data for the
four tests on clear days with less than 5% cloud cover. This spectrometer
collects 640 bands of data in 1.5 nm increments. Using both silicon and lead
sulfide sensors, a spectral range from 350 nm to 2500 nm was obtained. Of the
640 bands of data collected, approximately 500 bands outside the major water
absorption bands were useable.

Five reflectance samples were collected for each plot with three
collections with the sensor centered over a row of corn and two collections taken
with the sensor centered between the rows (Figure 4.1). This method created a
more representative canopy reflectance for the plot than if all samples were
taken over the crop and none were taken between rows. This is particularly true
since during the early development of the crop, there is not complete canopy
closure and the soil can have a large impact on the reflectance values.

Daughtry et. al. (1982) found more measurements are required at low
altitudes to obtain a representative sample of the canopy reflectance because
reflectance measurements tended to be erratic as the sensor was moved across
the rows. Therefore, measurements taken at half row spacing (on-row and off-
row) were more efficient and representative of canopy reflectance than random

sampling methods and averaging of measurements across the plot (Figure 4.1).
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1st Measurement  2nd Measurement  3rd Measurement 4th Measurement 5th Measurement
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Figure 4.1. Placement of sensor for measurements in each plot showing on-row and off-row

v

placement.

The spectrometer data were collected once for each test, approximately 5
weeks after planting (June 28, 2002) for the PRE early experiment, 4 weeks after
planting (July 15, 2002) for the PRE late experiment, 6 weeks after planting for
the POST 2001 experiment (June 16, 2001), and 5 weeks after planting for the
POST 2002 experiment (June 28, 2002). All data collections occurred on clear
days with less than 5% cloud cover near solar noon.

The measurements were converted to reflectance using a scene to

reference comparison with linear interpolation between two reference

observations using the formula:
Rs(B,A) = [Vs (B,A) - ds (N)]/ V' (B,A) * R (8,A)

Where: V' (8,A) = Vi1 (B,A) = di (A) + [ { Vi2 (B,A) - di2 (A) } = { Vi1 (B,A) - drt (A) 1]
* ts - tr1 / tr2_ tr1
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Where:

Vs (8,A) = GER 2600 response over corn canopy for solar illumination angle (8)
and wavelength (A).

Vi (6,A) = GER 2600 response over spectralon reflectance panel collected
before corn canopy observation.

V2 (6,A) = GER 2600 response over spectralon reflectance panel collected
after corn canopy observation.

Rs (8,A) = Reflectance of corn canopy for solar illumination angle (6) and
wavelength (A).

R: (8,A) = Reflectance of spectralon panel for illumination angle (8) and
wavelength (A).

ds, di1, do = Dark levels of GER 2600, all = 0.

ts, tr1, t2 = Time for data collection for corn canopy, reference before and
reference after, respectively.

The data were converted into .bip (band interleaved by pixel) image files
using Matlab (Figure 4.2). The image files were then analyzed using remote
sensing techniques to determine classification effectiveness and treatment
separability using MultiSpec. Each of the five observations per plot was

represented as a pixel, positioned on-off-on-off-on the rows of corn.
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Replication 4

Replication 3

Replication 2

Replication 1

Figure 4.2. Image file created in Matlab using the boom truck collected hyperspectral data.
Each row of pixels comprises a treatment. The arrows on the top point to the pixels that are on-
row readings, while the second and fourth pixels represent off-row readings.

Several factors were controlled in the MultiSpec classification analysis.
First, the number of bands was reduced either (1) to the bands included in the
multispectral image bands, a reduction in the number of bands from 640 to 189,
or (2) to the bands selected by the SAS STEPDISC procedure. The high
dimensionality of the data warranted band reduction to avoid the Hughes
phenomenon (Figure 4.3). The Hughes phenomenon is a decrease in the
accuracy of statistics estimation as dimensionality increases, which leads to a
decline in the accuracy of classification. Although increasing the number of
spectral bands or dimensionality potentially provides more information about
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class separability, this positive effect is diluted by poor parameter estimation. As
a result, the classification accuracy first grows and then declines as the number

of spectral bands increases (Kuo and Landgrebe, 2001).
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Figure 4.3. Concept of the Hughes Effect with wavelengths on the x-axis, mean recognition
accuracy on the y-axis, and number of training samples next to the representative curve.
(Landgrebe, 1999)

A leave—one-out covariance (LOOC) matrix was used to estimate the
sample covariance for those cases when the number of training samples for a
class is equal to the number of channels being used or fewer. This estimator
examines the sample covariance and the common covariance estimates, as well
as their diagonal forms, to determine which would be most appropriate. The
value of the mixing parameter is selected by removing one sample, estimating
the mean and covariance from the remaining samples, then computing the
likelihood of the sample which was left out, given the mean and covariance
estimates. Each sample is removed in turn, and the average log likelihood is
computed. Several mixtures are examined by changing the value of the mixing

parameter then the value that maximizes the average log likelihood is selected.
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Though an estimated covariance matrix is ordinarily singular and therefore not
usable when the number of samples used to estimate it is less than or equal to
the number of features, the LOOC returns a usable covariance matrix estimate
when the number of samples available is at least three or more (Landgrebe and
Biehl, 2001). Image classification was run using the quadratic maximum
likelihood, Fisher linear discriminant, and correlation classifiers (Figure 4.4).

