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I. ABSTRACT

A number of up-to-date numerical classification
techniques are described. These include the orthogon-
al and oblique factor analysis methods, and the un-
weighted pair-group cluster analysis procedure. The
techniques are applied to morphometric data from 159
small drainage basins from two geographical regions.
Transformation techniques to achieve the normal dig-
tribution with respect to symmetry are applied.

II. INTRODUCTION

Numerical classification procedures have a long history of applications in
scientific research. TFor example, factor analysis and principal components anal-
ysis have been used in psychological research for over forty years. Similarly,
various methods of cluster analysis have found many applications in biology since
the 1950's. However, the broader use of these methods in geography and elsewhere
has been hindered by disagreement as to specific methods, and also by criticism
which is often somewhat out of date. Therefore, one important task at this stage

have been developed and applied chiefly cutside of the earth sciences until .re-
cently. A second task is the empirical testing of up-to-date mathematical alter-
natives in an effort to recognize which methods are optimum for which types of
data.

III. DATA ACQUISITION

In the present study, fifteen often-used morphometric variables were deter-—
mined for a number of small drainage basins from two geologically similar, but
widely separated regions. The variables attempt to describe in diverse ways the
linear, areal, shape and relief aspects of the basins. The choice of variables
was made on the basis of broad application in the geomorphological literature and
facility of measurement from orthophotos and topographic maps. For each drainage
basin the following parameters were determined: surface area (AREA), total stream
length (STRLEN), number of streams (STRNUM), basin perimeter (PERIM), length of;
primary drainage channel traced to divide (PRIMCH), straight line basin length
(BASLEN), slope of primary drainage channel (SLOPE), basin length to basin width
ratio (SHAPE 1), ratio of square of length of primary drainage channel to basin
area (SHAPE 2), drainage density (DENSTY), channel frequency (FREQCY), relative
relief within basin (RELIEF), median elevation of basin (ELEV), ruggedness num-
ber (RUGGED), and relative drainage density (RELDEN). Definitions of these
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parameters are to be found in standard geomorphological references such as Max-
well (1967), Melton (1958b) and Strahler (1968).

The first test area, located in the Far East, was studied by means of ortho-
photos and drop-line charts at scale 1:12,500. These materials are produced pho-
togrammetrically by means of rectification and enlargement of narrow parallel
strips from the aerial negative. Basic information on this new type of photomap
and its by-products is available in Blachut (1972), Institut Géographique Na-
tional (1971) and The Canadian Surveyor (1967).

The second test area, on the southern edge of the Black Forest of Germany,
was investigated using the orohydrographic version of the national topographic
map (1:25,000), supplimented by orthophotos of scale 1:10,000. From the two test
areas a total of 159 drainage basins of second, third and fourth orders were se—
lected, with approximately half in each area. "Basin order" is used here in the
sense defined by Strahler (1952) where the first-order basins enclose the smallest
unbranched tributaries. Criteria for selection of basins included basin order,
wide distribution among the available geological units, and lack of obvious dis-
turbances in the drainage network caused either by mankind or tectonic processes.
In this way an input matrix was built up for each of the two study areas. For
the Far Eastern and Central European study areas these matrices are 15 x 79 and
15 x 80 respectively.

IV. FACTOR ANALYSIS METHODS EMPLOYED

Despite its apparent objectivity, a factor analytic study requires a number
of operational decisions which will effect the results of the analysis. Most ba-
sic among these is the choice of the so-called "closed"™ or "open" model. The
former, normally known as principal components analysis, employs unities along
the diagonal of the correlation matrix. This expediency has the effect of assum-
ing that the reasons for the dispersion of the measurements are all understood
from the limited sample under study. The resulting factors will be speciously in-
flated, which is considered undesirable (Cattel, 1965). The alternative to the
closed model simply leaves a portion of the variance of each variable "open" to a
later resolution when a broader sample of input data may be available. In this
approach, the diagonal of the correlation matrix is occupied by estimates of the
common variance (i.e., shared variance with other variables) of each variable,
known in this context as "communality™.

Unfortunately, communality estimation has remained a difficult and disputed
concept. The range of possible values is, however, generally accepted to extend
from an upper limit of unity to a lower limit given by the square of a varigble's
multiple correlation with all other variables (Cattel, 1965). This latter quan-
tity, know as the Squared Multiple Correlation (S.M.C.S, is often recommended as
the best available method for communality estimation (Harman, 1968, Kaiser, 1960,
Steiner, 1965). Due to these reasons and to its local availability, the S.M.C.
method has been used in the present study to estimate communalities. Further de-
tailed description of the alternatives is to be found in Harman, Chapter 5 (1968).
It should also be mentioned, that with increasing order of the matrix, that is,
number of variables, the diagonal elements have decreasing impact on the results
of the factor analysis (Hope, 1968).

