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ABSTRACT

Multispectral image data methods have been
under study for use in land remote sensing
applications for the last three decades. Though early
airborne-based studies with a sensor having 12 to 18
bands provided very promising results from the
beginning, spaceborne sensors have been generally
restricted to 3 to 7 bands, thus significantly limiting
their information-providing potential. Over the last
decade, the emergence of hyperspectral sensors, with
up to several hundreds of bands have largely
eliminated that limitation. The key problem that
remains is how to analyze this much more complex
hyperspectral data most effectively so as to realize the
full potential of such high dimensional data.

A more fundamental signal processing approach
to the analysis problem has been under study for the
last several years. In this paper, we outline some of
the concepts that have emerged by taking this
perspective, and we provide some of initial
illustrations of its use.

Keywords: hyperspectral, multispectral, data
analysis, information extraction

INTRODUCTION

Multispectral data analysis has been under study
since at least the middle 1960's. Early progress
toward practical means for analyzing multispectral
data of land surface areas was quite rapid during the
1960's and 1970's. The primary limiting factor
during that time was the rather crude spectral
characterization of the reflected and emitted energy
from the land surface subject material (3 to 7 spectral
bands and 6 to 8 bit precision). The coming of
hyperspectral sensors over the last few years has
largely removed that limitation. Instead the primary
limiting factor to deriving maximal scientific and
practical information from such data now becomes
the deriving of suitable means for analyzing the much
more complex hyperspectral data.

Over the last decade or so, progress on

multispectral analysis technology in the field at large
has not been as great as might be expected, given the
substantial effort by a large variety of workers. This
slowed progress suggested that perhaps a different
approach to the problem was needed, taking an
alternate, more fundamental point of view. The intent
was to come to understand the first principles
controlling the extraction of information from such
data and to see if a more effective approach could be
found to the analysis problem.

Briefly stated, in the immediate past, the general
approach for the large body of effort in the field at
large has been to try to correct the data of a new data
set for the confounding observational and
measurement factors that arise in the data collection
process. This has turned out to be a quite daunting
and perhaps never ending challenge. Further, the
central idea has apparently been to do the correction
so that the new data set can be compared to existing
spectral reflectance curves for each material of
interest. The limitations of this approach are that a)
rarely can the observational parameters, e.g. solar and
atmospheric effects, non-lambertian surface
characteristics, etc. be measured to adequate precision
on a pixel by pixel basis as would be required, and b)
the highly dynamic nature of the reflectance of Earth
surface classes is easy to underestimate, such that the
existence of such standard spectral responses (spectral
signatures?) which are adequately stable from time to
time and place to place is called into question.
Further, c) such approaches tend to be based on
single spectral curves to characterize a given target
material. This ignores significant aspects of spectral
responses which are quite diagnostic in nature.

AN ALTERNATE APPROACH

Rather than approaching the problem by trying
to adjust a new data set to previous standards, we are
focusing on learning how to model the classes of
interest within the data set itself to adequate precision
using information which is likely to be available to
an analyst at the time the analyst begins the analysis
process. In the process of pursuing this alternate
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method, much fundamental knowledge has been
acquired about hyperspectral data in recent years!.
The work, approached from the standpoint of signal
theory as studied in signal processing engineering,
revolves around viewing the data of each pixel as a
point in an n-dimensional signal space, where n
initially corresponds to the number of bands in the
data. This signal space is referred to as feature space
because as processing proceeds, linear transformations
may be carried out on the data, turning the
dimensions of the space into more focused spectral
features which can be used in discriminating between
classes of interest.

