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CLASSIFICATION OF MULTISPECTRAL IMAGE DATA BY

EXTRACTION AND CLASSIFICATION OF HOMOGENEGUS OBJECTS *

R.L.Kettfg and D.A.Landgrebe

Purdue Universlty, West Lafayette, Indiana

. ABSTRACT

A method of classiflication of digi~
tized multispectral Image data Is
described. It 1s deslgned to explolt a

particular type of dependence between
adjacent states of hature that Is
characteristlc of the data. The advantages
of thls, as opposed to the conventlional
"per point" approach, are greater accuracy
and efficiency, and the results are 1{n a
more deslrable form, Experimental results
from both atlrcraft and satellite data are
Included.

i1, INTRODUCT{ON

An Important subject before the
engineering and sclentific community at the

present time |Is the processing of scenes
which represent tracts of the earth's
surface as viewed from above. A typlcal

scene consists primarlly of regular and/or
Irregular regions arranged In a patchwork
manner, each containing one 'class" of

surface cover type. These homogeneous
regions are the Mobjects" In the scene. A
baslc processing goal 1s to locate the
objects, ldentify (classify) them, and
produce tabulated results and/or a

"type-map" of the scene. As In other image
processing applications, the Jlocatlons and
spatlal features (size, shape, orientatlon)
of objects are revealed by changes 1in
average spectral properties that occur at
boundarles. But unlike most other
appilications, the spatial features of an
object often have 1lttle or no relatlionship
te Its class. Therefore classificatlion is
more often based on Its spectral features

using statlstlcal pattern recognition
techniques, a task for which the digital
computer is well adapted.

Computer classification of multi=-
spectral scanner (MSS) data collected over
a reglon Is typlically done by applying a
"simple symmetric' declslon rule to each

resolution element ({pixell). This means

that each plxel Is classified Individually
on the basis of its spectral measurements
alone. A baslc premise of this technligue
Is that the objects of Interest are large
compared to the slze of a pixel. Otherwise
a large proportion of pixels would be
composites of two or more classes, making
statistical pattern classification unrelia-
ble; l.e. the prespeciflied categorles would
be !nadequate to describe the actual states
of nature, Slince the sampling interval Is
usually comparable to the plxel slze (to
preserve system resolution), It follows
that each object Is represented by an array

of plxels. Thls suggests a Markov
dependence between consecutlve states of
nature, which the simple symmetric
classifler falls to explolt. To reflect
thls property, we shall refer to simple

symmetrlc classiflcatlon as "no-memory"

classification,

One method for dealing with dependent
states Is to apply the principles of
compound decision theory or sequentlal
compound decision theory. Abend (1966)
points out that a sequentlal procedure can
be implemented falrly efficiently when the
states form a low-order Markov chaln.
However the prospect Is considerably less
attractive when they form a Markov mesh,
which s a more suitable model for
two~dimenslional scenes, Furthermore,
estimation of the state transition
probabl] ities could be another signiflcant
obstacle to implementation of such a
procedure,

The compound decislon formulation Is a
powerful approach for handlling very general
types of dependence, Thls suggests that
perhaps by -talloring an approach more
directly to the problem at hand, one can
obtain similar results with conslderable
simpltfication, ln terms of the Markov
mode}, a distinctlve characteristlic of the
spatlial dependence [n MSS data Is that the
probability of transition from state | to
state ) is much greater if j=1 than If jki,
because the sampling Interval Is generally

* Appreclation Is expressed to NASA for support of this work through Grant NGL 15-005-112

and Contract NAS 9-14016,
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gmaller than the slze of an object. This
suggests the use of an "Image partitioning"
transformation to delineate the arrays of
statlstically similar pixels before
classlifying them. Since each homogeneous
array represents a statlstical "sample" (a
set of observations from a common
population), a "sample classtifiler! could
then be used to classify the objects. In
this way, the classificattfon of each plxel
In the sample 1is a result of the spectral

properties of its neighbors as well as Its
own, Thus its "context" 1In the scene Is
used to provide better classiflication, The

acronym ECHO (extractlion and classiflication
of homogeneous objects) designates this
general approach.

A characteristic of both no-memory and
compound declsion technlques Is that the
number of classifications which must be

performed Is much larger than the actual
number of objects in the scene. When each
classtficatlon requires a large amount of

no-memory classifler
An ECHO technlque

computation, even the
can be relatively slow.

would subsgtantlally reduce the number of
classiflications, resulting In a potentlal
Increagse in speed (decrease In cost).