 Cluster
(Unsupervised Classification)

ETT

N Extraction

Figure 4.4. Diagram of the classification process used to analyze images in MultiSpec.

Training and test field selection methods for analysis of hyperspectral
data in MultiSpec were conducted in two primary ways. The first method to be
described is termed the left-right selection method. The data were analyzed by
selecting on-off-on three pixels from each treatment as the training set, and the
test field was made up of the other two pixels plus the center pixel.
Consequently, the center pixel was used to both train and test the classifiers
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used. The fields were then switched from training to test and from test to training
and the classifications were run again. Each treated class was classified in
comparison to the untreated class to determine separability of the treatments
from the untreated. Classification accuracies using the quadratic maximum
likelihood, Fisher linear discriminant, and correlation classifiers were assessed
and compared to determine if the sampling method had an effect on classification

accuracy.
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RESULTS

PRE comparison

in the PRE 2002a test, the quadratic maximum likelihood and correlation
classifiers were very comparable from one training class selection to the other.
Both classifiers had low Kappa Statistics overall, and had similar reference
accuracies for each treatment from one selection method to the other (Table 4.1).
Flufenacet + metribuzin had the biggest differences in accuracy when using the
two selection methods. Using the left three pixels to train the classifier,
classification accuracies were 83, 33, and 83% for Fisher linear discriminant,
quadratic maximum likelihood, and correlation classifiers, respectively. The
classification accuracies using the right three pixels dropped considerably to
0.0% using the three classification techniques (Table 4.1). Alachlor, atrazine,
metolachlor and pendimethalin had the most consistent reference accuracies
using the two selection methods. When using the two class selection methods,
classification accuracies for alachlor were 92% and 100% using Fisher linear
discriminant classification, 33% and 67% using quadratic maximum likelihood,
and 75% and 83% using correlation classification (Table 4.1). Classification
accuracies for atrazine and pendimethalin differed by less that 9% for Fisher and
correlation classification methods when the training classes were changed (Table
4.3). Metolachlor had 92%, 100%, and 58% accuracies using the left three
pixels, and 92%, 83%, and 58% accuracies using the right three pixels for Fisher
linear discriminant, quadratic maximum likelihood, and correlation classifiers,
respectively (Table 4.1). The accuracies were very similar with only quadratic
maximum likelihood classification, 16%, differing at all (Table 4.3). Isoxaflutole
had different classification accuracies using the left pixels versus the right pixels
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for all classifiers; however, quadratic maximum likelihood classification had the
greatest difference from the left three pixels to the right three pixels selection
method with 42% difference in accuracy (Table 4.3).

Classification accuracies for the 2002b test using the two training sample
selection methods were almost identical for alachlor, using Fisher linear
discriminant and correlation classifiers (Table 4.2). Correlation classification
accuracies for metolachlor and quadratic maximum likelihood classification of
pendimethalin also were the same using both left and right pixels as training
samples. Isoxaflutole classification accuracies differed for every classifier when
the training samples were switched. When the left pixels were used, Isoxaflutole
had classification accuracies of 83%, 0%, and 75% for Fisher linear discriminant,
quadratic maximum likelihood, and correlation classifications, respectively (Table
4.2). Using the right pixels produced accuracies that differed by as much as 42%
from the classifications using the left three pixels (Table 4.3). Flufenacet +
metribuzin classification accuracies for correlation and Fisher linear discriminant
classifications were 16% and 17% different between sample selections (Table
4.3). The difference between the classification using the left and the right training
pixels was 66% (Table 4.2). Differences in classification accuracy of other
treatments ranged from 9% to 33%. The large discrepancies in classification
accuracy show that there are noticeable differences in classification due to
sampling of training and test samples that should be taken into consideration. If
these are not observed closely, the reported classification accuracies could be
misleading and result in a misinterpretation of the data.

The biggest differences in classification accuracy for both tests come
when using the quadratic maximum likelihood classifier (Figures 4.5 and 4.6).
Flufenacet + metribuzin is the most variable treatment in both tests with high
differences in accuracy for each classifier (Table 4.3). Atrazine and metolachlor
were the least variable in their classification accuracies, indicating a pixel
selection was not a major factor when classifying these treatments. Not including
flufenacet + metribuzin in 2002a, the Fisher linear discriminant and correlation
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classifiers were the least effected by the selection of training pixels (Figures 4.5
and 4.6). This indicates changing training or test classes for these classifiers will
not improve or decrease the accuracy of the classification. The small differences
for alachlor, atrazine, metolachlor, and pendimethalin show that representative
samples were well distributed for the data collected.

Quadratic maximum likelihood classification had lower and more variable
classification accuracies than the Fisher linear discriminant and correlation
classifiers (Figures 4.5 and 4.6). Fisher linear discriminant and correlation
classifiers are not as complex as the quadratic maximum likelihood classifier,
therefore, they do not require as many training samples, making them better

suited to classifications such as the ones conducted here.

