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ABSTRACT

Mixture processing of remotely sensed multispectral scanner
data involves estimating the percent coverage of individual crops
or species contained within the instantaneous field of view of the
scanner. In recent years, various mixture processing algorithms
have been proposed to solve the so-called "mixture problem". All
of the proposed algorithms require, as inputs, the spectral signa-
tures of the various species observed. Often it is extremely
difficult to obtain the required spectral signatures of individual
species.

In this paper, two methods for obtaining the required spectral
signatures for a particular mixture model are considered. For the
model considered, the spectral signatures become signature vectors.
The first method is based upon determination of the signature
vectors such that a measure of the inconsistency between the mix-
ture model and the observed data i1s minimized. The second method
is based upon determination of the signature vectors such that the
estimated mean percent coverage of individual species match apriori
or ground truth estimates. The two methods proposed are applied to
actual multispectral data in order to verify the concepts presented.

o

1. TINTRODUCTION R

When a multispectral sensor observes a ground resolution element (GRE) containing several sep-
arate objects or species, the reflected radiation sensed will be composed of the sum of the reflected
radiation of each separate species. 1In order to estimate the proportions of the GRE occupied by
each spearate species, it is first necessary to construct a model which accurately relates the
observed data vector to the proportions of the species contained within the GRE. Two such "mixture
models" have recently appeared in the literature (Horwitz, et al, 1971, Detchmendy and Pace, 1972)
and each has been applied, with varying degrees of success, in the estimation of proportions of
species from multispectral data.

Although these mixture models were arrived at through different lines of reasoning, they are
quite similar in several respects, and under a certain set of assumptions they are identical. Both
models require the "spectral signatures" of pure species as inputs in order to process data from
fields containing various mixtures of the pure species. The spectral signature of a pure species is
generally characterized by the mean vector and covariance matrix of multispectral data from a sample
field containing only the pure species.

There are some very serious problems associated with obtaining the spectral signatures of pure
species from sensors mounted in either aircraft or spacecraft. These problems are due, in part, to
the fact that the sensor would rarely, if ever, observe a pure species due to the size of the GRE's.

*
This work was done under NASA Contract No. NAS 9-12330,
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This is especially true at spacecraft altitudes. In addition, pure species are often mistakenly
identified. For example, a semsor observing a corn field may not sense only a corn species but,
depending upon the spatial characteristics of the field, would observe a corn species and a soil
species in various proportions. If mixture processing of multispectral data is to become a realis-
tic part of operational ground data processing systems, it is necessary that practical, efficient
methods be devised to obtain the spectral signatures required.

The purpose of this paper is to present two iterative techniques for obtaining the spectral
signatures required by the mixture model proposed by Detchmendy and Pace (1972) and to present the
results obtained by applying the iterative techniques and mixture model to actual agricultural data

of selected test sites from the C1l flight line of test area C in Tippecanoe County, Indiana (Fu,
et al, 1969).

2. MIXTURE MODELS

The mixture models proposed by Horwitz, et al (1971) and Detchmendy and Pace (1972), although
resulting from different formulations of the mixture problem, have certain common features. It is
felt that a brief examination and comparison of the equations constituting the two mixture models is
appropriate in order to establish a common point of reference for persons familiar with one or the
other model. The model proposed by Horwitz, et al, (1971) will be referred to herein as the "Maximum
Likelihood Mixture Model"™ (MLMM), and the model proposed by Detchmendy and Pace (1972) will be
referred to as the 'Least Squares Mixture Model" (LsMM) .

