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Introduction

In the U.S., the era of space-based multispectral remote sensing of land areas began soon after the
launch of the first Earth satellite in 1957 and the creation of NASA in 1959. Satellites to observe
the weather became an initial focus of Earth-looking satellites, with the first U.S. satellite designed
for that purpose launched in 1960. Research on land remote sensing began soon thereafter and was
initially focused on the Earth’s renewable and non-renewable resources, and especially on food
and fiber production. The need envisioned was very much use-driven, as compared to a purely
scientific interest. The primary objective of the early research was to create a practical but
especially, an economical technology to supply usable and needed information about the Earth’s
resources for both application and scientific interests. Vertical views of the Earth’s land surface
provide a unique vantagepoint, one different than ordinary human experience. The world does not
look the same from altitude looking down. But it is not so much the simple uniqueness of this
vantagepoint that was the attractive feature as the fact that from altitude one can see more, thus
suggesting the economic value of the synoptic view and the ability to cover large areas quickly and
inexpensively. On the other hand, this raises the question of dealing with large quantities of data.

This motivation and line of thinking led to considering ways to collect information via a space
platform from image data with the lowest spatial resolution usable. The spatial resolution of a
spaceborne sensor is one of the more expensive parameters. Higher spatial resolution leads not
only to larger quantities of data for a given area as resolution is increased, but to larger (thus
heavier) sensor systems, increased precision requirements on spacecraft guidance and control,
wider bandwidth downlinks, and the like. This is what led to the concept of using spectral
measurements of a pixel to identify what ground cover the pixel represents, rather than to use
spatial variations (imagery) and more conventional image processing techniques, methods which
generally require higher spatial resolution.

For similar reasons, methods were pursued which marry the unique capabilities of both human and
computer. Rather than seeking a fully “automatic” system, it appeared to be much wiser to attempt
to construct a data analysis scheme that takes advantage of keen perceptive and associative powers
of the human in conjunction with the objective quantitative abilities of computers. Fully manual
systems in the form of air photo interpretation had been used for many years. Though a great deal
of work has gone into fully machine implemented systems, the problem of devising completely
automatic schemes has proved to be quite daunting with only limited success even to the current
time. The most functional schemes that have become available in a practical sense can perhaps best
be described as human assisted machine processing schemes. Where the focus has been placed on
“image enhancement,” such systems might be labeled machine assisted human schemes. In the
following we will focus on the human assisted machine approach. Indeed, there is a down side to
even seeking a fully automatic system. As compared to a machine, the human has exceptional
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Multispectral Information Extraction Principles

perceptive powers and abilities to abstract and to generalize. A fully automatic system would have
to forego these capabilities, and thus is likely to be more limited and less robust in its abilities and
perhaps less economical as well.

The following figure shows in broad concept form, an overview of the complete information
system. It is important to have such an overview of the entire system in mind, the illumination, the
Earth surface, factors related to it observation, and the data and its processing, when planning the
analysis of a data set, rather than simply considering the data and its processing in isolation of the
other elements. What is the case in other parts of the system has a significant impact on how the
processing and analysis should proceed.
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A conceptual overview of a remote sensing based information system.

For reasons of simplicity, we will focus the discussion on passive systems in the optical portion of
the electromagnetic spectrum. Thus the sun is used as the illumination source of the scene on the
Earth. The sensor system then measures the reflected (or emitted) energy from the areas of interest.
The data thus collected is next transmitted to the Earth for processing, information extraction and
utilization. As seen, then, a key element is the merging of ancillary data with the data stream and
the use of human perception and guidance in the processing of the data.

It is logical to think of this system in three parts. The first will be referred to as the scene. It
consists of that part of the system in front of the sensor, including the sun, the Earth’s surface, and
the atmosphere. This part of the system has two distinguishing characteristics:

1. It is that part of the system which is not under human control, not at the time of system
design and not later when the system is being operated, and,

2. Itis by far the most complex and dynamic part of the overall system.
Both of these have a very considerable impact on how one must address the problem of analysis of

data from such a system. Obviously, since this first part of the system is not under human control,
it cannot be designed or optimized; the best one can do is learn as much about the scene that must
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be dealt with as possible. In addition, then, the complexity of the scene and its dynamism dictates
what types of approaches to scene models and what data analysis approaches might be useful. It is
very easy to underestimate this complexity and dynamism of the scene and to undertake too
simplistic an approach to data analysis, thus limiting the robustness of the procedure and the
accuracy and detail of the information that can result. For example, the spectral response of a given
type of vegetation may be expected to change significantly from day to day due to growth and
maturity factors, prior weather conditions, and the like. It may be expected to change even from
minute to minute and from one part of a scene to another due to wind effects, the sun angle-view
angle combination, and other variables. In general, one cannot count on a vegetative canopy having
a stable “spectral signature.”

The second part of the system is the sensor portion. This portion of the system is characterized by
the fact that, though it is under human design control, it is usually not under the control of the
analyst at the time of data acquisition. Thus, the analyst must pretty much accept what is given, in
terms of the parameters of the data produced, i.e., the spectral and spatial resolution, the
quantization precision, the sensor field of view and look angle and the like. Though the system
designer may select these characteristics in the process of optimizing the system for a certain class
of uses, the individual user usually does not have a choice of them for the particular application,
site, and time of season in mind.

It is the third part of the system, all of that after arrival of the data at the processing point, over
which the analyst has the greatest control. Thus it is here that choices can be made with regard to
algorithm selection and operation to optimize performance to the specific data set and use. In the
remainder of this chapter, we will explore the factors that go into making these choices.

The Three Views Of Data

Extending the above line of thinking, how one thinks
about the data in a multispectral data set, generally
speaking, may be from any of three different points of
view. We will explore these briefly, in terms of a data
representation scheme or a representation space.

1. Image Space. Perhaps the first thought about
how to view a new data set is to think of it as an
image. This is a quite natural first thought in that
the human vision system is a quite wide channel &
into the human brain; it is one that is thus very
attractive in a human sense. The concept here is to ,
display the data samples in relation to one another %z
in a geometric, or more properly, geographic = : :
sense, thus providing a “picture” of the ground scene for the human viewer. How these pixels
relate to one another can be information-bearing. However, given the basis for the acquisition
of information by multispectral means described above, such a data presentation does not carry
a large proportion of the information that is obtainable from such multiband data. One may only
view the data in one (BW) or three (Color) bands at a time. In addition, between band
relationships are not very apparent. It is, on the other hand, very useful in providing an
overview of the data, and it can often make apparent to the analyst certain kinds of faults in the
data.
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A key use of imagery in multispectral processing is to serve as a means for the analyst to
associate multispectral data points (pixels) with specific locations (points) in the ground scene.
In the analysis process it is very useful, therefore, in the labeling of pixels in the data set as
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training samples, i.e., examples of the classes that the analyst wishes to identify.
Fundamentally, the analysis process consists of bringing together the wishes of the analyst in
terms of what classes are desired with the scene spectral properties as expressed in the data.
One cannot expect a satisfactory final product unless the analyst can carefully and completely
define which spectral properties are intended to belong to which classes. The training samples
are the means for doing this. Thus the means for allowing the analyst to accomplish this is the
key to successful analysis. As will be seen, this fundamental step becomes even more crucial
for hyperspectral data.

The spatial relationships available in an image expression of multispectral data has also been
found effective in a limited way as an adjunct to spectral relationships in extracting information
from the data.