The recent 1lterature contalns

to Image partitloning
Robertson (Aug. 1973} divides
them Into tweo main categorles. "Boundary
seeking" algorithms characteristically
attempt to expleit object contrast. Two of
these have been Implemented with MSS data
{Anuta, 1970), but they are incompatlibie
with sample classiflers due malnly to thelr
fallure to produce boundarles that always
close on themselves, The other category
can be called 'object seeking" alzorithms,
which characteristically expleit the
internal regularity (homogeneity) of the
objects. As the name Implles, an object
seeking algortthm always produces
well=defined samples (and thus closed
boundarles as well), There are two
opposlte approaches to object seeking,
which we shall call conjunctive and
disjunctlive, A conjunctive algorithm
begins with a very flne partition and
simpllfies It by progressively merging
adjacent elements together that are found
to be simllar according to certain
statistical criteria (Muerle, 1968), (Rodd,
1972}, A disjunctive algorlthm begins with
a very simple partlition and subdlivides it
untll each element satisfies a criterfon of
homogenelty. For example, Robertson's
algorithm (1973) is based on the premise
that If a region contalns a boundary,
splitting the reglon arbitrarily will
usually produce two subregions with
significantly di fferent statistical
characteristlcs.

numerous references
algorlthms,

We combined Rodd's

(1972) conjunctive
partitioning algorlithm

with a min{mum
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distance sample classlifier and observed an
Improvement In ctassiflcation accuracy over
conventional no-memory <classlification, but
processing time was Increased (Kettlg and
Landgrebe, 1973), Gupta and Wintz (1973)
added a test of second order statlistics to
Rodd's first order test, but obtalned
essentfally the same results as the Nflirst
order test at greater cost in processing
time. Robertson (1973) Implemented a
disjunctive partitioning algorithm with the

same min{mum distance classifier. He
obtalned about the same classification
accuracy as conventional no-memory

classification with an order of magnlitude

Increase In processing time.

The current
to further

Investlgation Is devoted
development and testing of the
conjunctlve approach. Major changes in
both the classiflication and partitioning
strategles have resul ted In large
Improvements in accuracy, stabllilty, and
speed.

111, SAMPLE CLASSIFICATION

A typlcal scene consists primarily of
objects whose boundarles form a partitlon
of the scene. E£ach object In the partition
belongs to one of K classes, Let W denote
the event that an object belongs to class
l. In accordance with our previjous
discussion, we fgnore any statlstical
dependence of this event on the size,
shape, and location of the object. Each
pixel in an object 1Is a q-dimensional
random variable, where g denotes the number
of spectral measurements per plxel. [t Is
commonly assumed that the g~varlate,
marginal, probablility density function
(pdf) of a plxe), X, depends only on the
class of the object containing X. This is
due to the homogeneity of the types of
objects typically encountered in remote
sensing applicatlons. plxIW ), xe€rl ,
denotes this class-conditional density
functlion for the Ith class., Another common
assumption Is that the classes can be
defined such that p(xiWy) Is approximately
multi-variate normal (MVYN); [.e.

plx|Wy) & NQM;,G,5x)
£ (l2ng | exp(Cx-mp) 'ty (x-u,00) 7%

for some g-dimensional
covariance matrix

positive-definite,
€y and some mean vector
M; €RT .  Parametric estimates of these
density functions are obtained by
estimating My and C; from sets (samples) of
training data suppllied for each class.

pixels 1n spatial

Two proximity to

‘one~another are unconditionally correlated,

with the degree of correlation decreasing
as the distance betwean them Increases.
tiuch of thls correlation Is attrlbutable to



the effect of dependent states discussed In
the previous sectlon, which Is. the effect
we wlish to expiolt, For simplicity we
shall ignore other sources of correlation.
Thus we assume class-conditional
independence (as does the compound declsion
approach).

