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Abstract .

In many applications of probabilistic label
relaxation procedures, labeling error reduces with
successive iterations as required, only to undergo
a minimum and then rise again. If the process is
not stopped, this can lead to an error in some
cases worse than that initially. This behavavior
is particularly significant in remote sensing pixel
labeling applications since the iteration of mini-
mum error cannot be ascertained because true label-
ing is not known. By comparison pixel relaxation
labeling exercises in picture processing can often
be effectively terminated by visual inspection of
the image and its comparison with the desired la-
beling. This is the situation, for example, in
noise removal. In this paper the common relaxa-
tion labeling algorithm is analysed whereby the
technique is shown to degenerate te a mechanism of
weighted averaging in the vicinity of fixed points.
When uncontrolled it is demonstrated that this
averaging can lead to the deterioration of label-
ing accuracy observed in practice. However it is
also shown that the parameters in relaxation algo-
rithms can be appropriately chosen to control the
averaging and thus circumvent the accuracy deteri-
oration problem. Examples are presented to support
the analytical results derived. Furthermore, it is
suggested that the parameters in the algorithm can
be chosen a priori, based upon foreknowledge of
image geometry.

Introduction

The results of simple exercises, such as the
labeling of sides of a triangle,l’2 have shown pro-
babilistic relaxation procedures to be attractive
techniques for reducing ambiguity and thus label-
ing errors in image data. In more complex label-
ing tasks however such as line and edge enhance-
ment %% and pixel 1abelingg7, the results obtained
to date detract somewhat from the appeal of relax-
ation since labeling accuracy has been observed to
improve during the early iterations of the process
only to be followed by a subsequent degradation.
In pixel labeling, for example, the labeling error
exhibits a turning point at a specific iteration
and the final error, in some situations, can be
worse than that initially; similarly in line en-
hancement applications, line broadening is observed
to occur late in the process, degrading an other-
wise acceptable labeling. From a practical view-
point, this suggests that the relaxation process
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in these sorts of applications should be stopped
at some particular point to avoid incipient dete-
rioration of the results. Alternatively, it may
be better to try to understand the degradation
mechanism so that the deterioration of labeling
accuracy can be minimized or even avoided, irre-~
spective of the iteration count. Eklundh and
Rosenfeld® and Peleg9 have addressed the task of
determining suitable stopping rules. However
since the reason for the turning point in the
error curve has remained undetermined, there is no
reason to suppose that stopping rules will circum-
vent accuracy deterioration. This paper is di-
rected, therefore, towards understanding the me-
chanism that causes error to increase again after
having achieved a minimum. It is shown that this
is a process of local averaging once relaxation
has approached a fixed point. Consequently, if the
algorithm parameters are suitably chosen the error
versus number of iterations curve can be made to
decrease monitonically to a fixed error.

The Relaxation Algorithm

Consider the probabilistic relaxation algorithm
of Rosenfeld, Hummel and Zucker:'®

b S0y = pikmqik(x)/i p ok @

where pik(A) is the kth estimate of the probability

that A is the proper label for the ith pixel, and

Qik(X) is the kth estimate of the neighborhood

function, given by

k k
X = z . LA PL(
Q) =1+ L d i' Ty ! s (AN (2)

In this expression rij(A|A') are the compatibility
coefficients, the d; are a set of neighbor weights
that can be used to give different neighbors differ-
ing degrees of influence in the neighborhood func-
tion, and J defines the neighborhood about the
particular pixel being considered. The pixel under
consideration can be regarded as a member of that
neighborhood or else can be excluded; these varia-
tions are referred to here as inclusive and exclu-
sive neighborhoods, respectively.
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Local Averaging in the Vicinity of Fixed Points
and Its Effect on Geometric Features

Suppose a particular relaxation exercise has
progressed to a point where the label estimates
have all approached 0 or 1. (The stage where the
label estimates are at 0 or 1 is called a flxed
point in the process. Fixed points with P (X)

other than O or 1 can occur; however, they are
infrequent in pixel labeling and will not be con-
sidered here.) Within homogeneous regions, i.e.,
where all pixels in a neighborhood have the same
predominant label, the mutual support offered
among neighbors will not allow the label estimate
on any particular pixel to alter by any signifi-
cant amount. Infact, those estimates will simply
move closer to their fixed points. However, the
situation at boundaries such as corners of one
region within another, can be quite different,

as the following discussion reveals.