The next level of decision in designing the factor analytic model involves
the choice of rotation scheme. The unrotated factor matrix often shows loadings
on each factor which are rather widely distributed among the variables. The
effect of this is to make interpretation of the matrix, and subsequent descrip-
tion of the factors more difficult. Rotation is a methematical method of shifting
the frame of reference by means of coordinate transformations. During rotation,
the swarm or cluster of points plotted in n-dimensional space remains fixed while
the axes rotate to a new position such that the numerical values obtained for the
loadings are more distinctly differentiated. The new axes yield new coordinates
and loadings, making interpretation clearer.

The amount of rotation is, in general, governed by some concept of "simple
structure”. This criteria was originally defined by Thurstone. Stated simply, it

1s a set of rules which seek to maximize loadings of the essential variables on

each factor, and to minimize the remaining loadings (Fruchter, 1954). Thus, ideal-
ly, only a few variables will have high loadings on any one factor, with the
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remaining loadings for that factor being essentially estimates of zero,

Two general types of rotations are available. In the traditional "orthogon-
al rotation schemes the assumption is made that the factors are not correlated
in nature. This is expressed by the fact that all axes remain perpendicular deg-
pite rotations around each axis. In some studies, this constraint has been found
too restricting to fit nature (Cattel, 1965). This represents one of the most im-

portant subsective decisions the factor analyst must reach concerning his parti-
cular problem.

The alternative to the first approach involves making the assumption that
the factors operating in nature may be correlated. Here the reference axes must
no longer be orthogonal. The method is therefore called oblique rotation. The
degree of obliqueness may be controlled if desired, and subsequently checked in
the factor correlation matrix. This is 2 small summary matrix giving the corre-
lation coefficient between each factor and every other factor. If, however, the
input data involves factors which are truly uncorrelated, then uncorrelated fac-
tors will be produced (Harbaugh and Merriam, 1968). The rimary davantages of
oblique factors are summarized in Fruchter (1954, p. 196§ and Cattel (1965, p.
405). In the present study, both orthogonal and oblique methods have been utiliz-
ed and compared as far as possible, These methods are respectively the "Varimax™"
method of Kaiser (1958) and the Mirect Biquartimin" or "Simple Loadings" proce-
dure of Jennrich and Sampson (1966).

Having selected the factor analytic model, with an appropriate communality
estimation procedure, and either orthogonal or oblique axes, finally, the analyst
must have a criteria to decide when to stop factoring. Operationally this deci-
sion is often considered together with the communality issue, since one affects
the other. The purely mathematical process of extracting factors can continue
until as many factors are produced as there were original variables. Since the
process "begins™ with the most important factor and continues to more and more
minor influences, at some point, the so-called error factors will begin appearing.
These may be recognizable as mixtures or slightly altered versions of previous
factors. Unfortunately ther is no sampling theory which will allow one to locate
this threshold with precision.

The most common method to date has been simply to include only factors hav-
ing an eigenvalue of 1.0 or more. This criteria is henceforth referred to as
the eigenvalue threshold. The eigenvalue, loosely defined, is an expression of
the relative information content of the associated factor. It is calculated from
the correlation matrix. Geometrically it can be interpreted as the length of any
particular axis. of the point swarm. For the first factor, the eigenvalue rep-
resents the length of the longest axis, and so on for the remaining factors., In
evaluating this method of finding the acceptance threshold for factors, it is
important to note that any factor with an eigenvalue in excess of 1.0 supplies
more information than an unmodified variable alone (Carey, 1969). This criteria,
although not ideal or final in any way, has been found by several workers to be
the best interim approach available (Harman, 1968, Cattel and Dickman, 1962, Kai-
ser, 1960). It should be emphasized that this cut-off point has been found em—
pirically useful but is, in effect, quite arbitrary. Therefore various methods
of shifting it slightly have been proposed where this is scientifically meaning-
ful (King, 1969). Cattel, in a longer discussion on this topic, emphasizes that
taking too many factors is far less serious than taking too few (1958).

In this connection it should be mentioned that several attempts have been made
at designing statistical significance tests for the number of factors (e.g., Bart-
let, 1950, or Lawley and Maxwell, 1963). These tests, however are under contin-
uing debate by statisticians and others. Kaiser summs up the issue thusly: the
significance tests produce "statistically correct but scientifically issue-con-
fusing" factors and require enormous additional calculations (1960). Harbaugh and
Merriam emphasize that test of significance for the original correlation coeffi-
cients are not either necessary or desirable since factor analysis merges the in-
fluences of many minor correlations (1968).