POST comparison

The results of the Fisher linear discriminant classification were very
comparable for the two training sample techniques for the 2001 POST data. The
reference accuracy for bromoxynil using the left three pixels to train the classifier
is lower at 92% than for the right three at 100% (Table 4.4). 2,4-D, dicamba +
diflufenzopyr, and nicosulfuron had Fisher classifications of 100% using both
class selection methods (Table 4.4). The image analysis classification
accuracies for bromoxynil, 2,4-D, dicamba + diflufenzopyr, and nicosulfuron are
similar to the accuracies obtained using SAS discriminant analysis techniques.
Fisher classification accuracies for atrazine and primisulfuron were the same for
both training class selections (Table 4.6).

Quadratic maximum likelihood classification reference accuracies and
Kappa Statistics for all treatments were less than 50% for all treatments using the
left three pixels to train the classifier (Table 4.4). These low Kappa Statistics
indicate the reference and reliability accuracies do not agree well with each other
and the overall classification. Classification accuracies using the right three
pixels were 67%, 75%, and 75% for atrazine, bromoxynil, and 2,4-D,
respectively, while the accuracies using the left three pixels were all 33% or
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lower, indicating the correlation between classifications is low when using these
samples (Table 4.4). Differences in classification accuracy from left to right
training pixels differed from 8% to as much as 58% when using the quadratic
maximum likelihood classifier (Table 4.6). The quadratic maximum likelihood
classifier appears to be more sensitive to changes in training and test samples
than the Fisher linear discriminant and correlation classifiers, and more care
should be taken to select representative samples for this classifier.

Classification with the correlation classifier returned accuracies greater
than 80% for all classes using both left and right pixels to train the classifier
(Table 4.4). Reference accuracy and Kappa Statistic results for the Fisher linear
discriminant and correlation classifications were all approximately 80% and
greater for both training class selections, showing a high level of agreement with
the accuracy of the classifiers. These high accuracies show that the selection of
samples is not as important for the correlation classifier as it is for the quadratic
maximum likelihood classifier.

Classification accuracies for the 2002 data were low in general, with no
Kappa Statistics greater than 80%. The low accuracy of the classifications
indicates the treatments cannot be separated from the untreated, or the samples
are not representative of the treatment.

Fisher linear discriminant classification of dicamba + diflufenzopyr differed
only 9% from one method to the other, and there was no difference in reference
classification accuracies when using quadratic maximum likelihood and
correlation classifiers (Table 4.6). Classification accuracies for atrazine and
primisulfuron were virtually the same when using from one method to the other
using Fisher, quadratic maximum likelihood, and correlation classification
procedures. The largest differences came for bromoxynil when using the
quadratic maximum likelihood classifier with a difference of 83% in accuracy
(Table 4.6). 2,4-D also had significant differences in classification accuracies
when using the three image classifiers. The classification accuracy for the right
training pixels was near 100% when using the Fisher linear discriminant and
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correlation classifiers, however the quadratic maximum likelihood classification
was 8% for the same pixels (Table 4.5). When the classes were switched to the
left side, quadratic maximum likelihood classification was 100% and the Fisher
and correlation classifications were 42% and 33%, respectively (Table 4.5).

Quadratic maximum likelihood classification produced comparable results
between the two selection methods for atrazine, dicamba + diflufenzopyr,
nicosulfuron, and primisulfuron with differences in accuracy of 17% for atrazine
and 0% difference for dicamba + diflufenzopyr, nicosulfuron, and primisulfuron
(Table 4.6).

For both years, the greatest difference in accuracies came using the
quadratic maximum likelihood classifier (Figures 4.7 and 4.8). The Fisher linear
discriminant classifier had the most consistent classification accuracies when the
training classes were changed (Figures 4.7 and 4.8).

Excluding 2,4-D, the Fisher linear and correlation classifiers had the most
similarities using either class selection method. Therefore, pixel selection is not
as important to get high classification accuracies with Fisher linear discriminant
and correlation classifiers as it is with quadratic maximum likelihood
classification.

The small numbers of training samples available in comparison to the
large number of bands used for classification combined with the variation in the
five measurements in each plot are the main factors in the varying classification
results of the data. The quadratic maximum likelihood classifier, being the most
complex of the three classifiers used, requires the most training samples and will
experience the most variation with limited training sets. Larger variation in
results as a function of differing training sets indicate that conclusions based on

them will not be as robust.
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Table 4.1. Classification accuracy of pair-wise comparisons of preemergence herbicide treatments in corn based on reflectance properties
comparing the selection of the left three pixels as training samples and the right three pixels as training samples using bands included in
multispectral image bands on Early PRE experiment ground collected reflectance data.