THE LEAST SQUARES MIXTURE MODEL

Under certain simplifying assumptions (Detchmendy and Pace, 1972) the model for the reflected
radiation from a GRE as observed by a m-channel multispectral sensor may be represented as

n
y = i a s, + €

where
Yy = amx 1l column vector of observed data

s; =amx 1 column vector defined as the basis vector of the ith
pure species

a; = the fractional part of the GRE occupied by the ith pure
N species

€ = amx 1l column vector of noise including observation noise

n = the number of separate species existing in the GRE's to be
processed

Since the areas, a;, are defined as fractions of the GRE, they are constrained as follows

and

a, >0 for 1 <i<n

The basis vectors, 8j» are considered to be the spectral signatures of the pure species making
up the mixture. The key assumption in this model is that the major variability in the observed data
is due to variations in the values of ay from GRE to GRE. The model explicitly assumes that the
basis (or signature) vectors corresponding to the pure species are constant. It is noted (Pace and
Detchmendy, 1973) that while this assumption may seem drastic, it is sufficient to explain the
variations in the data. "
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Given the observation vector, y, and the basisg vectors, sj(i=1,...,n), the problem becomes one
of determining the corresponding fractional area vector, a (where a = (al,az,...,an)) subject to the
model and constraints. "Assuming that the number of channels, m, is greater than the number of species,
n, the expression for y is overdetermined in that there are more equations than there are unknowns ,
In this case, the "pest" solution is defined as the "least squares minimum noise solution". Thig
solution is obtained by determining the a~vector such that the square of the noise, €, is minimized,

Thus, it 1s required to determine the a-vector such that ¢(a) is minimized, where
n T n
$(a) = (y ~ 1 a,s,) Wy - I a,s,)
i=1 1 i i=] 174

and W is an arbitrary m x m weight matrix to account for observation noise. However, this minimiza-
tion is subject to the required constraints.

Various techniques may be used to solve this constrained minimization problem. One of the

fastest methods computationally is proposed by Pace and Detchmendy (1973) and was used in the present
analysis,

THE MAXIMUM LIKELIHOOD MIXTURE MODEL

The formulation leading to this model is described fully by Horwitz, et al (1971) where it is
assumed that the signature of an ith species (1 <1 < n) is represented by an m-dimensional Gaussian
distribution with mean Ui and covariance Aj. If the proportion of a species in the GRE is aj and
a = (al,...,an), then the signature of this combination of species will have a mean My and a covar-
iance matrix A;. The expressions for u, and Ay are assumed to be

and

If the observed data for a GRE is represented by the m-vector y, then the maximum likelihood
procedure leads to choosing a fractional area vector, a, such that a likelihood function 8(a) is
minimized, where

6(a) = 1n lAal + (y-ua)T A;I (y-u )

subject to the constraints that the a-vector be a proportion vector, i.e.,

and

a, >0 l<i<n
iz =1tz

-1 , .
Here lAa, denotes the determinant of the matrix A,, and A, denotes the inverse of Ay 'It 15 noted
that, except for a constant term, 6(a) is the natural log of the Gaussian density function with
mean uy and covariance Ay, evaluated at point y.

It is pointed out by Horwitz, et al (1971) that this constrained minimizati?n problem is
extremely difficult to solve due to the fact that 9(a) is not convex and %ts derivatives are
impractical to compute. Two special cases which involve certain sim?lifylng assumptions are con-
sidered in order to reduce the expression for 6(a) to a convex function.

In one of the cases considered, it is assumed that the covariance matrices of each of the n
species in the GRE are equal (i.e., A; = A). Under this assumption the expression for l\a becomes
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n
A=A I a
a .
i=1 1
or, in view of the constraint on a;s
A =2
a

In this case, A, is no longer a function of the a-vector. Thus, the first term in the express—
ion for 6(a), being a constant, contributes nothing to the minimization of 8(a) and may be dropped
out. The problem then becomes one of determining the a-vector such that ¥(a) is a minimum where

n n
p(a) = (y - ¢ aiui)T At (y - I a,u,)

i=1 i=1

subject to the required conmstraints. It is suggested by Horwitz, et al (1971) that A be computed as
the average of the covariance matrices for the n species, i.e.,

n
z Ai

-
u
=M1

i=1

since for real data the Ai matrices will not be equal in general.

A comparison of the expressions for ¢(a) in the LSMM and ¥(a) for the MLMM shows that if the

basis vectors for the species are taken to be the mean vectors for the species (i.e., s; = ug), and
if the weight matrix is taken to be the inverse of the average covariance matrix (i.e., W = A-l),
the two models become mathematically identical. .

