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ACREAGE ESTIMATICN, FEATURE SELECTION, AND SIGNATURE EXTENSION

DEPENDENT UFON THE MAXIMUM LIKELTHQOD DECISION RULE

John A. Quirein, M., C. Trichel

Lockheed Electronics Company, Inc.,
Aerospace Systems Division, Houston, Texas; and
Lyndon B. Johnson Space Center, National Aeronautics
and Space Administration, Houston, Texas

I. ABSTRACT

The maximum likelihocd decislon rule and estima-
tion of the resulting m-class probabllity of misclassi-
fication are discussed. A bound on the varlance of a
proposed unbiased estimator of the m-class probability
of error ls derived. The problem of estimating the
a priorl probabllities for two classes 1s covered.
When the estimator is counting the proportion of
classifled samples assigned to each c¢lass, a bound
on the errcor of the estlmate is derived. The prcblem
of m-class feature selection using the Bhattacharyya
distance is also addressed. The partlcular case 1in
which each class density 1s assumed to be a mixture
of multivariate normal densities 1s considered 1n
detall. In conclusion, the extension of spectral
slignatures in space and time is also discussed.

II. THE MAXIMUM LIKELIHCOD DECISION RULE AND ESTIMATICON COF THE

RESULTING m-CLASS PROBABILITY OF MISCLASSIFICATION

4 The m-class probabillity of misclassification can be estimated using unlabeled test

- samples and labeled trainlng samples. A1l prior probabilities are assumed to be known,
and labeled training data are assumed to be avallable to construct an estimate for each
tlass density function. The class prior probabilities and estimated density functlons
are used to obtain an estimate of the conditional risk of misclassification at each point
of the unlabeled test samples. The average of the risk estimates 1is shown to be the
probability of misclassification. An expression for the variance of the estimate result-
ing from finite test sample size 1s also derived.

A similar approach has been made (Fukunaga, Kessel, 1973; Minter, Thadani, to be
published). However, in this paper, the results of Fukunaga and Kessel's paper are
exXtended freom two to m-classes. In addition, it is shown in a later sectlon of this
paper how the m-class estlimate for the probability of misclassification can be used in
feature selection,.

Let X be a randem n-dimensional measurement vector belonglng to one of the

m-classes Wy Was *tv, W o Let qy be the prior probabillity of the itk class and
P;{X) be the probability density function of the random vector X evaluated at X ,

Let the mixture density be given by

m f
p(X) = Z q 04 (XD (D
i=1

and belonging to the class wy .
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Let [RI’RE""’Rm] be any partition of the underlying n-dimensicnal vector space

such that any vector X 1s classified 1nto wy only if X belongs to Ri . Define the
characteristic function

6R.(X) =1, X in Ri
1
GRi(X) = 0, X not in R, (3)
and the functions
m
B0 = Q) a.p; (%) sy (X) (3)
i=1 i |
_ B(Xx)
r{X) DX {4)

By definition, the probability of misclassiflcation R for m-classes is given by

m
R = §1 fRi [px) - qyp; (x)] ax

m
=1 - Z fR g;p; (X) dX . {5)
i=1 i

It follows from the definitions of GR (X), p(X), and r(X) that Equation (5) may be
written as i

Il
1 - ;fqipi(x) aRi(x) dax
1 - fﬁ(xf ax

1 -I[ET%}T] p(X) ax

1 - [rxpm ax 6)

w
1

where 1n the above, the region of integration is the entire measure space. Thus, the
prcebabllity of mlsclassification is jJust the complement with respect to 1 of the expecta-
tion of r(X) with respect to the randcem vector X , 80 that

R=1-E[r(X] )

It is important to note that the probabllity of misclassification R can be

estimated by the sample mean of r(Xi} for Nt test samples as

N

§=1-N—l§i‘r(ii)20 (8)

t 1=1
where R 1is a random variable, the fi's are drawn from the mixture density p{(X) and

the class ldentities of the fi are not needed. Note that R is minimized 1n accord-

ance with Bayes rule if Ry, i = 1,+++,m , 1s defined such that

X; exist in R; if and only if qipi(xj) > qkpk(xj) k=1,++~,m (9)
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Equation (9) is the classical maximum likelihood decision rule (Anderson, 1958) so
that beth R and the estimate R of R are minimized by the same likelihood decision
rule. Uslng a partition defined by (9), R 4is then an estimate of the Bayes error. Let

¥ belong to Ri .  Then

~ q.p: (X)
_ piX) _ 171
rx) = Ergy = g ,

is the postericr probability; i.e., the conditional probability of a measurement X
belonging to class wy , 8O that