In conclusion, in the design of a factor analytic model, the researcher must
pass through several levels of decision which will influence the outcome of the
analysis. He is guided in these decisions by the computer program alternat1ve§
available to him, the experience with these alternatives as reported in the liter-
ature, and his own knowledge of the relationships being studied. The specific
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techniques employed in the present study are indicated in Fig. 1 along with other
options available locally. The program employed is the "BMD-X-72"package of the
UCLA Medical Facility.

V. CLUSTER ANALYSIS METHODS EMPLOYED

In the present study, classification of variables and classification of ob-
jects have been attempted. These represent respectively the R- and Q-techniques
of analysis and are illustrated in the left-hand plane of Fig. 2. The cluster
techniques are, in general, much simpler to carry out and interpret than thoge of
factor analysis. In essential terms, cluster analysis is a method of searching a
large symmetrical correlation matrix for the highest relationships between units
(i.e., variables or objects) and then listing the associated units as they are
found. In this sense, it is not too different from the conventional, by-hand in-
terpretation of a correlation or similarity matrix. By one mathematical method or
another, the cluster analyst seeks to discover what internal structure, if any,
exists within a given set of data. Some of the specific techniques are summarized
in an introductory paper by Sokal (19%6)and more thoroughly, in textbook form by
Sokal and Sneath (1963). Additional introductory material of much value is to be
found in Harbough and Merriam (1968).

Although there are many clustering methods, the most common approach, and
that used in the present study, involves building up groups agglomeratively, start-
ing from small nuclei. The specific technique employed here is one of the average
linkeage methods, namely the unweighted pair-group method (UWPG) of Sokal and
Sneath (1963). Detailed information on the various alternative classification
methods is contained in Spence and Taylor (1970), Johnston (1968), and Sokal and
Rohlf (1962).

As with factor analysis, the researcher must make several operational deci-
sions which will affect, to some degree, the results. The most important of these
is the choice of the clustering method itself. After this is the choice of a sim-
ilarity measure. There are three important types often used in cluster analysis.
The most common are perhaps the correlation coefficients. A second type of simi-
larity cocefficient is the distance measure, which expresses association as the
distance between two sample points plotted in n-dimensional space. Angular mea-
sures represent the third type. Here, similarity is expressed as the angle be-
tween two standardized vectors representing two units to be classified. Spence
and Taylor (1970) provide a broad discussion of these and other coefficients. 1In
the present study, the Pearson correlation coefficient has been used for all fac-
tor analyses, and also the R-mode cluster analyses. The Q-mode cluster analyses
have employed the Cosine Theta Coefficient of Imbrie and Purdy (1962). This is
an angular measure, calculated from standardized data.

The final product of a cluster analysis is normally a cluster diagram. This
is ideally a simple tree-like drawing which shows the internal structure of the
data. The smallest branches are the individual "operational taxonomic units"
(OTU's) which join at various similarity levels. In this fashion, larger and lar-
ger subgroups are built up which eventually encompass all OTU's. In the past,
several types of such diagrams have been applied. The newest of these, and the
clearest to interpret is the "Dendrograph" %McCammon, 1968). Along one axis, the
abscissa, is the similarity level. The ordinate, however is also scaled to show

" the relationship between individual OTU's. Thus, both the within-group and the

between-group similarities are readily apparent.

VI. PREPROCESSING OF INPUT DATA

Factor and cluster analysis, using the Pearson correlation coefficient, re-~
quire no representative sample and no assumptions regarding the frequency dis-
tribution of the variables under study (Parks, 1966, Thurston, 1945). However, it
has been common practice to submit only normally distributed data (Kendall, 1965,
Fruchter, 1954). Reasons for this include, the possible intermediate use of sig-
nificance tests, and for greater consistency from one study to anaother. Normal-
izing transformations are therefore often used to achieve this condition. Var-
ious methods. for assessing the normality of a distribution are availdble. Among
these are: arithmetic probability paper, skew and kurtosis evaluation, Chi-Square
tests, and Kolmogorov-Smirnov tests. In the present work, skew calculations have
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been used for this purpose. This ratio of moments of the distribution describes ?
succinctly and precisely the type and degree of departure from normality. Skew is
defined here as:

where m, = second moment of the distribution ]
m5 third moment of the distribution.

