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DATA RESOLUTION VERSUS FORESTRY CLASSIFICATION AND MODELING*

by

E. P. Kan, D. L. Ball, J. P. Basu
Lockheed Electronics Company, Inc.
Houston, Texas

R. L. Smelser
Forest Service, U.S.D.A.
Lufkin, Texas

ABSTRACT

This paper examines the effects on timber stand com-
puter classification accuracies caused by changes in the
resolution of remotely sensed multispectral data. This in-
vestigation is valuable, especially for determining optimal
sensor and platform designs.

Theoretical justification and experimental verification
, support the finding that classification accuracies for low
i; resolution data could be better than the accuracies for data
=w with higher resolution. The increase in accuracy is con-
. strued as due to the reduction of scene inhcomogeneity at
i lower resolution. The computer classification scheme was a
i maximum likelihood classifier.

*The material of this paper was developed under NASA Contract NAS 9-12200 and pre-
pared for the Earth Observations Division, NASA, Johnson Space Center, Houston, Texas.
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I. INTRODUCTION
Two topics on data resclution versus forestry analysis are discussed:

e theoretical effects on classification accuracies caused by changes in data
resolution;

e verification of the thecretical conclusions by perfeorming a timber stand classi-
fication using real and simulated data with various reduced resolutions.

It is intuitive that multispectral data with different data resolution (i.e., the
actual ground area of a picture element (pixel} recorded by a multispectral scanner)
permit different classification accuracies for varied hierarchies of ground features.
The question, "How does the computer classification accuracy vary with data resolution,
and what is the optimal data resolution for computer classification of remotely sensed
data?", naturally arises and needs to be answered.

The ground features of interest to this study are timber stands of different forest
types and/or condition classes. Species composition defines the forest type, while the
age, size and, sometimes, condition determine the condition class of the timber stand.

Forest scenes are particularly complex, especially when viewed from low altitudes,
because of the nonhomocgeneity of tree patterns, the nonuniformity of the species composi-
tion of trees in the stand, the variation in the undergrowth and spacing between individ-
ual trees, and the texture effects caused by shadows. All these effects would be signif-
icant for multispectral data with resclution less than, for example, (10 meters)

Present machine processors cannot utilize information extractable from low-altitude
data as photointerpreters can. Photointerpreters can use to advantage nonspectral in-
formation (such as texture, shape of tree c¢rowns, shadows of trees indicating their
profiles) from high resolution data; but machine processing systems like LARSYS (a system
developed at the Laboratory for the Applications of Remote Sensing (Phillips, 1973})
cannot. Thus, forest scene complexities in high-resolution data make stand identifica-~
tion difficult, Smoothing out the complexities would be expected to improve
classification accuracies.

The complexities in forest scenes are smoothed by simulating lower resolution data
from high resolution data with an averaging process. This simulates the photographic
scale reduction process and derives data sets equivalently scanned at higher altitudes.
With this kind of modeling, the theoretical effects on classification accuracies caused
by resolution reduction were examined, and experimental work was performed to verify the
theoretical conclusions.

II. TECHNICAL APPROACH

II.1 Simulation ¢of Data at Reduced Resclution

To simulate data at lower resolution from data at high resolution, an averadging
relationship is assumed between data at different resolutions. This electronically
simulates the photographic scale reduction process, and also simulates data scanned
eguivalently at higher altitudes.

For example, data {xij} has a resolution of (8 meters)z- data {) } has a 2¥

{2 times)} reduced resolution, i.e,, coarser resolution of (16 meters)2 (5ee figure 1;
Xis and ylj denote the spectral measurements at line i and column j.) Thus, the same

{16 meters)? ground area covered by one y measurement will be covered by four (8 meters)?
X measurements, The averaging relationship is

¥R b Xy ¥ gyl

for the reduced pixel in line 1 and column 1. In general,

+ X + X + X

=1
Ym,n = 1 (x2m-l,2n-l 2m-1,2n 2m, 2n-1 2m,2n)
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The same averaging is done over individual channels; i.e., the 2X reduced data has the
same number of channels as the original unreduced data, and has effectively half as many
lines and half as many pixels per line.

