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I. ABSTRACT

Recent publications have documented the development
and successful application of weighting function tech-
niques for analytically modeling discretely measurable
two—dimensional irregular surfaces. The weighting
functien technigues produce an analytic functional
model valid over the entire input data set. The
globally valid function is comprised of an arhitrarily
large family of locally valid functions which jein
together with m-th order continuity assured. The
locally valid functions are typically low order poly-
nomials, so that analysis of the functional model is
efficient and inexpensive.

The theory of the weighting function techniques
has been extended to N-dimensional functions, allowing
mathematical modeling of discretely measurable functions
of an arbitrary number of independent parameters, with
m-th order continuity assured. Analytic formula for
the weighting function coefficients for N-dimensicnal,
m-th order continuity have been developed.

This technique has been employed to store and
analyze mase remotely sensed topographic data for
contour maps and three-dimensional graphical displays.

II. INTRODUCTION

The problem considered in this paper is the mathematical modeling of discretely
measurable N-dimensional geodetic functions, e.g. given the observations;

#i'at [xli' Koygr X% e Tor 3w g B (1]

ir X340 i

form an accurate m-th order continucus functional model
e txl, Kor Kaqp eeey %) (2}

which reliably predicts the measured functicn at any desired point in the N-space.

*This work was supported by the U. S. Army Engineer Topographic Laboratories, Fort
Belvoir, Virginia, under contract DAAK02-72-C-0256., Portions of this paper were
included in "Modeling W-dimensional Surfaces using a Weighting Function Approach,”
a paper presented to the Fifty-Fourth Annual Meeting of the American Geophysical
Union, Geodesy section, in Washington, D. C., April 16-20, 1373.
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The primary motivation for formulating an analytic model of a discretely
measured function is the flexibility and economy of this representation of tha
data. Accessing and analyzing an analytic model for information is significantly
more efficient than accessing the usually dense, heavily redundant geodetic data
set. New and different analyses of geodetic data often proceed more simply and
directly from mathematical models. Also, storage of the data in functional form
typically results in a significant decrease in physical storage reguirements.

The desirable consequences proceeding from representation of geodetic surfaces
with mathematical models has resulted in this problem receiving considerable
attention in the literature. For obkservations of a function of one wvariable, e.9.

$, at {xlii o o, R e N e e (1)

the list of interpolation and approximation techniques is almost endless, the more
classical procedures are covered in Davis (1963), The development of spline inter-
polation, Greville (1969), has allowed interpolation subject to a "best approxima-
tion" eriterion. Unfortunately, the standard technigques result in unweildy
functions or have numerical difficulties for the typically large multi-dimension
geodetic data sets, For functions of one variable, Junkins, et al. [1972a) and
Jancaitis and Junkins (1973b)] developed sequential, non-singular, uniguely defined
interpolation and approximation technigues for arbitrarily large data sets, which
also guarantee arbitrary order continuity. <Considering discretely measurable
functions of two independent variables, e.qg.

o, at (xy4p %,.)0for i =1, 2, 3, .usy D (4]

the classical and spline technigues generalize--but the difficulties encountered in
one dimension are compounded in two. For practical models of geoidal scale sur-
faces in spherical coordinates, Lee and Kaula's (1967) spherical harmonic series
and Lundquist and Giacaglia's (1971) sampling function series have been found to

be useful and accurate mathematical representations. For the fine structure moedel-
ing of irregular surfaces, Jancaitis and Junkins (1973a,b) and Junkins et al.,
{1972b} presented sequential surface averaging methods based on locally valid
pelynomials. These technigues resulted in m-th order continucus analytic models
for arbitrarily large data sets. Probably the most widely used mathematical model
of a geodetic function of three wvariables, e.g.

2:}{] = E04, s ¥ [5)

§ = f(xl, x <

is the spherical harmonic expansion representation of the gravitational potential
of the earth. For the macro-scale modeling of gravity, the spherical harmonic
representation provides an accurate, efficient, continucus and globally walid
model. A promising technigue for modeling the fine structure variations of the
earth's gravity field has been developed and demonstrated by Morrisen (1I972): it
is based on local expansions of a geodial density layer.

