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Introduction

The traditional method of correlating two (2) dimensional discrete data
afrays is a numerical integration and shifting procedure which is extremely
time consuming for large arrays. Two dimensional correlation is required as
a part of the imagery registration system under development at LARS. Methods
of increasing the computation speed for correlation have been investigated and
the Fast Fourier Transform was observed to be up to about forty times faster
than the numerical integration approach for the cases studied. This information
note explains some of the basic characteristics of the Fast Fourier Transform
correlation function algorithm and outlines the steps necessary to obtain the

desired results using the FFT.

Two Dimensional Imagery Correlation

A. Basic Correlation Function

The one dimensional registration system developed dgring 1968 was the
first step toward solution of the general multispectral image registration
problem. Experience gained from development and use of this system
stimulated the development of new techniques to improve the speed énd
accuracy of the registration system. The major problem with the one
dimensional system was that the correlation area available in one line or
column segment was often inadequate to achieve lock-on between two widely

separated wavelength bands. The reflectance properties of an area tend to




differ markedly from its thermal emission properties thus correlation
between reflective imagery and thermal infrared imagery becomes difficult.
Also, the cross-~coupling effect is severe for separate orthogonal correlation
of lines and columns.: The essence of the cross-coupling effect is that the
misregistration in one dimension can cause correlation in the other
dimension to fail due to the displacement of that coordinate. Assume two
image arrays A and B are misaligned by AC columns and with no line mis-
registration. Then correlation of a column in A with the corresponding
column in the B array may fail since they are AC columns apart in terms
of matching context. The same is true for a line shift. Other problems
such as the difficulty of rotating the lines and columns led to the decision
to store and process the imagery in two dimensional form. Two dimensional
multichannel imagery processing requires a square law increase in computer
core space. The decision to implement two dimensional processing was made
possible by the acquisition of additional core memory for the LARS computer
which doubled the original memory space.

The basic function which must be implemented for discrete cross

correlation is: -
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@(k;1) is the two dimensional correlation function for the fX?} and {Y}
image arrays.
k and 1 are the shift variables and their limits depend on the search

range required for the registration task being considered.




The bracket notation fX1 will be used to denote the set of all image
points identified by X. The shift variables k and 1 vary over a range
determined by the size of the x array and by the expected amount of
misregistration. The x and y data sets are corrected so as to have zero
mean and the denominator sum of the squares terms normalize the function
so that 100% positive correlation of {x} and {y} is indicated by a plus
one and 100% negative correlation by a minus one. In the research done
to date the shift parameters k and 1 were varied plus and minus ten to
twenty picture points in each direction and the summation ranges M and N
were varied from four to thirty-two picture points and only square areas
have been used; i.e., M = N: The size of the correlation function is as
follows:

Let Ak = maximum shift in k shift variable

Al = maximum shift in 1 shift variable
Then the correlation function @#(k,1) has 28k + 1 points in the k direction
and 201 + 1 in the 1 direction. Again equal shift limits have been used
in the research to date (&k = Al). This correlation function was implemented
along with basic card input, storage allocation, and correlation function

printout programming.

Fast Fourier Transform Correlation Method

The computing time necessary for straightforward evaluation of the
two dimensional correlation function proved to be excessive; on the order
of two minutes per evaluation in the typical case. An alternate method of
computing the correlation function exists which employs the Fourier Transform.
The discovery of the Fast Fourier Transform algorithm enabled a great
reduction in the time required to compute the Fourier Transform, thus a

fast means of COmputing the correlation function was made #vailable. The
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time required to compute an n point transform using the Fast Fourier Trans-
form varies as nlogn instead of approximately n2 for conventional numerical
integration evaluation. Thus a time savings in computation of the corre-
lation function from two factors can be achieved: (1) the Fourier Trans=
form method itself, and (2) the Fast Fourier Transform algorithm.
Therefore, the transform method was implemented in the Version II
registration system.

Certain problems unique to the use of the finite Fourier Transform
presented themselves and the solutions to bhem bear mentioning here since
a significant amount of time was spent in solving them. The convolution
theorem of applied mathematics states that multiplication in the frequency
domain is analogous to convolution in the time domain and this is expressed

mathematically as:
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Where x,y(t) two time functions

C(k) is the convolution between two time functions

shifted by k units with respect to each other

X,¥(f) are the Fourier Transforms of the two time
functions. The transform is a function of the

frequency variable f.