Herbicide
Training Pixels  Analysis Procedure Alachlor Atrazine Fiufen.+Metr. Isoxaflutole Metolachlor Pendimethalin
DA? PROC DISCRIM % 100 100 100 75 ND °© 100
Left 3 FLD® Reference Accuracy % 92 92 83 83 92 100
Kappa Statistic % 75 76 33 75 83 92
QML Reference Accuracy % 33 100 33 42 100 33
Kappa Statistic % 17 8 17 22 15 25
CcC d Reference Accuracy % 75 50 83 75 58 83
Kappa Statistic % 50 20 33 50 28 50
Right 3 FLD Reference Accuracy % 100 83 0 67 92 100
Kappa Statistic % 83 87 15 75 82 100
QML Reference Accuracy % 67 100 0 0 83 25
Kappa Statistic % 31 44 9 0 31 22
CC Reference Accuracy % 83 58 0 83 58 83
Kappa Statistic % 50 28 14 50 28 50

# Discriminant analysis using the PROC STEPDISC and PROC DISCRIM procedures in SAS.

® Fisher linear discriminant classification using MultiSpec.

¢ Quadratic maximum likelihood classification using MultiSpec.

4 Correlation classification (Spectral Angle Mapper) using MultiSpec.

¢ Treatment could not be differentiated from the untreated check using the discriminant analysis procedures in SAS.
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Table 4.2. Classification accuracy of pair-wise comparisons of preemergence herbicide treatments in corn based on reflectance properties
comparing the selection of the left three pixels as training samples and the right three pixels as training samples using bands included in
multispectral image bands on Late PRE experiment ground collected refiectance data.

Herbicide
Training Pixels  Analysis Procedure Alachlor Atrazine Flufen.+Metr. Isoxaflutole Metolachlor Pendimethalin
DA? PROC DISCRIM % ND ¢ ND ND ND ND ND
Left 3 FLD® Reference Accuracy % 67 67 75 83 67 58
Kappa Statistic % 42 67 79 63 67 67
QML °®  Reference Accuracy % 33 25 17 0 50 33
Kappa Statistic % 3 6 3 0 30 3
cc® Reference Accuracy % 50 33 42 75 67 50
Kappa Statistic % 13 0 17 29 40 21
Right 3 FLD Reference Accuracy % 67 83 92 58 92 92
Kappa Statistic % 54 54 71 67 46 63
QML Reference Accuracy % 42 58 83 42 75 33
Kappa Statistic % 17 44 33 11 71 8
cC Reference Accuracy % 50 50 58 53 67 67
Kappa Statistic % 17 0 8 21 18 17

2 Discriminant analysis using the PROC STEPDISC and PROC DISCRIM procedures in SAS.

® Fisher linear discriminant classification using MultiSpec.

¢ Quadratic maximum likelihood classification using MultiSpec.

4 Correlation classification (Spectral Angle Mapper) using MultiSpec.

¢ Treatment could not be differentiated from the untreated check using the discriminant analysis procedures in SAS.
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Table 4.3. Differences in classification accuracy of pair-wise comparisons of preemergence herbicide treatments in corn based on reflectance
properties comparing the selection of the left three pixels as training samples and the right three pixels as training samples using bands used
in multispectral images on Early PRE experiment ground collected reflectance data.

Herbicide
Training Pixels  Analysis Procedure Alachlor Atrazine Flufen.+Metr. Isoxaflutole Metolachlor Pendimethalin
Left FLD?® Reference Accuracy % 8 8 83 17 0 0
Kappa Statistic % 8 11 18 0 2 8
ML®  Reference Accuracy % 33 0 33 42 17 8
Kappa Statistic % 6 37 8 22 16 8
cce Reference Accuracy % 8 8 83 8 0 0
Kappa Statistic % 0 8 19 0 0 0
Right FLD Reference Accuracy % 0 17 17 25 25 33
Kappa Statistic % 13 13 8 4 20 4
QML Reference Accuracy % 8 33 67 42 25 0
Kappa Statistic % 14 39 31 11 42 6
CC Reference Accuracy % 0 17 17 22 0 17
Kappa Statistic % 4 0 8 8 22 4

# Fisher linear discriminant classification using MultiSpec.
® Quadratic maximum likelihood classification using MultiSpec.
¢ Correlation classification (Spectral Angle Mapper) using MultiSpec.

oLt
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Classification Ranges of 2002 Early PRE Analysis
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Figure 4.5. Classification accuracy ranges of pair-wise comparisons using pre-emergence herbicide treatments in corn to compare reflectance
properties using the left-right selection method for wavelengths included in the multispectral image on 2002 Early Exp. ground collected
reflectance data. Average classification accuracy for each treatment using each classifier is plotted, using error bars to indicate the range of

the left and right accuracies.
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Classification Ranges of 2002 Late PRE Analysis
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Figure 4.6. Classification accuracy ranges of pair-wise comparisons using pre-emergence herbicide treatments in corn to compare reflectance
properties using the left-right selection method for wavelengths included in the multispectral image on 2002 Late Exp. ground collected

reflectance data. Average classification accuracy for each treatment using each classifier is plotted, using error bars to indicate the range of
the left and right accuracies.
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Table 4.4. Classification accuracy of pair-wise comparisons of postemergence herbicide treatments in corn based on reflectance properties
comparing the selection of the left three pixels as training samples and the right three pixels as training samples using bands included in
multispectral image bands on POST 2001 ground collected reflectance data.

