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CANONICAL ANALYSIS FCR INCREASED CLASSIFICATION

SPEED_AND CHANNEL SELECTION®

Walter Eppler

Lockheed Electronics Company
Aerospace Systems Division
Houston, Texas (77058)

I. ABSTRACT

The quadratic form can be expressed as a monotonically
increasing sum of squares when the inverse covarlance
matrix is represented in canonical form. This formulaticn
has the advantage that, in testing a partlicular class
hypothesls, computations can be discontinued when the
partial sum exceeds the smallest value obtained for other
classes already tested. A method for channel selectlon Is
presented which arranges the original input measurements
in that order which minimlzes the expected number of compu-
tations. The c¢lassification algorithm was tested on data
from LARS Flight Line Cl and found to reduce the sum-of-
products operations by a factor of 6.7 compared to the
conventional approach. In effect, the accuracy of a
twelve-channel classification was achleved using only that
CPU time required for a conventional four-channel
classlfication.

II. INTRODUCTION

The well-known classification rule based on the maximum-likellhood criterlon
and assumed normal probabllity denslity functions involves evaluating quadratic
forms in the case of M classes. Sometimes a linear transformation 1s performed
¢n the original N measurements to form R < N measurements for use in evaluating
the quadratic forms resulting in a reduction in computation time. The disadvantages
of this approach are:

1. Additional computer time is required to perform the linear transformaticns.

2. It is inevitable that some (usually small but unknown) class separabllity
1s lost in the dimensionality-reduction.

The algorithm described 1in thls paper has the advantage that 1t uses only as
many channels as necessary to make the desired discriminztlons; 1f necessary, all
channels are used and no information 1s sacrificed. Classiflcation speed 1s
achieved by using first those channels which are most important for discrimlnation.
The paper describes how the proper order is determined; the derivation has obvious
application in the general area of channel-selection. Empirical results are
presented to show the optimum channel-order and resulting increase in classification
speed 1n typical applications.

¥This research was funded by NASA 2t the Johnson Space Center under
Contract NAS-12200,
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III. CLASSIFICATION USING THE QUADRATIC FORM

Computer-tasgsed classification systems are cften based on the assumptlion that
multivariate measurements from the classes of interest are normally distributed. ;n
this case the cohdltional probability density function i1s given by Eq. (1)t
where the mean vector

1 1 T . ~1
(X = exp [——(X - M,)” K (X - M ﬂ (1)
pi (2ﬂ)N/2|Ki]l/2 2 i i i

and covariance matrix are computed from training samples. Because it plays such an
important role in the derivations which follow, it is useful to define the quadratic
form according to Eq. (2). The maximum likellhood decision rule given

Q(x) = (X - Mi)T K;l(X - M) (2)

by Eg. (3) assigns a sample to the most-llkely c¢lass. Combining Egs. (1) - (3)

Ir: PJpJ(X) > Pipi(X) all j # 1 Then: X=+j (3)

results in the familiar decision rule given by Eg. (4) where the class-palr constant

If: QJ (X) < cij +Qu(X) all J # 1 Then: X=J {(4)

Cij is defined by Eq. (5). In order to classify a sample into one of M classes,
it 1s necessary to compute the quadratic form in Eg. (2) M times. The CPU
2
K, |P
¢,y = in J—i——ig (5)
|Kj[Pi

time required to compute each quadratle form is proportional to N(N + 1) so

that the time per sample varies as MN(N+1) for LARS-1like classification algorithms.
One of the cobjectives of this paper is to demonstrate a method which reduces signifi-
cantly the CPU time without in any way changing the classification result.

IV. UNITARY CANONICAL FORM

It is well-known that a unitary matrix can be found which satisfies Egs. (&)
and (7) where Gik i1s the Xth elgenvalue of Ki' The term cgk 1s necessarlily positive

- -
0
ol
Y2
OiN
T - T _
Uy Uy o= U, Uy I (7)

tNotation used in this abstract is defined 1n the Glossary of Symbols
in Section X.
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for all k because the covariance matrix 1is positive definite. This notation 1s
convenient because 1t suggests that %ik i1z the standard deviation of the scatter along
the kth principal axis., It is useful to consider the transformation defined by Egs. (8)
and (9) where V,  1is the kth column elgenvector of K.. According to Eq. (9) the

scalar elements Yig are the projections

.