Ny

& 2 r(x)

represents the average conditicnal probability for the unlabeled but classified test

samples, and 1t follows from Equation (8) that the eatimate of the probability of mis-
classification is minimized by maximizing the average conditional probkability. Also,
since 1 - r(Xi) i1s the conditional risk of misclassification, it follows from Equa-

tion (8) that the average of the risk estimates 1s the probabillity of misclassification,

Since the ?i’s are Independent and 1dentically distributed random vectors, the
r(fi)'s are independent and identically distributed random variables. Therefore, from

Equation (7), the estimate of Eguation (8) is unbilased as
N

t
E[fz] =1 - ﬁ ; E[r(ﬁi)] =1- glr(X)] =R (10)

We now derive an expression for the varlance of B for the particular case of a
Bayes partition as defined by Equation ($). Since

0<l1-r@® <1-1 (11)
it follows
1 - x(®1? < [1 - }n] f[1 - r(X)1] (12)
and
e{r - r(inz} < (1 - I%)R (13)

Therefore, a bound on the variance of 1 - r{X) , 02[1 - r{X)] , is

02Il - r{X)i

E{[l - r(i)lz} - Ez{[l - r(i)]}
2

E{{l - r(sznz}- R

1 2
(1 ﬁ) R - R

R (14)

A

R{1 - R} ~

=1y

which i1s the same as the expression derived for two classes except that m now appears
in the denominator rather than 2 (Fukunaga, Kessel, 1973). Thus, the variance of R
is given by

~ 2 =
var [R] = U_._.[_L.;Iﬂ_)_]. (15}

t
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and by Equation (14) satisfies

R] (16)

=l

var[ﬁ]'g %Z [R(l - R) -

The resulfs of thls section are summarized below,

!
Theorem 1: Let r(X) be integrable with respect to the mixture density functilon
p{X) . Then the probability of misclassification R 15 given by

R=1- [rpmax = 1 - Elx(X)] (17)
s¢ that the probabllity of misclassification is the complement with respect to 1 of the

expectatlion of r(X) with respect to the random vector X .

For any partition [Rl,---,Rm] R R 1s an unbiased estimatcr of R 1n that

E[R] = R (18)

Furthermore, if the partition ls the Bayes partition defined by Equation 9, then the
variance of R’ satisfiles

var[R] < & [R(l - R) -

=1L

N

" R] | (19)

IITI. ESTIMATING A PRIORI PROBABILITIES FCR TWO CLASSES

Assume the existence of two classes w, and w, With density functions, pl(X)
and p2(X) » respectively. The functions are not necessarily multivariate normal. For
example, pl(X) could be the density function for wheat and pz(X} could be the density

functlon feor nonwheat, with the mixture density function glven by
p(X} = qlpl(XJ + q,p, (X) (20)
In this case, the partltion defined by Equation (9) is equivalent to

X {(classified as wheat) exists in Rl if and

only if qlpl(x) > 1/2 p(X) (21)

Here only training samples are needed for estimating pl(x) s because the mixture
density p(X) can be estimated from the unlabeled test samples.

In general, with an arbitrary decision rule independent of the a priori probabili-
ties qq and a5 the space can be partitlioned into two regions Rl and R2 . In
this case, an estimate §1 of 9, can be obtained by counting the proportion of test
samples classified as

q, = fp(X) ax (22)
Ry
If the actual q; is unknown, it is difficult to estimate the error asscclated with
ﬁl . However, it 1s possible to derive a measure of the errcor. Let
a = p, (%) dx . y
fR 1 (23)
1
h = P, (X)) dX
fR 2 (24)
2
2A-30

R R



Then it can be algebralcally verified that for any partiticn, [Rl,R2] , the estimate
al {Equation 22) satisfies

ag; £ §q <1+ (a - 1b (25)

where 0 <a <1 and 0 <b <1 . By noting that the probability of misclassification
can be written as

R=1-gqg;a-g,b (267

it follows that as a and b approach 1, the probablility of misclassiflcation
approaches 0, and from Equation (25)

4; — 43 (27)

It follows ag in the previous section that estimates of a and b can be obtained using

unlabeled test samples and are given by
Py (X)
= ST (28)

XERl

V=] L
o+

(29)

oy
I¥
ZPH
ot

T
—)
sl
— »
L

XER2

iv. FEATURE SELECTICN

_ Feature selectlon 1is the reduction of the dimension n of each cobservaticn vector
X from n to n' , where n' <n . The dimensicnality reduction is obtained by the
measurable transformation

