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I° ABSTRACT

The spectral properties of the intensity of a light beam,
propagated in a turbulent atmosphere in the presence of wind
shears, are studied. The theory of light propagation in a turbu-
lent media is presented. Special attention is given to developing
the theoretical characteristics of a spherical wave. These theo-=
retical relations are numerically analyzed. The analysis indicate
that the problem of remotely measuring winds can be automated.
Several machine techniques are offered to accomplish this task.

II. INTRODUCTION

Atmospheric turbulence due primarily to wind shear and convective heating of the ground, has a
noticeable effect on light propagation. This turbulence, characterized by small, random changes in
the index of refraction along a propagation path, induces variations in the phase of electromag-
netic waves passing through it. The phase variations induced can result in amplitude variations of
the wave. The energy in a light beam is redistributed in passing through turbulence in such a way
that it exhibits intensity fluctuations known as scintillations, i.e., an optical wave with uniform
intensity across a wavefront, upon travelling through a turbulent atmosphere, will have bright and
dark "spots" across a wavefront. At any instant, the random scintillation pattern observed in a
plane parallel to the wavefront will contain information about the spatial Fourier components of
the turbulence. The most effective scale size producing the intensity variations is determined by,

AL, where ) is the wavelength and L is the path length. The wind across a propagation path will
move the turbulent eddies in the atmosphere through the light beam, thus moving the "spots" in Fhe
scintillation pattern across a fixed observation point at a rate proportional to the wind velocity.
The temporal frequency of the intensity variations at a fixed observation point, therefore, depends
on the transverse component of the wind along the path. The predominate frequency is proportional
to the mean wind speed divided by the Fresnel-zone size.

Since atmospheric turbulence induces amplitude and phase changes in an electromagnetic'wave,
the question to be considered is whether these changes can be used to measure the atmospheric
effects which produced them. Scintillation drift at radio frequencies has been u§ed for years to
measure ionospheric winds (Mitra, 1949). This is possible since the motion of scintillation pat-
terns is directly related to winds across the propagation path. Two methods suggest theméelves for
measuring atmospheric winds by using optical frequency radiation: the use of two sensors in the
scintillation pattern so that the transition time of light and dark spots may‘be measured and re-
lated to the wind velocity, or the use of one sensor in the pattern to d?termlne th? temporal
frequency of the intensity variations. When the motion of turbulent eddies i% considered the
spatial covariance function of the intensity variations can be used t? determln? the tem?ora} _
Fourier components. The covariance function for the plane wave case is useful 1n_measur1ng iono
spheric winds. For line-of-sight propagation near the earth's surface, the covariance for the1
spherical wave case as developed by Schmeltzer (1967) is more appro?rlate. In order to actzal yr
measure the wind velocity profile using the formulations of Tatarski (1961), Schmeltzer (1967),0
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Lee and Harp (1969) the integral equation for covariance must be inverted. Peskoff (1968) devel-
oped an analytical solution for the equation for the plane wave case by performing the inversion
and demonstrated the feasibility of sensing wind profiles. Shen (1970), using the correlation and
slope-at-zero-lag of the spherical wave covariance function, developed a numerical inversion and
using microwaves he concluded that winds could be remotely sensed using such a method. Predominate
in the actual measurement of winds at optical frequencies have been Lawrence, Ochs, and Clifford
(1972) . They hav® successfully constructed and tested an instrument which measures the mean cross-—
wind component over a path in a real time. Their method is based on the slope of the spherical-
wave covariance function at zero delay, as opposed to the delay-time-to-peak approach of Morgan and
Bowles (1968).

This paper will deal with the extraction of significant characteristics of the wind along a
propagation path using the temporal-power spectra and pattern recognition techniques.
_III. THEORY

Consider a spherical optical wave with wavenumber k, propagating in the z-direction to a
receiver plane at z=L. The temporal-power spectrum of the log~amplitude of the intemsity varia-
tions is (Clifford, 1971)

L T o
W(E) = 167K [ dzJ KK (K) [(Kv) 2 - (2n6) 2172 gin k% &lz2)y (1)
Jo e
' v

K is the spatial wavenumber interpreted as K = 2n/f where % is the scale size of turbulence
and v, a function of z, is the wind profile along the path.

