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Introduction

The term multispectral imagery (or simply multispectral data) is used to
describe pictorial data where two or more superimposed images of a scene,as
it appears when viewed through different spectral "windows," are available
for processing. Multispectral imagery is of paramount importance in the
remote gensing field since most of the data obtained in remote sensing is of
this type. At LARS most of the multispectral imagery available originates
from a multispectral scanner which is simply an airborne instrument designed
for the express purpose of obtaining such images.1 Usually because of
computational and data handling problems involved, multispectral images are
processed in digital form.

The researcher in remote sensing is generally interested in using multi-
spectral images to classify regions of a scene into categories of interest.
Regardless of the classification procedure used, the researcher is almost
immediately faced with the problem of delineating spatial boundaries
separating the region containing the classes of interest. For convenience
such regions will be referred to as fields. For example, in a supervised
learning situation, such as LARSYS ?’ 3 it is necessary to obtain training
samples for each of the classes of interest. Before this can be done fields
must be delineated, at least roughly. Similarily, in evaluating the performance

of any categorizor (supervised or non-supervised) test fields whose classification



is known must be delinsated. Gencrally boundary information is only contained
implicitly in the data. That is, boundaries are indicated only by changes in
the data values and no data element is specifically identified as a boundary
element.

Presently at LARS the task of locating bo;ndaries in multispectral data
is accomplished Ly using gray-scale printouts in conjunction with aerial
\ photography. These aids enable the researcher to orient himself with respect
to the data and to select training and test fields. Locating boundaries from
gray-scale printouts is complicated by the fact that in general boundaries that
show up clearly in one channel (i.e., spectral band) may not show up at all in
another channel. Thué the user ic faced with the rather unweildly task of
looking simultaneously at several gray—-scale printouts. It is clear that an
automatic digital technique, waich utilizes the multispectral nature of the
data to extract boundary infermation, would be of considerable value to the
researcher in remote sensing.

Locating boundaries is dmportant for reasons other than the selection
of training and test samples. The possibility that data compression may be
achieved for pictorial data by utilizing boundaries, or equal intensity
contours (essentially boundaries), has received considerable attention in
the television industry. The problem under consideration here is essentially
the multi-dimensional version of this problem. Certainly cata compression
possibilities are greater in the multi-dimensional than the one dimensional
case. A use closely allied to data compression is information storage and
retrieval. Thus fr» example in classifying a scene, rather than storing the
classification of each data point it may be adequate to store the boundaries
of each field and its classification. Another application in which boundary

finding algoritlms may be of considerable future importance is in conjunction



with the recently developed "per field classification” scheme.6 The basic idea
involved here is that a whole field is classified at once rather than classi-

fying each data point individually. In this method a field is assigned to the

—

class whose distribution is "nearest™ (in some scnse) to th empérical}field

distribution. This method eppears to provide better "field classi%ication
accuracy"” than can be obtained on a point by point basis, at least for some
data sets. Obviously boundary information must be available to carry out a
per field classification. It should be pointed out that some of the above
applications, in particular the per field classification scheme, require that
the boundaries delineating the fields must be closed boundaries.

The algorithm described in this section is one approach to the problem of
locating boundaries in multispectral, cdigitigzed pictorial data. Many boundary
finding algorithms exist for one dimensional data; it appears, however, that
boundary finding algorithms for the multispectral case are essentially non-
existent. The basic principle vpon which this boundary finding algorithm
depends is clustering. A survey of the methods and techniques of clustering

L

may be found in Ball.  Since clustering techniques are largely heuristic the
boundary finding algorithm is also largely heuristic. It is anticipated that
the algoritha presented should work reasonably well for data sets that are
approx’mnately Gaussian and where Euclidean distance is a good metric in the

observation space. In its present form the boundaries found by the algorithm

are not necessarily closed.

General Appreach

Similarity between vectors is of basic importance in attempting to find
boundaries. This is readily evident since the existence of a boundary is a

consequence of the dissimilarity of vectors from neighboring image resolutim



element (IRE). Consequently the following simple apprach suggests itself.
Consider an IRE from the ith row and jth column and the associated L dimensional
o L] ’ X

vector Xi' = (X ILet Y be a vector from a neighboring

§ S0 Ry Lij)"

TRE:. - If Xij and Y are sufficiently alike, according to some similarity measure,
then no boundary exists betwsen the cofresponding IRE's. If they are not
sufficiently alike then a boundary does exist. To implement such a scheme

it is only necessary to define a suitable measure of similarity and establish

a Y"similarity threshold”. Vectors from adjacent IRE's, whose measure of
similarity falls below the "similarity threshold,” are considered to be
boundary IRE's.