¥ = BX (30)

where ¥ is an n'-dimensional vector._ In practice, B 1s generally & linear trans-
formation, and the space of all such Y's 1s the transformed space. Since B 1s
assumed to be measurable, the Radon-Nikodym theorem (Kullback, 1968) guarantees the
existence of density functlons gi(Y) Tor each of the m-classes, satisfying

-léi(Y) dy = Jlbi(X) ax i=1,++,m {31}

5 21 (s)

where S5 1s any measurable set and

" l(s) = {X|Bxes} (32)

PMCB denotes the minimal probabllity of misclassificatlon computed in the trans-

formed space for a glveh transformation B . Similarly, PMC denotes the minimal proba-
bility of misclassification computed in the nontransformed space. The first section of
this paper shows that 1f [Sl,---,Sm] is the minimizing partition in the transformed
space

s; = {¥ig;qg, (V) > 494 (¥ j=1,+++,m} (33)

&s shown elsewhere (Quirein, Decell, 1973), PMC < PMCy, . The two terms are equal
when

pg~1 (si)= R; i=1l,+++,m (34}
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with R as defined by Equation (9).

i

The difference PMCB - PMC > 0 can be considered a measure of the average loss of

interclass separablllfy resultlng from the measurable {ransformation ¥ =B . The
objective of feature selection 1s to find an n' < n and transfoermation B such that
the difference PMC, - PMC 1is small. Thils objectlve can alsoc be considered as the main-

tenance of n-dimens?onal patterns in n'-dimensional space. !
In practice, the expressions PMCB and PMC:- are difficult to evaluate because the
qi's are generally unknown and because the higher dimensiocnal Integrals are difficult to
evaluate., However, the approach in the first section of this paper allows the minimizing
of an estimate of PMCB when the qi's are known and wlll be discussed br}efly since a
complete derivation 1s presented elsewhere (Quirein, Minter, 1974). Let PMCB be an
estimate of PMCB computed in the transformed space, with the variable Xi replaced by
BXi in Equaticn (8). Assuming differentiability (which for most cases of interest will

exist for a_glven partition), then 1t 1is shown elsewhere (Quirein, Minter, 1974), 1f the
estimate PMCB of PMC ig to be minimized for a partition [81,52,---,8 ] and matrix B,

B m
then B must satlsfy the matrix equation
aphc
——2] = (0 (35)
2B
and
8; = {ij|qigi(BXj) > quk(ij) k=1,---,m}
i=l,"',m
=L, 00 Ny (36)
3PHC,
The expression for the partilal derivative 5B is computable and 1s presented

elsewhere {(Quirein, Minter, 1974). Because Equations {35) and (36) are numerically com-
plex to satisfy and because the qi‘s are generally unknown, a measure { of Interclass
separabllity has been devised with these properties: )
1. The expressicons for ¢ and $B are easlly evaluated. wB is the measure ¢
evaluated in the transformed space.

2, PMC < ¢ eand PMCB < wB

3. Vg 2 ¥ with ¢ = y5 implying PMC = PNMC

To define a measure ¥ of interclass separability that satisfies numbers 2 and 3
and sometimes number 1, the Bhattacharyya distance (Kailath, 1967) 1s used. The inter-
class Bhattacharyys distance between classes and w is

i k
' S 1/2 _
Y{i,K) = [qipi(X)qkpk(Xﬂ ax i=l,ve0,me1 (37)
k=i+l,+-+,m
Similarly, in the transformed space
. 1/2
by (1,k) =f[qigi (Y)q, 9, (y)] ay i=1l,+++,m-1 (38)

k=i+l; rre L
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is defined.

The separabllity measure

and the separabllity measure $B is

Vg =

The followlng 1s proved below:

with wB =

To prove

Theorem 2:
implying PMC = PMCB .
PMC < ¥ , note that

min [(a;p; (X)) aypy ¢

1s defined

Z Z‘, ¥ (i,k)
i=1 k=i+l
m=1 m
2. bplik)
i=1 k=i+l
PMC = ¥
PMC, < Vg
Vg 2 ¥

X) ]

1/2
< [agp; ) gy (0]

and writing the probablility of misciassification as

i=1 k=i+l

PMC =

R.
i

it follows from Equation (41)

Similarly,

PMC

A

m-1
i=1 k=i+
=9
it can be shown PMCB < wB.
vglisk) = ffa;q;¢

min [qipitx),qkpk(X)] dx

URk

1/2
[qip:-L (X) qkpk(x)] ax

UR

m
< Zl ./]-:qipi(x) 9P (0] ax

(39)

(40)

(41)

(42)

(43)