Considering the applicability, advantages and shortcomings of these technigues,
formulation ©f reguirements for a generally applicable functional medeling
technigue is possible. A generalized mathematical meodeling technigue is desired
which embodies the following characteristics; the mathematical model should:

1} approximate local data in a weighted least square sense, consistent with
absolute and relative measursment precisieon,

2} permit efficient and accurate calculation of its determining parameters,
3} have any desired crder continuity,

4} make use of any apriori knowledge of the nature of the geodetic function
being modeled,
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5) be so formulated that access and utilization for geodetic analyses be
efficient, accurate and direct,

6) be scale independent, to allow modeling of either macro- or micro-scale
variations,

7) be formulated in "generalized coordinates" so that the formulation will
directly apply to representation of surfaces in any convenient N-space,

8) be easily utilized for arbitrarily large geodetic data sets,

9) permit efficient updating of the defining parameters based on new
observation sets,

10) allew significant data compaction for more economical storage.

With these requirements in mind the modeling technigue of this paper has been
developed and demonstrated. The weighting function technigues detailed herein
allow the mathematical modeling of a general N-dimensional discretely measureable
geodetic function with m-th order continuity, for arbitrarily large data sets.
This technigue embodies the ten desired characteristics stated above., The tech-
nigque is based upon a new family of polynomial weighting functions; analytie
formulae for the generalized n-variable weighting functions' coefficients have
been derived and are given herein.

For background and as a suitable base for the subseguent results of this
paper, the one-dimensional weighting function interpolation technigue will be
discussed first.

III. THE ONE-DIMENSIONAL WEIGHTING FUNCTION INTERPOLATION
TECHNIQUE (WIT)

The one-dimensional problem can be stated as:

Given p observations of a discretely measurable function, &, of
one independent variable, x;

Qi at xi

Find an accurate, m-th order continuous functional model, £, of
the wvariable, &,

Borel sl e vl ooy TPV (6)

¢ = £(x) (7)
which reliably predicts the function between its measured wvalues.

The weighting function interpolation and approximation technique (WIT), which
solves this problem, proceseds as follows:

1} chocse some form for a seguential set of local approximations, based on
experience or apriori knowledge of the nature of the geodetic function e.g. choose

Fj!x, Pir p%. p%. e pﬂ}. (8)

to approximate ¢ in a local neighborhood of a "centroid of validity" ﬁj. With Fy
centered at the point x3 and the points x4 not necessarily equal to any of the xj.
The pi's are the constagts of the local fanctional approximation, which are deter-

mined for each local neighborhood individually. (Taylor series have been found to
work well for modeling teopography.)

2} choose a set of sequential peoints Ej. arbitrary in number and location,
to serve as centroids of validity for the local functional approximations, F:.
The distribution and number of these points will be determined by the lacatian and
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densities of the original data, their known measurement accuracies, and the
complexity of the local approximation's functional form.

3} employing standard numerical technigues, calculate the defining parameters
of the local approximation functions. The original data can be f£it exactly, in
least sguare fashion, or using minimum criterion, etec., to determine the initial
lacal approximations (8) associated with each x4. The arbitrariness of the form
and determination of the local approximations affords a new level of flexibility in
approximation.

4] use "appropriate” weighting functions to merge (average) the local
approximations into a single m-th order continucus functicnal model valid owver the
entire original data set. This is accomplished by defining the gleobally valid
functional model as a series of piecewise functions; each valid between two neigh-
boring centroids of wvalidity. To maintain the m-th order continuous nature of the
global representation, it is clear that adjacent piecewise functions must join with
m-th order continuity satisfied at their junction.

of course the key to the success and applicability of WIT depends on the form
of the final interpolating function (7) and therefore upon the properties of the
weighting functions utilized to merge the local functional approximations. Of the
many possible forms, the authors have chosen to employ

(x) (9}

b, [x) = F.(x)JT.(x]) + F, x)J,
9y J 3] 3+1 F1 54
to represent the geodetic function, %, in the intervals
Xy £X 2 Xy, (10}

The J,(x) are the yet to be defined weighting functions. Other forms [(and associ-
ated %Eighting functions) are under investigation and will be discussed in sub-
sequent papers. This approach is unigque because functions (as opposed to discrete
values) are being interpoclated.