Herbicide
Training Pixels  Analysis Procedure Atrazine Bromoxynil 2,4-D Dicam.+Diflu. Nicosulfuron Primisulfuron
DA® PROC DISCRIM % NS ® 100 100 100 100 NS
Left 3 FLD® Reference Accuracy % 83 92 100 100 100 Q2
Kappa Statistic % 87 96 96 100 100 86
QML ®  Reference Accuracy % 25 33 17 42 25 17
Kappa Statistic % 33 31 19 44 33 6
cc*® Reference Accuracy % 83 83 100 83 83 83
Kappa Statistic % 87 92 100 92 81 79
Right 3 FLD Reference Accuracy % 83 100 100 100 100 92
Kappa Statistic % 81 100 100 100 100 92
QML Reference Accuracy % 67 75 75 25 58 8
Kappa Statistic % 75 56 67 14 68 3
cC Reference Accuracy % 83 92 92 100 100 92
Kappa Statistic % 81 100 96 100 100 88

2 Discriminant analysis using the PROC STEPDISC and PROC DISCRIM procedures in SAS.

® Fisher linear discriminant classification using MultiSpec.

° Quadratic maximum likelihood classification using MultiSpec.

4 Correlation classification (Spectral Angle Mapper) using MultiSpec.

® Treatment could not be separated from the untreated check using the discriminant analysis procedures in SAS.
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Table 4.5. Classification accuracy of pair-wise comparisons of postemergence herbicide treatments in com based on reflectance properties
comparing the selection of the left three pixels as training samples and the right three pixels as training samples using bands included in

multispectral image bands on POST 2002 ground collected reflectance data.

Training Pixels  Analysis Procedure

D—Aa

Left 3 FLD®

PROC DISCRIM %

Reference Accuracy %

QML ©

Kappa Statistic %

Reference Accuracy %

cc?

Right 3 FLD

Kappa Statistic %

Reference Accuracy %
Kappa Statistic %

Reference Accuracy %

Dicam.+Diflu. Nicosulfuron Primisulfuron

QML

Kappa Statistic %

Reference Accuracy %

CcC

Kappa Statistic %

Reference Accuracy %
Kappa Statistic %

Herbicide
Atrazine Bromoxynil 2,4-D

ND ® ND 100 75
67 75 42 83
45 58 42 67
100 83 100 100

1 44 -31 -3
75 75 33 83
33 50 42 67
67 83 92 92
45 58 79 63
83 0 8 100
21 0 3 19
67 75 100 83
50 46 79 67

ND

92
42

100
1

75
33

58
38

100

58
43

ND

83
42

0
-22

83
42

67
29

0
0

75
29

2 Discriminant analysis using the PROC STEPDISC and PROC DISCRIM procedures in SAS.
® Fisher linear discriminant classification using MultiSpec.

¢ Quadratic maximum likelihood classification using MultiSpec.

¢ Correlation classification (Spectral Angle Mapper) using MultiSpec.

® Treatment could not be differentiated from the untreated check using the discriminant analysis procedures in SAS.
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Table 4.6. Difference in classification accuracy of pair-wise comparisons of postemergence herbicide treatments in corn based on reflectance
properties comparing the selection of the left three pixels as training samples and the right three pixels as training samples using bands used
in multispectral images on POST 2001 ground collected reflectance data.

Herbicide
Training Pixels  Analysis Procedure Atrazine Bromoxynil 2,4-D Dicam.+Diflu. Nicosulfuron Primisulfuron
2001 FLD?® Reference Accuracy % 0 8 0 0 0 0
Kappa Statistic % 6 4 4 0 0 6
QML® Reference Accuracy % 33 42 58 17 33 8
Kappa Statistic % 34 25 47 31 34 3
CcC® Reference Accuracy % 17 8 8 17 17 8
Kappa Statistic % 19 8 4 8 19 8
2002 FLD Reference Accuracy % 0 8 50 8 33 17
Kappa Statistic % 0 0 38 4 5 13
QML Reference Accuracy % 17 83 92 0 0 0
Kappa Statistic % 19 44 33 22 1 22
CC Reference Accuracy % 8 0 67 0 17 8
Kappa Statistic % 17 4 38 0 9 13

 Fisher linear discriminant classification using MultiSpec.
® Quadratic maximum likelihood classification using MultiSpec.
¢ Correlation classification (Spectral Angle Mapper) using MultiSpec.
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Classification Ranges 2001 POST Analysis
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Figure 4.7. Classification accuracy ranges of pair-wise comparisons using postemergence herbicide treatments in corn to compare
reflectance properties using the left-right selection method for wavelengths included in the multispectral image on 2001 POST ground

collected reflectance data. Average classification accuracy for each treatment using each classifier is plotted, using error bars to indicate the
range of the left and right accuracies.
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Classification Ranges of 2002 POST Analysis
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Figure 4.8. Classification accuracy ranges of pair-wise comparisons using postemergence herbicide treatments in corn to compare
reflectance properties using the left-right selection method for wavelengths included in the multispectral image on 2002 POST ground

collected reflectance data. Average classification accuracy for each treatment using each classifier is plotted, using error bars to indicate the
range of the left and right accuracies.
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Table 2.2. Classification accuracy of pair-wise comparisons of preemergence herbicide treatments used in corn based on reflectance
properties using various analysis techniques with bands included in multispectral image bands on ground collected reflectance data.

