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ADAPTIVE BAYES CLASSIFIERS FOR REMOTELY

SENSED DATA

H. 5. Raulston, M. 0. Pace, and
R. C. Gonzale:z

The University of Tennessee
Knoxville, Tennessece

I. ABSTRACT

A new technique for the adaptive esti-
mation of statistics necessary for Bayesian
classification 1s developed. The basic ap-
proach to the adaptive estimation procedure
consists of two steps: (1) an optimal sto-
chastic approximation of the parameters of
interest and (2) a projection of the param-
eters in time or space. Comparative re-
sults of a practical application are shown.

IT. INTRODUCTION

This paper reports development and
testing of an algorithm for a learning,
adaptive statistical pattern classifier for
remotely sensed data. This algorithm in-
corporates adaptive estimation of the re-
quired statistics into a Bayesian clas-
sifier. The results reported here are for
Gaussian data in which the mean vector of
each class may vary with time or position
after the classifier is trained.

The cases reported were chosen to test
the effects of attempting to adapt the es-
timates to changing statistics. The Gaus-
sian density has been found appropriate in
practive (Tou and Gonzalez, 1974; Crane,
Malila, and Richardson, 1972). From an-
other treatment of estimating Gaussian
class densities {(Keehan, 1965) it can be
shown that the additional prchlem of es-
timating the covariance matrices can be
handled by estimating elements of the cor-
relation matrix separately from the elements
of the mean vector, and then combining these
to form the covariance matrix. Therefore,
if the covariance matrices were also vari-
able, the same adaptive algorithms used
h%re could be applied to their estimation.

Several notable contributions have
been made ‘to the problem of estimating the
parameters for a classifier where the class
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statistics vary with time or space. One
such adaptive estimator (Kriegler, Marshall,
Horwitz, and Gorden, 1972) gave larger
weight to more recent samples, as speci-
fied by an empirically determined weighting
parameter; the consequent "limited memory"
made the resultant average more up-to-date.
A somewhat similar adaptive estimation al-
gorithm (Chien and Fu, 19%69) "projected"
the current estimate to the next step by
adding the amount of anticipated change,
and then combining it with the next data
sample in a weighted average with weights
chosen to minimize the mean square error.
The algorithm developed in this paper con-
sists of "refine' and "project' steps.

This algorithm differs from CF (Chien-Fu
algorithm) in the sense that the former (1)
makes projections suitable for more complex
variations with time or position, and (2)
is arranged to operate as part of a Bayes
classifier. It will be seen that in both
these algorithms the "refine"™ step of
combining previous estimate and new data is
in the form of a stochastic approximation
formulation (Wilde, 1964)

III. ESTIMATION ALGORITHMS

An algorithm is next discussed for
adaptively estimating the class density
function parameters as inputs for a Bayes
classifier. In this discussion the algo-
rithm will be applied to the problem of
maintaining optimum current estimates of
changing mean vector elements. As indi-
cated in the previous section, the same al-
gorithm could also be used to adaptively
estimate the correlation matrix elements
for multidimensional data and, from that
and the mean vector estimates, an updated
covariance matrix estimate could be pro-
vided to the classifier.

The following notation is used to de-
scribe the algorithm.




8_ = true value of mean at time
(position) n

Y = data sample classified into
a certain class at time
(position) n.

X_ = "refined" estimate of &_ made
after classification #n pro-
vides new data sample Yn

X, ="prejected" estimate of 8
made at preceding time
{(position) n

n+]

%2 = mean square error (X, -6n+1}2
Y = weight used in "refine™ step

n-1 to minimize enl .

The operation of the algorithm i as '

follows. At cach time or position {time
will henceforth denote time or position
unless specified otherwise) the order of
operations is, "refine'", then '"project" be-
cause once data has been classified, the
classifier will next require an estimate at
the next time, not the present. The refine
step makes an optimum comprgmise between
the present mean estimate X ,_; made at
previous step n-1, and the present data
sample Y . The "project” operation then
prevides the classifier an estimate of the
mean when needed by the classifier, viz.
the next time; it also provides the next
stockastic approximation an input which is
still unbiased by variation. Therefore,
the "project™ operation should remove (in a
statistical sense) the estimation bias due
to time variation, while the "refine" op-
eration reduces the estimation scatter due
to zero-mean sampling noise.