To complete the proof of the theorem, note that

¥) g (V)] 172 4y

f{qiqi(Y)/quk(Y)jl/z 39y (¥) Ay
[[a19: %) [a g, 8] 2 qpy (%) ax
= f[quk (BX} Iqlgl (BX)] 172 qlpl (X) dx

24-33
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50 that

29 (i k) = 29(i,k) =f{ [2;9; (BX) a9, B2 ap, (0

1/2

+ [aygy (B8 fa 9, B0] % gy, (%)

2 [a;7; (%) qey (0 ]H?} ax

]{ [a9; (B%) lquk (8x) ] 1/4 [aypy (%3] 1/2

2
[ayox (%0 fay9; 0] Y4 [azp; 0] M2} ax

> 0 (45)

which implies that ¢ {i,k} > ¢{(i,k) and ¢ {1,k) = ¥(i,k) 1if and only if
B - B

pi(x) gi(BX)

P (X) g, (BX) (46

for all X . Thus it follows that by 2 V¥ and the condition wB = ¢ 1mplies by
Equation (46) that B™7(S,) =R, , 4 = 1,+++,m . In this case, PNC = PMC_ as
mentioned in the beglinning of this section, completing the proof of the theorem.

The proof of the above theorem shows that the condition wB = ¢ 1s equivalent to

p; (X) g, (BX)
P (X) 7 g, (BX)

i=1,+*+,m=~1
k=i+l,*<+,m (47)
almost everywhere, so that a B , 1f one exists, can be found satisfying wB = ¢ and

thus PMCB = PMC even 1If the qi's are unknown.

V. FEATURE SELECTION WHEN EACH CLASS DENSITY IS A MIXTURE
OF MULTIVARIATE NORMAL DENSITY FUNCTIONS

Assume that each class density function pi(X) may be written as

]1
qp; (X) = EE% a5 Py i (X) (18)

where each Py k(X) ig assumed to be multivariate normal and
3 .

(.}

i

kz=:l q’i,k = 4y {49)
Defining the separability measure $(i,o) between classes w, and w  as
i, 3
1
. _ 1/2
f Viiso) = k};,l yg; f[qi,kpi'ktx) qo,zpo,z(X)] ax (50)
|
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o4

then

m-1 m
=3 ¥ ¥d.x (51)
i=l k=i+l
The fellowing is proved below:
Theorem 3: PMC < y < !

with $B = ¢ 4implying PMC = PMCy .

Before proving Theorem 3, note that any wlthin-class separabilities of the feollowlng form
need not be evaluated:

1/2
f[qi,kpi,k(X) qi;jpi,j(x)] dx {(52)

This fact 1s partlcularly useful in the two-class problems in which each class is assumed
to be a mixture of multivariate normal density functions. If jl = 1 so that the first

class has only one subelass, then

22 1/2
¢ = :E:J{tql,lpl,l(x)qZ,lpz,E(X}] ax (53)
| 2-1

Moreover, under the assumptions of this section of the paper, expressions such as

¥, ¥y, and
&

are readily evaluated in terms of the means and covarlances of each density constlituting
the mixture (Quirein, Decell, 1973). The proof of the theorem follows:

¥(i0) =f[qui(X’ a p, (0] ax
Jo

éé; CANCIE RN b

ax

LA

Ji

[y
Qo

1/2
- [9; kPi k(¥ 9o, 2P0, 2 (¥)] ax

=
1

k

V(i,o) (54)

and it immediately follows that

o
=
O

A

<

A
«

and similarly,
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The inequality ﬁB 3_$ follows exactly as in the proof of Theorem 2.

if @B = 1 , then almost everywhere

pPs 4 (X) g. , (BX)
l'k(x) = gl'k(BX) k=lp-.o1ji
Po, 2 o,%

2:1'-o-,j0

i=1,...,m-1
o=i+l,***,m
The above can easlly be shown to Imply almost everywhere,
p,; (X) ) g; (BX)
Py (X) 7 g, (BX)

i=1,...,m=1
o=i+l,+++*,m

To see thls, consider {when Egquation 55 is true)

B
1
gq. kp- (X)
43P; (X) %;Q e

doP, (X Jo
:E: 9, 9Pg, g X)
2=1

3.

1
Z 93 ,xPi,x X
P (X)
Po,1® 4= ot

P; 1)1

i qo,zPo,z(X)
Pi'l(x) )

9, 1 (BX)

93 x93,k (BX)

[Le]
[a]
—
w
3
|
] =
- i—-'

i
o

[o]

L'o=1 i

This completes the proof of the theorem.