Consider a X pixel on the boundary between
A, and AZ (X ) is the lar-

1
gest estimate for that pixel and it is reasonable

regions. Evidently P

to assume for such a Al’ XZ neighborhood that
P > 20y > o KO, Y L

sider whether the label estimate P,

Now con-
(X ) will be

strengthened or weakened as relaxatlon proceeds.
To do this, it is sufficient to consider the rela-
tive strengths of the neighborhood functions as
defined in (2). 1In particular, if

k k
Q () > Q0

the A, label will be strengthened at the next iter-
ation} otherwise it will weaken. This will con-
tinue with subsequent iterations (since the 1label
estimates at neighbors will not change by any sig-

k k
Should Q; (A,) > @ (Ap),
repeated application of relaxation will ultimately
lead to Xz being the favored label at the pixel,

nificant amount).

i.e., the Al label will be removed by further

iterations. Consequently, even though labeling
error could have been reduced in establishing the
Al label on that pixel, it will now (gradually)

increase owing to the loss of that label. To
avoid this, it is necessary, therefore, to ensure
(from (2)) that

1+ L d, Tr, (A |x )p (A') >
jed I
k
1+ ¥ d, Ir, (x [A9p,. (A
jed 3y 2 h|
ie., I d Z{r, 504 A" - r..(L]AD)
jeJ j Al 1.] 2
ko > o (3)
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Note that the additive '"1" in (2) has been of no
significance in determining (3), so that (3) is a
result general to all present relaxation algorithms
which employ arithmetic averaging over the neigh-
borhood, including particularly that where the
rl-(k|k') are chosen on the basis of correlations
or mutual information and also that where the

(A|A ) are mapped to conditional probabilities
1n which case the "1" does not appear in (2).

The probability that the pixel's label could
alter to that of a third class A3 has been ignored
owing to the earlier assumptions regarding the
relative strengths of the label estimates on that
pixel.

Since it has been assumed that all the proba-
bility estimates are close to 0 or 1, (3) can be
modified to
(% |X ) -

b dJ {r (%)

(A, >0
jed 1J( 2‘ J)
where A,
bor.

is the preferred label on the jth neigh-

Now consider the neighborhood definition expli-
citly. Let J' be the exclusive neighborhood so
that J:{J',i} where i is the pixel whose label is
"currently” under consideration. Then (4) can be
recast to give

d, > d, (AN - (AL A
. J{rlj( 1! J) r;5¢ )l J)}
(5)
Qo - Ay
as the condition Al be retained as the label for
the it pixel.

To simplify further discussion, now consider
some special cases of (5). First suppose the com-
patibilities rlj(k|k ) have been chosen as condi-
tional probabilities, and secondly consider only
a two-label problem so that

Ty (ot = ey

(pla) =1 =R

gy =1
(A IA ) based upon other compatibility

Moreover it is logical that Py
(although r,

definitions need not be unity) giving as the con-
dition for avoiding loss of a A1 label on the

border between Xl and Xz regions that
d, > £ a1 -2p,, (A |2} (6)
Ioyer 3713

Now consider the particular choice of neighborhood
shown in Fig. 1, and let the pixel under considera-
tion be a corner pixel, as depicted. Suppose d. =
d ¥j, and further assume the compatibility co-

efficients pij(kl|Aj) are the same for each neigh-

bor j of the corner pixel.

the dy have been chosen such that Edj = 1.
J
a choice is strictly only required when the

In addition suppose
Such



r..(X|X') are chosen as correlations. However, it
is’a useful choice in general and here leads to
4d + di = 1 so that we have

4, > n@m 7t 0 = CHIVOIEE FHCHES )
as the required condition that A; corner labels not
be lost. This condition also applies to the pre-
servation of single-pixel-wide A1 lines that pass
through a Ay neighborhood. For the simple neigh-
borhood chosen, the only other geometries that are
subject to label conversion (deterioration) by the
mechanism described are the ends of lines a single
pixel wide, and single isolated pixels. From (6)
it can be shown that the condition for the preser-
vation of labels at the ends of lines of Ay within
A2 regions is

. 3pij(>\2|)\2) - pij(xlp\l) -1
i 3pij(AZTA2) - pij(AlT)l) +1

[=N

(8)

Likewise, to preserve individual A1 labeled pixels
in Xy regions, it is necessary that

4 s 2pi.(A2|A2) -1 ©
i 2pij()\2 Xz)

The predictions of (7-9) were checked using the
data chosen in Fig. 2. This is assumed to be a por-
tion of an image for which the compatibilities are
pi;(W|w) = 0.700, py(blb) = 0.800, where b implies
blank. Using (7-9), the following conditions can
be determined.