The reguirement that the piecewise function (%) form an m-th order continuous,
globally valid model, and the additional requirements of reasonable interpolation
at the endpoints and in the interior of the intervals lead to the boundary value
problems which uniquely define the necessary weighting functions. The development
and rationale behind the boundary walue problems is the subject of the next
section,

IV, THE BOUNDARY VALUE PROELEM

Having chosen ecquation (9) as the interpolation form for local representation
of the function (7) in the intervals (10}, complete definition of the weighting
functions now depends on the choice of interpolation properties for eguation (9).
one set of reasonable properties is:

1} require the global function to reduce exactly to the local functional
approximations at their centroids—-not only in value but in their first m partial
derivatives,

2y  in the interior of an interwval, the final funectiocnal model must be a
"reasonable" weighted average of the local functions located at the endpoints of
the interval. A reasonable average is obtained by requiring the neighboring
weighting functions to add to unity for all values of the independent wvariable
in the closed interval between their centroids. This condition will insure that
if both local functiocnal approximations defining an interval have the same value
at some point in the interior of the interval, then the final functicn will also
have that walue, clearly a desirable property.

The conditions on the final functional model which result from the above
interpolation properties are given in Table 1. MWNoting the symmetry in the condi-
tions in Table 1, it follows that only one weighting function needs to be deter-
mined--all the others are simple translations, scalings and/or reflections of the
first, The boundary value equations for only J;(x), centered at x = 1, valid on
the interval from zero to one are given in Tahle 2, For example, Jg(x), the
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weighting function centered at x = 0, also wvalid over the interval zero to one can
be formed from Jlix} by

Joixl = J,;(1 -x) =1 - Jlix} {11)

because of the symmetry of boundary conditions at either end of the interval. The
equations in Table 2 follow directly from the required properties of equation (9)
listed in Table 1. Soclution of the boundary value problem for the required weight-
ing function is the subject of the next section.

V. THE WEIGHTING FUNCTIONS

The boundary value problem summarized in Table 2 can be alternatively stated
as follows:

1) the first derivative of the weighting function must have an m-th order
zero at the centroid of its respective local approximation,

2) the weighting function must have an (m + l)th order zero at the centroid
of its neighboring local approximation,

1) the sum of the weighting function and its reflection about the centroid
of its neighboring local approximation must be unity over the entire c¢losed inter-
val between the two adjacent logal functions.

One family of solutions of this boundary value problem can be obtained by
assuming that the weighting function is a polynomial in the independent variable x,
e.qg.

L
thxJ = E Cpx (12}

with the upper limit on the summaticon as yet undefined. Restricting the discussion
to Jj(x) on the closed interval zerc to one, then the first derivative of J7 (x)
with respect to x must be,

dJ. (x)
—— = X - " (13)

to satisfy the condition that the first m derivatives vanish at x = 0 and x = 1,
Cy is, at this point, an arbitrary constant. Integration of (13) for the appropri-
ate form for Jj(x) gives:

"m

X - -
I, (%) = ,ro x (1 - x)'dx + €, (14)

The remaining conditions on J)(x) at the endpoints of the interval will completely
define the constants in eguation (14). The remaining conditions at the endpoints
are

J, (0} =0

1
(15)

3, (1)

]
=

Clearly, for the success of this approach, a non-trival solution of equation (14)
subject to the conditions (15) must exist. For solution of this problem, equation
(14) must ke evaluated at the endpoints of the interval of interest, e.g.

Q. o "
= m m B
Jp0 =¢ IO R AL s=in) Sdated ©f 20 (16)
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1
=

e A5 o
3,11 = ¢, jo x (1L - x)"ax + ¢ (17)

Equation (16) gives the result, C; = 0. Equation (17) shows that the appropriate
choice for Cg is:

Lk ﬁ %
e -u (] (1 - x}mdx]"l e r;zm F 200" h2a o+ é]! (18)
o 5 r<im + 1) (m!)

where T'(m) is the gamma function
r{m} = {m - 1)! {19}

for any m integer and greater than zero, The general form for Jl{x} can now be
written as:

m+ 11

> ¥ (1 - x)Max (20)
(m!)