The LSMM was used as the mixture model in the present analysis.

3. MIXTURE GEOMETRY

The mixture model has associated with it, certain geometric properties which may be represented
pictorially in simple cases. In order to illustrate the relationships between the basis vectors,
the fractional area vector, and the observed data vector, consider the case of three channels and
three species. In this case, the equations defining the model become

y = a;8; + a,8, + ass, + € .

a; + a, + a3 = 1

a, >0, a, >0,a,>0

1 2 3

where y is a 3 x 1 column vector.

Figure 1 shows the basis vectors in the three-channel space. From Figure 1, it is noted that
the tips of the basis vectors form a triangle which defines a plane. Observation vectors, y, whose
tips lie above or below the s-plane will violate the constraint aj + a2 + a3 = 1. On the other hand,
y-vectors whose tips lie in the s-plane, but do not lie inside the triangle will violate aj > 0 for
some i (where 1 < i < 3). These types of geometric properties are extendable to higher dimensionms.

For the three-channel, three-species example, the solution to the constrained minimization pro-
blem is illustrated conceptually in Figure 2. First, the observed vector vy, is projected into the
s-plane to form the vector, yp. The a-vector associated with ¥p Will satisfy the constraint
ay + a2 + ay = 1. Next, the y, vector is projected to the nearest exterior side of the triangle in
the s-plane to form y.. The a-vector associated with Ye will satisfy both a, +a,+a,=1and

a; > 0, 1 <1i<3, 2 3
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4, METHODS OF DETERMINING BASIS VECTORS

In considering the methods of determining basis vectors proposed herein, it is convenient to
think of the three~channel, three-species case previously discussed. 1In the ideal situation, where
there is no observation noise, the tips of all of the observation vectors, y, would lie in the plane
formed by the tips of the three basis vectors, sj. In addition, the tips of the y-vectors would lie
inside the tridngular region formed by the tips of the three basig vectors,

The distribution of points in this region would depend upon the distribution of aj's in the
data set. It is important to note that the '"thickness" of the region occupied by the data in the
direction normal to the plane formed by the Si-vectors would be zero in this ideal case.

With real data, these ideal conditions do not exist. The region occupied by the data is not a
plane. However, with the assumption that the major variability of the data is due to variations in
the aj's, it would be expected that, for the case under consideration, the covariance matrix of the
data would have two "significant" eigenvalues. The eigenvectors corresponding to these eigenvalues
define the plane in which the major variability in the data occurs, Experiments with actual data
from the Cl flight line (Pace and Detchmendy, 1973) support this conjecture.

This same line of reasoning can be extended to higher dimensions. The important point is that
the structure of the covariance matrix of the data can be used to define the subspace in which the
tips of the basis vectors should lie. This subspace is defined by the mean vector of the data and
the eigenvectors corresponding to the significant eigenvalues. An arbitrary decision must be made
about the number of significant eigenvalues to be explained by the mixture theory.

When the data vectors are Projected into the subspace defined by the basis vectors, they may
not, in general, lie inside the figure formed by the tips of the basis vectors. A necessary require-
ment, in order that the mixture model is consistent with the observed data, is that the figure formed

subspace defined by the basis vectors. While this requirement is necessary, it is, of course, not
sufficient to assure that the arbitrary basis vectors are indeed the basis vectors corresponding to
the pure species making up the mixture. However, if this basic Tequirement is not met, the model is
certainly inconsistent with the observed data.

A measure of the inconsistency between the model and the data is given by ¢, where

q
= 3 ¢.(a)
j=1

The function ¢,(a) is ¢(a) (defined earlier) for the jth observed data vector, y, and q is the total
number of obsetrved data vectors.