The form of ¢$(K) the refractivity spectrum, and its effective limits are necessary for this
formulation. Energy is introduced by convection caused by the heating of the ground and wind shean
Turbulent energy, then, is introduced by the action of scale sizes larger than some minimum value
Ly, called the outer scale of turbulence, corresponding to a wavenumber Ko=2"/Lo' Near the ground
L, is assumed to be on the order of the height above ground. For spatial wavenumbers larger than
Ko’ the scale size is smaller than the distance from the ground and 7ssumptions of homogeneity and
isotropy are more nearly correct. Kolomgorov (1961) proposed a K1 dependence of the spectrum
for wavenumbers greater tham K ; this type of dependence has also been indicated by experiment.
Energy from larger eddies, as they break apart, is transferred down to smaller scales until a scale
size %, is reached where the energy is dissipated as heat, this is called the inner scale of
turbulence. In the range of scale sizes between L, and 2,, called the inertial subrange, the
refractive-index spectrum has been assumed, following Tatarski (1961) to have the form .

oK) = 0.033C§K_11/3 exp (K*/K2) . (2)

under the condition K 2,=5.92. The eauation is a poor approximation for K<Ky; the equation is a
reasonable approximation for K>K_ . Cf, the refractive index structure coefficient is a measure of
the intensity of the refractive—index fluctuations. Substantial uncertainty exists about the mean
and variance of Cf under specific meteorological situations.

IV. CALCULATIONS

The theoretical expression for the temporal frequency of a spherical wave is given by Eq. (1).
For numerical simulation it is the shape of the spectral denmsities which is of interest. There-
fore, the constant leading terms of W(f) are igngred The spectral density ¢(K) is assumed to have
the K™ /3 dependence proposed by Kolmogorov. Cp(z) is assumed to be constant over the path and
its variations are neglected. An alternate approach by Lawrence, Ochs, and Clifford (1972) is to
make C4(z) piecewise constant over the path. In order to calculate the frequency spectra W(f) is
assumed to have the form

2000m
Ww(f) J~ J- 8/3f (K,v 2)f, (X,2) (3)
wa
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where fl(K,v:z) is the square root dependence on K and v, the dependence on z through v(z) is
implicit, and‘fz(K,z) is the path weighting function. Recall that fl(K,V:z) is of the form

£, (Ryvi) = (&) >~ (2n5) ) T2 0
and
2.2 z(L-z)
fz(K,z)=sin [K —zéﬁz-)- } . (s)

The upper limit of integration in Eq. (3) results from the fact that scale sizes smaller than lmm
are not expected in real meteorological situations.

To evaluate Eq. (3) a two~dimensional routine was not available so two one-dimensional
integrations were used. A Simpson's rule integration was employed which performed successive
interval halving until desired accuracy was obtained or a specified number of halvings were
executed. A limit on the number of halvings was necessary to keep run time acceptable. If the
desired accuracy was not obtained a diagnostic was printed. The integration over K was performed
first and then the integration over z. Due to the large range of K and the "roughness" of the
integrand, it was necessary to subdivide the integration into ten smaller divisions. Each division
was again subdivided into ten additional subdivisions. In order to minimize run time, if the sum of
the integrations over ten subdivisions was within a prespecified error tolerance the integration was
accepted, otherwise the interval was re-subdivided. In the program run, three place accuracy was
required of the integration with ten halvings allowed. The tolerance on the subdivisions of the K
integration was one-hundredth.

Another problem arises in the K integration at its lower limit. When K=2nf/v the fl(K,v:z)
function approaches infinity. This difficulty was overcome by allowing the lower limit on K to be
(2nf/v)+e, integrating, and then adding to the result an approximation of the area missed. Let
K=(2nf/v)+e, and consider the integrand

-1/2
v 2
k83 ®,vine, &= (L 4)78/3 [(2—32 +) vz-(an)z]
sin’ {(352 +e]20] . (6)

where C=z(L-z)/2kL. For e very small it may be neglected in all but the fl(K,v:z) term; expanding
- : - - 2
k783 ®,vin e, % (BE) 3 (evUntren) ] 12502 [G%?% cJ . )

The integration over K from 2nf/v to (2nf/v)+e then becomes, neglecting second order terms,

€ €

aex™83e (K, vi)E, (K, 207 (2353'8/3sin2 [(ngjzc] de (4mge) 22

° [o]
_ - 1/2
o2 [ ] i, ®

This result is then added to the value of the integral over the range (2mf/v)+e to 2000w. For the
program run ¢ was set to be one-thousandth.

V. RESULTS

Using the program developed to compute the log-amplitude spectral density,plots were obtained
for various wind profiles. In all cases the magnitudes have been scaled for convenience by the
maximum of the spectral denmsity for a constant 1 m/s wind. The important consideration is the
relative shape of the spectral density and how it varies for different wind profiles, not the
absolute magnitude.