1 X=(X1, s hnw ¢R™ represents a set
of pixels In some object, then this set
constltutes a "sample" from a populatlion
characterized by one of the class~-
conditional pdf's. A sample.classifier is
simply a strategy for deciding which one,
based on the n observations, One popular
approach is the "minimum distance (MD)
strategy" (Wacker and Landgrebe, 1972). In
MD classification, the n data vectors are
used to estimate the pdf of the population,
and the class 1Is chosen whose pdf Is
closest to this estimate as measured by
some appropriately defined "distance
measure” on the set of denslty functions.
A popular distance measure ls the
Bhattacharyya distance, which for
N(Mi,gi;_a) and N(M,C;x) is glven by:

) (1)
1te,+ €)/2) -1 t

e Litn —A =0 4 er((c,+ C) (M -MQL-MT))
Bt T TE (G 9 GBS

A drawback of the MD approach 1s that It

falls for small n, because the denslity

estimate becomes meaningless,
Our preference is the max mum

likellhood {ML) strategy which assigns X to
class | If

In p{XIW;) = max in p(Xle)

J
Due to the assumptlon of class-conditional
independence, these guantities can be

computed as:
. (2)
In p(X|W,) = -} tr(gilgz) +Mc 5

t -1
-3 n(yigi M, + In|2nC;|)

= T HE - nC+u)

Formula (2) 1s much faster to compute that
formuia (1) for each (§;,83) palir, once the

non-data-dependent constants have been
Initialized. Thus the ML strategy 1s
computationally efflclent, Another

important property is that It does not fail
for smail n. On theoretlcal grounds, for
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the ldealized conditlons we have stated, it
is the optimum strategy (for minimum error
rate) when the a-prilor! class probabilities
are equal, Also, the Chernoff bound for ML
no-memory classificatlon (n=1) can be
extended to provide an error bound for ML
sample classiflcation that is a2 sum of
exponentially decreaslng functions of th

sample size. Experimentally the tw

strategles appear about equal In terms of
accuracy, with the ML strategy possibly
having a slight advantage.

As a wmatter of theoretical Interest,
it can be shown that use of the ML strategy
glves the same results (with less
computation) as an MD strategy usling one of
the Kullback-Leibler numbers, If [C| > &,
(if Icl = 0, the K-L number Is undefined,
but the ML strategy Is stl111 valld.)

V. IMAGE PARTITIONING

The baslc approach that we have
adopted (due to Rodd, 1972) consists of two
"levels" of tests, Inttlally the plxels
are divided, by a (hypothetical) grid, Into
small groups of four {(for examplel). At the
first level of testing, each group becomes
a2 unit called a “cell™, provided that It
satlsfies a relatively. miid criterlon of
homogenelty, Those Eroups that are
rejected are assumed to. overlap a boundary
and their {ndividual plxels are classified
by the no-memory method, These groups are
referred to as "slngular" cells. At this
level it Is usually deslirable to maintaln a
fairty low rejection rate to reflect the
relatively high a-priori probability of a
group belng homogeneous. The goal at this

level Is essentially the same as the goal
of the boundary seeking technlques
mentioned previousty; l.e. to detect as
many plxels as possible that 1ile along

that the ones
or even be

boundaries without requlring
detected form closed contours
connected.
At the second level, an Individual
cell ts compared to an adjacent "field",
which 1Is simpiy a group of one or more
connected cells that have previously been
merged., 1f the two samples appear
statlstically simllar by some appropriate
criterton, then they too are merged.
Otherwlse the cell 1s compared to another
adjacent fleld or becomes a new fleld
itself, By successively “annexing"
adjacent cells, each fleld expands until 1t
reaches 1ts natural boundarles, where the
rejection rate abruptly Increases, thereby
halting further expansion. The fleld s
then classtifled by a sample classifler, and
the classificatlon 1Is assigned to all its

pixels,
This approach has the important
advantage that Tt can be Implemented



need be
same order
This 1is
than

"sequentially"; l.e. raw data
accessed only once and In the
that It is stored on tape.
Iimportant for practical, rather
theoretical, consideratlons, The flow
chart In Flgure 1 indicates how It can be
done, In this chart, the top of the scene
s referred to as north, and the general
processling sequence s from north to south.