A disadvantage of the above approach is that it is too local and makes
no use of the fact that for typical sampling rates boundaries usually have
some spatial extent (at least several IRE's). In effect the above approach
is analogous to viewing a portion of a photograph through a very small window
and attempting to decide if a boundary in the photograph passes through the
window. Graininess in the photo (noise) might easily be mistaken for a
boundary, while a rather gradual boundary would not be discernible. It is
obvious that a larger window would enable the boundary to be more clearly
identified. Eventually increasing the window sige further does not aid
appreciably (if at all) in discerning a boundary. This is because a boundary
is essentially a local, or perhaps more correctly, a quasi-local property.

It would appear that the proper approach to boundary finding should be a
quasi-local approach.

The above considerations have led to a clustering approach to finding
boundaries. In this approach boundaries are determined not on the basis of
the similarity of individual vectors, but rather on the basis of the similarity

of small groups of vectors, where all vectors under consideration have been



drawn from a re:sonably small region of the scene. The grouping of the
vectors is determined by clustering the vectors in the observation space.
The details of the complete procedure, which is referred to as the Boundary

Finding Algorithm, is discussed in the ensuing section.

Description of the Boundary Finding Algorithm

In the algorithm to be described the scene under consideration is

partitioned into square regions called Boundery Cells. Each of the Boundary
Cells contains a moderate number of IRE's, and the union of the Boundary Cells
represents essentially the whole scene. Boundaries are determined separately
for each Boundary Cell and the union of these boundaries yields the boundaries
for the whole scene. It is convenient to discuss the Boundary Finding
Algorithm in two parts. The first part is concerned with the clustering
procedure itself, while the second part is concerned with the method whereby
the results of the clustering procedure are used to establish which of the
IRE's are boundary IRE's. For convenience the first part of the Boundary

Finding Algorithm will be referred to as the Clustering Algorithm and the

second part as the Edge Finding Algorithm.

To describe the Clustering and Edge Finding Algorithms we focus our
attention on an arbitrary Boundary Cell. We define a Clustering Cell to be
a square avea, centered on, but slightly larger than a Boundary Cell.

Figure 1 depicts the general relationship. The vectors associated with
IRE's in the Clustering Cell are clustered in the observation space, that is,
a "natural” grouping for these vectors is found in the observation space.

Two input parameters are of prime importance in controlling the clustering
procedure. The first of these is the maximum number Mm of modes (grOUps)

permitted, and the second is a threshold T. The algorithm first finds the



est" grouping of the vectors into Mm modes. A pairwise measure of separathn
is then computed for each pair of modes. Let Sij be this measure for modes
Sieanfl §e. EE Sij 21 for all 1y 3 = 1, 2y = &=y Mg 13 then the Mm modes are teken
to be distinct and the clustering procedure is terminated. If one or more
sij < T then all modes are not distinct and the two modes corresponding to
thé lowest Sij are merged yielding Mﬁ - 1 modes. The clustering procedure
is then repeated with Mﬁ ~ 1 modes. In this manner the number of modes is
successively reduced until M(1 <M stm) distinct modes are found. Thus the
clustering procedure establishes how many groups of vectors there are, up
to some specified maximum Mﬁ, and assigns each vector in the Clustering Cell
to oné of these groups. Consequently after a Clustering Cell has been
processed by the Clustering Algorithm, there is available a spatial array
of the type depicted in Figure 2a. Here each number . in the array represents
the group to which the corresponding IRE has been assigned.

The manner in which a set of vectors is clustered is outlined below.
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The procedure is essentially that suggested by Swain and Fu” with some

modifications.
1) Intialigation
Let Xl’ X2,...,
Cell. If the maximum number of modes permitted is Mﬁ, the Mm initial

XN be N L-dimensional vectors from a Clustering

mode centers are generated as Follows:

Compute the sample mean of the N vectors according to
N
___LX
S a0 e
i

and the sample variance for each dimension
N

TR . \
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2)

3)

L)

mtc=(c,%r“,%)mmM=(%,%”n,%L
Consider the real line intervals Y, = [-“i -G, t ci],

i =1, 2440+, L. The cartesian product YfXYZX...Xyi defines

a rectangular parallelepiped in the observation space which
should contain most of the vectors from the Clustering Cell.