A typical sequence of events for clas-
sifying and subsequently estimating class
means at the next time, assuming current
mean estimates have been made, is as
follows:

Step 1. The current data sample Y,
is classified into a particular class using
current mean estimates for all classes.

Step 2. A '"refined'" estimate of the
mean of the class chosen in Step 1 is com-
puted by stochastic gpproximation as
0 X =Xn_1+v,_7(Y,-X _7). This step is
omit®ed for %1} othe? %lasses for lack eof
data Y,.

Step 3. A "projected" estimate of
8n+1, Xp, may be made by transforming X,
according to the way the algorithm assumes
8 is changing with n. If the change is due
to time, this step is made for all classes;
if the change is due to position within the
current class being scanned, this step is
performed only for that class chosen in

Step 1 above.

Step 4. Increment n by 1 and return
to Step 1.

The algorithm used in the test ex-
amples 1s called a "polynomial fit'" or PF
algorithm. The particular algorithm pre-
sented was derived to make nonlinear es-
timates of degree two and can be specified
as follows:

The refine step (#2, preceding list) is de
noted
* .
Xp = Xp-1 * yn-1(¥p-Xn-1) = ép (1.
and the project step (#3, preceding 1list)

*

Xp = X, * S 3 g4 (2)

where

fax]
nt

true value at step n

§ = ([i(i*1) - JG+DI¥, - [1(i+1]Y)

-3
+ [j(j+l)]Yn_i}/ij(i-jJ
S ST N (3)
and
;H? - Kloz
Yoo, = = (4)

and the estimate of mean square error for
use in the calculation of y, is

2. " ) 2
epvr = (X5 8549)
e : o2
= A (kD) PP PR ()
e + 02
the required terms for error calculation
being
S
KZ B i(1i-7) (o)
and
X - 1+1 7
3% JrISIT (7)




|
!

with K, defined as the sum of these two or

L

K, = K, + Ks. (8)

llerc the variance cof the density function
from which samBles Y, are drawn 1is re-
presented as g*“,

The '"project'" operation of Step 3 and
ecquation (2), takes a form suitable for the
manner in which the mean is assumed to vary
with time while in the CF algogithm, "pro-
jection' is accomplished as Xy =(1+1/n}X,.
S of equation (3) is an estimate of antic-
ipated change over the next time increment
based in this PF algorithm on the assump-
tion that the true value varies as a second
degree polynomial, which is in turn esti-
mated by the values Yp, Yp._j, and Yp_j.
Equation (4) gives the optimum weigﬁt Yn-1

¥

to minimize epyq. The classifier then uses
Xp as the best available value for en+i
for the next classification, at step n+l.

The ability of the CF and PF algo-
rithms to "track" the varying mean of a
Gaussian density has been tested by com-
puter simulation. The data {Yp} were
drawn from a unit-variance, one-dimensional
Gaussian density with mean 9(n—50}2/2500+1
for n=1 to 100, and the ‘algorithms pro-
duced up-to-date estimates of this mean.
Ten statistically independent runs were
made for 1<n<100; the CF algorithm per-
formance is shown in Figure 1, while the
PF algorithm performance is shown in
Figure 2. For the sake of comparison the
performance shown in Figure 3 is that re-
sulting from a least mean square error fit
of a second degree curve to the set {Yy},
k=1,2,...,100.

IV. TEST OF ADAPTIVE
BAYES CLASSIFIER

An adaptive Bayes classifier is real-
ized by incorporating within the ordinary
Bayes classifier an estimation operation
which uses the PF algorithm to process
samples classified into each class and to
optimally estimate the class density mean
vector at the next classification time{s).
As a test, different data sets were gener-
ated {Bryan and Tebbe, 1970), each having
two equally likely data classes. These
data sets are composed of patterns synthet-
ically produced to simulate a 128x128 pixel
frame of two dimensional Gaussian spectral
scan data. Both data classes were gener-
ated having covariance matrices

1 .5
.5 1

A photograph depicting a display of the true
spatial boundary (not tc be confused with
the Bayes decision surface or boundary)
between the two classes is shown in Figure
4. The area to the left of this wedge
shaped boundary is referred to as class one;
similarly, the area to the right of the
boundary is class two. The shortest and
longest rows of class one data are 32 pat-
terns and 96 patterns respectively; like-
wise for class twa. The data was generated
a row at a time from left to right, with
both mean components of class one varying
according to the relation

E%E{NJZ}Z + 5

.go‘the boundary (N is simply the position
index having an initial value of zero at
the left edge of the frame and incremented
by one at each new position to the right).
Class two data was generated for the re-
mainder of each row. Both components of
the mean vector for class two data were
constants, independent of position. A plot
of the class one means versus position is
shown in Figure 5. Two data sets were
generated each possessing a different
(constant) mean vector. The mean vector
associated with class two of data set one

4

while that of data set two,

1.5
1.5 .