Many modiflcatlons to the baslc flow
chart are, of course, posslble, One of the
modl flcations we use involves comparling a
cell to as many as three different flelds
at once (seeking the best "match"), instead
of one-at-a=time,

ANNEXATION CRITERION

Let X = (X1,....X,) represent the

pixels in a group of one or more cells
which have been merged by successive
annexatlions. Let Y = (1},.... ) represent
the pixels in an adjacent, non-singular

cell, Since both X and Y have satlsfied
certaln criterfa of homogenelty, we assume
that each s a sample from a MVN
population. Let f and g represent the
correspondling density functions, It is
desired to test the (null) hypothesls that

f =g, This is a composite hypothesis,
since It does not specify f and g. The
" ikeilhood ratlo procedure" (Lehmann,

1959) provides an effective statistic for
testing this hypothesis, van Trees (1968)
refers to it as the "generallzed 1lkelthood
ratio”, Let

Ho(x,y) = {p(x,ylf,g): g=f, f(ﬂ.}
Hilx,y} m{p(x,ylf_,g): fen, gcn}

Is the conditional jolnt
density of X and Y evaluated at x€R%Y and
- y@R"Y ., and f1 Is 2 set of MYN density
functlons, The assumptlon of class-
condlitional Independence enables us to
express the joint density of pixels as the

where pix,vif,g’

product of their marginal densitles. Thus:
pix,v|f,g) = p(xIf) plylg)
= 17' fFixi))( 1r eglyy})
i=1 [ul

The generalized 1tikellhood ratlo 1Is glven
by:

sup Ha(X,Y) max p(X|f) p(Y|f)
Az ¢ ’ =, f€ N

sup H,(X,Y) max p{X|f) max p{Yig)

f€N g€

For an “"unsupervlsed" appreach to

partitioning we take f1 to

be the followling
set of functlions of x€RY:
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fl= {N(M,,Q:;): ME€RY, C = symmetric and

posltlve-deflnlte

Anderson (1958) shows that:

A=A A, (3)

where !
A, = aarisn™? ()
= n m N, %
Az (Mgnllg#mlﬂﬂmlJ (5)
N = n+m
- _ m
X =2 Xi/n Y =‘Zx /m
Ii:l i )
5] — —_ - —_
(XXX, ~-X)" a_ = § (Y, -Y)(x,-Y)*
(In order to assure non-singular matrices

with probabllity 1, we need n > q < m.)

(Anderson, 1958}
A=Ay *+ Ay

M = (nX + mY)/N
dl t = — it
=I21 (Xg=M) (X =MD" = A+ n(X-M)(X-M)
« t kv ) v t
= (y,~M)(y.,-M) = A+ m{Y-M)(Y-M)
|=2=:1 i i ¥
B = By+By = A+mXDXDE
N
Anderson also suggests the following

mediflcatton:

A=A, A,

where Al and Az are obtained from Ajand A,
by replaclng the number of pixels In each
sample by the number of degrees of freedom;
t,e, replace n by n-1, m by m=-1, and N by
N=2 In formulas (4) and (5). in either
case, the statistics are Invariant with
respect to a linear transformation on the
data vectors, It follows that thetr
distributlons under the null hypothesls are
Independent of the actual MVN population
from which the samples are drawn.

Therefore we can construct a
s gnlf!cance test of the null hypothesis,
Niand Als are Independent under the null
hypothesis {Anderson, 1858), SO the
procedure we use ‘Is to, test Al at
significance level a; and Az at level a,,

and reject the null hypothesis If either
test produces a rejectlon. {Cooley apd
Lohnes (1971) give transformations of Aj



and Az with F-distributions under the null
hypothesls,) The overall slgniflcance
level is then: a = 1-(1l-a3;)(l-ay).
Essentially, Ay tests the hypothesis ~of
equal covariance matrices (second order
statIstics), and A] tests the hypotheslis
of egqual mean vectors (first-order
statistics).

These multlvarlate (MV) tests have the
same weakness as MD classificatlon, namely
the problem of estimating a MVN denslty
from a relatively small sample (sometimes
known as the "dimensionallty" problem).
This  led to the constralnt m 2 q, a
conditfon which Is often not met, Even
when the condition is met, poor estimates
can result, Jleading to decision errors,
one approach to this problem Is to reduce q
by deleting features, It Is well~known,
for example, that a subset of features used
to train a classifier from small tralning

samples can sometlimes produce better
classificatlion results than the full set,
With this approach, however, one 1s faced

with the problem of choosing the subset,

Another approach Is to base the
declsion on the q, unlivariate, marglnal
distributlons; Il.e. simply consider the
data 1In one spectral channel at a time,
This has been termed a "multtple
univariate" (MUV) approach. In each
channel we test the univarlate hypothesis
that the means and varlances of the two
samples are equal. Since the boundarles
may be strong In some spectral channels and
weak In others, we accept the null
hypothesls only If the univariate
hypothesis Is accepted in all g channels.