The Mm initial mode centers are chosen to be uniformly spaced
along a diagonal of this rectangular parallelepiped. Accordingly
the mode centre for the kth mode is

= u + o(2k-1) - 1) Ko Busane B
]nk G(Mm‘l) m

Initially none of the vectors are assigned to any mode.
Mode Assignment

Determine the Euclidean distance from each vector to each mode
center. Assign each vector to the mode with the nearest mode center.
Mode Migration

If step 2 did not change the mode assignment of any of the N
vectors go to step L4; otherwise, replace the old mode centers by
the means of the vector clusters resulting from step 2, and then
go to step 2.
Distinctness Test

A new set of modes has been tenatively established. Test these
modes for distinctness using the method suggested by Swain and Fu.5
This test assumes that the modes are Gaussian and that the variables
are independent. If all the modes are distinct clustering is
complete. If all the modes are not distinct merge the two least
distinct modes. Suppose modes i and j have mode centers :m,i and m.

3
and contain n, and nj vectors respectively, are the least distinct



modes. The merged mode center is given by

fi.m. I n.m.

n, o nj
If after merger the number of modes is greater than one go to
step 2; if only one mode remains clustering is complete.

The Edge Finding Algorithm is responsible for processing the Clustered
Array (i.e., Figure 2a) generated by the clustering algorithm and detecting
which of the IRE's are boundary IRE's. To do this the Clustered Array is
scanned in both the vertical and horizontal direction to establish which of
the IRE's qualify as boundary IRE's according to the definition of a boundary
IRE outlined below. Let Cij be the mode to which (IRE)ij (i.e., the IRE in
the ith row and jth column of the Clustering Cell) has been assigned; that is,
Cij is the number appearing in the ith row and jth column of the Clustered
Array. Let k be an input parameter to the Edge Finding Algorithm which we

will refer to as the Correlation Distance. A vertical boundary exists between

g

(IRE)ij all belong to one mode, and (IR'E):.L 1 and the first (k-1) IRE's to the
>

all belong to another mode. If this condition is satisfied

(IRE), . and (IRE). .,, in case (IRE),. and the first (k-1) IRE's left of
1] Ly 5 1J

right of (IRE)i,j+1

then (IRLE)ij and (IR'E)i sy aT€ vertical boundary IRE's. Horizontal boundary
2

i
IRE's are found in an analogous manner by scanning the clustered array in the
vertical direction. On the line printef output the symbol I is used to
designate a vertical boundary IRE, a minus sign designates a horigzontal boundary
IRE, while an IRE that qualifies as both a horigzontal and vertical boundary is
designated by an asterisk.

The main reason for introducing the correlation distance k is to insure
that if an IRE is assigned to a different mode then its 8 immediate neighbors,

then none of these IRE's are necessarily interpreted as a boundary IRE. Usually

such IRE's have been assigned to the wrong mode by the clustering algorithm



although occasionally they may represent legitimate boundary IRE's. The need
for some sort of spatial smoothing becomes evident if one considers that in the
absence of any smoothing (i.e., k=1) a single isolated IRE would result in five
boundary IRE's. The clutter produced by a relatively few isolated IRE's would
be intolerable.

A disadvantcge of using a correlation distance is that the boundaries of
fields narrower than k IRE's will not be detected. To remove this undesirable
condition a narrow field detector has been added to the Edge Finding Algorithm.
The narrow field detector simply relaxes slightly the condition an IRE must
satisfy to qualify as a boundary IRE.

To describe the operation of the narrow field detector assume that in
scanning the ith row of the Clustered Array one encounters a sequence of
k, <k adjacent IRE's all assigned to the same mode. This sequence of kl IRE's
will be considered to originate from a narrow vertical field in case there
exists a 'similar" sequence of kl IRE's in either the (i-1)st or (i+1)st row
(or both). For the purposes of this description two sequences are "similar"
if the IRE's in one sequence are shifted by not more than one column with
respect to the IRE's in the other sequence. All elements from a narrow vertical
field are designated by the symbol X on the line printer output. Narrow
horizontal fields are detected in an anagous way by scanning the clustered
array in the vertical direction. Figure 2b shows the boundaries for the
clustered array of Figure 2a.

Tt is apparent that because of the manner in which a boundary element is
defined it is not possible to decide whether any IRE within one correlation
distance of the edge of a Clustering Unit is a boundary IRE. This means that
if each IRE is to be considered as a possible boundary IRE, then adjacent

Clustering Cells must be chosen to provide a certain amount of overlap.



Specifically, they must overlap by at least 2k IRE's. Also note that this

means it is not possible to decide if an IRE is a boundary IRE if the IRE

in question is nearer the edge of a scene than k IRE's.

Performance and Determination of Parameters for the Boundary Finding Algorithm

The parameters that must effectively be specified for the Boundary
Finding Algorithm are as follows.