H
By this definition, a logarithmic distribution, for example, is said to have pos- j
itive skew, For normally distributed data, skew is equal to zero. {

Since moderate departure from normality is not crucial, many geographic ap-
aplications in the past have applied no correcting transformaticns. In other stu— i
dies, only the most skewed variables have been modified by the use, in most cases,
of logarithmic transformations. In the present work it was found that such logar-
ithmic transformations often tend to overcompensate. That is, a variable X with
high positive skew is transformed inte a variable log X with moderate to high
negative skew. The potential use of several other transforming functions to im~
prove this situation is referred to by Mather (1968) and also by Miller and Kahn
(1962). In addition, Dixon provides programming instructions for around thirty
such transformations (1968). This diversified transformation approach has been
applied to the present data. The list of transformations tested on each variable
for both sets of data is given in Table 1. The number of variables for which each
transformation was optimum with respect to skew is also indicated. "Optimum" in
this sense is defined as that transformation which yields the lowest skew value
for each variable individually. The result of these procedures is the prqoduction
of a new data matrix in which the distribution of each variable is transformed

according to its needs and very closely approximates the normal distribution with
respect to symmetry.

-If the data is to be used as input for subsequent analysis based on distance
coefficients or angular measures of similarity, some form of standardization is
also required. This is not g necessity with the Pearson correlation coefficient,
used in most factor analyses, since its calculation involves division by the stan-
dard deviation, which is a form of standardization (Mather, 1968). By far the most
common standardization procedure is to convert all measurements to standard units.
This involves subtracting the mean of a variable from each of the observed values
and dividing this by the stardard deviation. This results in all variables having
a mean of 0.0 and a standard deviation of 1.0. All objects in the sample can now
be represented as vectors of similar length, despite the units of measurement
used for each, Since applications of many of these correcting procedures are not
common in the geographic literature, an effort was made to compare their effects.
Factor analyses were carried out based on: 1) raw data, no transformations, 2)
log-normalization in extreme cases, and 3) optimum transformation of each variable
for normal skew characteristics, followed by standardization.

VII. FACTOR AND CLUSTER ANALYSIS RESULTS

The problem of defining the primary dimensions of third-order drainage basins
by means of statistical analysis has been attempted in several previous studies.
In an effort to facilitate comparison of results, the present study was first car-
ried through for the third-order basins alone. These results are summarized in
Table 3. The input variables, however, differ somewhat between the studies. This
is, of course, a subjective decision based on experience and the purposes of the
study. It should be mentioned that deleting all variables relating to a particu-
lar prime factor simply has the effect of removing the factor altogether, the less
important factors shifting upwards to replace the lost dimension.

Factors identified for the 53 third-order basins in the Asian study area in-
cluded basin size, basin shape, relief characteristics, dissection intensity, and
relative dissection intensity. Those from the 45 basins in the European study
area were essentially the same but with the relief and shape factors reversed in
order. This means simply that for the European basins more of the total variance
is concentrated in the relief measurements than in the shape measurements. The
stream number variable has been clearly absorbed into the basin size factor, as
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might be expected in a homogeneous region. There is a moderate tendency for re-
lief aspects to be loaded on the basin size factor also. However, in general
these loadings are around 0.5 or less, and so often have little influence on a fac-
tor which is already heavily loaded. The existence of dissection characteristics
as fully independent factors may also relate at least partly to the rather homo-
eneous nature of the two test regions. The reinterpretation of the Melton data
Mather and Doornkamp, 1970) from arid basins in the southwest United States, for
example, also yielded an independent dissection factor. However, in the more het-
erogeneous data from Mather and Doornkamp (1970), it was absorbed into the basin
size factor.

For purposes of verification, the above data was also subjected to R-mode
cluster analysis. For the third-order basin data, as shown in the upper half of
Fig. %, three primary clusters were produced: basin size and relief, basin shape,
and dissection intensity. Variables joining these clusters independently included
elevation, slope, and relative drainage density. Ruggedness, which is drainage
density times relief, clusters with density for the Wies area in Central Europe,
and with relief for the Asian area. This is typical for the results of cluster
studies. The simplification forces an OTU into the single cluster where it ismost
similar, rather than splitting the effects as factor analysis does. The clusters
could easily be given descriptive names to facilitate comparison with the factor-~
ed results shown in Table 3.