2. Spectral Space. The emergence of the multispectral
concept began to focus attention on how the response
measured in an individual pixel varies as a function of
wavelength as an information-bearing aspect, and
indeed, perhaps the key such aspect. The idea is that, if
response vs. wavelength effectively conveys needed
information by which to identify the contents of an
individual pixel, this provides a fundamental simplicity
that is important from a processing economics point of —t —
view. In this circumstance, pixels can be processed one wavalength
at a time, a much simpler arrangement than would be
needed using so-called picture processing or image processing schemes. It is inherently more
suited to the computer and quantitative representation of data. Further, compared to image
processing schemes, being able to label each pixel individually results in a higher resolution
result than, for example, a label associated with a neighborhood of pixels, as would be the case
for conventional image processing schemes.
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Response as a function of wavelength has the very useful characteristic that it provides the
analyst with spectral information that is often directly interpretable. Especially when a high
degree of spectral detail is present, characteristics of a given pixel response can be related to
physical properties of the contents of the pixel area. For example, one can easily tell whether a
pixel contains vegetation, soil, or water. In the case of high-resolution spectra, one may even
be able to identify a particular molecule based upon the location of specific absorption bands, in
a manner similar to that used by chemical spectroscopists in the laboratory. Thus, for the
analyst, a display of spectral response can provide a direct link to physical properties. For this
reason, fundamental scientists tend to initiate their thinking about multispectral data from the
point of view of spectral space. In limited cases, such spectral curves may be used directly in
machine implemented spectral matching schemes.

But viewing a graph of response vs. wavelength for an individual pixel does not provide the
whole story so far as the relationship between spectral response and information available from
the scene is concerned. The spectral response of any given Earth surface cover type tends to
vary in a characteristic way. The spectral response of corn field pixels at a given time, for
example, is not uniform for all the pixels of the field, but varies in a characteristic way about
some mean value. This is due to the relationships between the size and mixture of leaves,
stalks, soil background, the physiology of the plants, etc, leading to different mixtures of
illuminated and shadowed surfaces and the like. This variation is, to a useful degree, diagnostic
of the plant species and thus useful in discriminating between corn and the other plant species
that may be in the scene. But such variation, though present in the spectral responses from the
field, is not easily discernable from a presentation of a series of plots of response vs.
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wavelength for the class. For this purpose, the third form of data expression, the feature space
proves more useful, especially in relation to machine processing.

3. Feature Space. If one samples the spectral response at two different wavelengths, A1 and A,
as shown above, the values resulting can be plotted as shown at right, thus creating a 2-
dimensional display. If one samples at more values of A, for example, 10 values of A, the point
representing each spectral response would then be a point in 10-dimensional space. This turns
out to be an especially useful way of representing spectral
responses. If one samples the spectrum at enough
wavelengths, so that one could reconstruct the spectral
curve from the samples, the information the spectral
response contains is preserved, and it is now represented
as a vector. Though one cannot show such a point
graphically, a computer can more easily deal it with than
with a graph. ® water

& vegetation
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Further, this is a mathematical representation of what a
multispectral sensor does, i.e. sampling the spectral
response in each of N spectral bands. The result is then an
N-dimensional vector containing all the available spectral information about that pixel. The
advantage of this type of representation is that it is a quantitative way of representing not only
the numerical values of individual pixels, but also how the values for a given material may vary
about their central or mean value. As indicated above, this turns out to often be quite diagnostic
of the material. We shall deal more fully with this fact later.

Responee ot &

Each of these three data spaces, then, has its advantages and limitations. Image space shows the
relationship of spectral response to its geographic position, and it provides a way to associate each
pixel with a location on the ground. It also provides some additional information useful in analysis.
Spectral space often enables one to relate a given spectral response to the type of material it results
from. Feature space provides a representation especially convenient for machine processing, for
example, by use of a pattern recognition algorithm. It is this latter method of data analysis, a very
common one for multispectral analysis, we will explore next, using it as a means for exploring
how information is contained in spectral data, and how it may be extracted.

Analysis Algorithms And the Relationship With Ancillary Data

We next consider the process of analysis or extracting information from the data. The term data
analysis can mean many things in different applications. A common one is to make a thematic map
of the scene by associating a class label with each pixel of the scene. For simplicity, we will focus
on that objective. In terms of feature space, one might think of the analysis process as that of
delineating the region of the feature space associated with each class of interest. For example, one
might somehow determine which region of the space contains spectral values associated with
wheat, which part contains forest pixels, which contains urban pixels and the like. In terms of the
thematic map concept, this means partitioning up the feature space such that each possible location
in the space has a unique class label associated with it.
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A very common means for doing this is via a pattern Feature Space
recognition algorithm using a discriminant function.
Assume that the digital values of the response in each o
of the N spectral bands of a pixel form a vector Decidious
designated X. Then assume that, for the M classes Forest
that exist in the data set, a set of M functions {g;(X),
g22(X), ... gu(X)} can be found such that g;(X) is
larger than the others when the pixel in question
contains class i. Then the classification rule to be
machine implemented can be defined as follows.

Let w; denote the ith class. Decide X is a member

of class ; if and only if
gi(X) 2 gi(X) forall j= 1,2,... M.
This procedure, then, defines how every pixel can be
assigned to a class by means of a computer. The
computer algorithm has only to evaluate each of the M
gi(X) functions for each pixel and call out the class for Response in Band 1
which the g-function is a maximum.

Coniferous
Forest

Non-forest

Response in Band 2

wvater

The next question is how to find the set of M
discriminant functions in any given case. There have been a number of ways to do this defined in
the pattern recognition literature. A currently popular one is through the use of a neural network.
One begins with a pre-labeled set of samples, called training samples or design samples, which are
representative examples of each of the classes one wishes to identify. Then an iterative scheme may
be used, as follows.
1. Choose a parametric form for the discriminant function, e.g.
g1(X) = a; X +apxp + by
82(X) = a3 X3 +apX; + by
2. Initially set the a's and b's arbitrarily, e.g. to +1 and -1
3. Sequence through the training samples, calculating the g's and noting
the implied decision for each. When it is correct, do nothing, but
when it is incorrect, augment (reward?) the a's and b's of the
correct class discriminant, and diminish (punish?) those of the
incorrect classes. For example, if X is in w,, but g, > g, then let

a'y; =ap; + 0xg a'y; =ag - 0Xy
' — ' -—

Ay =232 T 0Xy gy =ay - 0X;
b'1=b1+a b'2= b2-OL

4. Continue iterating through the training samples until the number of incorrect classifications
is zero or adequately small.

Neural network implementations of the discriminant function concept can be of varying degrees of
complexity. For example, one may add additional terms to the illustrative functions g;(X) and
g,(X), as defined above thus making them nonlinear. In doing so, one increases the number of
parameters that must be correctly adjusted, thus increasing the generality of the classifier, but also
the complexity and duration of the training process. Neural network implementations are
characterized by the fact that they require no foreknowledge of the nature of the classes, since they
rely totally on an empirical use of the training samples. On the other hand, they cannot make use of
any foreknowledge that one might have, and they usually require a large amount of computation
time in the iterative process of accomplishing the training. Further, neural network implementations
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do not lend themselves to analytical evaluation very easily. It is more difficult to predict the
performance, for example, and therefore to adjust the configuration and parameters to an optimum.

A second common approach to determining a set of discriminant functions utilizes a statistical
approach. The training samples, instead of being used in an empirical calculation as above, are
used to evaluate a probabilistic model for each class. That is, they can be used to estimate the
probability density function associated with each class. Recall that the value of a probability density
function at any point indicates the relative likelihood of that point. Thus, by using class probability
density functions as discriminant functions, one is deciding in favor of the most likely class for
each pixel.

More formally, let p(X|®;) be the (N-dimensional) probability density function for class i, and
p(w;) be the probability that class i occurs in the data set. Then, the decision rule becomes:

Decide X is in class w; if and only if
p(X|o)p(w;) = p(X|w)p(®)) for all j = 1,2,..,m

This decision rule is known as the Bayes Rule, and it can be shown that it provides the minimum
probability of error for the density functions used.

Any of a wide variety of probabilistic models can be used, in either parametric Or non-parametric
form. Often the density for the classes can be assumed to be normally or Gaussianly distributed. In
this case, the class probability density function becomes,

pX|w) = u)-N2[Z|172 exp{-1/2 (X - ii)T Zi'l X-X)}
where X is the class mean value and X is its covariance matrix. In this case, one has only to use
the training samples to estimate the class mean vectors and covariance matrices, a very short
calculation.