This simple averaging process is assumed in the theoretical derivation and forestry
application discussed in sections III and IV. The more general process of weighted
averaging is also discussed in section III.2, i

where
Yo,n = ¥1¥2m-1,2n-1 ¥ ¥2%2m-1,2n T Y3%om,2n-1 T Ya%2m,2n
with -5
w, > 0
l —_—

and

5

w, = 1.
i=1 *

II.2 Classification and Evaluation Procedures

The classification technique is the widely used scheme of supervised pattern recog-
nition. That is, training fields are selected to train the maximum likelihood classifier,
such as in LARSYS (Phillips, 1973). Normal statistical distributions are assumed on the
training classes. Equivalently, the Bayes' classifier using equal a priori probability
is employed (Anderson, 1958).

The evaluation procedure is the calculation of classification accuracies of training
fields/classes. The classification accuracy is a measure of the statistical probability
of correct classification (PCC) (Anderson, 1358) which is a widely accepted evaluation
parameter. Also, the divergence measure {(Marill and Green, 1963) is calculated to con-
vey the extent of separability between classes. In special cases, it has been estab-
lished that the divergence measure has direct relationship with PCC.

III. THEORETICAL RESULTS

III.1 Probability of Correct Classification

The following discussion shows that there is a gain in the PCC when the data resolu-
tion is lowered. Actually, the probability of misclassification (PMC) for the 2-class
classification case is computed below; PMC = 1 - PCC. Data sets {X} and {Y¥} are studied,
where {Y} is a mX (i.e., m times) reduction of {X}; i.e., a generic data point in {Y} is
an average of m? data points in {X}. (In this section,* {X} and {Y} are shorthand nota-
tion of {xij} and {yij}')

Assume the following notations for the means and covariance matrices for the two
classes C; and C, in the data sets {X} and {Y}:

Cys Myav Zm’ My1s Zn
D>

C

2% Hxar x2F y2°
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These parameters can be estimated from the {X} and {Y} data sets, using the normal method
of training field selection and statistics calculation. By the averaging process which
gimulates {Y¥} from {X}, it follows that:

Hx1 T Mo
Em = mzzn

Yx2 = Mv2
E:xz = mZE:Yz_

Using these statistics to train the classifier, the Bayes' regions (Anderson, 1958) for
equal a priori probabilities are established and ?ﬁioted §§ RXl' sz for data set {X} and

it follows that:

by RYl' Ry, for data set {¥}. PFor the case when 1 2
Ry1 = Rna
Bya = Rya-

By the definition of PMC, which is (Anderson, 1958)

PMC = %Prob(Rl/Cz) + %prob(Rz/Cl)

and because the relationship between the covariance matrices implies that the distribu-
tions in data set {Y} taper off quicker than those in {X}, it follows that:

(PMC)x 2 (PMC)Y.

That is, PMC is lower for data set {¥} than for (X}. In other words,

(PCC), 2 (PCC) -

For the case when 2:1 # .2:2, but are not very different, the same relationship between
(_PCC)Y and (PCC)x can be shoWn to be true, :

In ¢other words, the classification accuracy will be better for the lower resolution
data {¥} than for the high resolution data {X}.

ITI.2 Separability: Divergence Measure

The following establishes that the divergence between C; and 2 increases with the
lowering of the data resclution; the same situation as in section III.1 is assumed. The
divergence measure is used because it has been shown (Marill and Green, 1963} that the

divergeﬁce value relates to PCC. In fact, when Z = Zz for Cl and C,, the divergence
J(cl,cz) between cl and C2 has a one-to-one relatio%ship with PCC7 and, J(Cl'c2)
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increases if and only if PCC increases. Generally, the larger the divergence value, the
more separable C1 is from C2.

The divergence J(C,,C,} between C, and C, is defined as:

J(Cy5Cp) = %trF51"§:J [Z%'l‘ z%fl] !
PRI N P2 R |

By the relationship established in section III.1 between My and Myqr :E:Xl and :E:Yl'

Ly2 and Uyo e EXZ and ZYZ' JX(Cl'CZ) and JY(Cl’C?.) for data sets (X} and {¥Y} can be
related by the following inequalities:

yA

Jx(Cl, 2)5 JY(Cl,Cz)S m JX(Cl,CZ) .