When the entire data for each of the two study areas is included in the anal-
ysis, the factors change moderately. The most noticeable change, perhaps, is an
increase in the relative importance of the dissection variables. As the fourth
factor in the earlier analyses, they carried approximately 10% of the total var-
iance. In the present case, as factor two, they contribute around 17% of the var-
iance. One can conclude from this that with increasing heterogeneity of drainage
basins, the diagnostic importance of dissection intensity also grows. Drainage
density is thought to reflect very sensitively the overall balance of physiogra-
phic processes in the landscape. Only one other significant change in the load-
ings is apparent. The slope and relief characteristics, in addition to loading on
a unique factor, also load moderately on the first factor. This is again, likely
a result of the increasing heterogeneity of the full data for each region. There-
fore, large fourth-order basins have greater overall size, including relief, than
small second-order basins. ’

Based on the most sophisticated set of input data, which has undergone op-
timum normalization and standardization, and by means of the Varimax rotation
scheme, five significant factors can be defined (see Table 4). These agree in gen-
eral for both study areas and can be interpreted as follows: basin size (and par-
tially relief), dissection intensity, basin shape, relief characteristics, and
dissection completeness. The use of the Simple Loadings oblique rotation on this
data produces factor loadings which are slightly easier to interpret. In the Euro-
pean area, the factors themselves remain unchanged, despite minor changes in the
loadings. For the Asian basins, dissection intensity reverts to the fourth factor,
being replaced by relief. The correlations between the factors themselves, shown
in the factor correlation matrix, are generally 0.25 or less. For comparison
purposes, the corresponding results for the cluster analyses are given in the bot-
tom half of Fig. 3.

An important use of the present findings is in data reduction. First, in sub-
sequent geomorphological studies in this type of landscape, it may be possible to
greatly reduce the number of terrain characteristics measured, without important
loss of information. This possibility could be checked by means of a random sample
of basins from the area to be studied. In the present study, based on fifteen in-
put characteristics, five important factors have been shown to exist in nature.
The substitution of, for example, one heavily loaded variable for each factor,
represents one type of data reduction. Criteria for the selection of such a var-
iable may relate to the factor loading, or ease of measurement or other consider-
ations. The second type of data reduction is the use of the factor scores matrix
in the place of the original measurements. The relationship between each case of
the input data and each factor is shown by these factor scores. For example, the
very large basins and the very small basins influence the size factor heavily.
Therefore, their loadings in the factor scores matrix are large on factor one.

It has been found in the present study that this artificial data matrix for
five factors may be substituted for the original data matrix with practically no

3a-25



loss of information concerning each individual basin. This type of data reduction
is useful if subsequent statistical work is to be carried out. Here, for example,
the size of the matrix has been reduced by two-thirds. If an orthogonal rotation
scheme has been used %o produce the factor scores, they have the additional ad-
vantage, for some purposes, of being totally uncorrelated.

One possible use for such a reduced data matrix is in Q-mode cluster analy-
sis for regionalization purposes. As an illustration and essentially a by-product
of the present study, such an analysis has also been carried out, although the
data is not ideal for this purpose. Nevertheless, using standardized data, the ba-
sins from the two regions seperate from each other completely into two clusters
at the 50-phenon level (i.e., level of overall similarity). Figure 4 is a highly
reduced reproduction of the associated dendrograph. Interpretation at the 65-phe-
non level indicates three clusters in the European area (upper half of Fig. 4?,
and three in the Asian area (lower half of Fig. 4). Within each of the two regions
the clusters, however, are not highly differentiated from each other. This may be
taken as further evidence of the internal homogeneity of each of the two test areas.
Thus, meaningful geographical interpretation within each of the two test areas
proved difficult. In addition, unfortunately, little detailed physiographic infor-
mation is available on the two areas. Several conclusions could nevertheless be
made. First, basins from the two regions could be reliably seperated from each oth-
erer despite the particular operational decisions, such as number of variables con-~
sidered, similarity coefficient used, and so on. Second, the use of the factor
scores matrix yields a nearly identical classification to that produced by the use
of all original variables associated with those factor scores. Finally, a large
number of the basins within each cluster form contiguous units in the landscape
which have a moderate north/south orientation tendency.

VIII. CONCLUSION

Classifications with two different goals have been undertaken in the present
study. The classification of variables (i.e., measurements) resulted in the iden-
tification of the primary geometric dimensions of two groups of low order drain-
age basins in crystalline rocks. These dimensions are: basin size, dissection in-
tensity, basin shape, basin relief, and dissection completeness. The relation-
ships between these primary dimensions are best abstracted in the factor correla-
tion matrix. The factor analysis of variables also made possible an important
data reduction. One type is the substitution of the factor scores matrix for the
complete input matrix in subsequent work. Another type is the use of only the most
important variable, or variables, for each factor.