FT‘l signifies the inverse Fourier Transform operation

Cross correlation is defined in the same way as convolution except that
one of the two functions is not reversed but is simply shifted on its

axis. The correlation function is expressed as:

w
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Where @#(k) is the correlation function of the shift variable k

Y (f) is the complex conjugate of the Fourier Transform

of y(t)

Straight-forward application of the above expression to computation
of the correlation function of discrete data using the discrete Fourier
transform leads to problems causing to completely erroneous results. The
Fourier Transform algorithm computes the discrete N term Fourier series of
and N point function. Inherent in the operation of the transform algorithm
is the assumption that the function being transformed is periodic. The
resulting N point transform is also periodic. The result of the application
of the above expression in the discrete case is a cyclical convolution
function which in most cases will give an erroneous point of maximum
correlation. This problem can be alleviated by increasing the size of
the transform and including zero values for the range of shift desired.
For x(k) defined at M discrete points (M even) k =0, 1, . . . M-1 and

y(k) defined at N<M discrete points (N even), let y(k) = 0 for k = 0,

s nie e Mgﬂ -~ 1 and k = Mgﬂ, . « « M~1. Then executing the correlation
process using the transform will give the correct result for a shift of
NEM points in each direction.
M-1
Thus:  f(k) = ) x(i)y(i+k) k=0,%1,...+58
170 B3

is computed using the Fast Fourier Transform by multiplying the M point
transforms of {x} and {y} constructed with M-N zeros in the expanded {y}

array as follows:

#(x) = FT Y X(e)Y"(2) | S i B
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The k = O point is the correlation for no shift, k = 1 one point shift in
the positive direction and so on up to NEM points of shift in one direction.
The Egﬁ point is the correlation for maximum shift in the opposite
direction and the k = M~1 value is a one point shift in the negative

direction. This split is due to the cyclic property of the transform

and behavior of this type must be accounted for in any system which uses
M-N

the transform téchnique. The values of @(k) for k = ot g to
k = Mgﬂ ~ 1 are invalid and are not used. They represent the correlation

of y shifted such that values of y(i) for i>k are wrapped around the end
of {x} and are being correlated with x(0), x(1), etc., which is meaningless
in most cases. This picture is changed if the zeros are included in the
{y} array at different points. It can be stated in general that the only
valid correlation function points are those with the same index values as
the zero points in the y(i) function.

The cyclic convolution elimination problem becomes more complicated
for the two dimensional case. The {y} points are surrounded by zeros on
four sides to fill it out to the size of the larger {x} array. The valid
correlation points are identified in the same manner as for the one
dimensional case except that the four quadrants of the valid correlation
function are at the four edges of the total cyclical correlation function.
Specifically let the {x} array be of size M by M {x(i,j,) i=0, . . .
Mel, 350y 1y & o o M-1]l and e Nz Blpni g}, 4 =0, .« o Mo,
j=0., .M-1} with N<M. (M and N even) The N x N points are assumed
to be in the center of an M x M size array and this array is padded out

with zeros such that:
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S= M%K y(i,3) is an M x M array
This is the same basic format as for the one dimensional case. Similarly
the valid correlation function points lie in tlke first ﬂég-points in each

corner of the two dimensional square result array.

In order to prevent data sets with large average values from "swamping'

the correlation by effectively introducing a large square pulse into the
data the average value of the {y} data points is removed before padding in
the zeros. The average value of {x} is also removed to mimimize the
magnitude of the correlation function. A step by step account of the
operations necessary for two dimensional correlation are now described.
1. Select the size in image points of the area to be covered by the
correlation integral. Assuming it is square let this value be
N (N even). (The rectangular case is a trivial extension of the
square case.) Next select the maximum shift of one array with
respect to the other. Let this be A. The correlation function
will then have 24 + 1 points in each direction; plus and minus A
and one for gero shift.
2. Step one defines the necessary size for the base or {x} array. It
is: N + 2A square and this is called M. The average of the
M x M {x} array is removed and the average of the N x N {y} array
is removed. The {y} set is placed in the center of an M x M
array which is padded out with zeros as defined above.
3. The M x M Fourier Transform of {x} and {y} is computed using the
Fast Fourier Transform algorithm HARM (SHARE Program No. SDA 3425

or similar versions). The complex conjugate of the Y transform is




taken; the X and Y transforms are multiplied and the inverse transform
is taken which produces the total M x M cyclical correlation function
with the valid points at the corners of the array. Mathematically
these operations are expressed as follows. The two dimensional

transformation is:
M~1 M~-1 21/-1
ol B sy fi ] e
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Y(f,g) is computed in the same way.
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L. The resulting total correlation function @$(k,1) is partitioned and

the quadrants are interchanged to place the zero shift point in

the center of a 2A+ 1 by 2A + 1 two dimensional correlation function

as follows: e Mgg
¥ (kta, 1+A) = @(k,1) e o T IS
¥ (ktA, 1-MHA) = @(k,1) o i S G
1=M-pA-1,. . .,N=1

¢ (k-Mtat1, 1+A) = @(k,1) k = M-pA-1,. . .,M~1

l=o,. (3 .’ A
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U (k=MAFL, 1-MAFL) = @(k,1) k,1 = M-A-1,. « .,M=1
The function ¥ is a 2A+ 1 by 2A + 1 array of correlation values with
the zero shift point in the center. This array is the output of the

correlation routine.