J, = m2J, in the special case when Z = Zz; and Jy = Jy when there is no averaging,
iJe., when data set {Y¥} i1s identical t& data set {X}.

In general, when {¥} is a weighted average of {X}; i.e., a generic data point, y,
in {¥} relates to the generic data points, X, in {X} in the following manner:

2
5 -
YT, E:Wi’“ bLyowy 2 0
i=1

the m? factors in the above discussion will be replaced by 1/2 wiz, which is a constant
between 1 and m2, fThat is,

Ix(C:€2) s Ty(C15C5) s Kk 33(C11Cy)

where 1 < k < mz.

In other words, the separability between classes as measured hy the divergence
measure will be larger for the lower resclution data {Y} than for the high resolution
data {X}.

IV. FORESTRY APPLICATIONS

This experimental investigation on data resolution versus forestry classification
is part of the Forestry Applications Exploratory Studies Project (FAP). The FAF project
is conducted by the Earth Observations Division at the Lyndon B. Johnson Space Center
(JSC) of the National Aeronautics and Space Administration, and by the Southern Region
of the Forest Service, U.S. Department of Agriculture. Detailed information on the
project can be found in (Anon., 1974).

Iv.l Study Area

The study area is located in Sam Houston National Forest, which is located 90 miles
north of Houston, Texas. This forest is in the "East Texas Piney Woods"™, the heavily
forested portion of East Texas. The "Piney Woods", alsc called "Flatwoods", occupy the
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physiographic province known as the Gulf Coastal Plains. Topography is flat to gently
rolling with forest soils that are generally deep sandy soils or shallow sandy soils
over a heavy clay subsoil with clay outcrops.

Forest cover generally consists of shortleaf pine (pinus echinata Mill.) on the
ridges and upper slopes, loblolly pine (Pinus taeda L.) and hardwood on the lower
slopes, and hardwoods in the bottoms. The most common hardwood species are mixed oaks:
{a) laurel ocak (Quercus Llaurifolia Michx.), and willow oak (Quercus phellcs L.}; and !
{b) sweetgum (Ligquidambar styraciflua L.), nuttal oak (Quercus nutallii Palmer), and
willow cak. On some high, dry sites post cak {Quercus stellata Wargenh.)} and black cak
(fuercus veluntina Lam.) predominate. Further descriptions of these timber types can
ke found in (Anon., 1954).

There are seven timber types/condition classes studied in this application; these
features are contained in the data sets described in the following subsection. Using a
numbering system that ig used in the FAP project, these seven features are tabulated in
table 1.

IV.2 Data Sets

An area of approximately 11 square kilometers (5 square miles) in Sam Houston
National Forest was studied; this area was also known as Edit 9 in the FAP project.
Multispectral gcanner data over Edit 9 was collected during Mission M230 of the NASA
C-130 aircraft, flown on March 21, 1973 at 3 kilometers (10,000 feet) altitude, The
Bendix 24-channel multispectral scanner (MS5/24) on board M230 had only 12 coperating
channels at the time of flight. The channels are numbered in this investigation 1
through 12; their spectral coverages are shown in table 2.

A three-channel color rendition of the Edit 9 multispectral scanner data is shown
in figure 2, with the timber stand and compartment boundaries delineated on the imagery.
The boundaries were transferred onto the imagery from U.S. Forest Service maps.

The criginal unreduced data plus two simulated data sets gere studied: 1X,_2X and
3X; where 1X hag a data resolution of approximately (8 meters)“; 2X, (16 meters)“; and
3%, {24 meters)“. The simulation was performed by the simple averaging process described
in section III.1l. 1X has approximately 250 scan lines and 700 pixels/scan line,.

IV.3 Field Selection

The fields selected for classification and divergence studies are shown in figure 3.
The entire Edit 9 area is divided into 3 sections, left (L), middle (M) and right (R);
hence the labels of fields, e.g., L2.5, R2,5,

In order to aveoid scan-angle problems (Crane, 1971), the left fields, middle fields,
and right fields were studied separately. The same physical fields were selected from
1X, 2X, and 3X. Thus, the field coordinates in 1lX, 2X, and 3X are directly related.