Furthermore, if the Gaussian assumption is applicable, as it often is, due in part to the Central
Limit Theorem, significant simplification of the process can be made. If p(X|w;p(w;) =
p(Xle)p(on) for all j = 1,2,...,M, then it is also true that

In pX|w;)p(®;) = In p(Xlu)j)p((oj) for all j = 1,2,...M.
Thus one may take the following as an equivalent discriminant function, but one that requires
substantially less computation time. (Note in this expression that we have dropped the factor
involving 27 since it would be common to all class discriminant functions and thus does not
contribute to the discrimination.)

g(X) = In p(w,) - (1/2)In|Z] - (1/2)(X-X; TEHX-X)

p2(;) — Py
or 2gi(X)=1In B X-X)TE (X-X))

Note also that the first term on the right must only be computed once per class, and only the last
term must be computed for each pixel to be classified. The calculation that must be implemented is
thus quite straightforward and simple.

Thus, to achieve optimal performance, one must (a) have good estimates of the class mean vectors
and covariance matrices, after having (b) chosen an appropriate probability model and a proper set
of classes. These conditions turn out to be the key ones to achieving good results. We shall next
explore these two conditions more fully.
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(a) On the importance of accurate class statistics. One of the defining circumstances of
the remote sensing problem is the fact that training samples are usually not as numerous as would
be desirable. As it turns out, this factor has a strong relationship to the number of spectral bands
contained in the measurement and the signal-to-noise ratio of the sensor. That is to say that the
number of training samples needed to adequately define the classes quantitatively, regardless of
what discriminant function implementation is used, grows very rapidly with the number of spectral
bands to be used. To understand how this influences the performance, we begin by drawing
attention to the following long-standing theoretical result. !

The study in mind investigated in a very generalized fashion the relationship between the accuracy
to be expected in a classification to the complexity of measurement used and the number of training
samples used. One of the results of this study is given in the figure below. The variable of the
vertical axis of this figure is the mean recognition accuracy obtainable from a pattern classifier,
averaged over all possible pattern classifiers. Thus the result shown is very general. This is plotted
as a function of measurement complexity on the horizontal axis. Here, measurement complexity is
a measure of how complex and detailed a measurement is taken. In the case of digital multispectral
data, it is related to the number of bins or brightness-level values, k, recorded in each band, raised

to the pth power, where p is the number of spectral bands, i.e., the number of possible discrete
locations in N-dimensional feature space. For example, for Landsat Thematic Mapper data with its
7 bands of 8 bit data, if all 8 bits of all 7 bands were active, this number would be (28 )7 =7 x 10'°,
The more bands one uses and the more brightness levels in each band, the greater the measurement
complexity.
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Mean Recognition Accuracy vs. Measurement
Complexity for the finite training case.

The result shown is for the two-class case, and in this figure, the two classes are assumed equally
likely. The parameter, m, is the number of training samples used. A perhaps unexpected
phenomenon is observed here in that the curve has a maximum. This suggests that for a fixed
number of training samples there is an optimal measurement complexity. Too many spectral bands
or too many brightness levels per spectral band are undesirable from the standpoint of expected
classification accuracy.

While perhaps at first surprising, the occurrence of this phenomenon is predictable as follows. One
would expect the separability between classes to increase with increasing numbers of bands, but
ultimately, the rate of increase would be expected to slow. Indeed, for the case of m — < above,
the probably accuracy rises rapidly at first, but eventually becomes asymptotic to 0.75, a

1 Hughes, G. F., “On the mean accuracy of statistical pattern recognizers,” IEEE Transactions on
Information Theory, Vol. IT-14, No. 1, January 1968.
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probability half between 0.5 (chance performance) and 100%. For a fixed, finite numbers of
training samples, one would expect the accuracy with which one could estimate the class
distribution would decrease as the measurement complexity grows. For example, in the case of
Gaussian statistics, the number of parameters to be estimated in the covariance matrix grows
rapidly with dimensionality, and the preciseness needed would grow with the increased detail as
the number of digital bins grows. Thus there are two counterbalancing effects, one increasing with
increasing measurement complexity and the other decreasing. The shape of the above curve is
explained, then, by the fact that first the former effect dominates but eventually the latter does so,
thus a maximum occurs.

It is significant to note that the value of the maximum in this curve moves upward and to the right
as m is increased. The practical implication of this is that one can expect to be able to increase
accuracy by using increased numbers of bands and/or signal-to-noise ratio, but to achieve it,
increased numbers of training samples, implying increased precision in the estimation of class
distributions, will be needed. This observation becomes increasingly important as one moves from
lower dimensional data to hyperspectral data with its many 10’s to several hundreds of bands. We
shall return to this point later.

(b) On defining classes and their probability models. In addition to adequate numbers of
training samples, the other key factor in successful analysis is the matter of the definition of
classes. There are three conditions for optimal class definition, as follows.

Optimal class definition requires that the classes defined must be

e Exhaustive. There must be a logical class to assign each pixel in the scene to.

Separable. The classes must be separable to an adequate degree in terms of the spectral
features available.

«  Of informational value. The classes must be ones that meet the users needs.

A few comments about each of these conditions are in order.

Exhaustive. First, relative to the requirement that the class list be exhaustive, it is a basic
engineering reality that relative determinations can be made more accurately than can absolute ones.
Just as one can measure the distance between two objects more precisely than one can measure the
absolute location of the objects, or one can measure the time between two events more precisely
than one can measure the absolute time of day of the two events, one has a better chance of
assigning a pixel to the correct class if one can consider all possible classes, selecting the best
alternative, than simply trying to identify the class of the pixel without taking into account the other
possibilities. Thus, one speaks of the classifier being a relative classifier rather than an absolute
classifier. To have a relative classification scheme, one must have an exhaustive list of
possibilities, where here exhaustive implies a list of all classes that occur in the specific data set to
be analyzed.

Separable. Clearly, one must have a list of classes that are separable to an adequate degree, for this
is the whole point of the process, the division of the data set into classes of interest. Thus in the
analysis procedure, one must find the most optimal procedure one can to discriminate successfully
between the classes. This statement has implications not only on the algorithms used in the
analysis, but on the way the classes are defined and training samples drawn in the first place. More
will be said about this point as procedures for practical analysis are discussed.

Of Informational Value. This is the point at which the user’s requirement is expressed for what
output from the analysis is desired. For any given multispectral data set, there are many different
types of information that might be desired. For example, over an area with an incomplete canopy
of vegetation, one might want to derive a soil map. On the other hand, one might wish to ignore
the soil variations as background variation and attempt to obtain a vegetation species map. Various
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other possibilities might exist. It is thus in the definition of classes that the user’s specific interests
in the analysis result are expressed.

These three conditions on the list of classes must be met simultaneously. Note that the exhaustive
condition and separability are properties of the data set, while the user imposes the informational
value condition. It is the bringing together of these circumstances, those imposed by the data with
those imposed by the user’s desires that is the challenge to the analyst. It is further noted that the
classes are defined by the training samples selected. That is to say that the definition of classes is a
quantitative and objective one, not a semantic one. One has not really defined a class one might
wish to call “forest” until one has labeled the training samples to be associated with that class
name, thus documenting quantitatively what is meant (and what is not meant) by the word “forest.”

There is one additional aspect of class definition to be mentioned. An equivalent statement to the
conditions for class definition above is that a well trained classifier must have successfully modeled
the distribution of the entire data set, but it must be done in such a way that the different classes of
interest to the user are as distinct from one another as possible. What is desired in mathematical
terms is to have the density function of the entire data set modeled as a mixture of class densities,
i.e.,

M
p(x|0) = Y, op; (x|®;)

i=1
where x is a measured feature (vector) value, p is the probability density function describing the
entire data set to be analyzed, © symbolically represents the parameters of this probability density
function, pj is the density function of class i desired by the user, with its parameters being
represented by ®;, ; is the weighting coefficient which is the probability of class i, and M is the
number of classes. The parameter sets 6 and ®; are to be discussed next in the context of what
limitations are appropriate to the form of these densities.

The training process consists of defining a list of classes, labeling training samples for each class,
s0 as to satisfy the three conditions. Generally at that point, the analyst is focused on the training
samples and how exhaustive, separable, and of informational value they are, without any real way
of knowing if they are representative of the whole data set. That is to say that the analyst is focused
on the right side of the equation above, but there is not much in the process that insures that the
right side will indeed equal the left side. A pattern recognition technician would express this in
terms of wanting to know if the training will generalize well to samples of a given class not used in
training.