'-‘ — -
T
i1 Vi1
- = = T - 8
Yoo Vil < Uy (X - M, ) Yik (X - My) (8)
’ T
Yin Vin
= L. —
Vi = Vi (X - Hy) (9)

(i.e., dot products) of (X - Mi) along the eigenvectors VEk' By combining Egs. (2),

(6), (7), and (8) it is possible to express the value of the quadratic form accordlng
to Eg. (10}.

N

2 2
Q = Z yik/d‘ik (10)
k=1

V. CLASSIFICATION USING THE UNITARY CANORICAL FORM

It is possible to restate the declsion rule glven by Eq. (4) in the form of Eq. (11)
which specifies all classes i which X does not belong to.

Ir: Q(X) > QJ(X) - C;y Then : X not Class i (11

Combining Egs. (1C) and (11) and regarding the summation in Eq. (10) to being
carried out in two parts results in Eq. (12)

n N
, 2 , 2 2, 2
if: E Y/ * z Vig/91x > 93(X) - Cy, Then: X not Class 1 {12)
k=1 k=n+1

N

Because E yik/oik 15 always positive the maximum Iikelihood decislon

k=n+1

rule takes the following form:

193
2 2 .
; If: :E:yik/gik > QJ(X) - Cij Then: X not Class i1 (13)
k=1
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This formulation (Dye, 1974) is extremely useful because it states that computa-
tions for Class 1 may cease when the partial sum Qi glven by Eg. {14) exceeds the value

n
a > /oo
< zyik/”ik (1)

S =y

QJ(X), the value of the quadratic form for the correct class, minus Cij' Because the
values of J and Q,(X) for a given pixel are not known until all classes have been tested,

~

Qi is compared with QRCX)’ the smallest value of quadratic form for classes tested up

to that peoint. In other words, at any stage Class i1 1s the candidate and Class £ is
the current best estimate. The correct class 1s the value of L after M classes have
been tested.

This suggests the classification algorithm shown in Fig, 1. The first step is
to make & class hypothesis. As the Initial candidate, select that class asslgned to
the previous pixel; then test all other classes in order of decreasing a pricri pro-
babilities. TFor each candlidate class accumulate the partial sum Qi by successively
adding y2,, /O'Eik until either:

1) After n cycles through the lcop Qi exceeds (Q2 - Cil) in which case Class 1

1s discarded as a candidate.

2} After N cycles through the loop éi 1s less than (Qz - Ciﬂ) in which case
Class 1 replaces Class R as the current best estimate.

i Affer all classes have been tested the maximum-likelihood estimate 1s J = &. The
f advantage of the algorlithm based on Eq. (13) and Fig. 1 is that 1t uses only as many

i channels as required to make the desired discriminations; if necessary, however, all N
channels are used and no information 1s lost.

VI. SELECTING THE OPTIMUM SEQUENCE OF EIGENVECTORS

Prom Egs. (13) and (1%) and Fig. 1 it is apparent that CPU time 1is
minimized By causing 51 t¢ dncrease by the largest possible increment,
yik/cfk , for each value of 1 <k <N. This results 1n discarding incorrect
hypotheses at the minimum value ¢of n

h

The expected value of the kt inerement averaged over all X from Class j

i is glven by Eq. (15).

i 2,2 _ 1 T 2
: ik/"ik)J S o ([Vik(x - Mi)] >,} (15a)
ik
o T
i _ Vik ™ ik :
‘i 7
g v v
i - _1k - - T] ik
o Ry v oy - mpon - wy ]°1 (15¢)