Herbicide
Exp. Analysis_Procedure Alachlor Atrazine Flufen.+Metr. Isoxaflutole Metolachlor Pendimethalin
Early DA? PROC DISCRIM % 100 100 100 75 ND°® 100
Reference Accuracy % 96 88 42 75 92 100
FLD® Reliability Accuracy % 80 89 31 83 96 93
Kappa Statistic % 79 82 24 75 83 96
Reference Accuracy % 50 100 17 21 92 29
QML® Reliability Accuracy % 95 70 50 50 66 100
Kappa Statistic % 28 26 13 11 23 26
Reference Accuracy % 79 54 42 79 58 83
CcC d Reliability Accuracy % 73 65 31 73 67 71
Kappa Statistic % 50 24 24 50 28 50
Late DA PROC DISCRIM % ND ND ND ND ND ND
Reference Accuracy % 67 83 92 58 92 92
FLD Reliability Accuracy % 73 67 65 78 58 65
Kappa Statistic % 54 54 71 67 46 63
Reference Accuracy % 42 58 83 42 75 33
QML Reliability Accuracy % 71 70 71 71 90 80
Kappa Statistic % 17 44 33 11 71 8
Reference Accuracy % 50 50 58 56 67 67
CcC Reliability Accuracy % 50 46 35 58 53 53
Kappa Statistic % 17 0 8 21 18 17

? Discriminant analysis using the PROC STEPDISC and PROC DISCRIM procedures in SAS.

® Fisher linear discriminant classification using MultiSpec.

¢ Quadratic maximum likelihood classification using MultiSpec.

4 Correlation classification (Spectral Angle Mapper) using MultiSpec.

® Treatment could not be differentiated from the untreated check using the discriminant analysis procedures in SAS.
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Table 2.3. Classification accuracy of pair-wise comparisons of preemergence herbicide treatments used in corn based on reflectance
properties using various analysis techniques with bands used in SAS analysis from the early experiment ground collected reflectance data.

Herbicide
Exp. Analysis_Procedure Alachior Atrazine Flufen.+Metr. |soxaflutole Metolachlor Pendimethalin
Early DA? PROC DISCRIM % 100 100 100 75 ND © 100
Reference Accuracy % 71 71 75 71 ND 63
FLD® Reliability Accuracy % 71 74 68 69 ND 69
Kappa Statistic % 40 46 40 38 ND 35
Reference Accuracy % 71 83 75 75 ND 63
QML°® Reliability Accuracy % 71 91 65 60 ND 79
Kappa Statistic % 40 66 32 28 ND 66
Reference Accuracy % 58 58 42 75 ND 71
cc® Reliability Accuracy % 61 58 43 78 ND 72
Kappa Statistic % 19 15 0 54 ND 44
Late DA PROC DISCRIM % ND ND ND ND ND ND
Reference Accuracy % 46 58 50 71 ND 50
FLD Reliability Accuracy % 58 47 54 77 ND 56
Kappa Statistic % 4 9 10 48 ND 10
Reference Accuracy % 54 63 54 58 ND 54
QML Reliability Accuracy % 37 60 50 74 ND 72
Kappa Statistic % -4 26 -4 45 ND 31
Reference Accuracy % 67 54 54 75 ND 67
CcC Reliability Accuracy % 67 43 59 60 ND 67
Kappa Statistic % 33 -7 15 25 ND 33

* Discriminant analysis using the PROC STEPDISC and PROC DISCRIM procedures in SAS.

® Fisher linear discriminant classification using MultiSpec.

¢ Quadratic maximum likelihood classification using MultiSpec.

4 Correlation classification (Spectral Angle Mapper) using MultiSpec.

° Treatment could not be differentiated from the untreated check using the discriminant analysis procedures in SAS.
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Table 2.4. Classification accuracy of pair-wise comparisons of preemergence herbicide treatments used in corn based on reflectance
properties using various image analysis techniques and SAS analysis on aerial image data.

Herbicide
Exp. Analysis Procedure Alachlor Atrazine Flufen.+Metr. Isoxaflutole Metolachlor Pendimethalin
Early DA?® PROC DISCRBIM % ND © ND 75 ND ND ND
Reference Accuracy % 16 48 77 61 73 75
FLD® Reliability Accuracy % 32 43 54 70 46 53
Kappa Statistic % 9 -1 26 48 3 27
Reference Accuracy % 68 73 72 84 48 91
QML © Reliability Accuracy % 51 47 47 61 43 53
Kappa Statistic % 41 20 26 54 3 38
Reference Accuracy % 24 36 56 48 63 20
CC d Reliability Accuracy % 22 35 62 78 42 22
Kappa Statistic % -24 -17 25 45 -9 -24
Late DA PROC DISCRIM % ND ND ND ND ND ND
Reference Accuracy % 52 45 67 28 47 24
FLD Reliability Accuracy % 45 35 57 60 55 82
Kappa Statistic % 7 -24 36 19 18 19
Reference Accuracy % 68 59 33 76 53 56
QML Reliability Accuracy % 45 45 53 50 56 66
Kappa Statistic % 18 6 42 10 27 44
Reference Accuracy % 65 51 73 28 55 8
CcC Reliability Accuracy % 46 37 55 81 55 60
Kappa Statistic % 3 -20 31 27 22 8

¥ Discriminant analysis using the PROC STEPDISC and PROC DISCRIM procedures in SAS.