IVv.4 Data Processing

The 1X, 2X, and 3X data were processed on the Earth Resources Interactive Processing
System (ERIPS) at NASA/JSC. The left four field, middle two fields, and right three
fields, and right three fields were studied separately.

Statistics of these fields were generated; pairwise classification and divergence
calculations* were made. For example, for the right three fields R1.3, R2.3 and R2.5,
there are three pairs: R1.3/R2.3, R1.3/R2.5 and R2.3/R2.5.

Classification and divergence calculations were performed using three different
channel sets: (1} 8 channels - numbers 2, 4, 5, 7, 8, 9, 10, and 11; (2) 4 channels -
numbers 3, 5, B, and 11; (3) 4 best channels as dictated by the channel selection pro-
cessor on ERIPS - numbers 2, 7, 10, 12 for 1X and 3X; numbers 2, 3, 7, and 11 for 2X.

In case 1, the 8-channel set was chosen arbitrarily because of the limitation of
ERIPS in the divergence calculation. Channels 1 and 3 were arbitrarily dropped, because

*In this application on ERIPS, the transformed divergence J° was used instead of
the divergence J defined in section III.2, where J7 = 99.92 (1 - exp(-J3/16)). J° and J are
equivalent {Swain, 1973); any conclusion drawn from J” ceomputations applies to J
computations, and vice versa.
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channel 2 contains very similar information {at least visually}; channel 2 was retained;

channel 6 was dropped because of data drop-out; channel 12 was dropped because data valueg?

were very low. In case 2, the 4-channel sget was arbitrarily chosen, and spaced through-
out the 12 channels. The channel set in case 3 was dictated by the channel selection

processor on ERIPS, which uses the divergence measure to determine between-class
separability.

IV.5 Analysis Results d

The results of performing the classification and divergence measurements are sum-
marized in figures 4 through 6. Each figure is in bar-chart form.

Each bar-chart shows the classification accuracy for the pairwise classification
{on the ordinate) versus the specific pairs of classes used in classification (on the
abscissa). The classification accuracy is a measure of PCC and is given by 1/2 (classi-
fication accuracy of C; + classification accuracy of Cjp}*; classification accuracy of

Cj = the number of points of C; correctly classified into C;j/the number of points of Cjy.

The pairwise divergence values are also indicated in the bar-charts. The values

are written in the bars. Internal settings on ERIPS have limited the maximum between-
class separability to 99.9.

Figure 4 through 6 correspond to cases 1, 2, and 3 of data processing discussed in
gsection IV.4. The 1X, 2X, and 3X resulis are gshown side-by-side.

IV.6 Inference from Analysis Results

Figures 4 through 6 lead to the following conclusion: For the data sets and forest
classes studied in this investigation, classification accuracies increased with the
lowering of data resolution. Also, classes were more separable at lower resolution.

This conclusion reinforces the theory discussed in section III.

V. REMARKS
V.l The Paradox -

The theoretical and experimental results conclude that classification accuracies

increase with the reduction in fidelity of data resolution. This gives rise to the
following paradox:

"If ground features can be classified using high resolution
{e.g., low altitude) data, they can also be classified, and

even with higher accuracies, using low resolution (e.g.,
high altitude) data."

The paradox should not cause any alarm, because the statement is asserted for com-
puter classification accuracies alone, and because the classification technique employs

spectral information alone. Alsoc the classification and identification of timber stands,
not individual trees, are considered.