» .
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Several scaling ideas are important in estimating the characteristic frequencies associated
with the shape of the spectra under different wind conditions and for different path lengths. A
slightly modified form of Eq. (1) is given by Eq. (9).

L 00
2 2
2w 2.1/2 2, w 2
W(E) = 16n0k% | dp | RLETH JvDTT] 2| (KE v )a(ez) | gee )
Jo Jo v 2kL
2 .2 w2 2
where K'“=K“ -~ © /v® and w=2nf.

Eq. (9) shows that except for a magnitude scaling by 1/v the result of the integration over K'
is dependent on 2rf/v. This fact implies that the 1 m/s wind profiles can be used to determine
spectra for other wind velocities. For example the spectral denmsity associated with 10 m/s cross-
wind could be obtained from the 1 m/s spectrum by multiplying the frequency scale by 10, and divid-
ing all magnitudes by the same factor.

The spectral densities of five constant winds from 1 m/s to 5 m/s have been compared with the
result that the direct linear relationship between the spectral densities, which appears in the
theory, was reproduced by the numerical calculation. If, for a wind of v m/s the amplitude of the
spectral density at a frequency f is A(f), then the amplitude of the spectral density of a wind
which is a constant nv m/s at a frequency f =nf is A (f ). The following relationship has been
found to be true n non

_AF)
A (£)= S5 (10)

This linear relation is true to the accuracy of the calculations, 3 significant figures. 1In
addition Eq. (10) is true for linear winds and winds which are triangular, quadratic, and
sinusoidal if the winds are also scaled linearly. For example, if for a wind profile of the form

v =az + b (11)
with a mean of v m/s, the profile of another wind is of the form
v = naz + nb ' (12)

with a mean of nv m/s, then Eq. (10) holds. These relations have also been verified for the plane
wave case.

The shape of the spectral density for different path lengths can be determined by considering
that, for a given frequency,-the magnitude of the components is determined by integrating K from
w/v to infinity. See Eq. (1). Scale size can be expressed in terms of Fresnel zone size. For
example

K = nn//iL .

Thus for a given w/v variations in path length scale the spectral frequencies by'l//f.

The implication is then that a set of universal spectral densities based on a profile set with
a mean of 1 m/s may be calculated and the results extrapolated for the case of any wind with a
given mean.

Calculations for the path weighting function

fZ(K,z)=sin2 [KZ Eé%fél] (13)

are shown in Figs. 1 and 2. These figures show fz(K,z) for two constant K's based on a 1 km path.
A rough idea of the general shape of the respective weighting functions is obtained from these
figures and consideration of Eq. (13). The sinusoidal nature of the equations is distorted in

the figures because all maxima and minima are not plotted. The spatial weighting function
negligibly weights points near the ends of the path, always weights to some extent the center of
the path, and weights most those points slightly off the center of the path. Note that the
spatial weighting function is symmetric about the center of the path. It can be shown that the
plane wave case is asymmetric and weights most heavily points near the transmitter end of the path,
negligibly weights points near the receiver end of the path, and weights to some extent those
points near the center and slightly toward the transmitter from the center of the path.

e i e i s A e
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Figure 3 is a plot of the spectral density for a constant 1 m/s wind and a path length of 1
kilometer. The spectral densities are individually scaled. Three regions are evident in the
spectral density: the first is a fairly constant, higher energy, region at low frequencies; the
second a transition region in which the energy drops off rather smoothly with increasing frequency;
and the third a lower energy region where the energy drops off very slowly with increasing
frequency. These three regions are evident in all the spectral densities calculated. The abrupt

dips in several of the spectral densities plotted are due to truncation and computational error
and not to be expected in real situations.