For specifiled values of 1 and J 1t is possible to evaluate Eq. {15¢) for
1 <k < N and teo arrange the vectors VEK/GIK in the order of decreasing values

of <?§k/°§k>J . This is the order in which they shouid be read in Eq. (9)

so that Q, , given by Ea. (1#), always increases at the fastest rate.
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Note that for a given candidate Class 1 , the optlimum order for using
the elgenvectors depends on Jj , the correct class. DBecause J 1s not known
un* il all M ¢lasses have been tested, the value & for the current best
estimate, 1s used to select the prestored order in which the N eigenvectors
are used.¥® According to Fig. 1, the M classes are tested in the following
crder:
1Y The first class tested is the one assigned to the nelghboring pixel; !
this hypothesis 1s 1likely to be correct due to the spatial correlation
witnin typical scenes.
2 The remaining classes are tested in order of decreasing a pricrt
probabilities.
With this approach it is likely that & = j after only a few classes have been
tested and therefore the resulting eigenvector order is best suited to .
discarding incorrect class hypothesis very early in the computaticn of Qi

It is instructive to determine the Increment added to Qi when i = J 3
i1.e., when the candidate class is the correct class. Equation {(16) is

T
2,2 _v V. _
/o) 5 - = k K, Ojk 1 for all 1 < k < N a6
ik Jk

obtained by combining Egs. (6), (7}, (8), and (15c). According to Egq. (16)
Q. 1increases linearly from 2eroc %o NT as shown in Fig. 2 For other

~

candidate classes Qi increases to Qi(X) for k = N . According to the
decision rule given by Eq. (13), the computations for Class 1 # j may cease
ffter n terms when ai > (QJ(X) - Cij) which for the expected case is when

Qi > (N - Ci.) as shown in Fig. 2. From this figure it is apparent that the
eigenvectors should be used in that specific order which causes Qi to increase

most rapidly so that it reaches (N - Cij) for the minimum value of n

VII. CLASSIFICATION BASED ON THE LOWER-TRIANGULAR CANONICAL FORM

It is well known (Forsythe, 1967 and Van Rooy, 1973) that the symmetric matrlx
Kzl can be represented in terms of the lower triangular matrix Li according to Eq. (17).

T

-1 _

Ki —-LiLi {17a)
Ly . <:)
Lio1 Feoo

Ly = T (17b)
Lint tawe 1NN

Using the transformation given by Egs. (18) and (19) makes 1t posslble to express
the quadratic form according to Eq. (20}.

. ~T
Yi1 Vi1
o= ¥ = L (X - Mi) =1V (X -~ M) (18)
5 T
| iN Vin
o= V(X - M) (19}
Yig ik i
N .o o
LX) = 20
Ql( ) kgl yik ( )

¥This approach is fundamentally different from the one used by Bendix

(Dye, 1574) which uses only one elgenvector order for each candidate class.

. tThis agrees with the well-known result that Q,(X) has a chi-square
distribution with an expected value equal to N J
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oT
These equaticns are exactly analogous to Egs. (8)-(10) except that Vik are rows from the

lower triangular matrix L rather than the unitary matrix U, . As before, 1t 1is

i
useful to define the partlial sum Q1 by Egq. (21); again 1t is compared with

(QE(X) - Cil) to determine whether Class 1 should be discarded as a hypothesis.
n 2
4, = 2 Vik (21)

By analogy with Eq. (15) the expected value of §2 is given by Eq. {22).
1k/j

-

~

2\ _ T T
<yik 5= Vil ooy - - wpT vy (22)

In the case of the lower triangular canonical form it 1s doubly advantageous to
minimize &

1) As before, 1t reduces the number of terms in the summatiocn for éi

2) Because ﬁ?k is zero beyond the kth element, the number of terms i1nveolved 1In
computing each iik is equal to k ; see Eq. (19). This means that less CPU

time 1s required to compute the garly elements.

By permuting the channel crder in the measurement vector X (and thereby changing Ki L

=D ’
<;y1£>j , glven by Eq. (22), to

be in descending order.cn k . The result is that the most Ilmportant single channel 1s
used first, the most important pair of channels is used second, etec. This causes Qj

i!
KJ’ M, and Mj)’ it is rossible to cause the values

to increase at the fastest possible rate so that an incorrect hypothesis can be dis-
carded after the fewest number of terms; see Fig. 2.

VIII. CHANNEL SELECTION AND CLASSIFICATION SPEED

Programs were written to accomplish channel selection and classlflcation using the
lower triangular canonical form according to Eqa. (17) - (22). These programs, called
SELECT and CLASS, were written in FORTRAN and require less than 20,000 words of core
storage so thdt they can be run on almost any computer. The system was tested using
twelve-channel multispectral scanner data from LARS Flight Line Cl; ground-truth data
was avallable for nlne c¢lasses wlth the designatlcons glven in Table 1.