® Fisher linear discriminant classification using MultiSpec.

© Quadratic maximum likelihood classification using MultiSpec.

9 Correlation classification (Spectral Angle Mapper) using MultiSpec.

° Treatment could not be differentiated from the untreated check using the discriminant analysis procedures in SAS.
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Table 3.5. Classification accuracy of pair-wise comparisons, using the average accuracy of left and right test pixel classifications, of post-
emergence herbicide treatments in corn based on reflectance properties using various analysis techniques and bands included in multispectral
image bands on ground collected reflectance data.

Herbicide
Year Analysis Procedure Atrazine Bromoxynil 2.4-D Dicam.+Diflu. Nicosulfuron Primisulfuron
2001 DA? PROC DISCRIM % ND*® 100 100 100 100 ND
Reference Accuracy % 83 96 100 100 100 92
FLD® Reliability Accuracy % 91 100 96 100 100 92
Kappa Statistic % 84 98 98 100 100 89
Reference Accuracy % 46 54 46 33 42 13
QML® Reliability Accuracy % 100 100 100 100 100 100
Kappa Statistic % 54 43 43 29 51 4
Reference Accuracy % 83 88 96 92 92 88
CcC d Reliability Accuracy % 96 98 100 100 96 88
Kappa Statistic % 84 96 98 96 91 83
2002 DA PROC DISCRIM % ND ND 100 75 ND ND
Reference Accuracy % 67 79 67 88 75 75
FLD Reliability Accuracy % 67 68 81 82 66 58
Kappa Statistic % 45 58 61 65 40 36
Reference Accuracy % 92 42 54 100 100 0
QML Reliability Accuracy % 56 31 75 58 50 0
Kappa Statistic % 11 22 -14 8 1 -11
Reference Accuracy % 71 75 67 83 67 79
CC Reliability Accuracy % 63 62 78 74 65 61
Kappa Statistic % 42 48 61 67 38 36

2 Discriminant analysis using the PROC STEPDISC and PROC DISCRIM procedures in SAS.

® Fisher linear discriminant classification using MultiSpec.

¢ Quadratic maximum likelihood classification using MultiSpec.

9 Correlation classification (Spectral Angle Mapper) using MultiSpec.

® Treatment could not be differentiated from the untreated check using the discriminant analysis procedures in SAS.
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Table 3.6. Classification accuracy of pair-wise comparisons, using rep 3 to test the classifier, of postemergence herbicide treatments in corn
based on reflectance properties using various analysis techniques and bands included in multispectral image bands on ground collected data.

Herbicide
Year Analysis Procedure Atrazine Bromoxynil 2.4-D Dicam.+Diflu. Nicosulfuron Primisulfuron
2001 DA? PROC DISCRIM % ND® 100 100 100 100 ND
Retference Accuracy % 0 100 100 100 100 40
FLD® Reliability Accuracy % 0 100 100 100 100 50
Kappa Statistic % 55 100 100 100 100 42
Reference Accuracy % 0 20 100 100 80 0
QML Reliability Accuracy % 0 100 100 100 100 0
Kappa Statistic % 27 14 100 55 46 7
Reference Accuracy % 0 40 100 100 100 20
cC d Reliability Accuracy % 0 100 100 100 100 50
Kappa Statistic % 43 55 100 100 100 49
2002 DA PROC DISCRIM % ND ND 100 75 ND ND
Reference Accuracy % 40 20 40 40 20 60
FLD Reliability Accuracy % 67 25 67 67 20 43
Kappa Statistic % 32 45 60 65 -15 40
Reference Accuracy % 100 40 100 60 0 0
QML Reliability Accuracy % 50 40 50 38 0 0
Kappa Statistic % 0 37 -17 20 -26 -1
Reference Accuracy % 80 0 40 40 20 40
CcC Reliability Accuracy % 80 0 67 50 20 33
Kappa Statistic % 65 35 70 35 -15 30

2 Discriminant analysis using the PROC STEPDISC and PROC DISCRIM procedures in SAS.

® Fisher linear discriminant classification using MultiSpec.

¢ Quadratic maximum likelihood classification using MultiSpec.

4 Correlation classification (Spectral Angle Mapper) using MultiSpec.

° Treatment could not be differentiated from the untreated check using the discriminant analysis procedures in SAS.
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Table 3.7. Classification accuracy of pair-wise comparisons of post-emergence herbicide treatments in corn based on reflectance properties
using various analysis techniques and bands used in 2001 SAS analysis on ground collected reflectance data.