Classification of the two data frames
involved treating each of the 128 individ-
ual horizontal lines of each as a separate,
independent classifier test. Of the two
data sets, the second is the more difficult

to c¢lassify because, for this set, a greater
degree of overlap exists.

class two is

An application suggested was that the
adaptive classifier might be useful in
locating or defining spatial boundaries
between data classes, such as that shown in
Figure 4. Figures 6 and 7 show boundaries
specified utilizing an ordinary Bayes
classifier for data sets one and two
respectively. The ordinary classifier did
not have an adaptive estimator. Instead,
it was continuously supplied the initial
mean vectors for both classes in each of
the two cases.

Figures 8 and 9 show the boundary
specified for data sets one and two by an
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adaptive Baves classifier using the CF al-
gorithm to estimate the mean vectors of
both classes.

Figures 10 and 11 show the boundary
specified for the same two data sets by an
adaptive Bayes classifier using a modified
CF algorithm. The modification was to
subtract the initial value of each mean
vector, apply the CF algorithm, and add
the initial value back. This improvement
was discovered in separate tests of the
tracking ability of the CF algorithm.

Figures 12 and 13 show the boundary
specified for data sets one and two by an
adaptive Bayes classifier using the CF
algorithm with an additional modification.
The modification consisted of restarting
(as if n were 1 again) the algorithm if
the fellowing “confidence interval' con-
ditions were violated:

n
Lx-Y)| <
i=1

35
n

1
n

The erroneous boundary points, in Figure 13
appeared mostly at points where the re-
start was made, due to poor initial tracking
when the algorithm is first started with
little prior training.

Figures 14 and 15 show the boundary
specified for the two data sets by an
adaptive Bayes classifier using the PF al-
gorithm to estimate both class mean
vectors.

V. CONCLUSIQON

It has been found that the class of
estimation algorithms represented by the
PF procedure can be used to make a Bayes
classifier adapt to changing class sta-
tistics. Modifications of the CF algorithm
have also been found suitable.

The PF is a class of algorithms that
predict well; the second degree was used
as an example but algorithms of this.class
can also be derived (with different S and
v formulas) for tracking parameters that
vary with time as an nth degree polynomial,
n=1,2,3,... The PF type algorithm can
also track variations not of the exact
polynomial form assumed because of the
limited memory characteristic of the 're-
fine'" step.

Although two classes and two dimen-
sional data were chosen for these tests,
the techniques described are equally ap-
plicable to more complex situations.
techniques can also be applied to the

These

estimation of other statistics required
by the Bayes classifier.
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Figure 6. Spatial boundaries resulting Figure 7. Spatial boundaries resulting
from the application of an ordinary from the application of an ordinary
Bayes classifier to data set 1. Bayes classifier to data set 2.

Note the false boundaries. Note the false boundaries.

Figure 8. Spatial boundaries resulting Figure 9. Spatial boundaries resulting
from the application of an adaptive from the application of an adaptive

Bayes classifier using the CF algo- Bayes classifier using the CF algo-
Tithm to data set 1. Note the rithm to data set 2.. Note the

false boundaries. false boundaries.
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Figure 10. Spatial boundaries resulting Figure 11. Spatial boundaries resulting
from the application of an adaptive from the application of an adaptive
Bayes classifier using the modified Bayes classifier using the modified
CF algorithm to data set 1. CF algorithm to data set 2.

Figure 12. Spatial boundaries resulting Figure 13. Spatial boundaries resulting
from the application of an adaptive from the application of an adaptive
Bayes classifier using the modified Bayes classifier using the modified
CF algorithm and the divergence CF algorithm and the divergence
criterion to data set 1. criterion to data set 2.
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Figure 14. Spatial boundaries resulting
from the application of an adaptive
Bayes classifier using the PF algo-
rithm to data set 1.

Figure 15. Spatial boundaries resulting
from the application of an adaptive
Bayes classifier using the PF algo-
rithm to data set 2. 8
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