Jl{x} =

The third condition of Table 2, that is necessary for reasonable interpolation
in the interier of the interval, has not yet been considered. Usually, normaliza-
tion would be necessary to insure the "reasonable interpoclation” property, e.9.
form normalized Ji{x} from Jl{x] and JD(H] according to the formula:

Jitxl

I = T T i

i=20, 1. (21}

then clearly Jy(x) + Jo(x) = 1, Fortunately this normalization is unnecessary; the
polynomial weighting functions derived here satisfy the reasonable interpclation
property {Jj{x) + J {x) = 1} without normalization. Proof of these statements
follows from a consideration of Jy(x). HNote that the first derivative of Jgl(x)
must satisfy exactly the same conditions ag the first derivative of Jj(x}. There-
fore equation (13) can be repeated for J,(x):

dJ_ (=)

i m m
e = CDX (L - %) (221

the necessary conditions on J_(x) at the endpoints of the interval are:

L]

s 5 A

J o =g, jD (1 - x)Mdx +Cc) =1 (23)
1 cm ) | [

3013k g ju x (1L-x)'dg +C; =0 (24)

Equations (23) and (24) are simply solved, and the appropriate form for J (x) is:

_ (2m + 1)1

J (x) =1
o {mljz

P - x)"ax (25)
o
Consideration of eguations (20) and (25) shows gquite simply that:

Jotx] + Jl{x] =1 (28]

for all .
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At this stage one other point remains, recall the symmetry arguments which
resulted in:

T = J, (1 = x). (27)

From examination of equations (20) and (25} it is not cbvious that this is true,.
However, since the polynomial weighting functions are of degree 2Zm + 1, and they
gati=fy 2m + 2 conditions, they are unigue--and therefore the two reprasentations
of J (x) must be eguivalent. (Existence and unigueness follow simply from the
derifation of the weighting function.)

Consideration of the expression (20) permits development of analytic ;
expressions for the coefficients of the weighting functions. This development will
be the subject of the next section.

¥I, COEFFICIENTS OF THE WEIGHTING FUNCTIONS

Utilization of eguation (20) and the binomial expansion:

n
e = |z (28)
r=0
for 0 £ r = 0
G iy fl
weth tr:I SO R =TT

allows a series expansion of the integrand of eguatien (20) to

X -m o .
(2m + 1) ! f 7 [ﬁ?xmxm'r(—ljm+rdx, (29)

J-o(x) =
1 (ml) o r=0

which can be rearranged and integrated term by term to yield:

m
T el ok o] R PR (30)

r=0

with;
g A2mot 133 [-317
]
(m!)
r. m
o G

E’r = Zm - £ + 1

The expressions for K and g, completely define the coefficients of the weighting
functions for m-th order continuity, analytically. Table 3 contains a summary of
the one-dimensional weighting functions, Jlix}, for wvarious order of continuity.

VII. SUMMARY OF THE OWNE-DIMENSIONAL CASE

The results presented thus far document a new sequential interpolation and
approximation technique for mathematically modeling discretely measurable functions
of one variable., These technigues use piecewise functions to define a globally
valid m-th order continuous model by ceguentially operating on small subsets of
the original input data. The piecewise, segquential determination of the global
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modeling function allows continuous modeling of an arbitrarily large set of data--
while still maintaining reasonable limits on the crder of the interpolating and/or
approximating functions. The total arbitrariness of the form of the local func-
tional approximations permits a new level of flexibility in the leocal, and there-
fore glcbal, modeling capability. The required weighting functions for this
technique have been shown to be simple low order polynomials in the independent
variable; and analytic expressions for their coefficients have been developed for
arbitrary order continuity. The essence of the one-dimensional WIT procedure is
demonstrated in Figure 1,

A most important advantage of WIT is that it generalizes fully to N-dimensions.
Numerous sequential and non-sequential technigques exist for interpolation and/or
approximation in one-dimension, most however do not result in practical algorithms,
when generalized to higher-dimensions, Some technigques exist for continuocus
modeling in N-dimensions--but they result in functional forms that are so complex
that they are of little value in modeling large data sets, This is not the case
for WIT, it maintains its continuity properties and efficiency in N-dimensions;
and is practical for large data sats.