Besides avolding the dimenslonal [ty
problem, the MUV procedure requires less
computatlon and simpler distribution
theory. However, It must be pointed out

that In sltuatlions where class separability
Is primarily a multivartiate effect, the MV
procedure may be more advantageous,

For a “"supervised" approach to
partitioning we take [} to be:

n - {pcmwi): |=1,...,x}
Thls greatly simplifies each hypothesis,

but paradoxically the resul tant test
criterton s much more compllcated:

ma x p(x[wi) D(Y'Wi) (6)
i

A -

max p{X|W,;) max p(Yle)
) J

This 1is a multlvartate statlstic without
the constraint m > q that was necessary In
the unsupervised mode. However the maxima
in formula (6) cannot be expressed In a
simple analvtlic form as in (3}, They can
only be obtalned by exhaustlve search,
Furthermore, the distributlon of (6} Is

unknown under elfther hypothesis, because it
depends on the true classes of X and Y.
But In return we galn a statistic which
should be more “sensitive" to the presence
or absence of a boundary, This should
produce better performance and make the
specificatlon of 2 declslon threshold less
critlcal, In fact, the experimentpl
results Indicate that the threshold need
not be a functlon of n, the current slze of
sample X, In order to obtain good results.
Furthermore, the resyuits tend to be fairly
stable over several orders of magnltude of
threshotld varlation., Thus we will find it
convenient to represent the decislon
threshold as
T = 100%, t o0

In other words, we reject the nul?
hypothesls If A< T or equivalently

-log A > t. Otherwise we accept It.
Experlmentally we investigate the effect of
different values of t on performance.

CELL SELECTION CRITERION

"Cell selectlon" refers to the Level-1
test which Is used to detect cells that
overlap boundaries., Such cells frequently
exhlbit abnormally large varfances. Thus,
tn  the unsupervised mode, we say that a
cell Is singular 1f the ratio of the square
root of the sample varjance to the sample
mean falls above some threshold, c, In any
channel,

In the supervised mode we call a cell
singular |f QJ(Y) > ¢, where:

- L= t t -1 -1
Q(¥) = er(g] Elzi XD - 2M,C 1‘?1!1 + m_n!;gj ¥,

where j ts such that

in p(Y!WJ) ~ max In p(¥|W;) = max -}(la|2nC,|+ Q, (¥))
i i

The declsion rule s to accept the
hypothesls that Y is homogeneous If Q3(Y) <
¢, where ¢ 1Is a prespecified threshold.
Otherwise the hypothesls Is rejected. This
criterion has the partlicular advantage that
It tends to reject not only Inhomogeneous
cells, but "unrecognizable" cells as well,
(Unrecognlzable cells are those which
represent spectral classes that the
classifler has not been tralned to
recognlze.) Another advantage of this
criterlon Is that Its use of the
tog-likellhood function makes it especially
compatible with. the supervised annexatlon
criterion and the ML sample classifler,

As a final note, the distribution
function P(QJ(Y) > cIW,) Is chi~squared
with mq degrees of freédom. This can be
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used to provide Inttial guldance in

choosing c.

V. EXPERIMENTAL RESULTS'

Two alrcraft and two LANDSAT-1 data
sets, for which larze amounts of training
and test data are available, were
classifled by the following six methods:

1. Conventional ML No-Memory Classificatlon
(Phillips, 1973)

2, Supervised Cell Selection only (t=0}; ML

* Sample Classiflication

3. Optimum MUV Unsupervised Partitlonling;
ML Sample Classificatlon

L, Supervised Partitioning (t=4); ML Sample
Classification

5. ML Sample Classification of Test Areas
Only

6. MD (Bhattacharyya) Sample Classiflcation
of Test Areas Only (Phlllips, 1973}

The cell size for #2-#4 was flxed at 2 x 2
pixels, which Is the minimum allowed In the
unsupervised mode.

A gualitative assessment of the
results |Is provided by Flgures 2 and 3.
Flgure 2 (left) shows a sectlon of alrcraft
data that has been classifled by method #1,
Each class has been assigned a gray level,
and each plxel has been displayed as the
gray leve)l asslgned to Its classification,
A great deal of "classIficatlon nolse"” Is
readily apparent. In contrast to this,
Figure 2 {right) shows the same sectlon as
classified by method #4, The random errors
have, for the most part, been ellminated.
This map Is much closer to the deslired
"type-map" form of output that is generally
desired.