The effort to classify basins was not entirely successful. Basins from the
two test areas could be seperated from eachother with reliability. However, the
internal grouping within each study area proved difficult to judge due to lack of
detailed terrain information. Thus, if a sample contains essentially different
physiographic subunits, these differences should be reflected in some of the mor-
phometric characteristics, and thus allow discrimination by cluster analysis.

The factor analytic model, due to its sophistication and flexibility, isable
to incisively identify underlying influences in a complex set of multivariate data,
The cluster analytic model, a much simpler procedure, is a useful compliment to
the former. It may be used to verify and somewhat generalize the factored results.
Its greatest benefit lies in its simplicity. In the Q-mode, based on a large num-
ber of input characteristics for each of a group of objects, it unequivically al-
locates each object to the one group where it is most similar. Depending on the
clustering method chosen, this may however vary slightly. Testing procedures
using discriminant functions have, in the past, been used for mathematically eval-
uating and refining such classifications.

REFERENCES

Bartlett, M.S. (1950) "Tests of Significance in Factor Analysis". British Journal
of Statistical Psychology. Vol. 3, Pp. 77-85.

Berry, B.J.L. (1971) "Comparative Factorial Ecology”. Suppliment Issue of Econ-
omic Geography. Vol. 47, No, 2.

3a-26



oo

Blachut, T.J. (1972) "Orthophoto Technique: Basic Instruments and Methods". World
Cartography. Vol. 12, pp. 80-92.

Canadian Surveyor (1967) International Symposium on Photo Maps and Orthophoto
|
Maps. Ottawa.

Carey, G.W. (1969) "Principle Componant Factor Analysis and its Application to
Geography". in Quantitative lMethods in Geography: A Symposium. Washington: Am-
erican Geographical Society, pp. 6-20.

Cattell, R.B. (1965) "Factor Analysis: An Introduction to Essentials", Biometrics
Vol. 21, pp. 190-215 and 405-435,

‘ Cattell, R.B. (1958) "Extracting the Correct Number of Factors in Factor Analysis"
! Educational and Psychological Measurement. Vol. 18, pp. 791-838.

Cattell, R.B. and K. Dickman (1962) "a Dynamic Model of Physical Influences De—
monstrating the Necessity of Oblique Simple Structure”. Psychological Bulle~
j tin. Vol. 59, pp. 389-400.

Dixon, W.J. (1968) BMD Biomedical Computer Programs. Berkeley: Univ. Calif.Press.
Fruchter, B. (1954) Introduction to Factor Analysis. Princeton: van Nostrand.

Gustafson, G.C. (1973) Quantitative Investigation of the Morphology of Drainage
Basins using Orthophotography. "Minchener Geographische Abhandlungen”. Vol. 17 .
Selbstverlag des Geographischen Institutes der Universitit Miinchen.

Harbough, J.W. and D.F. Merriam (1968) Computer Applications in Stratigraphic
Analysis. New York: John Wiley and Sons.

Harman, H.H. (1968) Modern Factor Analysis. Chicago: Univ. Chicago Press.
Hope, K. (1968) Methods of Multivariate Analysis. London: London Univ. Press.,

Imbrie, J. and E.G. Purdy (1962) "Classification of Modern Bahamian Sediments”.
Amer, Assoc. of Petroleum Geologists Memorandum. Vol.", pp. 253-272,

Institut Géographique National (1971) Proceedings of the National Symposium on
Orthophotographs and Orthophotomaps, Paris.

Jennrich, R.I. and P.F. Sampson (1966) "Rotation for Simple Loadings". Psycho-
metrika. Vol. 31, pp. 313=-32%,

Johnston, R.J. (1968) "Choice in Classification: the Subjectivity of Objective
Methods". Annals, Assoc. Am. Geographers, Vol. 58, pp. 575-589,

Kaiser, H.F. (1958) "The Varimax Criterion for Analytic Rotation in Factor Anal-
ysis". Psychometrika. Vol. 23, pp. 187-200,

Kaiser, H,F. (1960) "The Application of Electronic Computers to Factor Analysis",
Educational and Psychological Measurement. Vol. 20, pp. 141-151,

Kendall, M.G. (1965) A Course in Multivariate Analysis. London: Charles Griffin
King, L.J. (1969) Statistieal Analaysis in Geography. New Jersey: Prentice-Hall.

Krumbein, W.C. and F.A., Graybill (1965) Introduction to Statistical Models in
Geology. New York: Mcgraw-Hill.

Lawley, D.N. and A.E. Maxwell (1963) Factor Analysis as a Statistical Method.
London: Butterworth and Co.