The program SELECT takes card inputs glving the mean vector and covariance matrix
for each class and puts out a tape giving a) the optimum channel order, b) the elements

of Li in the optimum order, ¢) the elements of Mi in the optimum crder; these are

the inputs required by CLASS. The crder is optimized for each combination of 1 and J
such that Q; » &lven by Egs. {21) and (22), 1increases as fast as possible with k. 1In

addition to tape output, SELECT alsc produces listings giving statlstical data described

in the following paragraphs. To run SELECT in the case of LARS Flight Line C1 (N=12, M=9)

required 30 sec. of CPU time on an IBM 360/67.

The lower-triangular cancnical form is ideally sulted for evaluating the usefulness
of the various channels. It 1s apparent from Eg. (19) that giﬁ » the last term included
Qi > invelves only the first fi measurements in the permuted measurement vector. In
cther words, the process of permuting X to put y%kA in decreasing order places the

original measurements in order of decreasing usefulness for discriminating Class J from
Class 1. Table 2 gives the first four (out of 12) channels whleh are best for each of
the 72 pessible (i, J) - combinations, where 1 # j . Table 3 glves the number of

(1, j) - combinations for which each channel is used at each place in the coptimum order;

14-14

e N P R M v -




e.g., Channel 9 is used first for 20 (1, §) - combinations and second for ancther 10
comblnatlons. Table 3 alsc gives the average placement for each channel. The channels
in order of decreasing usefulness (averaged over all combinations) are 9, 12, 1, 10, 11,
6, 8, 2, 7, 4, 5, and 3.

Ancther ocutput from_the program SELECT is an estimate of 1 , the number of iter-
ations (i.e., terms 1n Qi } which must be used before the expected value of Qi s

(1) giliven by Egq. (23), exceeds (N—CiJ) as shown 1In Fig. 2.

Q,

~

n

- 3

Table 4 shows that for mest (1,j) - comblnations only one term is needed. However, for
j=6and 1 =5 {l.e., testing for Class 5 on a pixel belonging to Class £} four terms
must be used before Qij(n), the expected value of Qi s exceeds (N—Cij) and the incorrect

hypothesls can be discarded.

A more realistic estimate of n is obtained by taklng into account the fact that
Q does not always equal N , but is itsell a random variable having a Chi Sguare

density function with N degrees of_freegdom (Eppler, 1872). The probabllity that exactly
A iterations are required befcre Qij(n) > (Qj - cij) is given by Eq. (24).

—1j(~) * CiJ
Pij () = f XN(Q)dQ . {(24)
Eij(ﬁ-l) * Cyy

As an example, Table 5 glves Pg?(ﬁ} from the SELECT output 1isting. The average number

of iterations for a given (1, J) - combination is given by Eq. {(25); Table 6 gives ﬁij
for all possible (i, j) - combinations.

M=

N iePy  (7) (25)

|

The number of sum=-of-products which must be computed in the course of f iterations is
[0.50 (A + 1) + A] so that the average number of sum-of-product operations is given by
Eq. (26). Table 7 gives the average

- N . N
0y = ggi [C.50 (A + 1) + @] Pij(n) .{26)

number of operaticns for all possible (i, j) - combinations.

Tables 4 - 7 are based on theory and are derived from statistical parameters of the
data and application (i1.e., mean vector and covariance matrix for each class of inter-
est). Tables 6 and 7 show that almost all (i, j) - combinaticns can be discriminated
using only one or two terms (l.e., channels of data) in the partial sum glven by Eq.
(21) and this requires five or fewer sum-of-product operaticns per class. This 1s a
Substantial savings compared with the conventicnal approach which always uses all
twelve channels and performs $0 sum-of-product operatlions per class.
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The program CLASS takes as input the multispectral scanner data tape and the output
tape from SELECT and processes the data according to Egs. (13), (17) - (21), and Fig. 1
to classify specified segments of data. The program was checked out using data from
LARS Flight Line Cl with results described in the following paragraphs.