Since the solution to the constrained minimization problem minimizes each ¢(a), and since each
observation vector, Yjs is independent of all other observations, it follows that ¢ is also a
minimum with respect to the a-vectors,

Because it is known that a set of arbitrary sy-vectors forming the required subspace are not the
true basis vectors of the mixture observed, it is natural to pose the following question: "If the
function ¢ can be minimized with respect to all of the a-vectors for a given set of sj-vectors,
could a smaller value of ¢ be obtained with a different set of sj-vectors?" The answer to this
question: is, of course, yes. This is obvious from Figure 2, where it is noted that the vector Ay
(where Ay = y - yc) may be written as

Ay = Ay1 + Ay2

The vector Ay, is the component orthogonal to the s-plane (i.e., the required subspace) with respect
to the metric W, and the vector Ay is parallel to the s-plane with respect to W, TFor any observa-
tion vector, y, the function ¢(a) thus. becomes

¢(a) = qal(a) + ¢,(a)
where

T
¢1(a) = by, W 8y,
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?nd
¢,(a) = Ay WA
2 ) 2 y2

Since the sj-vectors must be constrained to remain in the re uired subspa
¢(a) due to the out-of-plane component, Ayq, cannot be reduced byqvarying ] ? cgéwiéé:)’tﬁzevzizz og
¢2(a) can be driven to zero. In the simple example cited previously (see F%gure 2) ¢’(a) can be °
driven to zero by simply moving s and/or 83 such that the line connecting them pas;eszthrou h th
tip of the vector yp. gh the

ESTTIMATION OF BASIS VECTORS TO ACHIEVE CONSISTENCY BETWEEN MIXTURE MODEL AND OBSERVED DATA

The technique used to minimize the function ¢ with respect to the s; vectors is iterative in
nature and may be summarized by the following equations. The equation relating an observed data
vector to the basis vectors and fractional areas may be written as

y [S] a + ¢

where

S - amx n matrix whose columns are the basis vectors si

a - the n x 1 column vector of fractional areas a.
i

Consider an observed data vector, y, which when projected such that its tip lies in the basis
vector subspace, becomes Yp (see Figure 2). The mixture equation for y_ becomes
P

= [S§] a_ + ¢
o [s] . P

where e, is the corresponding projected noise vector, and. is the vector of fractional areas
associated with Yp- The vector ap will satisfy the constraint

n
I (a), =1
=1 P

However, suppose that a, does not satisfy (ap)i >0, 1 <4 <n. A change in the S-matrix is sought
such that

=[S+ AS] a_ + ¢
yP [ ] c p

where ac is the vector of fractional areas associated with Ve (i.e., the data vector enclosed by the
basis vectors). The vector a, will satisfy both

and

(a), >0 1<i<n.

The two expressions for yp may be equated to form

[4S] a, [S] aa

where Aa = ap - ac. The expression involving [AS] corresponds to a single observation vector.
Out of a total of q observed data vectors, suppose that some number, r (where r < q) fail to
meet the constraint aj > 0, 1 < i < n after they have been projected into the required subspace.

Then r of the q projected data vectors fall outside the region bounded by the tips of the s;-vectors.
For these r data vectors, the expression involving [AS] becomes -

(48] [Ac] = [S] [aA]-

3B-53



where

[AA] = a n x r matrix whose columns contain r vectors ta (where Aa = a - 4 )

[Ac] = & n X r matrix whole columns contain r vectors aC

b
~
]

the number of data vectors, y, that fail to meet the constraint a, > 0,
1 <i <n after being projected into the required subspace +

The solution for [48] may be written as
(4] = 5] [aa] (a1

* )
where [Ac] denotes the "generalized inverse" (Deutsch, 1965) of the matrix [Ac]' For the case
under consideration, [Ac]f may be written as follows

o Forro>n

-1

3
[]

T T
AC (AcAc )

T

-
"

T, -1
(AC Ac) Ac

Prior to being applied, the computed changes to the basis vectors, AS, are constrained to lie
in certain acceptable regions of the required subspace (see Figure 3). This is required in order to
be sure that no change in Sj causes data already within the figure formed by the si-vectors to be
placed outside the figure on the next iteration. Figure 3 shows an example of a change in 87 being

outside an acceptable region. In this case, a value (Asl) would be computed as the projection of
As1 on to the vector (sl - s3). ¢

The new S-matrix may be formed as

[S] = [s + ASC]

where [ASC] is the matrix of constrained changes in the basis vectors. Repeated entries into the
mixture processing algorithm using the new S-—matrix will lower the value of ¢ to its minimum value.