VI, SIGNATURE EXTENSION
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qo'ggo,l(BX)
g. lEBXS
r

As 1in Thecorem 2,

|

. In condueting large area crop inventoriles, spectral signatures obtained from one
| geographlical area, perhaps an 11.1- by 9.2-kilcmeter (17.9- by 14.8-mile) area may be

(55)

(56)

(57)



used to classify another geographical area of a simllar size. The two areas are usually
separated by approximately 18.5 to 185.2 kilometers (29.8 to 298.0 miles}, and the signa-
tures are obtained usually 1 or 2 days apart.

If the random vector variable X belongs to areaz 1 and the random variable Y
belongs to area 2, the hypothesis states that under certain conditlons a linear trans-
formation B and additive vector v can be found satisfying

Y =38BX +v !(58)

If Equatlon (58) is physically satlsfied almost everywhere, then, under certain con-
ditions, known statistics from area 1 can be transformed using B and v to classify
area 2. Methods for determining B and a conslderatlon of the conditions to be satis-
fied are discussed below.

The conditions to be satlisfied to find the desired transformaticon and perform a
classification of area 2 using statistlics from area 1 fall into two dlstinect categories —
surface conditions and above-surface conditions. The above-surface conditions are
affected primarily by the atmesgphere, Sun angle, and the sensor. It has been shown
(Potter, Shelton, 1974) that a difference in Sun angle only between two areas can be
accounted for with a linear transformatiocn. Conceivably, areas with "similar" atmos-
pheric transmission could be dellineated by an analyst inspectlng satelllte 1magery.

The surface conditions are primarily affected by surface mocisture, soil color, and
crop type and gtage of maturity. Soil melsture maps could be updated on a real-time
basis using meteorcloglcal information. Soll color maps could be constructed using his-
torical infermation. Areas of similar crop type and stage of maturlity could be obtained
using historical informaticn and updated as needed during the growing season. Below, we
consider strategles for satisfying Equation (58) when a solutlon may exist.

Assume that area 1 consists of m distinct classes

"llﬂzt.'.l“ {59)

m

normally distributed with known covariances and means (ﬂj,ui) . Alsoc, let Sy be the
"class of interest" in that we are only interested in determining the percentage of

class L in area 1. The classes Tos®t=,T  can be assumed te represent the competing

crops. Assume that area 2 consists of m” < m distinct but generally unidentified
classes

~ A ~

LETE PYAR RN (60)

normally distributed with known or unknown covariances and means (li,Bi) . Only the
cases where (Ai,Bi) are known will be considered. We assume that for each distinct
class %i s the same physical class ﬁj exists in segment 1; Thus the problem becomes
one of assoclating each of the classes of unknown identlty, “i , 1n segment 2 with
corresponding physical plass ﬂj in segment 1 in some way and then solving Equa-

tion (58) such that

i BﬂjBT =X i=l,;...,m”

Buj"’v Bi 3=¢(i) (61)

In general, such an‘associatiOn of classes cannot be made, since, if this were the case,
area 2 could ke classified using statistics from area 2.

A possible approach to solving thls problem 1s discussed below. Assume that 1n each
of the areas the same physical class exists and that this class 1s "easily" identified —

with or without ground truth. Such a class i1s called a "calibration class." ZLet the
calibration class 1in area 1 be “j and the corresponding calibration class in area 2 be
%i . Assuming that & B and v satisfying Equation (58) exist, then 1t suffices to

solve the following for B
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anBT = A, (62)
Bu. + v = B, (63)

It 1s immediately verifled that the solutlon is given by

B = 21/2 371/2 (6L)¢
i 3
v = Bi - BUj (65)

If a calibration class cannot be obtained, a pessible way of obtaining an assoclation
between the classes in the two areas is described below. Let

~ T
2

BO,B i=1,+++,m (66)

ﬁi = Bui + v i=1,+*+,m (67)

Let the index 1 denote the transformed classes from area 1 {(Equations 66 and 67) and
the index J denote classes from area 2. Using ¢{(1,J) to denote the Bhattacharyya
distance between classes m, and . having statistics (Qi,ﬁi) and (AJ,BJ) s
respectively, define J

-
]

max Y({i,])

3
1<i<m j=1,..,m”

oy = i which maximizes y(i,j) (68)

_
o= 0 v (69)

i=1

Thus the assocliation is obtalned by
max {4} ' (70)
B

Since for a glven assoclation (aj = 1 denotes the Jth ¢lass 1n area 2 has been assoc-

ciated with the 1“th class in area 1), ¢ 1s a differentiable function of B , the
solution could be obtained by iterating Equatilons 66-70 until the condition

Yy 2 t j=1,*+*,m" {71)

1s satisfled, where { 1s some predeftermined threshold.
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