The flrst tests were performed on data within the 23 training fields used to derlve
the mean vector and covarisnce matrix for all classes. Table 8§ gives the empirlcal
| probability that, for the given training field, Hypothesis 1 can be discarded afte
p fi terms in the partial sum Eq. (21). For example, the incorrect Class 4 can be dis-
| eriminated from the true Class 2 on the basis of only one channel¥® nearly 89% of the
time; use of two channels* made diserimination possible 100% of the time. Table & also
gives the 512 , the average number of terms required to discard Hypothesis 1 when

the pixel belongs to Class 2. These values are in good agreement with the corresponding
column (i.e., J = 2) of Table 6.

After classifying all of the training flelds it was pcsslble to derive the average
i number of lterations required in the case of certain selected Li, J) - combinations.
1l Table 9 shows the empirical results for those cases (in which ny g > 1.5} circled in

M Tables 6 and 7. Comparison shows that the empirical results in Table § are 1in general
’ agreement with, although slightly higher than, the thecretieal values given in Table 6,

Next the program CLASS was used to classify 20,000 plxels of lz-channel data from
LARS Flight Line C1. It was found that the probabllity of requiring R terms varied
accordling to Table 10. It shows that an lncorrect hypothesis was discarded by using
only one channel 54% of the time and by using two channels 75% of the time. By using
the data in Table 10 it was determined that, averaged over these 20,000 pixels, the
average number of channels (l1.e., terms in Eq. (21)) per class was 2.8 and the average
¥ number of sum-of-product operations per class was 13.6. The CPU time cn an IBM 360/67
| was approximately 2 min.

} Clagsification algorithms currently in use evaluate the quadratic form tc comple-

' tlon for all classes; for twelve channels 90 sum-of-products operations are required.
The program CLASS based on Egs. (13), (17)-(21), reduced the computatlions for the 20,000
plxel test case by a factor of $0.0/13.6 = 6.7 . Equation (27) gives Rmax , the

maximum ratio of improvement for sum-of-product operations. It results when the (M-1)
incerrect classes are discarded on the first iteration and all N channels are used
for the correct class.

N ) M
SIS W ¢ (27)

p
N(N + 3

For the test case (M = 9 and N = 12) the maximum ratio of improvement 1s 7.6, only 15%
greater than the value &.7 actually experienced for the 20,000-pixel test segment. It
i is apparent from Eq. (27) that the program CLASS offers the greatest improvement over

‘ the conventlonal approach for theose applicaticons with large M and N . These are
exactly the appllcations for which the conventional approcach requires large amounts of
computer time.

Another approach employed by some investigators (Decell, 1973) 1s to form N

i measurements which are welghted linear sums of the original N channels. In order to
; limit the number of sum-of-product operatlons per class to 14 (the value cbtalned uslng
the program CLASS on the test segment), the orlglnal 12 channels would have to be re-
duced to N = 4 . The disadvantages of this approach compared with usling CLASS are:

1. Additiconal computer time 1s required to perform the linear transformations.

2. It 1s 1lnevitable that some (usually small but unknown) class separability is
lest in the dimensionality-reduction.

¥From Table 2 it 1g seen that Channel 1 is used first and a combination of Channels
1l and 9 is used second.

la-16
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I¥. SUMMARY AND CONCLUSIONS

It has been shown that the quadratic form can be expressed as a monotonlcally in-
creasing sum of squares when the inverse covariance matrix is represented in the cano-
nical form of Eq. {é) or Eg. (17a). This formulation has the advantage that, 1n testing
a particular class hypothesls, computations can be discontinued when the partial sum 1in
Eq. (14) or Eg. (21) exceeds the minimum value obtalned for other classes already
tested, The lower-triangular canonical form given by Eq. (17a) was selected for de- !
tailed investigation over the unitary form in Eg. (6) because a) it requires less com-
putation and b) retains the identity of the original channels.

Using Eq. (22) 1t is possible to arrange the original input measurements in that
order which minimizes the expected number of computations; results for a particular
test case are presented in Tables 2 and 3. A4lso using Egq. (22) 1t is possible to com-
pute the expected number of computations required to discriminate one class from another
with results presented 1n Tables 4-7. The classificatlion algorithm was tested on a
20,000-pixel segment of LARS Flight Line Cl and found to reduce the sum-of-products
operations by a factor of 6.7 compared with the conventional approach. In effect, the
accuracy of twelve channel classification was achieved using only that CPU time required
for a conventional four-channel classification.