The iterative technique may be terminated when
R < TOL
where R is the relative change in ¢, i.e.,

_ _ (¢) current
R=1.0 (9) previous

and TOL is a preselected tolerance.

While ¢ does have a minimum with respect to the s; vectors, the minimum is not unique since
many different sets of basis vectors can be used to surround the data. However, the method for
varying the sj-vectors proposed will yvield a minimum movement in the initial sj-vectors required to
just surround the data.

ESTIMATION OF BASIS VECTORS TO ACHIEVE GROUND-TRUTH ESTIMATES OF MEAN FRACTIONAL AREAS

Ground-truth estimates for areas of particular test sites covered by individual species are
often known apriori. This is true for certain test sites in the Cl flight line. The average, or

mean, value of the fractional areas for the test site, as computed by the mixture processing algorithm,

should match the ground-truth estimates of the areas covered by individual species in the test site.
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The mean vector of the fractional areas from the mixture processing algorithm, a, and the

ground-truth mean vector of the fractional areas for the particular field processed, a, may be
written as

a
1 2
— . N .
a=]|. and a= .
a
n an

If the assumed matrix of basis vectors, [S], dges not contain the true spectral signatures of
the species observed, then it is expected that a # a. The desired agreement between a and a can be
obtained by an iterative technique for moving the basis vectors from a first guess.

The expression relating the mean observed data vector, ;; to the assumed matrix of basis
vectors [S] and the mean fractional area vector, a, may be written as

y=10[Sla+¢e

where ¢ is the mean of the noise vectors. However, in order to fit the ground-truth estimates, a,
a change in the S-matrix is sought such that

y=I[S+48la+¢
where [AS] represents the required change in the S-matrix.
Equating the expressions for ;.yields
[4s] a=7¢q
where the m x 1 column vector H'is given as
q=1[s] (a-a)

Considering the elements of the AS-matrix as unknowns, it is noted that there are m equations and
m x n unknowns. Thus, the system is "under determined" and has an infinite number of solutions.

Because the system is under determined, the natural tendency is to seek a "minimum norm” sol-
ution such that the norms of the row vectors of the AS-matrix are minimized. This solution is given
by

where

T ~
a a

The changes in the individual basis vectors for this solution may be written as
a

Ti q 1<1i<n

As, =
i a a
It is noted that this solution yields values of As; which are all in the same direction, El This
solution is unacceptable because changing the sj~vectors in the same direction may cause data
already within the figure formed by the s;-vectors to be moved outside the figure on the next

iteration. This causes a degradation in the consistency between the mixture model and the observed

data as noted previously.

In seeking other solutions to the system for [AS], it was found that it was_necessary to change
only one basis vector on any iteration to achieve the desired agreement between a gnd a. The one
vector solutions to the system are given by
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Solution 1: As. = é;- a; As, =0, ..., As =0
. n

1 1 2
. - 1 - )
Solution 2: Afl =0, As2 = g; q, As3 =0, ..., Asn =0
. - _ 1 -
Solgtlon n: Asl =0, ..., Asn—l = 0, Asn =3 a

If any one of the one vector solutions lies within an acceptable region in the required sub-
space (see Figure 3) then it is chosen. If no solution lies in an acceptable region, then the
solution lying nearest to an acceptable region is chosen and is projected (as in the first iterative
scheme) into an acceptable region before it is applied.

vOnce an acceptable value of [ASc] has been determined, the value of the S-matrix for the next
iteration is computed as

[S] =[S + ASC]

Iteration on the S-matrix is terminated when a is sufficiently close to a. This is determined by

testing two factors, Rl and R2 where

ala
S H
a a
and
a3
Ry = =/
la]|a

Iteration is terminated when .8 :-Rl < 1.1 and .8 §_R2 < 1l.0.