This question of generalization can be dealt with by carrying out an iterative calculation based upon
both the training samples and a systematic sampling of all the pixels in the scene which will adjust
or “enhance” the statistics so that, while still being defined by the training samples, the collection
of class conditional statistics better fit the entire data set?2. This amounts to a hybrid,
supervised/unsupervised training scheme.

This process has several possible benefits.
(1) The process tends to make the training set more robust, providing an improved fit

to the entire data set, thus providing improved generalization to data other than the
training samples.

2 Behzad M. Shahshahani and David A. Landgrebe, “The Effect of Unlabeled Samples in Reducing the
Small Sample Size Problem and Mitigating the Hughes Phenomenon,” [EEE Transactions on
Geoscience and Remote Sensing, Vol. 32, No. 5, pp 1087-1095, September 1994.
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(2) The process tends to mitigate the Hughes phenomena. Enhancing the statistics by
such a scheme in effect, tends to increase the size of the training set and thus
tends to move the peak accuracy vs. number of features to a higher value at a
higher dimensionality, thus allowing one to obtain greater accuracy with a limited
training set.

(3) An estimate is obtained for the prior probabilities of the classes, the o’s in the
equation above, as a result of the use of the unlabeled samples, something that
cannot be done with the training samples alone. In some cases, where only how
much of an area contains a given class is desired, and not a map of where it
occurs, this could be the final desired result.

To carry out the process, for each class S;, assume there are N; training samples available. Denote
these samples by Zik where j=1,...,J indicates the class of origin and k=1,...,Nj is the index of
each particular sample. The training samples are assumed to come from a particular class without

any reference to the exact component within that class. In addition to the training samples, assume
N unlabeled samples, denoted by x,, k=1,...,N, are also available from the mixture.

The process to be followed is referred to as the EM (expectation maximization) algorithm. The
procedure is to maximize the log likelihood to obtain maximum likelihood estimates of the
parameters involved. The log likelihood expression to be maximized can be written in the
following form.

N J N,
5 1
L(8) =Y logp(x,|0)+Y, Y log > oupi(zjl )
k=1 j=1k=1 Es) Ot jes,
teS;

The first term in this function is the likelihood of the unlabeled samples with respect to the mixture
density. The second term indicates the likelihood of the training samples with respect to their
corresponding classes of origin. The EM equations for obtaining the ML estimates are the
following:

N N;
Y Pe(ilx, )+ Y PS(ilz )
of = k=l k=1

1

N.
N(1 + NJ )
Y Y Pe(rxy)
reSjk=1
N;

N
3 Pe(ilx )%y + X P§(lz 0z
_ k=1 k=1

+
M N N;

Y Pe(ilxy )+ 2P§(i|zjk)
k=1

k=1
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N T N;
3 PG x (xg — B — i)'+
s+ _ k=l k=

Y Pe(ilxg) + Zpg(i|zjk)
k=1 k=1

PS (|25 )z — W )z —mi)T
1

The equations are applied iteratively with respect to the training and unlabeled samples where “c”
and “+” refer to the current and next values of the respective parameters, i € S;j, and P°(.|.) and
P%,(.|.) are the current values of the posterior probabilities:

aicfi(zjk“‘«ic,zic)
> ot (2 [, =)

i€j

o f (x| uf, 25)
f(xk|9c)

PC(i|x, ) = Pi(lz) =

Thus as the iteration proceeds, successively revised values for the mean, covariance, and
weighting coefficient of each component of each class are arrived at which steadily approach the
values for a maximum of the expected likelihood value for the mixture density.

Characteristics Of Higher Dimensional Space.

Multispectral data and analysis methods have been under study for more than three decades, and
yet they have not found wide use. One must ask why, what holds back this technology, which
obviously has such wide applicability. There are several parts to the answer of this question.

One clearly is the availability of data. So far, satellite systems have been limited to two or three at a
time. Cloud cover significantly impacts the optical part of the spectrum. Given this low number of
sensors on orbit and orbits providing a repeat cycle of coverage over any given spot of typically
once every 15 days or so, a user cannot realistically expect to have data collected over a given site
even within a few days of when it is desired. Data availability has not been available on demand,
but rather its availability for a given use is more of a chance occurrence. This situation is likely to
remain until an adequate fleet of sensors is on orbit and operating so as to insure that data
availability is being driven by user demand rather than other factors such as orbital mechanics or
atmospheric condition.

A second factor limiting the use of this technology is the cost of the data. Land remote sensing is
seen in a different light than atmospheric remote sensing for some reason. Rather than operational
land remote sensing data sources being seen as a government function as it is for weather satellite
data, it is apparently seen as a private sector function. Data from experimental systems such as
Landsat has been quite expensive, placing it largely out of reach of the broad spectrum of research
and application uses. This has placed the technology in a catch-22 situation. The price is high
because the volume is low, and the volume is low, at least in part, because the price is high. Again,
until the volume builds to a reasonable level, data is likely to be too expensive for most uses.

However, it is the third reason for the limited use to this time that is to be addressed at greater
length here, because it is a technologically-based limitation rather than a government policy one,
and because advancing technology is in the process of removing this third limitation. The limitation
in mind is that due to the small number of spectral bands that have been available. The research in
the 1960’s that led to the Landsat system was done using an aircraft system that had from 12 to 18
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spectral bands of 8 bit data. However, this degree of spectral detail was beyond what was
technically feasible for Landsat 1, and a four band, 6 bit system resulted. When in 1975 it was time
to devise a second generation sensor, the bar was raised to initially 6 and finally a 7 band, 8 bit
system, certainly an improvement over four, but still a significant limitation. This limited
measurement complexity placed many applications of the technology in a borderline area or simply
out of reach. It has not been until recent years that more complex data, often under the label of
hyperspectral data, began to be studied and planned. Such an advance greatly broadens the
problems that can be realistically addressed, but it also complicates the matter of how to analyze
this more complex data. It is this latter point that will be addressed next. The initial focus is on the
nature of high dimensional data and how it differs from more conventional data.

Much of the material in previous sections has been offered in the context of a feature space in
familiar two or three dimensional geometry. However, hyperspectral data has many more than
three bands, and thus the feature space of interest has much higher dimensionality. One must
inquire as to whether one's ordinary intuitive perception developed from three-dimensional
geometry still apply in higher dimensional space. The answer is that, in general, it does not, and
this fact substantially influences what is appropriate in the analysis process.

As an example of this, consider the case of predicting the accuracy of a classification from the
training samples of the classes defined. One of the most common ways of accomplishing such a
prediction is by use of a statistical distance measure. Such a distance measure is Bhattacharyya
distance. For the 2-class case of Gaussian data, the definition of Bhattacharyya distance is,

2,2,
2

1 1 1
B=3g [p1-#21T( Il [p1-p2] +5 Ln 5[E1+22]

|21"22|

Where p; and 3 are, respectively, the mean vector and the covariance matrix of class i.

In the multispectral remote sensing context, Bhattacharyya distance has shown itself to be a good
predictor of classification accuracy. Though there is not a closed form, one-to-one relationship
between Bhattacharyya distance and classification accuracy, the following graph shows the result
of a Monte Carlo test of this relationship for the two-class, two-feature case.
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It is seen that in this case, the relationship is nearly one-to-one, and nearly linear.

Examining the equation defining it, one sees that of the two terms on the right, the first measures
the separation of the classes due to the difference in class means. The second does not depend at all
on the difference in means, but measures the portion of the separation due to the difference in
covariance matrices. In low dimensional space, where geometric visualization is possible, the mean
vector defines the location of a distribution in the feature space while the covariance matrix
provides information about its shape. For example, a covariance matrix with significantly sized
off-diagonal components indicating significant correlation between bands would tend geometrically
to be long and narrow, while a covariance matrix with only small off-diagonal components, and
thus low correlation between bands, would tend to be more circular in shape. Now, one
implication of this is that two classes may lie precisely on top of one another, in the sense of
having exactly the same mean values, and yet they may be separable. Indeed, if the dimensionality
is high enough, they may be quite separable. It turns out that this is especially true as the
dimensionality is increased. Why might this be so?