The accuracy measure used in the analysis comes form evaluating training/test data
which are well defined and delineated due to prior knowledge. The loss in boundary
accuracy and mensuration accuracy in the analysis of higher altitude data has not been
accounted for. These two factors are most often deciding factors on optimal data resolu-
tion. Also, the gain in details at higher resolution is not an asset to the spectral

classification rule. 1In fact, the details in texture, etc., add to the complexity in
machine processing in this case. ‘

. Ancther explanation for the increase in classification accuracies for lower resoclu-
tion data is that a "PERFIELD" classification (Gupta, 1973) is performed on the lower
resolution data, compared to a "PERPOINT" classification on the high resclution data,

*Beside this definition of classification accuracy, other measures have also been
commonly used; for example: number of correctly classified points of C; and Cz/total
number of points of Cq and C2.
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A "PERFIELD" classification rule has been suggested to be superior to the "PERPOINT"
classification rule. That is, scene nonhomogeneity in the high resolution data is re-
duced by the averaging process, which gives the lower resolution data. This explanation
is readily acceptable, especially for the forest scenes studied in this investigation,
where complexities abound with high resolution.

V.2 A Conjecture on Detection

An interesting conjecture follows from the conclusion of the above analysis. For
detection purposes, a satellite could outperform aircraft data analysis, as long as the
features to be detected have physical sizes sufficiently larger than the satellite resolu-
tion (preferably at least four times larger, in order to assure total containment of the
feature in at least one pixel). Detection here means the detection of the presence of
the feature, disregarding its size.

V.3 Decision on Optimal Data Resclution

An optimizing criterion can be set up where the optimal choice of data resolution
is a compromise between classification accuracy, boundary accuracy and mensuration
accuracy. The criterion, D, could then be written as

D =d;0, + dy0, +d30,

where dl' dp, and d3 are weights in the criterion, and 6., 9, 6y are respectively the
accuracles in classification, boundary location, and mensuration. An optimal solution
for data resolution will be obtained by achieving maximum value of the criterion D,
Different applications will call for different weights d;, 45, and d3; and will produce
different solutions. Other factors such as the cost of éata acqguisition, cost of data
processing, etc., can be also incorporated into the criterion as follows:

8.+ 4,6

D" =d;8, 2%

*dgbp + 4,0, + dgC,

Where C_ and Cp are the respective costs.
An optimal decision on data resolution will lead to an optimal design of sensors

and platforms.

V.4 8Signal-to-Noise Consideratiocons

The effects of sensor noise, thus signal-to-noise ratio, on classification accuracies
were not addressed in this work. Rather, in this paper, the relation between scene
homogeneity and data resolution was modeled, and the increase in classification accuracy
due to lowering the data resolution was construed as the result of smoothing the scene.

Nevertheless, it is recognized that the same data reduction process smooths out the
noise in the sensed signals. In fact, (Thomson et. al., 1974) pointed out the same kind
of conc¢lusion for land-use classifications; and the gain in accuracy was construed as Gue
to the increase in the signal-to-noise ratio.

One problem remains to be solved, i.e. how can the increase of accuracy be parti-
tioned into (a) the increase due to smoothing scene nonhomogeneity; and (b) the increase
due to the gain in signal-to-noise ratios. The subtle distinction between {(a) and {(b)
will influence the design of optimal sensors and platforms. That is, to achieve the
reduction of scene nonhomeogeneity, the data could be taken at high altitudes. And, to
achieve the gain in signal-to-noise ratios at a specific data resolution, new designs of
sensors might have to be called for.

V.5 Forestry Modeling

The theoretical and experimental findings indicate that forest scenes at different data
resolution need to be appropriately modeled by different statistical models. Specific-
ally, a pure pixel model could be developed for high resolution (e.g. low altitude)
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aircraft data. The second model, for mixed pixels, could also be developed for low
resolution (e.g. high altitude aircraft and satellite} data.

In the model of pure pixels, only one tree crown is contained in an individual pixel,
In the model of mixed pixels, crowns of many trees and openings between trees might be
contained in one pixel.

Analysis approaches for the two models are intuitively different., (Basu and Kan,
1974) proposed that forest types be distinguished by their "proportion vectors" which
characterize the mix of tree species in the forest. Also, a “"compound distribution”
approach or a linear regression approach was proposed for the mixed pixel medel.

VI. CONCLUSIONS

Theoretical results and experimental verification have led to the conclusion that
computer classification accuracy could increase with the lowering of data resolution.
The theory applies to general remote sensing problems; while the verification was
performed on forestry data where timber stand classification/identification was of
concern.