The author 1s pleased to acknowledge the asslstance of K. Baker and A. H. Feiveson
of NASA/JSC, R. H. Dye and F. H. Johnson of the Bendix Corporation, and E. L. Wllson
and C. A. Helmke of Lockheed Electronics Co. who contributed in various ways to the
formulation and preparation of this paper.

X. GLOSSARY OF SYMBOLS

Symbol Meaning

N Number of observations (i.e., channels of multispectral scanner data) avall-
able for each pixel.

X N-dimenslconal column vector of observed values.

Py Conditicnal probablliity density function for Class 1

Mi Mean vector for Class 1 computed from training samples.

Ki Covariance matrix for Class 1 computed from tralning samples.

9y Quadratic form variable defined by Eq. {(2).

Pi A priori probabllity for Class 1 .

Cij Class-pair constant defined by Egq. (5).

M Number of classes for a glven applicaticn.

Ui Unitary transformation matrix defined by Eqs. {6) and (7).

94k Square root of the kth eigenva' ue of K, . It is Interpreted tc be the
standard deviation in the direction parallel to the kth elgenvector.

I Identity matrix.

Yy N-dimensional column vector defined by Eq. (8).

Vi The kth element of Yi .

Vik The ktk column eigenvector of Ki

Qi Partial sum obtailned using the unitary cancnical form; it is defined by

Egq. (14),
lA-17




Symbol Meaning

n The number of terms which must be included in Qi before Class 1 can be

discarded as a candidate.

J Designation of the correct class.

L Designation of the current best estimate of the correct class. !

i Designation of the candidate class being tested.

Li Lower triangular matrix defined by Eg. (17).

§i N-dimensional column vector defined by Eq. (18).

yik The kth element of Yi

Vik The kth ecolumn of Lf

éi Partial sum obtalned using the lower triangular cancnical form; 1t 1s defined
by Eq. (21).

5! The number of terms which must be included in ﬁi before Class 1 can be
discarded as a candidate.

N The number of linear combinations (of the original N measurements) used for
classification with the dimensionality-redu-tion approach.

T Threshold value used to establish the null class.

Pij(ﬁ) Probabllity that K 1terations are required discard Hypothesis 1 when the
pixel belongs to Class J .

XN Chil Square density functions for N degrees of freedom.

ﬁij(ﬁ) Expected value of éi when pixel is from Class J arnd n terms are
included; see Egs. (21) - (23}.

ﬁij Average number of terms in Eg. (21) required to discard Hypothesls 1 when
pixel belongs to Class J .

613 Average number of sum-of-products which must be computed to discard Hypothesis
1 when pixel belongs to Class ]
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Compute the Dot Product
T
Vigld-M,)

*yik

y o E— k = k+1 ft—
ik

s 2 .2 Q—Initialﬁ = 0
9y Q F ¥ Ty 1

Have All M Classes
Been Tested

Select Next Less b = &
Likely Class QJ(X) - q

Fig, 1: Classification Algorithm Based on Eq. (13).
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Filg. 2: Dependence of the Expected Value of Qi On The Number of Terms,
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Table 1: Numerical Designation for Ground Truth Classes on LARS Flight Line CI.

Class Number 1 2 3 it : 5 6 7 8 g

Class Type Soybean Corn Oats Wheat I Red Clover Alfalfa Rye Bare Soll wheat II

Table 2: First Four Channels in Order Which Minimizes the Number of Iteratlons Required
to Discard an Incorrect Hypothesis.