What is needed is a more in-depth understanding of such unintuitive characteristics of high
dimensional feature spaces. We will review a selection of these unusual or unexpected
characteristics3, because they point the way to some practical procedures for data analysis that
might not be otherwise apparent.

A. As dimensionality increases the volume of a hypercube concentrates in the corners.

The volume of the hypersphere of radius r and dimension d is known to be given by the equation:

d

V,(r) = Volume of a hypersphere = —2;—

1)

3 Jimenez, Luis, and David Landgrebe, “Supervised Classification in High Dimensional Space:
Geometrical, Statistical, and Asymptotical Properties of Multivariate Data,” IEEE Transactions on
System, Man, and Cybemetics, Volume 28 Part C Number 1, pp. 39-54, Feb. 1998.
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The volume of a hypercube in the interval [-r, r] and of dimension d is given by the equation:
V., (r) = Volume of a hypercube = (2r)" (2)
Thus the fraction of the volume of a hypersphere inscribed in a hypercube is:

_V@o__ a? 3)
a1 — V T - d-1
(M 421 (d5)
where d is the number of dimensions. This ratio is plotted as a function of d in the following
figure. It shows how fd] decreases as the dimensionality increases.
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Fractional volume of a hypersphere inscribed in a hypercube as
a function of dimensionality.

Note that lim f44 = 0, which implies that the volume of the hypercube is increasingly concentrated
d—oo
in the corners outside of the hypersphere as d increases.

B. As dimensionality increases the volume of a hypersphere concentrates in an outside shell.

The fraction of the volume in a shell defined by a sphere of radius r-€ inscribed inside a sphere of
radius ris:

V-V, r-8) '—(-g)_ g)’
fao = OG- (1)

The following figure shows, for the case € =1/5, how as the dimension increases the volume
concentrates in the outside shell.
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dimensionality for € = /5.
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Note that lim f;» =1 for any € > 0, implying that most of the volume of a hypersphere is
d—eo
concentrated in an outside shell, away from the center of the spheres.

These characteristics have two important consequences that bear upon practical methods for data
analysis. First, higher dimensional space is mostly empty, which implies that the multivariate data
in any given case is usually in a lower dimensional structure. This implies that a high dimensional
data set can be projected to a lower dimensional subspace without losing significant information in
terms of separability among the different statistical classes. The second consequence of the
foregoing, is that normally distributed data will have a tendency to concentrate in the tails;
similarly, uniformly distributed data will be more likely to be collected in the corners, making
density estimation more difficult. Local neighborhoods are almost surely empty, requiring the
bandwidth of estimation to be large and producing the effect of losing detailed density estimation.

Support for this tendency can be found in the statistical behavior of normally and uniformly
distributed multivariate data at high dimensionality. It is expected that as the dimensionality
increases the data will concentrate in an outside shell. As the number of dimensions increases that
shell will increase its distance from the origin as well. A quantitative demonstration of these

characteristics is given in [#7].

The tendency for Gaussian data to concentrate in the tails seems like a paradox, since it is clear
from the Gaussian density function that the “most likely” values are near the mean, not in the tails?
This paradox can be explained as followsS. First note what happens to the magnitude of a zero
mean Gaussian density function as the dimensionality increases. This is shown in the following
graph.

0.4 .=.1....3 ........ P PIRRREEES SRR :
: n: dimensionality :

03 b N b b

Probability Density of x
o
N

0 1 2 3 4 5
Distance from Class Mean, r
It is seen that, while the shape of the curve remains bell-shaped, its magnitude becomes smaller

with increasing dimensionality, as it must, since the overall volume must remain one, and, of
course, it decreases exponentially as r increases.

4 Jimenez, Luis, and David Landgrebe, “Supervised Classification in High Dimensional Space:
Geometrical, Statistical, and Asymptotical Properties of Muitivariate Data,” /EEE Transactions on
System, Man, and Cyberetics, Volume 28 Part C Number 1, pp. 39-54, Feb. 1998.

5 Luis O. Jimenez and David Landgrebe, “High Dimensional Feature Reduction Via Projection Pursuit,”
PhD thesis and School of Electrical & Computer Engineering Technical Report TR-ECE 96-5, April
1996.

6 This explanation was provided by graduate student Pi-fuei Hsieh.
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Next, consider how the volume density in the space changes as dimensionality increases. The
volume of a hypersphere of radius r as a function of dimensionality was given above as,
d

2r! w2
V,(r) = volume of a hypersphere = ————
1)

2
Therefore, the volume in a differential shell as a function of radius r is

dv  2md?2
ar =T@z)

A plot of this for several values of d is given in the following graph.

Surface of Hypersphere

0 1 2 3 4 5
Distance from Class Mean, r

Thus the volume available in a differential shell at radius r increases very rapidly with r as d
becomes larger. Then the probability mass as a function of radius r, the combination of these two,

may be shown to be,

2

d-1, 2
r e
fr(r) =4

S
=)
This function is plotted in the following graph. It may be shown that the peak of this function

occurs at ‘\/d-l .
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Probability Density of Distance r

Distance from Class Mean, r

Because the volume of a differential shell increases much more rapidly with r than the density
function decreases, the net effect is as shown in the graph. Thus, it is seen that the peak of the
probability mass moves away from the mean as the dimensionality increases, indicating that "most
of the data becomes concentrated in the tails of the density” even though it is Gaussianly
distributed.

C. As the dimensionality increases the diagonals are nearly orthogonal to all coordinate axis .

The cosine of the angle between any diagonal vector and a Euclidean coordinate axis is:
cos(B d) -

_ﬁ Py
The following figure illustrates how the angle between the diagonal and the coordinates, 6,
approaches 900 with increases in dimensionality. (Note the nonuniform scale on the x axis
accounts for the discontinuous change in the slope of the curve.)
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Angle (in degrees) between a diagonal and a Euclidean coordinate vs. dimensionality.

Note that 1lim cos(0s) = 0, which implies that in high dimensional space the diagonals have a
d—e
tendency to become orthogonal to the Euclidean coordinates.

This result is important because the projection of any cluster onto any diagonal, e.g., by averaging
features, could destroy information contained in multispectral data.
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D. For most high dimensional data sets, lower dimensional linear projections have the tendency to
be normal, or a combination of normal distributions, as the dimension increases.

That is a significant characteristic of high dimensional data that is quite relevant to its analysis. It
has been proved that as the dimensionality tends to infinity, lower dimensional linear projections
will approach a normality model with probability approaching one. Normality in this case implies a
normal or a combination of normal distributions. This property increases the viability and
justification for a Gaussian class model when the data have been projected to a lower dimensional
space.

E. The required number of labeled samples for supervised classification increases as a function of
dimensionality.

There is also a relationship between dimensionality and the number of training samples on the one
hand and classifier complexity on the other. Fukunaga’ proves that the required number of training
samples is linearly related to the dimensionality for a linear classifier and to the square of the
dimensionality for a quadratic classifier. That fact is very relevant, especially since experiments
have demonstrated that there are circumstances where second order statistics are more relevant than
first order statistics in discriminating among classes in high dimensional data®. In terms of
nonparametric classifiers the situation is even more severe. It has been estimated that as the number
of dimensions increases, the sample size needs to increase exponentially in order to have an
effective estimate of multivariate densities.

As previously noted, in remote sensing, the number of training samples available by which the
user defines the classes of interest is almost always limited. This limitation grows in importance as
the number of features available is increased. Thus, though a larger number of features makes
possible more accurate and detailed classifications, the price is that the need for greater precision in
the estimation of class statistics grows as well. As seen in the above, when data is gathered in a
large number of bands, the information-bearing structure is nearly always present in a subspace of
the feature space. This suggests the value of algorithms that can determine which subspace
contains that structure for the problem at hand, thus showing a way to reduce the dimensionality
without significant loss of information. Such “feature extraction” algorithms are the subject of the
next section below.