The iteration scheme to yield a = a is started with f£irst guesses for the basis vectors result-
ing from the iterative scheme used to minimize the inconsistency between the model and the data.
The consistency achieved by the first scheme is maintained by the second scheme. Again it must be
noted that the basis'vectors yiélding 3 = a are not unique. This is due to the fact that for one
test site, the system solved is under determined. Unique basis vectors may be determined if ground-
truth estimates of area coverage are available for n test sites, each containing different propor-
tions of n species. In this case, the required change is the S-matrix may be determined by a
straightforward non-iterative method.

It was shown previously that for one test site
(4s] a=7q
where E is an m x 1 column vector given as
q=1[s] (a-a)
For n test sites, the expression becomes
[4S] [A] = [S] [X - A]

where

A - an n x n matrix whose columns contain the n ground-truth mean vectors of
fractional areas , a, for each field

A-annzxn matrix whose columns contain the n computed mean fractional areas,
a, for each field,
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If each field contains different proportions of the n species, the ;—matrix is non-singular and
the expression for [AS] becomes

(451 = 8] [& - A] [A]7}
The required S-matrix is then
[8] = [S + aS]

Because this solution is unique, the consistency function minimized by the first iterative scheme
cannot be maintained by the solution.

5. RESULTS

The iterative schemes discussed herein and the mixture processing algorithm (Pace and Detchmendy,
1973) were applied to multispectral data from selected test sites inm the Cl flight line in order to
verify the concepts presented. The test sites selected consist of three soybean fields with the
estimated ground coverage given (Fu, et al, 1969).

The first test field chosen is denoted herein as S1. The upper left hand corner of the field
is located at the 79th pixel of scan linme 171, This field (see Figure 4) consists of soybeans and
soil. One-half of the field is bare soil and is denoted in Figure 4 as S1B. The remaining half of
the field, denoted as S1A, is made up of an estimated 20% coverage of soybeans and 80% soil, The
soybeans are approximately 12 inches tall. Field S1 is square and has 20 pixels to the side for a
total of 400 pixels.

The initial values of the basis vectors, 8 and 8, were chosen as

s, = ;i + /Xi ul

1
and
sp =¥ - Ay
where
;i = the mean vector for field S1
Al = the largest eigenvalue of the covariance matrix of field Sl
. ul = the eigenvector corresponding to xl

These expressions place s1 and sy in the required subspace. The tips of sy and sy lie lo away from ;i
along uj. The vector s1 corresponds to soybeans and sg corresponds to bare soil.  The initial values

of sy and s, are presented in Table 1.

RESULTS OF ITERATIVE SCHEME NO. 1

The iterative progress of iterative scheme no. 1 is presented in Table 2. The value ¢ is the
total sum-of-squares of the differences between the observed data vectors and the computed data
vectors which meet the constraints of the mixture model. The parameter NPO in Table 2 represents
the number of pixels in field S1 having a negative fractional area.

It is seen in Table 2 that the iterative scheme cuts NPO approximately in half on each_ﬁtera—_
tion. This is as expected by the least squares formulation of the scheme. The parameters aj and ay
are the mean fractional areas of soybeans and soil, respectively, for field S1.

The final values of the basis vectors 81 and s, from iterative scheme no. 1 are listed in Table
3. These vectors correspond to the values obtained on the final, seventh iteration.

RESULTS OF ITERATIVE SCHEME NO. 2 -

The basis vectors obtained from iterative scheme no. 1 yield a minimum value of ¢. While these

basis vectors are not unique, they do make the mixture model and data consistent.
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It is noted that from Table 2 the mean fractional areas for field s1 resulting from the final
values of the basig vectors are

Zl = .374

and .

a, = .626

From Figure 4 it is seen that the apriori mean fractional areas for soybeans and soil for field
S1 may be computed from the estimated ground coverage as

1/2(.20) = .1
and

1/2(.80) + 1/2(1.00) = .9

[
i

Iterative scheme no. 2 seeks to change the basis vectors from a first guess such that a = a.
The initial values of the basis vectors to start iterative scheme no. 2 were chosen to be the final
values from iterative scheme no. 1 (see Table 3).