The increase in classification accuracy is construed as due to the smoothing of
scene nonhomogeneity. For forestry data such as the sets studied herg, the modeling of
lower resolution dat3 from high resolgtion data (e.g. from (8 meters)“ resolution re-
duced to (16 meters)“ and (24 meters)“ resolution) readily lends credence to the present
conclusions. Such considerations are important and would lead to optimal designs of
sensor and platforms.

VII. REFERENCES

1. Anderson, T. W.: An Introduction to Multivariate Statistical Analysis. John Wiley
& Sons, New York, N.Y., 1958,

2. Anon.: Forest Cover Types of North America. Society of American Foresters,
Washington, D.C., 1954.

3. Anon.: Forestry Applications Exploratory Study Project: Preliminary Project Plan.
NASA, Lyndon B. Johnson Space Center, Houston, Texas, $#JSC-09420, September, 1974,

4, Basu, J. P.; and Kan, E, P,: Statistical Modeling and Analysis of Forestry Data:
Pure and Mixed Pixels - Part I. Lockheed Electronics Co., Inc., Houston, Texas,
Tech. Memo. #LEC-5185, December, 1974.

5. Crane, R. B.: Preprocessing Techniques to Reduce Atmospheric and Sensor Variability
in Multispectral Scanner Data. Proceedings of 7th International Symposium on
Remote Sensing of the Environment, Willow Run Laboratories, University of Michigan,
Ann Arbor, Michigan, 1971, pp. 1345-1355.

6. Gupta, J. N.: et al: Machine Boundary Finding and Sample Classification of Remotely
Sensed Agricultural Data. Proceedings of the Conference on Machine Processing of
Remotely Sensed Data, held at Purdue University, Lafayette, Indiana, October 16-18,
1973, pp. 4B.25-35,

7. Marill, T; and Green, D. M.: On the Effectiveness of Receptors in Recognition
Systems. IEEE Transactions on Information Theory, Vol. IT-9, January, 1963.

8. Phillips, T. L. {editor): LARSYS Version 3, Users' Manual. Laboratory for Applica-
tions of Remote Sensing, Purdue University, W. Lafayette, Indiana, June, 1973.

9. Swain: P. H.: A Result from Studies of Transformed Divergence. Laboratory for Appli-
cations of Remote Sensing, Purdue University, W. Lafayette, Indiana, Tech. Memo
050173, May 1973.

10. Thomson, F. J.; et al: Multispectral Scanner Data Applications Evaluation; Vol. 1 -
User Application Study. Environmental Research Institute of Michigan, University
of Michigan, Ann Arbor, Michigan, Final Report to NASA/JSC, Contract NAS -
9-13386~CCA2, NASA JSC 09241, ERTM 102800-40-F, December 1974.

1B=-32




Table 1. Timber Types/Ccocndition Classes
of Interest in Study Area

Type .

In Description

1.3 Shortleaf pine, immature sawtimber

2.3 Loblelly pine, seedling and sapling, adequately
stocked

2.5 Loblolly pine, immature sawtimber

2.6 Loblolly pine, mature sawtimber

3.1 Laurel oak - willow oak, immature sawtimber

4.2 Sweetgum-nuttal oak - willow oak, immature
sawtimber

7.2 Cutover land, not site prepared

Table 2. Spectral Coverages of 12 Channels of

MSS/24 Data Over Study Area

Channel no. Spectral coverage {micrometer}
1 0.375-0.405
2 0.40-0.44
3 0.466-0.495
4 0.53-0.58
5 0.588-0.643
6 0.65-0.69
7 0.72-0.76
8 0.770-0.810
9 0.82-0.88

10 0.981-1.045
11 1.20-1,30
12 2.10-2.36
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Figure 1. Illustration of data resolution reduction:
a 2X reduction.

THMBER STAND AND COMPARTMENT MAP OVER
SAM HOUSTON NATIONAL FOREST MS5/24 EDIT

MISSION NO. 230 — EDIT NO. 9
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Figure 2. Timber stand and compartment map over Sam Houston
National Forest Edit 9; a 3-channel color rendition of the
MSS/24 data of M230. (Refer to table 1 for timber type
codes.)
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