To avoid loss of:

1. a W corner in a b region dy > 0.091
2. a b corner in a W region d; > -0.111
3. a W line end in a b region d; > 0.259
4. a b line end in a W region dy > 0.130
5.. a W pixel in a b region d; > 0.375
6. a b pixel in a W region d; > 0.286

Consequently we would expect that if

d; =0, only b corners retained

dy = 0.100 both b and W corners retained
d; = 0.150 the above plus b lines retained
dy = 0.270 the above plus W lines retained
d; =~ 0.400 all corners, lines and isolated

pixels retained.

As seen in Fig. 2, these predictions are accurate.
The image was initialized very close to a fixed
point by choosing the initial label estimates as
pio(b.or W) = 0.99, and thus could be regarded as
an image which has approached that condition by
some preceding iterations of relaxation; moreover,
it is useful to suppose the initial labeling repre-
sents the true labeling since then the label con-
versions observed in Fig. 2 would represent the
introduction of labeling errors.

To illustrate the applicability of the results
above to real data situations an example using
Landsat imagery was chosen. A two category
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classification (wheat and non-wheat) was performed
for a 117 x 196 pixel multitemporal image of a
region in Kansas. After classification the re-
maining error was found, from available ground
truth data, to be 9.2%. Using the neighborhood con-
figuration of Fig. 1 a number of relaxation trials
using various values of d;, were performed. 1In each
case the image was initialised close to a fixed
point to enable the preceding material to be
assessed. Resldual error versus number of itera-
tions for these tests are shown in Fig. 3. As ob-
served, for dj less than 0.150 the error reaches a
minimum after about 20 iterations and then steadily
increases again. This would have been particularly
severe had an exclusive neighborhood definition
been used. For di in excess of 0.150 the error
curve decreases monitonically but leads to a pessi-
mistic result. If each neighbor in an inclusive
neighborhood had been weighted equally as has often
been the case in practice, this situation would
occur. Values of dj near 0.150 are seen to be op-
timum for this image with its compatibilities.
Equations (7) through (9), along with the compati-
bilities determined from the ground truth data, in-
dicate that d; = 0.150 will cause individual wheat
and non-wheat pixels to be removed during relaxa-
tion along with corners on wheat fields, whereas
ends of lines a single pixel wide will be retained.
Inspection of the ground truth map for the data
shows this to be a reasonable action. Indeed, in-
spection of the ground truth and use of (7) through
(9) would have led to an a priori assessment of an
appropriate value for di in the vicinity of 0.150
for this data. In a real situation, where ground
truth evidently is not available, values for dj can
still be determined based upon knowledge of likely
geometries in the image data being considered.

Labeling Improvement During Relaxation

The intention of applying relaxation to an
image is to improve upon a labeling which has been
generated beforehand by some "imperfect" process.
In endeavoring to examine the improvement, it is
useful to view the situation in the following man-
ner. The relaxation algorithm does not know, of
course, which are the correct and which are the
incorrect labels. It only "knows" which labels are
consistent and which are inconsistent with their
neighbors. Consequently, an image with initial
labeling errors will be treated by the relaxation
algorithm as though it were correctly labeled and
the "improvement' which it creates is a conversion
of locally inconsistent labels. This conversion
will take place by mechanisms such as those de-
scribed in the previous section and, in particular,
for pixels that are close to fixed pdints, equa-
tions such as (7) through (9) can be used to de-
scribe labeling improvement in addition to likely
degradation. Indeed, in the special case when an
image is intentionally initialized close to a fixed
point, those expressions can be used very accurately
to describe the labeling improvement phase as well
as any deterioration in the labeling that might
occur. In such a situation, the predictions of (7)
through (9) (for a two-label example) allow the
value of dj to be chosen relative to the compati-
bilities and other neighbor-weighting coefficients
to ensure that some labels are intentionally



converted (i.e., those in error), while others are
retained. Such a situation is evident in the exam-
ple of Fig. 3 where isolated pixels had their labels
converted since they were considered to be largely
erroneous, as were corners. Clearly the require-
ments for improvement and for avoiding degradation
will often conflict in real image segments and, in
order to obtain clean-up during relaxation, some
correct labels may have to be sacrificed.