The effects of a varying wind profile on the spectral density are shown in Fig. 4. The basic
wind profile is a constant 1 m/s wind; to this has been added a pulse of 2 m/s of width L/5 which
is centered at L/10, 3L/10, L/2, 7L/10, and 9L/10 for five different cases. The effects of the
spatial weighting functions mentioned above are obvious. Note that the symmetry of the weighting
function implies that moving the pulse to positions symmetric with respect to the center of the
path has the same effect whether it is on the transmitter or receiver side. The abrupt changes in
some of the spectral densities are due to the diseontinuity in the wind profile which is not
realistic. This center symmetry is not present in cases of plane wave spectra. Consider how the
spectral density for a 1 m/s constant wind will change for a uniform shear about a mean of 1 m/s
wind, Assume a wind profile which linearly increases from 1/2 m/s at the transmitter to 3/2 m/s
at the receiver. The profile weighting function will be a minimum at the transmitter and increases
to a maximum at the center of the path. Since the ends of the path have little weight and the
profile weighting function will be very close to that for a 1 m/s constant wind near the center of
the path, the spectral density will change little. Figure 5 demonstrates this. Again due to the
symmetry of the spatial weighting function the spectral density for the shear profile is identical

to that for a wind which decreases linearly from 3/2 m/s at the transmitter to 1/2 m/s at the
receiver.

From the above it is apparent that the spectral density will change as a direct function of
the wind profile and that information about the wind profile is intrinsic to the spectral density.
Since wind profile information is cortained in the spectral density, the problem becomes one of
extracting the information quickly and efficiently in a real time environment. Figure 6, then, is
a set of spectral densities for a profile set with a mean of 1 m/s. In all cases the spectral
densities are determined by the wind profile and information -on the wind profile may be determined
from the spectral density.

In using the spherical wave case two difficulties are apparent from consideration of Fig. 5.
The first is that for winds which have a uniform shear, the direction of the shear is not
obtainable from the spectral density. The second difficulty is discrimination between a constant
1 m/s wind and one which has a uniform shear from 3/4 to 5/4 m/s. This distinction is not critical
for this low wind speed, however, recall by the scaling property, Eq. (9), that this same type of
distinction would have been made for a wind of 10 m/s mean with a uniform shear from 7.5 to 12.5
m/s. Both of these difficulties can be overcome through an accurate algorithm to distinguish
different spectral densities and an additional wind measurement in the transmitter or receiver
plane.

VI. AUTOMATED WIND PROFILE MEASUREMENT

A machine to determine wind profiles from spectral density information would have four primary
components. The first would be a measurement device consisting of the detector itself and an appro-
priate processor to extract the necessary measurements. This would consist of a photodiode or
similar sensor with the necessary optics, and an electronic processor which would select a set ?f
frequencies and make a measure of the spectral density at each frequency. A statisti?al analy51s.
needs to be performed on the spectral densities to determine which measurements at which frequencies
would contain the most information. The measurements could represent amplitudes, first and second
order derivatives. A/D converters would digitize the data for processing. The second component of
the profile recognizing machine would be a pattern recognition device which wo?ld predict the mean
wind. This device must be a trainable pattern classifier since in a field enviromment the spectral
densities of the wind profiles will be a function of the prevalent meteorological condit%ons. Fol~
lowing the mean recognizer would be a scaler, which would scale the data, using the scaling rules
previously discussed, into a universal profile set such as Fig. (6). The oquut of th? scaler )
would be fed to a pattern recognizer which would classify the data as bélonglng.to a given ?roflle.
This would be the last component of the profile recognition machine. Fig. (7) is a block diagram of
such a machine. -

Both of the pattern recognition devices must be trainable for specific field envir?nments.
This implies the existence of a memory in which each mean and each profile to be recognized would be
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stored. This memory would be an interchangeable device so that in practice a separate memory would
be obtained for each field condition in which the profile recognizer is to be used. Then, in a
given field situation, the appropriate memory would be connected to the device. Each memory would
be trained for a specific field environment.

Consider how such a trainable pattern recognition device, where the memory is considered as
part of the devic®, would be constructed. The measurement system would be set up in a field
environment where it was desired to use the machine. Fig. (8) illustrates a typical training set
up. When a profile which is desired to be identified appears along the path, the selector is
activated and both the spectra measurements and the corresponding profile identifiers are stored
in the memory. Suppose R such measurement sets are generated. Each of the spectra measurements
will be a set of d measurements at d frequencies. These measurements may be visualized as a
d-vector where each of the d-basis is a frequency at which a measurement is made and the
coordinates are the respective measurements. For each profile there exists in the memory device,
then, what is essentially a d-vector ﬁi’ i=l,...,R.