A core storage saving scheme can be used when employing the Fast

Fourier transform routine for transforming real data. The transform




algorithm is written to be able to process complex data thus each input
data point is a double computer word. To perform correlation two separate
arrays are transformed, i.e., the {x] and {y}] data sets. The total number
of computer words required for the M x M transform is thus 2-2-M2. The
core saving method is based on the fact that the real part of the Fourier
Transform of real data is even about the zero frequency point and the
imagery part is odd. This fact is implicit in the following development
for the one dimensional case. We wish to compute X and Y(k) from x(j)

and y(j). This is expressed by the inverse transforms:

M-1

L 3k
x(3) = ) Xk W B8
k=0
M-1 2my/=1
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y(3) = ) Y)W W, =e B9
k=0

One real data set {x} is placed in the real part of the input data array
and the other {y} is placed in the imaginary part so that a complex

array is formed:
() = =)+ apld) B10

The {g} array is then transformed to the complex frequency domain forming

Z(k):
M~1

e Jk
g(3) =) 2(k) Wy B1l
k=0
To get the X and Y transform from the transform Z the following development
is used: Multiply the y transform expression B9 by i = /-1 and then add

to and subtract it from the x transform expression B8 which produces:



M-1
3 s = — X ¢ . jk
x(3) £iy(3) = ) @) £ i¥(k)) Wy B12
k=0
The complex conjugate of Bll can be written in terms of an inverse trans-—

form by setting k' = M-k as follows:

M-1 M-1
N ~ o ~ 21 1
B3 = ) T =) 7 o) ul
M s M B13
k=0 1 1=0

(The tilda indicates complex conjugate.)

Equating coefficients of expression Bll with those of Bl2 having the

plus sign (+) gives:
z(k) = X(x) + i Y(x) B14

and equating coefficients of Bl3 with those of Bl2 having a minus sign (-)

gives.

;(M-k) = X(k) - i Y(k) B15

Solving these two expressions for X and Y gives

X(k) = 3(z2() + g(M-—k)) B16
Y(k) = $(z(k) - g(M—-k)) B17

Thus the X and Y transforms can be resolved from the transform of the

complex combination by applying the above expression. This is implemented
in the correlation program thereby cutting the core requirement for array
storage in half. For the 32 x 32 point array being used this is a saving

of 2-32°32 = 2048 words or 8192 bytes of storage.
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C. Correlation Function Characteristics

The two dimensional correlation function computation techniques
discussed in parts A and B form the core of the Version 2 image:
registration system. The computer implementation of these functions
has been carried out and analysis of correlation results on imagery
from a variety of flight lines is continuing. When two scenes are
correlated a 2A + 1 by 2A + 1 square array of correlation values is
produced. The point of maximum correlation is the one with maximum
value. The position of the maximum value in the array gives the mis-
registration of the two image scenes being correlated. If the maximum
point is at the center of the array then the two scenes are in registration
to within one image point. In order to pictorially print out the corre-
lation function the values are scaled from O to 9 and the array is printed
as a rectangular box. Contour lines of constant correlation function
value hewe are thégwhggxtc better illustrate the variation in correlation
as the two images are moved with respect to each other. Two forms of
distance measure are computed: Picture distance and Fuclidian distance.
Picture distance is the row and column- misregistration and the Euclidisn
distance is the root of the sum of the squares of the row and column
misregistration. The picture distance is used for registering the imagery

and the Euclidian distance is used for control and evaluation purposes.

The Fast Fourier transform method described above significantly reduces
the time required to compute the correlation function compared to the numerical
integration approach. Table 1 presents a comparison of the time required to
compute the correlation function by the two methods. The numerical integration

time refers to the conventional method of computing the correlation function




discussed in part A.
the averages of the two data arrays, set up the complex array, take a forward

and a reverse two dimensional fourier transform, unscramble the two transforms

The Fast Fourier Transform time is the time to compute

as required by the core saving method discussed above, and to extract the

valid correlation function points from the total correlation function.

The

time savings using the Fast Fourier Transform averages about an order of

magnitude and this savings has a great impact on the usefulness of digital

registration methods.

Table 1 Time Comparison of Numerical Integration and Fast Fourier
Transform Methods of Computing Correlation Function
o Maximum Shift in Both Directions
lation + 5 points +10 Fa5 4+ 20
Area Numerical |Fast Fourier| Num |FFT | Nun | FFT | Num FFT
Points Sq. |Integration| Transform Int. Int. Int.
(sec.) (sec.) (sec.)i(sec. )(sec. (sec. )(sec.)| (sec.)
L 1:5 .70 5.4 g3.2 .74 A3 20.0 ) 13.6
8 5.7 3.4 20,50 3.2 P ka5 1 339 L 778 | 1300
12 12.6 3.4 4561 3.2 199020 12,9 0073.3 | 13.6
16 22l 3l 0.8 HL.h B75.61 159 306.9 1 13.6
20 2.9 3.4 125, 9 k.4 273.8 ] 13.9 0084 1 13.6
2L 50,3 : 1 181.1 dk.b 393.71 13.91688.1 | 13.6

Survey of References

The techniques discussed in this information note are based on materials

from two basic sources, References 1 and 2.

expanded on in many other sources.

below for those seeking further knowledge &n the subject of FFT applications.
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