Mather, P.M. (1968) "Numerical Classification in Geomorphology™. in The Use of
Computers in Geomorphological Research, Edited by J.C. Doornkamp. British
Geomorphological Research Group.

Mather, P.M. and J.C. Doornkamp (1970) "Multivariate Analysis. in Geography, with
Particular Reference to Drainage Basin Morphometry®. Transactions of the In-
stitute of British Geographers. No. 51, pp. 163-187,

Maxwell, J.C. (1967) "Quantitative Geomorphology of some Mountain Chaparral
Watersheds in Southern California", ir Quantitative Geography edited by W.L.
Garrison and D.F. Marble, pp. 108-226.

MeCammon, R.B. (1968) "The Dendrograph: A New Tool for Correlation". Bulletin
Geological Soc. of America, Vol. 79, pp. 1663-1670,

Melton, M.A. (1957) "An Analysis of the Relations among Elements of Climate,
Surface Properties, and Geomorphology". Ph.D. Dissertation, Columbia Univ.

3a-27



Melton, M.A. (1958) "Correlation. Structure of Morphometric Properties of Drainage
Systems and their Controlling Agents". Journal of Geology, Vol.66, pp.442-460,

Miller, R.L. and J.8. Kahn (1962) Statistical Analysis in the Geological Sciences.
New York: John Wiley and Sons.

Muehrcke, P. (1972) Thematic Cartography. Washington: Assoc. Am. Geographers.

Parks, J.M..(1966) "Cluster Analysis Applied to Multivariate Geological Problems".
Journal of Geology. Vol. 74, PP.703=715,

Sokal, R.R. (1966) "Numerical Taxonomy". Scientific American. Vol. 215, pp.106-16.

Sokal, R.R. and F.J. Rohlf (1962) "The Comparison of Dendrograms by Objective
Means". Taxonomy. Vol. 11, pp. 33-40.

Sokal, R.R. and P,H.A. Sneath (1963) Principles of Numerical Taxonomy. San Fran-
cisco: W.H. Freeman and Co.

Spence, N.A. and P.J. Taylor (1970) "Quantitative Methods in Regional Taxonomy™.
in Progress in Geography, Vol. II. London: Edward Arnold.

Steiner, D. (1965) "die Faktorenanalyse—ein Modernes Statistisches Hilfsmittel

des Geographen fiir die Objektive Raumgliederung und Typenbildung". Geographica
Helvetia. Vol. 20, pp. 20-34.

Strahler, A.N. (1968) "Quantitative Geomorphology" in Encyclopedia of Geomorphol-
ogy, Edited by R.W. Fairbridge. New York: Reinhold.

Strahler, A.N. (1952) " Hypsometric Analysis of Erosional Topography". Bulletin
of the Geological Society of America. Vol. 63, pp. 1117-1142,

Thurstone, L.L. (1945) "The Effects of Selection in Factor Analysis". Psychomet-
rika. Vol. 10, pp. 165-198,

Uberla, K. (1968) Faktorenanalyse. Berlin: Springer Verlag.

3a-28




Table 1., Transformations tested for each variable and
usage of each to achieve optimum normality with re-
spect to symmetry.

Transformation Utilization for each:
2nd, 3rd and 4th order 3rd order
basins basins alone
T1e ¥y =% -2 4
2. ¥y = X 3 2
3. ¥ =1/ 0 1
4. y =1/x° 0 0
5. ¥y = logg x 11 11
6. ¥y =X 0 0
7 ¥ = %15 0 0
8. ¥y= x + x4 5 5
9. y = 2 x 9 V
0. y = 1/x3 0 0

Table 2. Example factor matrix with associated data; corresponds with Line 3
in Table 4.