Discussions of the generalizations of this technique to n-dimensions is the
subject of the next sections of this paper.

VIII. MODELING IN N-DIMENSIONS

After consideration of the one-dimensional case the generalization to N
dimensions proceeds quite easily. One possible choice for the regions of wvalidity
for the final piecewise functions is N-dimensional hypercubes. Without loss of
generality these hypercubes can be assumed to have sides of unit length., The
centroids of the local functional approximations are then constrained to lie on a
uniform N-dimensional grid. The appropriate interpolation form is,

¢{xl, or Xgs eeey xn} =

j1+1 j2+1 jn+1 {37)
I N g v gl " et W5 33 i Ay rremi ]
i1=ji i2=j2 inwjn 1112---1n i n 11...1n 1 n
valid over the hypercube defined by:
X. <X_<¥% for k = 1, 2, S
Boo & By S Bge or 1 3, o (38)
where the points (%, ¢+ X2 v . 4 wses %, ) are the centroids of the local
i e 14
functional approximations,
: Exl, e o xn] (39)

3p3ge0-3,

The interpolation properties which are required for mth order continuity and
reasonable interpolation are given in Table 4. Considering only the weighting
function J111, 1{x1, niny xnj centered at the point (1, 1, 1, ..., 1) valid over

the hypercube given by

0D <'x <1 e e i T (40)

k

Then the appropriate boundary value problem based on the chosen interpolation form
and properties is given in Table 5. The solution to the stated problem is:
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N
Jll“.l:x]_"“"'xn] =T ]Jlfxz'}l-..Jl[xn} =y Jl{xi}, (41)

and the remaining EN = 1 weighting functions are given by symmetry as:

N
B . = B i
N 1 2 H =

i Jlizj] (42)

i R W
e et 1

where

e (43)

»anf
=, 3F J0 =005
i x] 3 .1.:I

The one dimensional weight functions are tabulated in Table 3.

IX. APPLICATION OF THE TECHNIQUE

A set of 167,680 topographic elevation measurements was supplied by the U. S,
Army Engineer Topographic Laboratories, Fort Belvoir, Virginia. The data ranged
from 300 toc 800 meters in elevation and covered approximately 75 sguare miles,

The weighting function techniques developed were utilized to mathematically model
the terrain data. The data was stored in functional form using only 5,541 coef-
ficients. This resulted in reducing the physical storage regquired to only 3.3% of
that needed for the original data. The functional model and weighting function
theory was used as the hasis of an automated contouring program and a contour map
comprised of 50 contour levels was completed in only 3 minutes of CDC 6400 central
processor time (Jancaitis and Junkins, 1973k). A three dimensional display of the
area was completed in 4.4 minutes of CDC 6400 central processcr time,

The results of this application demcnstrates the ability of this technigue for
data compaction and efficient data analysis.

¥. CONCLUSION

The weighting function interpclation and approximation technigque (WIT) for
modeling discretely measurable functions of n independent wvariables with m-th
order continuity has been developed. This technique utilizes locally valid piece-
wise functions formed from local functional approximations using polynomial weight-
ing functions. The weighting functions have heen formulated to insure that each
piecewise locally valid function join with m-th order continuity with each of its
adjacent piecewise functions. Analytic formula for the coefficients of the
weighting functions for n-dimensions and m-th order continuity have been derived.
This modeling technique is applicable to arbitrarily large data sets and allows
complete freedom in the choice of the form of the local functional approximations.

Utilization of this technigue for representation of large geodetic data sets
typically results in very significant reductions in physical storage requirements
and greater ease and flexibility of analysis of the data.
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Table 1. Interpelation Comdieions on § in the Interval Table 2. Boundary Valus Equations for Jp (=} on the
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Tahle 4. Interpolaticn Properties for N-Dimensional Modeling
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