However, there is another way that this effect due to limited training sets can be mitigated. It is
found that when, due to the Hughes effect described above, the accuracy is below optimality due to
limited training, a less complex classifier algorithm may provide increased classification accuracy.
The classification rule that results from using the class conditional maximum likelihood estimates
for the mean and covariance in the discriminant function as if they were the true mean and
covariance achieves optimal classification accuracy only asymptotically as the number of training
samples increases toward infinity. This classification scheme is not optimal when the training
sample is finite®>. When the training set is small, the sample estimate of the covariance is usually
highly elliptical and can vary drastically from the true covariance. In fact, for p features, when the
number of training samples is less than p+1, the sample covariance is always singular.

For limited training data, the common covariance estimate, obtained by assuming all classes have
the same covariance matrix, can lead to higher accuracy than the class conditional sample estimate,

7 Fukunaga, K. "Introduction to Statistical Pattern Recognition.” San Diego, California, Academic Press,
Inc., 1990.

8 Lee, Chulhee and David A. Landgrebe, "Analyzing High Dimensional Multispectral Data,” IEEE
Transactions on Geoscience and Remote Sensing, Vol. 31, No. 4, pp. 792-800, July, 1993.

9 T.W. Anderson, An Introduction to Multivariate Statistical Analysis, 2nd Ed., New York, John Wiley &
Sons, 1984, p. 209.
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even when the true covariance matrices are quite different!®. This leads to several possible
assumptions that could turn out to be advantageous. To illustrate the possibilities,!! suppose one
has a 5 class problem and 6 dimensional data. The various possibilities for coefficients that must be

estimated are illustrated by the following diagrams of covariance matrices.

Class 1 Class 2 Class 3 Class 4 Class 5

b b b b b

ab ab ab ab ab

aab aab aab aab aab
aaab aaab aaab aaab aaab
aaaab aaaab aaaab aaaab aaaab
aaaaab aaaaab aaaaab aaaaab aaaaab

Common Covar.

NN
N0
aO0aQ
00

d
cd

Now for limited numbers of training samples, the greater the numbers of coefficients one must
estimate, the lower the accuracy of the estimates. If one were to attempt a normal estimate of
individual class covariances, then one must estimate coefficients in positions marked a and b
above. If, on the other hand, it appeared advantageous to ignore the correlation between channels,
then one would only need to estimate coefficients marked b. If one was willing to assume that all
classes have the same covariance, then one would only need to estimate the smaller number of
coefficients marked ¢ and d above. And finally, if in addition, one was willing to ignore the
correlation between channels of this common covariance, one would only need to estimate the
coefficients marked d above.

For p dimensional data, the number of coefficients in a class covariance function is (p+1)p/2. The
following table illustrates the number of coefficients in the various covariance matrix forms which
must be estimated for the case of 5 classes and several different numbers of features, p.

Class Covar. Diagonal Class Common Diagonal Common
No. of Common Covar. Covar. Covar.
Features p (a & b above) (b above) (c & d above) (d above)

5{ p+Dp/2} S5p { p+1)p/2 p
5 75 25 15 5

10 275 50 55 10

20 1050 100 210 20

50 6375 250 1275 50

200 100,500 1000 20,100 200

10 J.H. Friedman, "Regularized Discriminant Analysis," J. of the American Statistical Association, Vol. 84,

pp. 165-175,

March 1989.

11 Joseph P. Hoffbeck, “Classification of High Dimensional Multispectral Data,” PhD Thesis, Purdue
School of Electrical and Computer Engineering, May 1995, TR-EE 95-14. See also, Hoffbeck, Joseph
P. and David A. Landgrebe, “Covariance MatriavailableEstimation and Classification with Limited
Training Data,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 18, no. 7, pp.
763-767, July 1996.
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Thus, if for example, one has 100 training samples for each of 5 classes and 20 features, then, for
the individual class covariance case, one might expect an accuracy problem attempting to estimate
the 1050 coefficients with only 500 total training pixels. It is useful in any given case, then, to
determine whether the sample estimate or the common covariance estimate would be more
appropriate in a given situation. This illustrates the manner in which a properly chosen estimator
could improve classifier performance.

An estimator referred to as LOOC, found useful for this situation!?, examines the sample
covariance and the common covariance estimates, as well as their diagonal forms, to determine
which would be most appropriate. Furthermore, it examines the following pair-wise mixtures of
estimators:

» sample covariance-diagonal sample covariance,

¢ sample covariance-common covariance, and

e common covariance-diagonal common covariance.

The proposed estimator has the following form:

(1 — aj)diag(Zj) + aiZj 0<oi<1
Ci(o) = 1(2 — ai)Zj + (aj — 1)8 1<0y<2
(3 — aj)S + (aj— 2)diag(S) 2<ai<3

L
1
where § = T 2 i is the common covariance matrix, computed by averaging the class
i=1

covariances across all classes. This, in effect, assumes all classes have the same covariance matrix.
The variable o; is a mixing parameter that determines which mixture is selected. If o; =0, the

diagonal sample covariance is used. If o; =1, the estimator returns the sample covariance
estimate. If o; =2, the common covariance is selected, and if o; =3 the diagonal common
covariance results. Other values of «; lead to mixtures of two estimates. Utilization of this

procedure to determine the best set of assumptions to use in the face of limited training sets can
improve the accuracy, which is suspected of being suboptimal due to the Hughes effect. Further,
though the estimated class covariance matrices become singular when the number of training
samples available falls below one more than the number of features, use of LOOC allows for cases
where the number of training samples becomes as small as three before the Cj(a) becomes
singular, thus allowing for some use of second order variations to be made for even smaller
training sets.

Some Feature Extraction Schemes.

As has been seen in the above,

* As the dimensionality of data is increased, its greater ability to permit discrimination
between detailed classes is compromised by the limitation on the number of training
samples typically available, leading to less precise quantitative descriptions of the classes of
interest.

12 Hoffbeck, Joseph P. and David A. Landgrebe, “Covariance Matrix Estimation and Classification with
Limited Training Data,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 18, no. 7,
pp. 763-767, July 1996.
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» Furthermore, high dimensional feature spaces are found to be largely empty with the
significant information-bearing structure existing in a lower dimensional space. The
appropriate subspace is case-dependent.

» It has also been found that distributions in data transformed to a subspace have a greater
tendency to be Gaussian. A stronger justification for the Gaussian model mitigates the need
for more complex models such as nonparametric ones, and thus the more difficult
estimation problems they present.

All of these point to the value of finding and applying algorithms that can locate case-specific
optimal subspaces for discriminating between a given set of classes thereby reducing the
dimensionality without loss of information, thus improving classifier performance. Such
algorithms are referred to as feature extraction algorithms. A number of such algorithms are found
in the literature. Two specifically suited to the remote sensing context will be described here in
order to illustrate salient features of such algorithms.

1. The basis for Discriminant Analysis Feature Extraction is the maximization of the ratio,

o3 _ Betweenclasses variance

o%v Average withinclass variance

where, for the two class case, o7, is the average of o, and 0%,. In matrix form the within-class
scatter matrix X, and the between-class scatter matrix Z; may be defined as!3,

Zw =ZP(w))Z; (within class scatter matrix)
1

2,=2P(w, (M, -M)M,-M,) (between class scatter matrix)

M, =ZP(0,)M,

Here M, , %, , and P(m,) are the mean vector, the covariance matrix, and the prior probability of
class ;, respectively. The criterion for optimization may defined as,

-1
J 1= tr(ZW ZB)
New feature vectors are selected to maximize the criterion.

The basic concept, then, is quite simple. The greater the variance of the distance between classes,
normalized by the average within class variation, the better the feature subspace. The calculation
required utilizes the training statistics directly and is an eigenvalue type of calculation, forming new
features that are linear combinations of the original bands, and rank ordering them from the most to
the least valuable is discrimination capability. It does have two significant limitations, however.

First, it becomes ineffective if the classes involved have very little difference in mean values.
Recall that classes, especially high dimensional ones, can be quite separable based on their second
order statistics, i.e., their covariance matrices, alone. From the above ratio, it is apparent that
classes with small difference in their means, but substantial separation due to their covariances,
would not, by this means, lead to effective subspaces. A second limitation is that the method is
only guaranteed to provide reliable features up to one less than the number of classes. If one has a
problem that does not have a large number of classes, one will not have a very large subspace to
work from. Still, the calculation involved is quite fast and very useful subspaces can be found
quickly in many cases.