ROTATED FACTOR MATRIX (simple loadings) S.M.C. Communality Estimation
INPUT DATA: Standardized variables with optimum normality, Asia (n=79)
Factor
1 2 3 v 4 5
Variable
71 AREA -0.96079 0.01516 0.16533 0.19145 -0.01725
2 STRLEN -1.02453% 0.02421 0.17335 -0.01%29 -0.06588
% STRNUM ~1.01831 0.02745 0.18781 -0.21174 0.17495
4 PERIM -0.9%618 0.04412 ~0.040%6 0.16664 -0.01731
5 PRIMCH -0,84278 0.02451 =0.31293 012401 -0.,04021
6 BASLEN -0.80081 0.00692 -0.33%611 0.15016 -0.03%119
7 SLOPE 0.47820 -0.90045 0.20608 0.02875 . =0.06812
8 SHAPE 1 0.12448 0.00055 -0.91719 0.04775 -0,00440
9 SHAPE 2 0.04861 0.0%803 -=1.00222 -0.09508 -0.01083
10 DENSTY 0.04948 0.03547 =0,02177 -0.98980 -0.213%11
11 FREQCY 0.03185 0.01%3%3 -0.03183% -0.84160 042637
12 RELIEF -0.56130 =0.58017 ~0.20721 0.15403% -0.06886
13 ELEV -0.19712 =0.40119 =0.13161 0.2158% 0.03315
14 RUGGED -0.59330 =0.62147 -=0.23959 -0.2453%7 -0.16793
15 RELDEN ~0.01644 -0.01480 -=0.00972 0.03796 1.00269
Identification of important variables for each factor:
STRLEN SLOFPE SHAPE 2 DENSTY RELDEN
STRNUM RUGGED SHAPE 1 FREQCY
AREA RELIEF
PERIM
PRIMCH
BASLEN
(RUGGED)
(RELIEF)
(SLOPE)
Eigenvalue for each factor:
7.22 2.58 1.86 142 0.96
Cumulative proportion of total variance:
0.48 0.65 0.78 0.87 0.94

3a-29



0¢-vg

Table 3. Summary of factor analysis results for third-order basins from various studies.

Input Data Primary Dimensions or Factors and Associated Eigenvalues
Source Method Location Objects Variabled F,I . F2 F3 F4 i F5

1971 Factor Southwest 156 3rd 12 size number dissection basin -
Doornkamp and Analysis: United order of streams intensity relief
King; Melton DMgtrix States basins .
data, 1957 Diagonal .

1970 Southern 130 3rd, 18 size and number Stream basin bifurcgtion
Mather and Factor Uganda order dissection of streams length relief ratio
Doornkamp Analysis: basins . ratio

Varimax (8.67) (3.85) (1.70) (1.47) (0.84)

1973 Factor Far 53 3rd 15 size shape relief dissection relatiye

Gustafson Analysis: East order intensity dissection
Varimax basins intensity
(7.37) (2.25) (1.82) (1.46) (1.09)
1973 Factor Black 45 3rd 15 size relief shape dissection relative
Gustafson Analysis: Forest, order intensity dissection
Varimax Germany basins intensity
(7.18) (3.21) (1.74) (1.710) (0.68)
Table 4, Factor analysis results for all basins under various operational conditions. '
Input Data Type of Rotation Factors and Associated Eigenvalues
Area Objects Transfor- F, F2 F5 F4 F5
mations
Far East 79 none »Simple Loadings size shape dissection relief relative
(relief) intensity dissection
intensity
(7.06) (2.58) (1.86) (1.34) (0.95)
Far East 79 Log in ex- Varimax size dissection shape relief rel. dissec.
treme cases (relief) intensity intensitg
(7.24) (2.57) (1.87) (1.39) (0.95
Far East 79 optimum Simple Loadings size relief shape  dissection rel. dissec.
(see Text) (relief) intensity intensity
(7.22) (2.58) (1.86) (1.42) (0.96)
Central 80 none Varimax size, dissection shape relief rel. dissec.
Europe slope intensity intensity
(6.84) (2.54) (1.77) (1.33) (0.88)
Central 80 optimum Simple Loadings size, dissection shape relief rel. digsec.
Europe (see Text) slope intensity intensity
(6.97) (2.57) (1.84) (1a44) (0.932)




Factor Analysis (Open Model)
i 1

I. Communality Estimation

Maximum absolute Squared multiple other
row values correlations (S.M.C.) supplied by user

l

"II. Type of Rotation Method

: Orthogonal Oblique
Quartimax Varimax Simple Bi-Quartimin
Loadings

ITIT. Number of Factors Rotated

Maximum Determined by Previously
Eigenvalue Determined

Figure 1. Schematic diagram of the levels of decision in
designing the factor analytic model, and some alternatives.,

A pair of lines in In each face there
parallel indicates are two transposed
a correlated series techniques, e.g.

R- and Q-techniques

Figure 2. The covariation chart showing
modes of analysis (modified from Cattel, 1965).
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Figure 3. Dendrographs for four different sets of data in the

present study; Identification is as follows: left side, Asian

study area, right side, European study area; upper half, third
order basins, lower half, second, third and fourth order basins; !
interpretation level, discussed in text, is indicated with a

dashed line,
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Figure 4, Dendrograph showing Q-mode classification
of 159 drainage basins from two test areas; 65-Phenon
interpretation yields three subgroups in each region.-
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Figure 5. Schematic flow diagram summarizing the sequence of '
statistical operations in the present study.
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