1) Clustering Cell Size (wcx W, IRE's)

2) Boundary Cell Sigze (wbx wbIRE's)

3) Maximum number of modes permitted (Mﬁ)

4) HNumber of Channels (L)

5) Correlation Distance (k)

6) Threshold (T)

Two factors are important in establishing 'best’ parameter values. One
is the processing time, and the second is the performance of the Boundary
Finding Algorithm. The latter factor is perhaps the more important factor,
but at present no method exists to quantitatively evaluate performance. Thus
about all that can be done is to visually examine the output from the Boundary
Finding Algorithm and make a relative, qualitative, evaluation concerning the
algorithms performance. For different combinations of parameters, where per-
formance is Jjudged to be essentially the same, processing time becomes the
prime criterion.

Txperimentally it is readily verified that the vast majority of the
processing time is accounted for by the Clustering Algorithm. Consequently
the processing time is intimately linked to the time required to cluster the
vectors in a Clustering Cell. Unfortunately this time is a random variable
because it depends on the number of iterations required to cluster a set of

vectors. In determining the boundaries for a reasonable amount of data many
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Clustering Cells are processed. It is therefore reasonable to talk about an
average number of iterations per Clustering Cell and consequently an average
processing time per IRE. In practice the average processing time can be
approximately determined by measuring the time required to find the boundaries
for a section of data which is large enough to contain many Clustering Cells.
The large number of parameters involved in the Boundary Finding Algorithm
makes it difficult to carry out a completely comprehensive investigation
regarding the effect of all of the parameters for a wide range of parameter
values. TFortunately some of the parameters affect performance in a fairly
predictable manner; others are relatively independent and can therefore be
set rather easily. Some combinations of parameters lead to exhorbitant processing
times with little apparent benefit and can be readily set from a practical point
of view. More specifically, a threshold value of about 1 or slightly lower
seems to be a good theoretical choice. The validity of this choice is born
out in practice for the multispectral scanner data and consequently most of
the results presented will use a threshold value of 1. In the interests of
minimizing processing time the correlation distance k should be chosen as small
as is practical. For the multispectral scanner data a choice of k=2 usually
provides adequate smoothing of the Clustered Array. Consequently this value
is used for all the results presented. Finally the Boundary Cell will always
be assumed to be 2k IRE's per side smaller than the Clustering Cell. For a
given size Clustering Cell this is the largest permissible size for the
Boundary Cell. Hence, this choice minimizes processing time since the amount
of overlap of adjacent Clustering Cells is minimized. There are cases in which
it is not desirable to choose the size of the Boundary Cell in the manner
suggested. In particular if for some reason it is desirable to work with a

very small Boundary Cell (say 1x1 or 2x2 IRE's) then a Clustering Cell chosen
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on the previous basis will contain very few samples. This small sample size
will cause poor variance estimates in the Clustering Algorithm and a conseguent
deterioration in the Algorithms performance.

The remaining three parameters namely, Clustering Cell Size, Maximum
Number of Modes Permitted, and the Number of Channels used are very much
interrelated. To arrive at reasonable values for these parameters a section
of multispectral scanner data that was obtained from the area shown in
Figure 3 was processed using various combingtions of these parameters. For
each case considered the average processing tipe pPer IRE was experimentally
determined. Figure 4 and Figure 5 summarize these results. Nete that the
given processing times are essentially based on the assumption that all the
data of interest is in core storage. In other words the given times must be
increased to allow for any required data manipulation. This additional time
can be very significant but is negligible if the data is available in a form
that necessitates very little data manipulation prior to processing. The
computations were carried out on an IBM System/360 Model L4.

The results shown in Figure 4 demonstrate the effect of varying the size
of the Clustering Cell and the number of channels used to cluster the data.
For these results the threshold was fixed at 1.00 and the maximum number of
modes was fixed at 2. Note that for fixed but arbitrary . L. the processing
time increases as the size of the Clustering Cell decreases. In fact a close
check shows that this increase in processing time is essentially all accounted
for by variation in the overlap between adjacent Clustering Cells. This
together with the essentially linear variation in processing time with L
indicates that the average number of interations required to cluster the vectors
from a Clustering Cell is essentially independent of both the size of the

Clustering Cell and the number of dimensions used. This suggests that to
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minimize processing time large Clustering Cells should be used. This result
is however based on the assumption that the maximum number of modes permitted
(Mm) is fixed. Clearly Mm should increase monotonically with the sige of a
Clustering Cell. Examining times in Figure 5 demonstrates how processing time
is effected by Mﬁ: and T. Considering the computations involved one would
expect the processing time to be approximately proportional to Mm (Mm—l).
Figure 5 bears out this expectation. Thus Mm is such a dominant factor in
controlling processing time that from the practical point of view it is
imperative that b%lbe relatively small. This means that relatively small
Clustering Cells should be used. For small Clustering Cells Mm equal to two
provides quite reasonable performance.