13 K. Fukunaga, Introduction to Statistical Pattern Recognition, Academic Press, 1972.

© 1998 by David Landgrebe 22 6/4/99



Multispectral Information Extraction Principles

2. A second feature extraction algorithm, called Decision Boundary Feature Extraction,'* does not
have the limitations just cited. It utilizes the training samples directly, rather than statistics derived
from them, to locate the decision boundary between the classes using a definition for discriminately
informative and discriminately redundant features. Then, using the effective portion of that
decision boundary, an intrinsic dimensionality for the problem is determined and a transformation
defined which enables the calculation of the optimal features. The calculation produces not only the
desired new features, as linear combinations of the original ones, but it provides eigenvalues that
are a direct indication of how valuable each new feature will be. Since it works directly from the
located decision boundary, it does not have the limitation of discriminant analysis feature extraction
regarding class mean differences. However, it is quite a lengthy calculation, especially if the
training set has many training samples. On the other hand, because it works directly with the
training samples rather than statistics derived from them, it tends to be ineffective when the training
set is small.

The value of high dimensional data on the one hand, but with the practical limitation of small
training sets on the other, means that compromises must be made in devising and using feature
extraction algorithms, as in all other parts of the analysis process. Because of the quite broad
variation in the circumstances of data and user requirements, there is no single scheme that will be
optimal in all cases. The intent in describing the strengths and weaknesses of the above two feature
extraction algorithms, is to illustrate that the analyst must be able to knowledgeable select the best
tool for the circumstances.

Procedures for Information Extraction Problems.

It is appropriate at this point to coalesce the concepts described above into an effective procedure
for analyzing a data set. Though the specific steps needed varies with the scene, the data set and the
classes desired, the following diagram provides a general outline.

14 Chulhee Lee and David A. Landgrebe, "Feature Extraction Based On Decision Boundaries," /EEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 15, No. 4, April 1993, pp. 388-400.
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A brief description of each of the above steps is as follows.

1. Class Delineation. The analysis process begins with a general overview of the data set to be
analyzed, often by viewing a 3-color simulated color infrared presentation of the data in image
space. The intent is to create a list of classes which is suitably exhaustive, and which includes
the classes of user interest. To the extent possible at this point and from such an image
presentation, consideration should be given to picking classes in such a way as to provide for a
set that are separable from a spectral standpoint.

Training Sample Designation. Following, or as a part of listing the desired classes, the spectral
description of the classes must be designated. How this is done varies widely with the
particular data set and the information about the scene that is available to the analyst. Examples
of some of the ways this might come about are as follows.
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e Observations taken from a portion of the ground scene taken from the ground at the time of
the data collection. See for example, [!5] where this was done for a region-sized problem
over an entire growing season to track a particular disease in a vegetative species.

e Observations from aerial photographs from which examples of each class can be labeled.
See for example, [16] where again, this was done for a region-sized problem on a land use
mapping problem.

e Conclusions that can be drawn directly from the image space, itself. See the example
analysis below, an urban mapping problem where the spatial resolution was great enough
to make objects of human interest recognizable in image space.

e Conclusions that can be drawn about individual pixels by observing a spectral space
representation of a pixel. The use of “imaging spectroscopy” characteristics, where specific
absorption bands of individual molecules are used to identify specific minerals, are an
example of this. See [!7] for an example.

Feature Extraction and Preliminary Classification. At this point one can expect to have training
sets defined for each class, but they may be small. There would thus be value in eliminating
features that are not effective for the particular set of classes at hand, so as to reduce the
dimensionality without loss of information. A feature extraction algorithm would be used for
this purpose, followed by a preliminary classification. From the preliminary classification, one
can determine if the class list is suitably exhaustive, or if there have been classes of land cover
of significant size that have been overlooked. One can also determine if the desired classes are
adequately separable. If not, the classification can be used to increase the selection of training
samples, so that a more precise and detailed set of quantitative class descriptions are
determined.

Final Class Description Determination. With the now augmented training set, in terms of either
additional classes having been defined or more samples labeled for the classes or both, any of
several steps may be taken to achieve the final class descriptions in terms of class statistics.

e It may be appropriate to re-apply a feature extraction algorithm, given the improved class
descriptions. In this way, a more optimal subspace may be found.

e The Statistics Enhancement algorithm may be applied. This algorithm is known to be
sensitive to outliers, and thus would not be expected to perform well until it is known that
the list of classes is indeed exhaustive, as classes not previously identified would function
as outliers to the defined classes. The intended result of applying this algorithm at this point
is to increase the accuracy performance of the following classification and to improve the
generalization capabilities of the classifier from the training areas to the rest of the data set.

e If the training set is still smaller than desirable relative to the number of features needed to
achieve satisfactory performance, it might be appropriate to use the LOOC estimation
scheme, which can function down to as few as three samples for a class.

15

16

17

MacDonald, R. B., M. E. Bauer, R. D. Allen, J. W. Clifton, J. D. Ericson, and D. A. Landgrebe, 1972,
"Results of the 1971 Corn Blight Watch Experiments," Proceedings of the Eighth International
Symposium on Remote Sensing of Environment, Vol. |. Environmental Research Institute of
Michigan, Ann Arbor, Michigan, pp. 157-190.
Swain, P. H. and S. M. Davis, Remote Sensing: The Quantitative Approach, McGraw-Hill, 1978, pp.
309-314.
Hoffbeck, Joseph P. and David A. Landgrebe, “Classification of Remote Sensing Images having High
Spectral Resolution,” Remote Sensing of Environment, Vol. 57, No. 3, pp 119-126, September 1996.
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4. Classification. A final classification of adequate
quality should be possible at this point, and evaluation of
it can proceed. However, if this is not the case, depending
on the nature of the further improvement needed, a return
to any of the above steps may be used.

Hyperspectral Analysis Example of Urban Data

The following is offered to illustrate this procedure. The
figure to the left shows a color IR presentation of an
airborne hyperspectral data flightline over the Washington
DC Mall. The sensor system used in this case is known as
HYDICE. It collects data in 210 bands in the 0.4 to 2.4
pm region of the visible and infrared spectrum. This data
set contains 1208 scan lines with 307 pixels in each scan
line. The data set totals approximately 150 Megabytes.
With data of this complexity, one might expect a rather
complex analysis process. However, following the
scheme above, it is possible to achieve a quite simple and
inexpensive analysis. The steps used and the time for this
analysis needed on a personal computer costing less than
$3000 are listed in the following table and are briefly
describe below.

Operation CPU Time Analyst
(sec.) Time
Display Image 18
Define Classes < 20 min.
Feature 12
Extraction
Reformat 67
Initial 34
Classification
Inspect and Add = 5 min.
2 Training Fields
Final 33
Classification
Total | 164 sec = =~ 25 min.
2.7 min.

Define Classes. A software application program called
MultiSpec, available to anyone at no cost from
http://dynamo.ecn.purdue.edu/~biehl/MultiSpec/,

is used. The first step is to present to the analyst a view
of the data set in image form so that training samples,
examples of each class desired in the final thematic map,
can be marked. A simulated color infrared photograph
form is convenient for this purpose; to do so, bands 60,
27, and 17 are used in MultiSpec for the red, green, and
blue colors, respectively. The result is shown at left. The
classes desired in this case are, from the user’s
standpoint, quite simple. They are rooftops, streets,
grass, and trees. Inspection of the image space
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presentation shows that additional classes of trails background
(graveled paths), water, and shadows will be | mwm
needed. From a spectral class definition standpoint,
however, the classes are not so simple. It is [ mmail
apparent from the image that there are many | emswaw
different materials used in the roofs, and they are in
quite varying conditions and ages, resulting in a
wide variety of spectral characteristics. This must
be dealt with by defining several spectral
subclasses for the class roofs. Further, some of the
rooftops are constructed from materials, e.g., tar
and gravel, which are quite similar to that used in
streets and parking lots, thus making
discrimination between rooftops and streets more
challenging. As a result, care must be exercised in
the following steps.