Given these R d-vectors Fi’ a unique profile, is associated with each one. Note that the
assumption has been made that each profile has the same mean: a similar procedure would be
followed for the mean recognition device in conjunction with the scaler to generate the profile
set. For an arbitrary input, X, to the profile recognition machine the Fuclidean distance
between X and Pi is

[)’(-f’i| = /(X—Pi)-(X-Pi) , i=1,...,R. (14)
_ _ A minimum distance classifier may be constructed which will associate g with profile io if
IX'P10!<|X_P1| for i=1,...,R, i¥io. Equivalently, the squared distance ]X—Pi| may be compared.
Squaring both sides of Eq. (14) yields
|%-F, | %= (%-B,)(R-P.)= X-%-2%-B 4P -F,. (15)
i i i i 7171

_ _ Since g-i will be a constant for all i=l,...,R the selection may be affected by comparing
X-Pi—1/2Pi°Pi and choosing the maximum. Discriminant functions

- = = 1 = = :
=X-p,-= P, - i=1,... 1
g; (X)=X-P.- 5 P P, , i=1,...,R (16)
may then be created and the classification made by associating X with whichever profile corresponds
to the largest gi(X). Note that gi(Xl is a linear function. _Letting the components of Pi be
Pil’PiZ""’Pid and the constant —l/ZPi-Pi be Pi,d+l then gi(X) is

X)= i=1,... 1
gi(X) Pilxl+Pi2x2+"°+Pidxd+P'i,d+l , i=1,...,R an

where the xq,X5,...,X3 are the components of X, Assuming that an additional element P, d+%= -1/2
P,*P; is added to each measurement set in the memory, then a linear machine may be buil?t“hich will
affect the profile classification as in Fig. (9). Recall that this memory is for the specific
field environment in which the machine was trained. For each field environment to be considered
another memory will have to be created.

Effective profile recognition can be accomplished using the above method. 1In any given situa-
tion in which the profile recognition machine is to be used, wind profiles could be recognized if
an appropriately trained memory was available. ;

An alternative pattern selection procedure would rely on the statistics collected in the
training procedure described previously. Assume that the patterns in each of the R categories are
random variables governed by R distinct probability functions. Let p(X/i) be_the probability of
occurrence of pattern i, given that it belongs to category i, and that the p(X/i) are known
functions; they could be approximated from the statistics collected by computer processing of the
data and statistical inference. The probability of each class, p(i), could also be obtained. ,
Statistical decision theory can then be used to establish discriminant functions for the different i
classes if a loss funetion, A(i/j), is defined for i=1l,...,R and j=1,...,R. The loss function
would be a measure of the cost incurred by misclassification. With the above functions specified
an optimum, Bayses, machine can be constructed. A Bayes claggifier in a simplified block diagram
is given by Fig. (10).
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In order to try and minimize the number of measurements made the generalized sequential
probability ratio test (GSPRT) can be used (Mendel, 1970). After n measurements are made, the gen-
eralized sequential probability ratios for each pattern class are computed as
_ P (X[1)
un(le)= R 1 i=1,...,R,n=1,...,d (18)

[kgl pn(ka{] g

where pn(§|i) is the conditional Probability density function of )_(=(xl,x2,...,xn)T for pattern class
i. The un(Xli) is then compared with the stopping boundary, A(i), of the ith pattern class. The
decision rule is to reject pattern class i from consideration if

n (X[4) <a(4) i=1,...,R.
The stopping boundary is determined by

Loy
A1) = = 1 i=1,...,R (19)

R
[k21 (l"eik):l

where eij is the probability of classifying X in class i when X is actually in class j.

Fig. (11) is a block diagram of a sequential classifier. This type of classification assumes
that the process will be terminated when n=d otherwise more features than can be tolerated may be
required and the average number of feature measurements may be very large if the eij's are very
small. The procedure is to carry out the process until a decision u is reached or stage d is
reached. 1If no decision is reached by stage d the pattern is classified as belonging to the class
with the largest generalized sequential probability ratio.
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Figure 3. Temporal-Frequency Spectrum for a Spherical Wave, 1 m/s
Constant Crosswind Over the Optical Path.
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Wind Caused By: a 2 m/s Pulse at L/10 or 9L/10, Circles, a 2 m/s Pulse
at 3L/10 or 7L/10, Crosses, a 2 m/s pulse at L/2, Triangles.
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Figure 6. Spectral Profile Set For A Spherical Wave: O Constant 1 m/s:

A Uniform Shear 3/4 m/s To 5/4 m/s: + Uniform Shear 1/2 To 3/2 m/s:

x Centered Triangular Shear 3/4 To 5/4 to 3/4 m/s: { Centered Triangular
Shear 1/2_To 3/2 To 1/2 m/s: + Centered Triangular Shear 5/4 To 3/4 To
5/4 m/s: x Centered Triangular Shear 3/2 To 1/2 To 3/2 m/s.
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