N=12

I J 1 2 3 4 5 6 7 8 9

U i1,10,1,12 | 1,19,12,6 | 1,9,2,10 |12,6,11,5 |12,6,11,2 |10,1,8,2 |9,12,6,1 | 10,1,8,2
2 110,6,9,7 | -=--221% 10,6032°8 | 16,6,9,7 | 12%6.1007 |12%10,9.6 |10.1.8.2 | 9.6,8,7 10.1.8.2
3 | 1,7,11.8 | 10,4,12,1 | -2-il-2 11010,12,2 | 11015,16,8 | 12032]30,8 | 8,10.1,7 | 12,1,7,11 | 8,12,1,11
i [1,9)6,8 1,4,6,11 11,9,6,12 | ~ii-2o. 11.8,12,8 !11.3,12,8 | &,10.7.9 | 1,12,108,6 | 6,12,10,7
5 19,1.12,2 §1,10,8,2 9,2,10,6 | g,2,10,6 | —--iu-l 1,9,6,10 |9.2,8,1 9.6,1,7 9.2,10,6
6 | 12,6,1,9 | 1,10012,6 | 3.6,2,10 | 9.,2.6,10 |6,11,2,10 | =momicee 9.2.11,8 | 9.6,1.7 10,2,9,11
7 | 8,1,12)7 | 19,1.8,2 6,12,9,7 | 6.9.7.10 | 13,11,7,2 |12,11,7,1 | =-2--i- 13,7,1,8 | 1002.2%6
& {9,12,11,8 { 9,12,11,10 { 12,9,1%,1 | 1.10,5,12 |12.9,i1,8 |12.9,11.8 | 12,11,1,9 | -—-—me- 10,1,8,11
g | 9:1,11,8 | 9;11)1,7 9,32)71%8 | 133,127 | 9.,12%11%8 |g9,11.7,12 |[9,12,8,8" J1,5,2,7 | --22-il

Table 3:; Number of Cases {(Out of 72) Each Channel is Used on the Kth Iteration;
Also Given is the Average Flacement.

PLACEMENT

Channel Average
Number i 2 3 ) 5 6 7 8 g 10 11 12 Placement

1 L2 10 10 5 5 3 & 6 5 2 L] 4 5.17

2 0 8 3 10 8 11 7 4 g 2 3 7 6.53

3 3 1 0 0 2 2 4 3 9 10 24 17 10.07

u 0 1 1 ¢ 6 12 8 13 7 9 12 3 8.17

5 1 1 0 i 6 9 19 12 1i 5 4 8.29

- = 11 7 9 6 4 7 6 3 7 2 5 5.75

7 2 6 12 7 9 T 5 4 5 6 9 7.06

8 3 1 8 15 10 11 7 2 i 6 1 4 5.90

9 20 10 5 5 4 3 3 3 6 6 4 3 4,89

' v 1. 9 8 7 6 4 ] 3 5 6 5 3 5.33

Ll 7 § 12 5 10 3 7 4 5 5 3 5 5.72

. 12 13 i2 11 y 4 4 3 4 3 3 3 8 5.13
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This Estimate is Based on Apprcach Deflned by Fig 2.

N=12
J
I 1 2 3 4 5 6 7 8 9
1 _— 2 1 1 1 1 1 1 1
2 2 -—| 1 1 1 1 1 1 1
3 2 1 -] 1 1 1 1 1 1
i 1 1 2 - 1 1 1 1 1
5 1 1 1 1 -— | 4 1 1 1
6 1 1 1 1 2 — |1 1 1
7 1 1 1 1 1 1 - 1 1
8 1 1 1 1 1 1 1 .
9 1 1 1 1 1 1 3 1 -

Table 4: The Number of Iterations Required to Discard an Incorrect Hypothesis.

Table 5: Probability That [ Terms are Required to Discard Hypothesis 9

When Pixel Belongs to Class 7.
1 2 3 y 5 6 7 8 9 10 11 12
0.13 0.40 0.26 0.07 0.C5H 0.c2 g.o02 0.02 0.01 0.01 0.01 .00

Table 6: The Expected Number of Iterations Required to Discard an Incorrect

Hypothesis. This Estimate Based on the Assumption that @ is Distributed
According to Chi Square. J
N=12 o