Feature Extraction. After designating an initial
set of training areas, a feature extraction algorithm
is applied to determine a feature subspace that is
optimal for discriminating between the specific
classes defined. Discriminant Analysis Feature
Extraction (DAFE) is selected for this purpose, as a
result of it being fast and not overly sensitive to
small training sets. Also, recall that its weakness,
not functioning well with regard to classes that
have a small difference in mean values does not
appear to be a limiting condition at this point in the
analysis. The result of the DAFE calculation is a
linear combination of the original 210 bands to
form 210 new features that automatically occur in
descending order of their value for producing an
effective discrimination. From the MultiSpec
output, it is seen that the first nine of these new
features will be adequate for successfully
discriminating between the classes.

Reformatting. The new features defined above
are used to create a 9 band data set consisting of the
first nine of the new features, thus reducing the
dimensionality of the data set from 210 to 9.

Initial Classification. Having defined the
classes and the features, next an initial
classification is carried out. An algorithm in
MultiSpec called ECHO!®19  (Extraction and
Classification of Homogeneous Objects) is used.
This algorithm is a maximum likelihood classifier

18 R. L. Kettig and D. A. Landgrebe, "Computer Classification of Remotely Sensed Multispectral Image
Data by Extraction and Classification of Homogeneous Objects," IEEE Transactions on Geoscience
Electronics, Volume GE-14, No. 1, pp. 19-26, January 1976.

19 D.A. Landgrebe, "The Development of a Spectral-Spatial Classifier for Earth Observational Data,"
Pattern Recognition, Vol. 12, No. 3, pp. 165-175,1980.
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that first segments the scene into spectrally homogeneous objects. It then classifies the objects
utilizing both first and second order statistics, thus taking advantage of spatial characteristics of the
scene, and doing so in a multivariate sense.

Finalize Training. An inspection of the initial classification result indicates that some
improvement in the set of classes is called for. To do so, two additional training fields were
selected and added to the training set.

Final Classification. The data were again classified using ECHO and the new training set. The
result is shown above. An examination of this result shows that it provides a reasonably accurate
thematic presentation of the scene. If further refinement of the result would be desired, it might be
desirable to increase the size of the training sets by choosing additional pixels representative of
each of the classes. It might also be desirable to apply the Statistics Enhancement scheme. An
additional possibility might be to use the Decision Boundary Feature Extraction (DBFE) algorithm
to the original data using the augmented training sets. Recall that DBFE does not have the limitation
of DAFE with regard to classes that have nearly equal mean vectors, but it does require larger
numbers of training samples to deliver good performance.

Concluding Remarks

Advances made in sensor system technology in recent years have effectively removed one of the
most significant barriers to improved performance in multispectral remote sensing systems, namely
the limited spectral dimensionality of these systems previously. The much increased dimensionality
makes possible substantially more accurate and more detailed discriminations. However, the price
to be paid for this improvement is the need to be able to more precisely define quantitatively the
classes to be discriminated, as the above material makes clear.

There are, of course, many valid ways to approach the analysis of multispectral data, and a great
range of user needs, from the mapping of simple classes to a desire to discriminate between classes
with only very subtle differences. In exploring the nature of hyperspectral data, we have focused
upon methods for the most challenging cases, in order to probe the limits of the potential of such
data. To provide a simple explanation of the potential of high dimensional data, consider the case
of hyperspectral data of 100 bands, gathered with a signal-to-noise ratio high enough to justify a

ten bit data system. In this case, there would be 2'% = 1024 possible values in each band, and a
total of 1024'° = 10® possible different discrete locations in the feature space. This is a huge

number, so large that even for a data set containing 10° pixels, the probability of any two pixels
landing in the same feature space cell is vanishingly small. This means that, before even
considering the cause/effect relationship between the physical characteristics of pixel areas on the
ground and their spectral response or atmospheric or other such effects, one can conclude that,
since there is no overlap of pixels in such a feature space, anything is theoretically separable from
anything. The problem is that to approach this possibility, one must be able to locate a decision
boundary between pixels of different desired classes correctly and precisely. As the dimensionality
and therefore the volume available in such feature spaces grows, the estimation precision must
grow as well and very rapidly so.

In this chapter, we studied the characteristics of high dimensional spaces quantitatively in order to
understand, document, and make credible such potential. The results suggest a fundamental shift in
the analysis paradigm from that common today. Much current literature on multispectral analysis
suggests studying cause/effect relationships of spectral responses with the intent to using that
knowledge directly to achieve classification. Implied in this is the thought that, documenting the
spectral response of various materials will allow the analysis of later spectral data sets based upon
such documented responses.
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From a purely scientific standpoint, such work is certainly valuable, for it increases the
understanding of the interaction of electromagnetic energy with scene materials. However, natural
scenes are not only very complex but very dynamic as well. Thus the spectral response of a given
material is not very stable over time and place. Increasing the dimensionality of such data, while
enhancing the potential for discrimination, does not materially change this stability problem. A now
common line of approach to solving this dilemma has been to “correct” the data, i.e. to attempt to
adjust the data for the various factors that have changed from one observation time and place to
another. Such factors include the atmospheric effects, the illumination and view angle effects due
to the non-Lambertian characteristics of most scene materials, changes in hemispheric illumination,
the adjacency effect, and many more. This has lead to very extended studies of some very daunting
problems.

After many years of study of the effects of the atmosphere, for example, about the best that is
claimed for atmospheric adjustment is an accuracy of 2 to 5%, a level that does not favorably
compare with the 0.1% measurement level implied by 10 bit data common today. Thus it may not
be helpful nor perhaps even wise to use such calculations directly in the classification of data. At
the very least, it introduces a complex step into the analysis process, one that may have little
positive effect on the accuracy achieved in the generation of a thematic map. Further, it is only one
of a number of such adjustments that would be necessary to reconcile conditions between data
collected at different times or places.

The field of wireless communication faced a similar problem in its development many years ago. In
that case, rather than attempting to adjust for or subtract out the many sources of interference (e.g.,
noise generated in the atmosphere, by other competing signal sources, etc.) and distortion (e.g.,
multipath, fading, etc.) and the like, the approach was initially to model the corrupting influences,
as well as the signals desired, and then to construct optimal detection procedures that discriminate
between them. The success of this approach, obviously after much further development, is seen in
the clarity of modern digital cellular phone messages through complex urban environments, for
example, or in the communication possible from planetary and deep space probes using very low
transmitter power.

Spectra collected at another time or place can certainly represent useful information, and there are
usually many other pieces of information, some quantitative, some subjective, that are available
about a scene when one begins an analysis process. Rather than attempting to use such spectra
collected at another time, place, or with another instrument directly in the analysis process, a more
viable approach would seem to be to use the knowledge gained from such measurements together
with other ancillary information to label examples of classes of interest in the data set to be
analyzed. In this way, a suitable collection of spectra, representing the range of conditions and
circumstances existing in the current data set, could be constructed that would indeed define the
classes of interest to adequate precision.

Using such information to label “training samples,” rather than attempting to use it directly in the
analysis process, means that the analysis can take place on the original, “uncorrected” data. This
has several advantages. First of all, it greatly reduces the amount and complexity of the processing
that must be done to the data, since it does not involve further calibration of the data, removing the
atmospheric and other effects, conversion from radiance to reflectance, and other such
adjustments. If any of these processes need to be carried out to label training samples, it would
involve such processing on a much smaller quantity of data. However, perhaps more importantly,
use of this approach means that any unsuspected corrupting influences of such processing, which
necessarily will always be imperfect, would be avoided. Since the analyst has no way to tell if such
processing, which seems on the face of it, so logical, actually helps or hinders, a cleaner, simpler
analysis process results. The secret, then, is in the adequacy of the precision and detail by which
the user quantitatively specifies the classes of interest, and doing so in the data set to be analyzed
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by labeling an adequate number of training samples. It is basically the inverse of the computer
user’s mantra, “Garbage in, Garbage out,” namely, precise and careful specification of what is
desired put into the analysis process can lead to precise and accurate output.
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