Example specific characteristics of high
dimensional feature spaces which are especially
relevant to the task at hand are,

1. The geometry of high dimensional feature spaces
is very different from conventional three-
dimensional geometry.

For example, The fraction of the volume of a
hypersphere inscribed in a hypercube is given by:
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where d is the number of dimensions. It can be
readily verified that f41 decreases rapidly as the
dimensionality increases. Figure 1 shows that, while
nearly 80% of the volume of the cube is contained in
the hypersphere for d = 2, the percentage is reduced
to less than 5% by d = 7. Note that limj—.f4; =0

which implies that the volume of the hypercube is
increasingly concentrated in the corners as d
increases.
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Figure 1. The ratio of the volume of a hypersphere
to that of a hypercube of the same size, as a
Junction of the dimensionality of the hyperspace.
This illustrates the fact that most of the volume
of the hypercube is in the corners, outside of the
hypersphere.
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The volume available in such higher dimensional
spaces becomes enormous as dimensionality grows,
and, for any given practical data set, hyperspace is
thus mostly empty. As a result, it is likely that any
data set to be analyzed will be sparse, not functioning
as a dense cloud, but rather as a scattering of points
distributed sparsely over a subregion of the feature
space. As a practical matter, the positive impact of
this characteristic is that, since pixels are rarely
precisely coincident in such a high volume space, any
subclass of pixels can be discriminated from another
subclass if the subclasses can be quantitatively
described to adequate precision.

2. Asadirect impact of this extraordinary
discrimination potential, attention must be
focused upon the precision and completeness of
the quantitative specification of the classes. Use
of a single spectral curve or the average of a
number of such curves, while it may be useful in
some cases, is clearly limiting in terms of the
ultimate performance possible.

To illustrate this point, there are available in the
literature a number of "statistical distance" measures
for the purpose of measuring the separability of two
classes (distributions in feature space). Such distance
measures measure the statistical distance between two
distributions of points in the N-dimensional space.
One with particularly good characteristics for this
purpose is the Bhattacharyya Distance. This distance
measure bears a nearly linear, nearly one-to-one
relationship with classification accuracy. In
parametric form it is expressed as follows.
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where 1 is the mean vector for class i and Z;j is the
corresponding class covariance matrix. Examining
this equation, one sees that the first term on the right
indicates the part of the net class separability due to
the difference in mean values of the two classes,
while the second term indicates the portion of the
total separability due to the class covariances. This
makes clear in a quantitative fashion what the
relationship is between first order variations (the first
term on the right) and second order variations (the
second term on the right). This illustrates, for
example, that two classes can have the same mean
value, and still be quite separable. Note that methods
which are deterministically based can only make use
of separability measured by the first term. Second
order statistics of a class, providing information
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about the shape of a class distribution takes on added
significance as the feature space dimensionality
increases, however, the challenge that this raises is
that second order statistics are more difficult to
estimate accurately than are first order ones.

3. Itis characteristic of the remote sensing problem
that one is extrapolating from a very limited
knowledge of a scene to a detailed, usually pixel
by pixel mapping of the themes of interest in the
scene.

This, then, forms the basis of one of the key
problems that must be solved in devising a practical
and effective analysis process: what form of
preliminary information will the analyst have about
the scene at the outset, and how can this preliminary
information be turned into an adequately precise
quantitative description of the classes one desires to
identify. For example, one such means for utilizing
analyst preliminary knowledge, not requiring an on-
site visit, to define more precisely descriptions of the
classes of interest is illustrated below. In this case,
the analyst preliminary knowledge was in the form of
spectral absorption features of imaging spectroscopy.
Use of this information to define a larger set of
training samples, instead of attempting to use them
directly, led to a higher performance classification
and less dependence upon a very high signal-to-noise
ratio.

4, Other characteristics of high dimensional feature
spaces which are especially relevant have been
identified. It is known, for example, that because
of the high volume of such spaces and the fact
that they are thus mostly empty, the significant
structure of data subsets of interest lie in a lower
dimensional subspace, but one which varies from
data set to data set.

This led to a search for good feature extraction
schemes, linear transformations which find the
subspace in which the classes of interest can best be
separated. Based upon past work, a number of such
algorithms have been identified, with families of
characteristics which reasonably well span the space
of circumstances likely to be encountered. In addition
to the well-known discriminant analysis algorithm,
these include decision boundary feature

extractionZ:3>4 and projection pursuit.’

5. The most logical way of quantitatively defining
the classes of interest in a given analysis
situation is via design or training samples drawn
directly from the data set to be analyzed.