Iterative scheme no. 2 achieved convergence in one step. The final values of the basis vectors
s, and s, from iterative scheme no. 2 are presented in Table 4.

FURTHER TEST RESULTS

In order to test the validity of considering the converged basis vectors for field S1 (from
iterative scheme no. 2) to be the true spectral signatures of soybeans and soil, these basis vectors
were used to compute the mean fractional areas of two other soybean fields in the C1 flight line.
The two fields are denoted here as 82 and S3.

The estimated ground coverage for these fields is given by Fu, et al (1969) as follows:

Soybean Soil

Field Coverage Coverage
S2 20% 807%
S3 40% 60%

The mean fractional areas computed for fields S2 and S3 using the converged basis vectors for field
S1 are given as follows:

Field al a2
82 " .265 ' .735
S3 .327 .673

A comparison of the mean fractional areas with the estimated ground coverage for fields S2 and
83 shows that the use of the converged basis vectors from field S1 ag spectral signatures to process
fields $2 and $3 results in an error of less than. 7%.

This error could be due to several factors. First, the apriori ground coverage estimates given
may possibly not be accurate to within 7% for any of the three soybean fields. Secondly, it
is highly probable that more than two spectral signatures are necessary to describe the fields to a
high degree of accuracy. For example, the fields could consist of four species requiring the
following signatures: -

1) The signature of soybeans in sunlight,

2) The signature of soybeans in shade.

3) The signature of soil in sunlight.

4) The signature of soil in shade.
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It is felt that the differences between the ground truth estimates and the computed ground cov-
erages for fields 82 and $3 are not too great when considering the assumed simple two¥species model,

Although more testing of the iterative techniques is required, it ig felt that they show con-
giderable promise as methods by which spectral signatures may be accurately estimated.
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TABLE 1. INITIAL BASIS VECTORS TABLE 2. ITERATIVE PROGRESS OF

FOR FIELD S1 SCHEME NO. 1
ch s s Iteration B = —

annel - 1 2 Number o NeO % )
1 87.778 90,303 0 .2629496245 206 474 .526
2 82.632 85.387 1 .23258357+5 89 .453 .547
3 63.838 66.113 2 .22904458+5 32 437 .563
4 64.719 67.431 3 +2237134145 16 418 .582
5 91.254 93.877 4 .2227483245 6 .389 611
6 93.346 91.436 5 .22253118+5 3 .375 .625
7 68.519 68.377 6 .22252115+5 1 .373 .627
8 91.254 96.966 7 .22252107+5 1 .374 .626
9 76.897 84.814

10 89.870 92.603
11 97.032 75.176 )
12 76.092 63.402

TABLE 3., FINAL BASIS VECTORS FOR FIELD S1 TABLE 4. FINAL BASIS VECTORS FOR FIELD S1
FROM ITERATIVE SCHEME NO. 1 FROM ITERATIVE SCHEME NO, 2
Channel 51 . 2 Channel S1 2

1 86.004 90.914 1 72.551 90.914

2 80.697 86.052 2 66.024 86.052 .

3 62.240 66.662 3 50.124 66.662

4 62.814 68.086 4 48.370 68.086

5 89.412 94.511 5 75.442 94.511

6 94.688 90.975 6 104.860 90.975

7 68.619 68.343 7 69.375 68,343

8 87.242 98.346 8 56.821 98.346 ‘

9 71.336 86.726 9 29.171 86.726

10 87.950 93.263 10 i 73.395 . 93.263

11 112.383 69.897 11 228.786 69.897

12 85.005 60.337 12 . 152.591 60,337
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FIGURE 1. THE BASIS VECTORS IN THREE CHANNEL SPACE

CHANNEL 3
CHANNEL 2

CHANNEL 1

FIGURE 2, CONCEPTUAL SOLUTION TO THE CONSTRAINED OPTIMIZATION PROBLEM
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FIGURE 3. REGIONS (R) OF ACCEPTABLE MOVEMENT OF BASIS VECTORS \

S1a  20% SOYBEANS
80% SOIL

S1B  100% SOIL

FIGURE 4. FIELD S1
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