Relevance of Accurate Compatibilities

In view of the comments of the previous two
sections, it is clear that control of a relaxation
process lies significantly in equations of the
type (7) through (9) for a two-label problem and
similar (albeit more numerous) manifestations of
(5) for a multi-label exercise. Consequently, in
the removal of initial labeling errors and in avoid-
ing label degradation, the actual values of the
compatibility coefficients (rij(k|k') or pij(klk'))
appear not to be important in pixel labeling so
much as their values relative to each other and to
dy as described in (7) through (9). As a demonstra-
tion of this consider the example of Fig. 4. From
the true labeling figure the actual compatibilities
are found as pjj(W|W) = 0.500 and pi(b|b) = 0.875.
Suppose it is desired to remove individual W pixels
and line ends but that W corners need to be pre-
served. Then (7) through (9), along with the values
for the compatibilities show that d; must be made
greater than 0.273. On the other hand if the com-
patibilities are arbitrarily set at pij(wlw) = 0.600
and Pij(EJE) = 0.700 then di > 0.091 is required.
The sequence of iterations displayed in Fig. 4 is
obtained for both sets of parameters, as noted,
showing the required label conversions notwithstand-
ing the "inaccuracy' of one set of compatibilities.

Discussion and Conclusions

The examples presented have shown that it is
possible with image data to choose compatibilities
and specific values of the neighbor weights dj such
that the relaxation process will converge to a near
optimum error which will not subsequently increase
owing to label conversion (degradation) mechanisms.
However, the discussions above and the predictions
of (5) through (9), of course, only hold exactly
for an image that has approached a 0,1 fixed point
and thus tacitly assumes that the local averaging
that gives rise to the conversion of border labels
takes place when the label estimates are all near
0 or 1. While this is indeed the case, averaging
also takes place earlier when the label probability
estimates are not quite so extreme. By initiali-
zing the label probabilities further from a fixed
point, the predictions from equations such as 7N
through (9) will be modified. Empirical tests car-
ried out by the authors indicate that the predic-
tion of (7), at least, is a lower bound.

Should the initial label estimates within a
class be all different (as would happen, for example,
if they are determined on the basis of Mahalanobis
distance considerations in a classification7), some
incorrectly (and weakly) labeled pixels will be re-
moved preferentially during the early improvement
phase in the relaxation. However, all label

estimates will then move toward O or 1 and the re-
marks of Section 3, and above, regarding deteriora-
tion still apply in principle.

Should an exclusive neighborhood definition be
used in a relaxation exercise, then djy = 0 in (5)
through (9). Thus A; label deterioration of the
types considered will occur unless the right-hand
sides of those equations are less than zero. A
little thought reveals that these equations can
never be satisfied for all complementary pairs of
neighbor geometry (i.e., A] corners in Ap regions
and Ay cornmers in Ap regions) so that label degra-
dation leading to an increase in labeling error
would always be expected to occur with conventional
probabilistic relaxation algorithms applied to real
imagery when used with exclusive neighborhood defi-
nitions.

From the results presented in the previous sec-
tions, it is evident that the compatibilities should
not need to be accurately characteristic of a par-
ticular image. Rather, as noted, it is biases in
the compatibilities, along with the value of dj
(relative to the weights on the other neighbors -
here all taken to be the same) that substantially
determine how relaxation will behave on particular
image data, as demonstrated in Fig. 4. A little
thought also reveals that for image data (of the
Landsat type especially) the true compatibilities
cannot be particularly significant since these are
statistically averaged measures computed over the
whole or even a part of an image where in fact some
regions of an image may bear no geometric or statis-
tical resemblance to other areas of that same image.
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Fig. 1. Neighborhood definition used herein.
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Fig. 2. Verification of predictions made using

equations (7) through (9).
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INITIAL LABELING ERROR
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number of iterations
Fig. 3. Labeling error versus number of iterations
when relaxation is applied to a 117 x 196
pixel image using several values of dj.
The original image was initialised very
close to a fixed point.
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Fig. 4. Illustration of the effectiveness of arbi-

trary as against the true compatibilities
when using relaxation labeling. Note that
the final labeling was achieved in 13 iter-
ations with the true compatibilities and 16
iterations with the chosen values. All
other intermediate labelings occurred after
the same number of iterations.