J

I 1 2 3 b 5 6 7 8 g

1 —--_ | @1D| 1.43| 1.01| 1.00| 1.00) 1.03 | 1.19] 1.00
2 -—— 1.00 1.00 1.00 1.00 1.C0 1.00 1.00
3 1.29 —_—— 1.40 1.01 1.00 1.17 1.00 1.C0
4 1.05 1.11 1.48 —_ 1.00 1.00 1.13 1.00 1.00
5 1.00 1.00 1.00 1.00 -——= 1.00 1.0C 1.00
6 1.01 | 1.17 | 1.c2 | 1.00 | G.8B| == 1.00 | 1.00 | 1.C0
7 1.01 1.00 1.01 1.00 1.00 1.00 - 1.00 1.03
8 1.00 1.00 1.00 1.00 1.00 1.00 | 0o - 1.00
9 1.22 | 1.03 | 1.33 @ 1.00| 1.00 | @.8® | 1.08 | ——-
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Table 7: The Expected Number of Sum-of-Products Required to
This Estimate 1s Based on

Discard an Incorrect Hypothesis.
the Assumption that

Q

is Distributed According to Chi Square.

J
N=12
= 1 2 3 4 5 7 8 9
1 -=- | G.8p| 3.30| z2.04| 2.00 2.08 | 2.57 | 2.00
2 == 2.00 | 2.00! 2.00 2.00 | 2.00 | 2.00
3 2.87 ] --- 3.36 | 2.04 2.58 | 2.00 | 2.00
I 2,15 | 2.331 3.45 | -—- 2.00 2.38 | 2.00| 2.00
5 2.00 | 2.00| 2.00| 2.00} === 2.00 | 2.001 2.00
6 2.03 | 2.50| 2.06 | 2.00 2.00 | 2.00 | 2.c0
7 2.04 | 2.00| 2.02| 2.00{ Z2.00 — 2.00 2.1g
8 2.00 | 2.00| 2.00| 2.00| 2.00 2.00 | --- 2.0
9 2.67 | 2.10| 2.99 | G.8®| 2.00 2.23 | --—-

Table 8: Experimental Probabllity That

Hypothesis 1 for Trainling Samples Belonglng to Class 2.
Average Number of Iteratlions.

Ifteratlons are Required to¢ Discard

Also Gilven 1s ©n , the

Correct Class:

2 Number of Channels:

Number of Pixels = U83

Class Number of Iterations,

Hypethesis Average
i 1 2 3 4 5 8 10 11 12
1 0.164 | 0.493 | 0.249 | ©.052 | 0.037 | 0.014 | 0.008 | c.o14 | oO. 0.021 0.004 0.033 2.994
2 0.0 0.0 0.0 0.0 0.002 | 0.002 | 0.002 | 0.006 | O. 0.012 0.010 0.959 11.884
3 0.712 | 0.280 | 0.006 | 0.0G2 | 0.0 0. 0. 0.0 0.0 0.0 0.0 0.0 1.298
4 0.888 | 0.112 | 0.0 0.0 0.0 0. 0. 0.0 0.0 0.0 0.0 o.0 1.112
5 0.871 0.029 0.0 Q.0 0.0 0. 0. 0.0 2.0 0.0 0.0 ¢.0 1.029
§ 0,812 | 0.176 | 0.010 | 0.002 | 0.0 0. 0. 0.0 0.0 0.0 0.0 6.0 1.203
7 0.996 | o.ool | 0.0 0.0 0.0 0. 0. 0.0 0.0 0.0 0.0 0.0 1.004
8 1.000 | 0.0 0.0 0.0 0.0 0. 0. 0.0 0.0 0.0 0.0 0.0 1.000
9 0.934 | 0.062 | 0.004 | 0.0 0.0 0. 0. 0.0 0.0 0.0 0.0 0.0 1.070

Table 9: Average Number of Iterations

Required for

Selected Cases

Circled in Tables € and 7.
J 5 5 7
I 6 5 9
gﬁggiinngamples 1524 {1524 |1520 {1534 (1539 | 891 | 1247
Ayerage Number 2.40 [1.80 |[2.88 2.1 |3.11 |3.84 | 3.70
Table 10: Probability That n Terms are Used in Eq. (21) for the Case of

a 20,000-Pixel Segment of LARS Flight Line Cl.

ol 1 2 3

4

5

6

7

10

11 12

P{fi; 0.543 | 0.204 | 0.070

0.025

0.018

0.014

0.012

0.009 {0.008

0.006

0.006 0.085
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