Flgure 3 shows the centers of these
two maps in greater detall, Each class lis
represented by an assigned symbol and each
symbol represents one plxel, The four
rectangutar areas are test areas deslgnated
as wooded pasture (displayed as a blank).
The diversity of symbols In the test areas
testifies to the {inadequacy of the
no-memory method for classlfylng this
section, whereas most of the confuslon f{s
avoided by the ECHO technique.

The estimated probabllity of error for
each method gives an Important quantitive
measure of performance, It 1Is obtained as
the ratio of the number of misclassifled
pixels in the test areas to the total
number of pixels In the test areas. Flzure
4 shows results obtalned for each of the
four data sets. The results are about what
one would expect. Method +#1 consistently
has the hlighest error rate because of Its
lack of use of spatlal dependence. #2 uses
some spatfial Information and consistently
does somewhat better than #1., #3 uses more
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spattal information, which accounts for Its
Improvement over cell selection alone, and
#; does conslistently better than #3 because
It uses more of the available Informatlon
In the partitloning phase.

#5 and #6 wusually provide the best
performance, because they are given npre
a=-priort Information to begin with, One
reason for including them here 1is to
determine 1f either provides a distinct
advantage over the other. On 3 of the &
data sets, maxlmum 1lkel lhood sample
classificatlon achleved lower error rates
than the mlnimum Bhattacharyya distance
strategy. The dIfferences are small
however, Thls justifles our wuse of the ML
strategy In #2-#4.,° Another vreason for
including them Is that the performance of
#5 provides a "gzoal' (but not a bound) for
the performance of #3 and #4; l.e. the
nearness of the performance to this goal s
an indlication of the effectiveness of the

partitlonlng process alone.

Although #3 appears to be fairly close
to #4 {n general, it must be pointed out
that the "optimum® combination of a; and ap
whlich achieves thls performance is somewhat
unpredictable at this time,. All that we
can say of a general nature Is that 2
tends tc be effectlve at about .005 and a,
at a smaller value such as ,001 or O,

The results for the supervised mode,
however, are much more stable, Fligure 5
shows only the results for t=4, which are
not always the optlmum results, but they
are within 1% of the optimum in all &
cases, Flgure 5 shows a typical example of
the effect of t on classlflcation error
rate,

The results are not a sensitlive
functlion of the Level-1 threshold, ¢. The
values c=,25% (unsupervised mode) and c=15q
(supervised mode, 3 { q { 6) wusually

"provided the desired effect,

The main advantage of the unsupervised
mode appears to be speed, when
ctassiflcation complexity is reasonably
high, This |s because the time saved by
classifylng pixels collectively can more
than compensate for the time required to
partition, For a LANDSAT-1 data set
classified with & channels and 14 spectral
classes, processor #3 required 22% less CPU
time than #1, In spite of the fact that the
classification subroutine In #1 Is coded In
assembler language for peak efficlency.
{1t has been estimated that this Tncreases
its efficiency by about 50%.) €3 and #4
are just developmental verslons coded |n
FORTRAN, But for an alrcraft data set wlth
6 channels and 17 spectral classes, #4
required 26% less time and #3 requlired 56%
less time than #1,



Vi. Conclusion

successfully explolited the
s characterlistic

We have
redundancy of states that
of sampled Imagery of ground scenes to
achieve better accuracy and reduce the
number of actual c¢lassifications required,
The only tralnling used Is the same as that
required by a conventional max imum
1ikel Thood, no-memory classifler, i.e.
estimates of the class-conditlonal,
marginal densities for a single pixel.
Thus we have not relied on speciflic spatiatl
features, texturat Informatioen (class-
conditional spatlal correlation), or on the
contextual information assoclated with
spatial relationships of objects.
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Figure 1 Basic Flow Chart for a Two-Level, Conjunctive, Partitioning Algorithm
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Figure 2 Gray-Scale-Coded Classification Maps Produced by
No-Memory Classifier (left) and Sample Classifier (right)
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Figure 3 Logogrammatic Classification Maps Produced by
No-Memory Classifier (left) and Sample Classifier (right)
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