Herbicide
Year Analysis Procedure Atrazine Bromoxynil 2,4-D Dicam.+Diflu. Nicosulfuron  Primisulfuron
2001 Reference Accuracy % ND ¢ 100 100 100 100 ND
FLD?® Reliability Accuracy % ND 100 100 100 96 ND
Kappa Statistic % ND 100 100 100 94 ND
Reference Accuracy % ND 92 96 100 100 ND
QML® Reliability Accuracy % ND 100 100 100 100 ND
Kappa Statistic % ND 96 97 99 95 ND
Reference Accuracy % ND 92 96 100 100 ND
CcCc® Reliability Accuracy % ND 100 100 100 96 ND
Kappa Statistic % ND 94 98 100 94 ND
2002 Reterence Accuracy % ND 63 54 75 54 ND
FLD Reliability Accuracy % ND 60 52 69 58 ND
Kappa Statistic % ND 37 29 40 12 ND
Reference Accuracy % ND 71 33 75 96 ND
QML Reliability Accuracy % ND 77 45 63 58 ND
Kappa Statistic % ND 56 21 25 12 ND
Reference Accuracy % ND 79 96 79 88 ND
CC Reliability Accuracy % ND 81 84 79 77 ND
Kappa Statistic % ND 65 75 65 50 ND

# Fisher linear discriminant classification using MultiSpec.
® Quadratic maximum likelihood classification using MultiSpec.
¢ Correlatlon classification (Spectral Angle Mapper) using MultiSpec.
% Treatment could not be differentiated from the untreated check using the discriminant analysis procedures in SAS.
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Table 3.8. Classification accuracy of pair-wise comparisons of post-emergence herbicide treatments in corn based on reflectance properties
using various analysis techniques and bands used in 2002 SAS analysis on ground collected reflectance data.

Herbicide
Year Analysis _Procedure Atrazine Bromoxynil 24-D Dicam.+Diflu. Nicosulfuron  Primisulfuron
2001 Reference Accuracy % ND¢ ND 100 67 ND ND
FLD? Reliability Accuracy % ND ND 100 88 ND ND
Kappa Statistic % ND ND 69 50 ND ND
Reference Accuracy % ND ND 100 54 ND ND
QML® Reliability Accuracy % ND ND 100 89 ND ND
Kappa Statistic % ND ND 100 38 ND ND
Reference Accuracy % ND ND 79 67 ND ND
cce Reliability Accuracy % ND ND 79 60 ND ND
Kappa Statistic % ND ND 63 21 ND ND
2002 Reference Accuracy % ND ND 58 67 ND ND
FLD Reliability Accuracy % ND ND 56 67 ND ND
Kappa Statistic % ND ND 31 29 ND ND
Reference Accuracy % ND ND 46 83 ND ND
QML Reliability Accuracy % ND ND 61 69 ND ND
Kappa Statistic % ND ND 28 36 ND ND
Reference Accuracy % ND ND 83 54 ND ND
CcC Reliability Accuracy % ND ND 67 60 ND ND
Kappa Statistic % ND ND 36 15 ND ND

2 Fisher linear discriminant classification using MultiSpec.

® Quadratic maximum likelihood classification using MultiSpec.

¢ Correlation classification (Spectral Angle Mapper) using MultiSpec.

4 Treatment could not be differentiated from the untreated check using the discriminant analysis procedures in SAS.
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Table 3.9. Classification accuracy of pair-wise comparisons of post-emergence herbicide treatments in corn based on reflectance properties
using various analysis techniques and analysis on aerial multispectral reflectance data.

Herbicide
Year Analysis_Procedure Atrazine Bromoxynil 24-D Dicam.+Diflu. Nicosulfuron Primisulfuron
2001 DA?® PROC DISCRIM % 75 100 100 100 75 75
Reference Accuracy % 69 92 100 91 92 57
FLD® Reliability Accuracy % 65 72 96 76 75 67
Kappa_Statistic % 41 66 97 72 67 39
Reference Accuracy % 65 93 100 92 87 60
QML°® Reliability Accuracy % 67 79 97 80 76 73
Kappa Statistic % 46 81 98 82 68 50
Reference Accuracy % 61 69 100 89 80 53
cc’ Reliability Accuracy % 60 61 96 71 65 47
Kappa Statistic % 30 43 97 60 47 -6
2002 DA PROC DISCRIM % NS° NS 75 NS NS NS
Reference Accuracy % 68 81 87 65 9 5
FLD Reliability Accuracy % 50 62 76 54 47 29
Kappa Statistic % 10 33 68 29 2 7
Reference Accuracy % 8 8 87 52 4 4
QML Reliability Accuracy % 30 33 75 54 60 17
Kappa Statistic % -9 17 72 38 3 11
Reference Accuracy % 16 61 87 60 27 40
CC Reliability Accuracy % 43 75 76 82 69 52
Kappa Statistic % -8 41 68 53 18 10

# Discriminant analysis using the PROC STEPDISC and PROC DISCRIM procedures in SAS.

® Fisher linear discriminant classification using MultiSpec.

¢ Quadratic maximum likelihood classification using MultiSpec.

4 Correlation classification (Spectral Angle Mapper) using MultiSpec.

° Treatment could not be differentiated from the untreated check using the discriminant analysis procedures in SAS.

gel