Asthetic reasons also indicate the desirability of using small Clustering
Cells. When the Clustering Algorithm fails then all the boundaries within the
particular Clustering Cell being processed tend to be in error. This results
in a “granulation” of the output which is not nearly as evident or as
objectionable for small Clustering Cells.

Further examination of Figure L reveals that performance improves only
slightly as the number of dimensions L is increased above 3. Processing time
increases in essentially a linear fashion with L. It is worth mentioning, that
comparatively speaking, the results using only one channel are suprisingly
good. Note that adding a channel does not always improve the ease with which a
boundary can be located. In fact sometimes the reverse is true. This is clearly
the case when the boundary in question is not evident in the added channel.
Under these circumstances the additional channel certainly does not help and
may in fact hinder the clustering procedure. The added channel may however
result in the detection of some other boundary not previously detected, and

overall performance may improve.
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The above considerations suggest that permitting a maximum of only 2 modes
(or possibly 3), using a Cluster Cell of about 10x10 IRE's, and utilizing 3 or
L, channels of data represents a reasonable compromise for the present multi-
spectral scanner data. No method exists for choosing the ‘'best’ subset of
data channels from those available. It seems reasonable however to choose
them so they are spectrally as different as possible (i.e., spread out over
the spectrum).

It is frequently of interest to know what the boundaries would look like
if the threshold is varied. It is, in general, not easy to achieve this with-
out multiple passes through the data. An exception occurs when the maximum
number of modes is restricted to 2. Since this in an important practical case
its implementation will now be discussed. Recall that during the clustering
procedure a pairwise measure of separation is computed for each pair of modes.
Iet S be this measure of separation for the 2 mode case. HKather than compare
S with a single threshold T, as was previously the case, we now compare S with

2
chosen so that if S< Tr then almost certainly only one mode is present and no

a.sequence of thresholds T1> T Tr' The lowest of these thresholds is

boundaries exist. If S> Tr then it is assumed that 2 modes are present and
boundaries do exist. The degree of confidence attached to the boundaries
depends upon how many of the Ti’s are exceeded by S. This is logical since
the larger the value of S, the more separable are the modes, and the more
reliable are the resulting boundaries. Different line printer symbols can be
used to reflect this degree of confidence. Thus in effect a multi-threshold
map is obtained in a single pass.

Figure 6 compares the output of the algorithm modified to accommodate
three levels of boundaries corresponding to three thresholds T1> T2> T3 with

a gray-scale printout and aerial photograph. The most distinct boundaries are
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those for which the measure of separation 52 T These are indicated by the

1
symbols I, -, ¥, and X as before. For T25f3< T1

distinct and a plus sign is used to represent all such boundaries. For

the boundaries are moderately

T,< S< T, the boundaries are indistinct and are represented by a period. If

3 2

S< T3 one mode exists and there are no boundaries. Figure 7 compares the
output for one, two, and three levels of boundaries. The values of Tl’ T2,
and T3 used to obtain Figure 6 and Figure 7 were 1.00, 0.85, and 0.70
respectively.

The examples depicted above have involved agricultural type of fields.
Figure 8 is an example involving completely different type of terrain.
Essentially the same parameters were used to obtain Figure 6 and Figure 8.

The parameters differ only in that different channels were used and that in

Figure 8 an asterisk is used to represent all of the most distinct boundary

IRE's.

Closure

We have argued heuristically that clustering should provide a good
approach to the problem of locating spatial boundaries in multispectral
scanner data. The basis of this argument is that typically boundaries have
some spatial extent and that clustering provides one possible way of using
this spatial information. The fact that reasonable performance can be
achieved is clearly demonstrated by the experimental results presented.
Experimentally we have also established reasonable values for the input
parameters to the Boundary Finding Algorithm.

No claim of superiority is made for the particular clustering Algorithm
used. The algorithm should perform reasonably well for data sets where modes
are approximately Gaussian and Euclidean distance is a good metric in the
observation space.
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Figure 3. Aerial photograph of test area.
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and average processing time t(ms/IRE) for Mm=2, K=2 and T=1.00.
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Figure 5. Effect of Threshold and maximum number of modes on perf-
ormance and average processing time t (ms/IRE) for w.=30, k=2 and

L=3.
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MACHINE- DRAWN BOUNDARIES

Panchromatic Air Boundaries
Photo

Figure 7.




Panchromatic Air Boundaries
Photo

Figure 8. Boundaries for a Non—
Agricultural type scene.