Doing so, in effect, normalizes for sensor and
observation variables which exist in the scene at the

time of observation. This fact substantially reduces
the need to make data adjustments based upon
individual sensor and scene conditions, thus
significantly reducing the overall complexity of the
processing, making the analysis more robust and
easier for the user to carry out.

6. As the dimensionality of the feature space
increases, the number of such samples needed to
adequately characterize the classes rises very
rapidly.

Again, because the number of such prelabeled
samples is likely to be small compared to the need,
the additional factor of the classification algorithm
complexity comes into play. It has been found that
simpler algorithms out perform more complex ones
when the number of samples available is too limited.
An algorithms to define the correct degree of
algorithm complexity, called LOOCS, has been
defined to assist with this process, and an algorithm
to mitigate the small sample size effects has been
created’.

Thus, a number of apparently practical and useful
algorithms now are in hand which should
significantly contribute to the analysis process. In
addition to better understanding and improving the
effectiveness of these algorithms, key problems
which remain are the molding of these algorithms
into step by step procedures for the various practical
circumstances likely to arise, and the specification of
these procedures to potential user scientists and other
remote sensing practitioners.

In many ways, delivering these procedures to the
Earth scientist and other remote sensing practitioners
of the user community, procedures which are to these
users perhaps much less intuitive than those which
have been the focus of attention of the field for some
years, may well be the most difficult part of the
overall engineering problem of devising and
delivering maximally effective hyperspectral data
analysis schemes. It is this fact that motivated the
creation of MultiSpec®©.

MultiSpec is an application program for personal
computers which initially was given a basic
multispectral data analysis capability. As new
algorithms emerged from the research, they have been
incorporated into the program, and new versions of it
made available to the community without charge. In
this way, new algorithms, which may be quite
complex to implement may be tried by users with a
minimum of effort on their part. The program,
together with substantial documentation, is available
for download from the world wide web by anyone
interested. The URL for the MultiSpec web site is

http://dynamo.ecn.purdue.edu/~biehl/MultiSpec/
Some of the algorithms mentioned above which it
now contains are, Discriminate Analysis Feature
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Extraction (DAFE), Decision Boundary Feature
Extraction (DBFE), LOOC, and Statistics
Enhancement. Additional ones resulting from the
research but not described here are included as well.

AN EXAMPLE

We conclude with a single early example
achieved by following this line of analysi58’9. The
data for this analysis was collected by the AVIRIS
sensor in 1992 over the frequently studied Cuprite
Nevada Test Site. The principle focus for the analysis
task was several minerals of geologic interest, and the
basis for class definition was known absorption
bands for these minerals in the 2.0-2.35 pm region.
A conventional approach would use the spectral shape
of these absorption features directly to achieve a final
labeling of the pixels in the scene. This would
necessitate the accurate calibration of the data from
radiance to reflectance and the removal of the effect of
the atmosphere. It also precludes the use of the

AVIRIS Data Classification

discrimination power of second order statistics.

However, in the present case, rather than such
radiometric adjustments to the data, itself, a log
residue transformation which provides a more crude
form of the radiance to reflectance adjustment was
used in an interactive mode. Though not as precise as
an actual radiance/reflectance/atmospheric removal
procedure, it was accurate enough to label a
significant number of each desired class, thus
allowing for the evaluation of both first and second
order statistics of each. The classification which
resulted is shown in Figure 2 compared with a
conventional geologic reconnaissance map drawn
based upon a ground survey. It is seen that a final
product with more detail and including
discrimination between several additional minerals
was possible by this means. Further details are
contained in the referenced documents.

An additional example in an agricultural context
is available for downloading from the MultiSpec web
site.

Conventional Geologic Map

1 r

Bl sivicified (contains Quartz)

@ ~lunite | Argillized @ 0palized (contains Alunite
Kaolinite CJ Alluvium @ Tuff and Kaolinite)
Buddingtonite B Playa Argillized

Background  [TJalluvium

Figure 2. Comparison of a classification with a conventionally drawn geologic map of the Cuprite Nevada test
site using 1992 AVIRIS data. (Original in Color).
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